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Time series forecasting still awaits a transformative breakthrough like that happened in 
computer vision and natural language processing. The absence of extensive, domain-independent 
benchmark datasets and standardized performance measurement units poses a significant 
challenge for it, especially for photovoltaic forecasting applications. Additionally, since it is often 
time domain-driven, a plethora of highly unique and domain-specific datasets were produced. 
The lack of uniformity among published models, developed under diverse settings for varying 
forecasting horizons, and assessed using non-standardized metrics, remains a significant obstacle 
to the progress of the field as a whole. To address these issues, a systematic review of the state-of-

the-art literature on prediction tasks is presented, collected from the Web of Science and Scopus 
databases, published in 2022 and 2023, and filtered using keywords such as “photovoltaic,” 
“deep learning,” “forecasting,” and “time series.” Finally, 36 case studies were selected. Before 
comparing, a state-of-the-art demonstration of key elements in the topic was presented, such as 
model type, hyperparameters, and evaluation metrics. Then, the 36 articles were compared in 
terms of statistical analysis, including top publishing countries, data sources, variables, input, 
and output horizon, followed by an overall model comparison demonstrating every proposed 
model categorized into model type (artificial neural network units, recurrent units, convolutional 
units, and transformer units). Due to the mostly utilization of specific private datasets measured 
at the targeted location, having universal error metrics is crucial for clear global benchmarking. 
Root Mean Squared Error and Mean Absolute Error were the most utilized metrics, although they 
specifically demonstrate the accuracy relative to their respective sites. However, 33% utilized 
universal metrics, such as Mean Absolute Percentage Error, Normalized Root Mean Squared 
Error, and the Coefficient of Determination. Finally, trends, challenges, and future research were 
highlighted for the relevant topic to spotlight and bypass the current challenges.

1. Introduction

One of the primary strategies to reduce the carbon footprint left by fossil fuels is the adoption of renewable energy sources. 
Additionally, renewable energy sources are used globally to supplement an energy infrastructure that is already reliant on highly 
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Nomenclature

Abbreviations

AIC Akaike Information Criterion

ANN Artificial Neural Network

ARIMA Autoregressive Integrated Moving Average

BIC Bayesian Information Criterion

BiGRU Bidirectional Gated Recurrent Unit

BiLSTM Bidirectional Long-Short-Term Memory

BO Bayesian Optimization

CEEMDAN Complete Ensemble Empirical Mode Decomposi-

tion with Adaptive Noise

CNN Convolutional Neural Network

CO2 Carbon Dioxide

COCO Common Object in Context

1D-CNN 1 dimensional CNN

EEG Electroencephalogram

EEMD Ensemble Empirical Mode Decomposition

FFNN Feedforward Neural Network

GHI Global Horizontal Irradiance

GPT Generative Pretrained Transformer

GRU Gated Recurrent Unit

GWO Grey Wolf Optimizer

ICEEMDAN Improved CEEMDAN

IEA The International Energy Agency

IMF Intrinsic Mode Function

IoT The Internet of Things

KNN K-nearest Neighbors

KPCA Kernel Principal Component Analysis

LGBM Light Extreme Boost

LSTM Long-Short-Term Memory

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

ML Machine Learning

MLP Multi Layer Perceptron

MLR Multiple Linear Regression

MSE Mean Squared Error

NASA The National Aeronautics and Space Administra-

tion

NLP Natural Language Processing

NREL National Renewable Energy Laboratory

NWP Numerical Weather Prediction

PCC Pearson Correlation Coefficients

POA Plane of Array

PSO Swarm Optimization

PV Photovoltaic

PVGIS PV Global Information Systems

PVPS Photovoltaic Power Systems

𝑅2 Coefficient of Determination

ReLU Rectified Linear Unit

RF Random Forest

RGB Red, Green, and Blue

RMSE Root mean squared error

RNN Recurrent neural network

SARIMA Seasonal ARIMA

SCC Spearman Correlation Coefficients

SGD Stochastic Gradient Descent

SSA Salp Swarm Algorithm

SVM Support Vector Machines

SVR Support Vector Regression

SWT Stationary Wavelet Transform

tanh Hyperbolic Tangent Function

VMD Variational Mode Decomposition

XGB Extreme Gradient Boost

Notations/Symbols

𝑊 Weight

𝑏 Bias

𝑛 Number of inputs

ℎ𝑡 Hidden state

𝑐𝑡 Cell state

𝜎 Sigmoid activation function
⃖⃖⃗ℎ𝑡 Hidden vectors of forward network

⃖⃖ ⃖ℎ𝑡 Hidden vectors of backward network

𝑀 Sub-matrix

⊗ Convolutional operation

𝑓 CNN filter

𝑠 CNN stride

𝑑𝑘 Dimension of 𝑘
𝑄 Queries of the Attention

𝐾 Keys of the Attention

𝑉 Values of the Attention

𝑝𝑜𝑠 Transformer encoding position

𝑦𝑖 Labeled output

𝑦𝑖 Predicted output

𝜃 Weight/Bias

𝜂 Learning rate

𝐽 Cost function

𝑍 Perceptron input function

Units

GW Giga Watt

GWp Giga Watt peak

kWh Kilo Watt hour

MW Mega Watt

polluting sources. This becomes crucial when the demand for energy in a certain location increases or access to conventional energy 
sources is limited. For instance, the European Union’s 2021–2022 gas crisis and the threat to its 2050 decarbonization ambitions 
caused considerable alarm [1]. Therefore, energy from renewable sources is highly valued by both public and private institutions as 
a way of addressing this issue. This study specifically focuses on solar energy as one type of renewable energy.

Solar cells are electronic devices that convert solar energy, or irradiance, into electrical energy using the photovoltaic effect, a 
phenomenon that enables the generation of voltage and current when a substance is exposed to sunlight. The fundamental compo-

nents of conventional solar panels are solar cells, and these panels are often grouped together to form a solar string. Solar energy 
has grown in popularity due to the enormous demand for electricity and the negative environmental effects of non-renewable energy 
2

sources [2]. As the number of PV systems being installed worldwide continues to rise, there is a growing demand for optimizing the 
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Fig. 1. Trend of Worldwide total installed PV panels capacity. (source: IEA PVPS 2023).

performance and reducing the cost of these systems. Forecasting the output of these systems is essential for PV optimization and cost 
savings.

In the IEA PVPS 2023 report [3], it is revealed that worldwide installations of PV panels have grown significantly in the past few 
years. The new installations of PV arrays increased by 30%, 20.6%, and 37% in 2020, 2021, and 2022, respectively, marking a new 
benchmark growth since the inception of this trend [4]. Fig. 1 illustrates the global installation of photovoltaic panels over the past 
two decades. Major countries leading in PV systems installations include China, EU countries, the USA, Japan, and India. Globally, a 
total of more than 1185 GWp is operating as of 2022 [3]. As the need for sustainable energy sources continues to rise, solar energy 
technology is expected to grow at an unprecedented rate in the coming years.

China has experienced the most significant growth in solar energy generation, adding 104 GW in 2022 alone, constituting over 
34% growth in a single year. This pushed their total capacity to 414.5 GW, which is double that of Europe’s capacity. European 
countries come second in capacity, installing 39 GW in 2022, accounting for 23% of the new capacity. Leading in Europe are Spain 
(20.8%), Germany (19.2%), Poland (12.6%), and Holland (10%), bringing the total capacity to 210 GW. The USA market achieved a 
15.1% increase in new installed capacity, and Japan demonstrated steady growth with an addition of 6.4 GW, similar to the previous 
year. Surprisingly, India is exhibiting ambitious growth, ranking second highest in solar energy growth with a 30% increase in new 
installations. This highlights the country’s vision to expand in the market. Photovoltaic panels are playing a major role in reducing 
𝐶𝑂2 emissions and providing an independent source of energy, unlike fossil fuels. On the other hand, its stability is considered a 
very challenging topic.

PV performance depends on many factors [5], primarily solar irradiance and then meteorological variables (i.e., cloud thickness, 
precipitation, and temperature), PV module type, the structure of the installation, and electrical components that are connected 
within the system. The degree of effect of the aforementioned variables is not constant over time; it varies with the year and season. 
[6]. In the literature, many methods have been presented to predict PV panel power generation. It can be categorized into four 
methods: physical, persistent, classical (statistical), and artificial intelligence models.

Physical models predict PV panel output by derived equations, such as that are used in PV Global Information Systems (PVGIS) [7]. 
It takes inputs that consist of PV’s information (i.e., unit type and mounting angle), meteorological measurements, and the latitude 
and longitude of the panels. The main input for a physical model is irradiance data [8]. It can be collected from various sources, 
including satellite data, weather station databases, and Numerical Weather Prediction (NWP) [9]. In [10], day-ahead forecasting 
physical model was implemented. The most notable advantage is that it outperforms statistical methods with lower errors. On the 
other hand, the physical model is fixed on a specific weather condition where sudden extreme climate fluctuation is not considered 
[11].

The persistence (Naive) model is predicted by assuming that next time t will be equal to a similar historical time t (i.e., tomorrow 
is equal to today). PV power outputs were forecasted in [12]. It is noted that this model is mostly used as a benchmark for comparison 
purposes with other models [13].

Traditional statistical techniques require prior collected data. On this specific topic, measured PV-generated power is used in most 
studies in the literature. It fits a curve over historical data that will be extended into the future time frame [14]. Models that have 
3

been applied to the forecast are the Multiple Linear Regression Model (MLR), Autoregressive Integrated Moving Average (ARIMA), 



Heliyon 10 (2024) e33419S.M. Husein, E.J. Gago, B. Hasan et al.

Fig. 2. Techniques adapted in the publications of PV power forecasting over time.

and Seasonal ARIMA (SARIMA) [15–17]. In contrast, machine learning (ML) algorithms do not require a long learning process. ML 
for regression is a technique that uses a computer’s capability to perform a large number of repetitive computations. Models such as 
K-Nearest Neighbors (KNN) [18], Decision Tree techniques (such as random forest (RF) [19], Extreme Gradient Boost (XGB) [19], 
[20], Light Extreme Boost (LGBM) [20]) and Deep Learning Neural Networks. Many variations of neural networks with gradient 
descent and back-propagation algorithms were developed. These models include the Forward Neural Network (FFNN), Multilayer 
Perceptron (MLP) in [13], Recurrent Neural Network (RNN), Long-Short-Term Memory (LSTM-RNN) [21], [22], Gated Recurrent 
Unit (GRU-RNN) [23].

PV time series deep learning is an area that has experienced remarkable growth and innovation over the past decade. Fig. 2

sheds light on the evolution of PV power forecasting techniques as depicted in published works collected from Scopus database. 
A clear trend emerges: deep learning is the dominant force in this field. Among deep learning techniques, LSTM stands out as the 
most widely employed, followed by CNN, Transformer, MLP, RNN, and GRU. Notably, classical statistical methods and physical 
modeling, alongside other machine learning techniques, have also experienced a consistent increase in the number of publications. 
This evidence underlines the vibrant and accelerating nature of PV power forecasting as an expanding field.

Fig. 3 presents a network graph illustrating the key keywords from PV forecasting papers published in 2022 and 2023, as indexed 
in the Web of Science and Scopus databases. These keywords are color-coded and grouped based on co-occurrence in the papers 
(e.g., forecasting, machine learning, and deep learning). The graph reveals five distinct regions, offering insights into the topics of 
most interest to researchers.

Deep learning techniques are central in the network (the blue region), given our focus on them. The red region highlights the 
machine learning connections in solar forecasting related to smart grid applications, including models such as ANN, CNN, LSTM, 
Random Forest, and SVM. Irradiance forecasting with PCA is connected to recurrent model types, as depicted in the green region. 
Moreover, the Transformer unit and Attention Mechanism are linked with irradiance and PV power forecasting in the purple region. 
Other techniques, such as Bayesian Optimization, NWP, and Transfer Learning, are also present. Lastly, these studies commonly 
employ time series data and sky images as types of data.

For the systematic review methodology in Fig. 4, a comprehensive literature search was conducted across multiple electronic 
databases, including Web of Science and Scopus. The search strategy involved a combination of relevant keywords for “deep learn-

ing,” “time series,” “photovoltaic (PV) power,” and “forecasting.” The search was filtered to include articles published between 2022 
and 2023, resulting in a total of 89 publications. After removing duplicate records, the remaining number of publications was 65. 
The titles and abstracts of the identified studies were screened against predefined inclusion and exclusion criteria. The full texts of 
potentially eligible studies were then thoroughly assessed for final inclusion in the review. The final set of included studies, compris-

ing 36 publications, formed the basis for synthesizing the current state of research on deep learning techniques for time series PV 
power forecasting. This review article has its objectives as follows:

1. Demonstrate the trends in PV power forecasting techniques, with a primary focus on those utilizing deep learning models.

2. Compare different deep learning models with varying hyperparameter settings to elucidate the most promising configurations.

3. Showcase the variables utilized and their sources in published article to create a clear visual representation of their contributions 
4

and effects on the topic.
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Fig. 3. Network connection of related publication in 2023.

4. Review evaluation metrics utilized in the latest publications to highlight current trends, with a focus on metrics that allow for 
global model comparison.

5. Identify gaps in this line of investigation to pave the way for future studies to be more robust and efficient.

The structure of this review article is organized as follows: In section 2, a detailed explanation is provided regarding the time 
series concept of data, deep learning techniques, and evaluation matrices. Section 3 compares recent case studies on photovoltaic 
(PV) forecasting using deep learning models in two subsections. Firstly, an evaluation of characteristic selection is conducted, encom-

passing input and output variables. Secondly, an overall comparison of published articles categorizes each proposed model setting 
to predict PV power output into four primary categories based on their architectural components: ANN-unit, RNN-unit, CNN-unit, 
and attention-unit. This comprehensive analysis showcases each model unit type, optimization techniques, and evaluation metrics 
to discern the most efficient, accurate, and commonly used models for PV power output time series data forecasting. In section 4, a 
comprehensive discussion highlighting challenges, trends, and future research directions is presented. Section 5 presents recommen-

dations and conclusions.

2. Problem definition and deep learning models

The investigation into deep learning models for PV power forecasting consists of several key topics that will be thoroughly 
discussed in this section. Firstly, we delve into the study of time series data, focusing on the historical records of PV power production 
and its correlated variables over time. Secondly, the deep learning algorithm employed for the task can be further subdivided into 
the robustness of the deep learning core unit, the optimization technique implemented to enhance model accuracy, and the type of 
cost function steering the learning process of the model.

2.1. Time series data in PV power forecasting

The data structure for deep learning models can take various forms, including text (tokenized and converted into arrays of in-

dividual words for Natural Language Processing (NLP) 5.c tasks such as mapping human understanding of words and conversation 
[24]), images 5.b (digitized and represented numerically, e.g., through RGB values of pixels for computer vision tasks like recog-

nition and manipulation [25]), or time series, each form determining the necessary methodology required to build the appropriate 
5

algorithm. Time series data, comprising chronologically measured observations 5.a, is central to PV power forecasting. It exhibits 
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Fig. 4. Systematic review methodology.

characteristics such as large size, high dimensionality, and temporal patterns like trends, seasonality, and random variations [26,27]. 
The forecasting objective is to predict specific features while gaining insights into influential variables. Time series data used for 
PV forecasting can be classified as univariate, containing historical power generation or irradiance, or multivariate, including me-

teorological variables like temperature, humidity, wind, and pressure. Additionally, cell parameters (temperature, voltage, current) 
and time indices may be incorporated. The temporal resolution of data, ranging from minutes to months, affects model complexity 
and accuracy. For recurrent models utilizing historical information, the sequence length is crucial. Instead of single inputs, data 
is organized into sequences, often using recurrent neural networks adept at memorizing sequences. Furthermore, the forecasting 
horizon ranges from ultra-short-term (seconds to hours) for network quality and demand response [28], to short-term (intra-day) 
for maintenance planning [29], medium-term (day-ahead), and long-term (beyond one day) for decision-making and investment 
planning [30]. Long-term forecasting is challenging due to the stochastic nature of cloud distribution, leading to increased errors.

2.2. Deep learning

This section provides an overview of a deep learning forecasting techniques. The review encompasses various aspects, including 
the model’s architectural components, such as ANN-unit, RNN-unit, CNN-unit, and attention-unit; optimization techniques, including 
stochastic gradient descent, among others; evaluation metrics such as MAE, MSE, RMSE, MAPE, and 𝑅2; that are published in the 
most recent research papers of this domain.

2.2.1. Unit structure of deep learning models

The most basic form of the ANN is shown in Fig. 6. It was introduced by [31] in 1957, inspired by [32]’s works on modeling the 
nervous activity. It simulates the work of neurons in our nervous system. It consists of three parts: A single perceptron gets the input 
signal and processes it linearly through an activation function, resulting in an output in the range [0 1], as expressed mathematically 
in Equation (1) where 𝑊 is for weight, 𝑏 for bias, and 𝑛 for number of inputs, it has proven to be able to capture sharp fluctuations 
6

in data behavior.
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Fig. 5. Data representation.

𝑦 = 𝑓 (𝑏+
𝑛∑
𝑖=1
𝑥𝑖𝑊𝑖) (1)

Multi-layer perceptron is one of the approach to predict using ANN. [33] published a paper demonstrating time series weather 
prediction using multiple ANN-units organized in layers. Many areas of application of MLP time series forecasting have been covered 
(i.e., economic trend prediction, natural language processing, voice recognition, and computer vision). One of the great implemen-

tations of PV power forecasting using multilayer neural networks was done by [34], mean daily data were used to predict the next 
day’s generated power. It has achieved an accuracy of 98% coefficient of determination (𝑅2). However, the disadvantage of basic 
MLP is that it needs a large amount of data for the learning process, big computational resources, and complex network architecture 
[35].

RNN-unit is an enhanced version of the ANN unit that makes use of the strong correlations between historical records and the 
future target in time-series data. Temporal information between historical data is utilized in the recurrent unit. It was introduced by 
[36] in 1986. [37] demonstrated multiple ANN perceptron in series that are used to take a sequence input in which previous results 
7

are included to compute the current output, as shown in Fig. 7. It can be seen that every cell produces an output and a hidden state. 
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Fig. 6. Connected neural network with two inputs and one bias.

Fig. 7. Schematic diagram of Recurrent cells.

The outputs of RNN-unit are calculated with Eq. (2) where ℎ𝑡−1 is the previous hidden state and 𝑉 , 𝑈 , and 𝑊 are weights for the 
previous hidden state, the current input, and the current hidden state, respectively.

In PV power production, [38] Designed a cascade architecture consisting of RNN models that utilized hierarchical clustered data 
to tackle PV power fluctuations and designed an accurate model. [39] experimented with 3 RNN layers to predict 5 min, 15 min, 1 
h, and 3 h ahead, with an input sampling of 12 time-steps. The input was imported from local sensors connected to the internet. The 
experiment aimed to focus on the weather effects on PV power forecasting accuracy, utilizing different sets of weather inputs and 
highlighted the impact of each type. [40] conducted several experiments on a forecasting model consisting of a Stacked ensemble 
RNN combined with another deep learning model like (ANN, SVR, LSTM, and CNN) for 1 and 3 days ahead power prediction, 
utilizing measured weather input data and their statistical features. However, normal RNN units could result in gradient vanishing 
and explosion problems while dealing with long sequences. Thus, many variations of recurrent models have been introduced, like 
Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU).

ℎ𝑡 = 𝑓 (𝑉 ℎ𝑡−1 +𝑈𝑥𝑡 + 𝑏ℎ)

𝑦𝑡 = 𝑓 (𝑊𝑦ℎ𝑡 + 𝑏𝑦)
(2)

LSTM was designed by [41] in 1997, to alleviate the weaknesses of RNN. By the following couple of decades, it had won many 
prizes for achieving benchmark in speech and handwriting recognition [42]. One of the earliest published articles for predicting PV 
power generation using LSTM is by [43] that was used to predict a day-ahead using hourly weather data, resulting in a significant 
improvement compared to the previous mentioned models by more than 46%. The architecture of LSTM consists of four neural 
networks that are used to control three main tasks (Forget, input, and output gates). The LSTM is calculated as Eq. (3) where 𝑓𝑡
represents forget gate output, 𝑖𝑡 and 𝑔𝑡 are neural networks that correspond with input data, and 𝑜𝑡 is the result of the output gate. 
𝑊 is for weights, and 𝑡 for the time step. 𝜎 and tanh are sigmoid and hyperbolic tangent activation functions, respectively. The 
Forget gate is to determine how much previous data should be carried out. The input gate has inputs 𝑥𝑡, ℎ𝑡−1, and 𝑐𝑡−1 which are 
model sequence input, previous hidden state, and previous cell state, respectively. Both 𝑥𝑡 and ℎ𝑡−1 are being concatenated together 
to form the main input for all neural networks in the algorithm. The unit outputs are hidden state ℎ𝑡 and current cell state 𝑐𝑡.

𝐹𝑜𝑟𝑔𝑒𝑡𝑁𝑁 ∶ 𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓 )

𝐼𝑛𝑝𝑢𝑡𝑁𝑁 ∶ 𝑖) 𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)

𝑖𝑖) 𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑔 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑔)

𝑂𝑢𝑡𝑝𝑢𝑡𝑁𝑁 ∶ 𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)

𝑂𝑢𝑡𝑝𝑢𝑡 ∶ 𝑖) 𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑔𝑡
𝑖𝑖) ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡)

(3)

GRU is a lighter version of the LSTM developed by [44]. It was developed with 3 neural networks to control two gates (update 
and reset). The update gate is to select how much of the previous state should be preserved. The reset gate decides how to combine 
current input data with previous memory. 𝑢 is for hidden states’ weights. [45] has compared GRU unit with the previously mentioned 
8

units. The paper developed a model to predict long-term irradiance by using hourly and daily historical solar data. It found that error-
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wise, GRU is slightly better than LSTM, performing faster and using significantly fewer computational resources. Eq. (4) expresses 
GRU mathematically where ℎ𝑡 is the output of GRU unit. [46] Experimented with a vanilla GRU to predict using pre-processed public 
weather and power production data, with a 1 h data resolution. The authors experimented with hyperparameter tuning and observed 
the impact on the prediction accuracy.

𝑅𝑒𝑠𝑒𝑡𝑁𝑁 ∶ 𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑢𝑟ℎ𝑡−1 + 𝑏𝑟)

𝑃𝑎𝑠𝑠𝑁𝑁 ∶ 𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑢𝑧ℎ𝑡−1 + 𝑏𝑧)

𝑀𝑒𝑚𝑜𝑟𝑦𝑆𝑡𝑎𝑡𝑒𝑁𝑁 ∶ ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ𝑥𝑡 + 𝑢ℎ𝑟𝑡ℎ𝑡− 1 + 𝑏ℎ𝐹 )

𝑂𝑢𝑡𝑝𝑢𝑡 ∶ ℎ𝑡 = (1 − 𝑧𝑡) ⋅ ℎ̃𝑡 + 𝑧𝑡 ⋅ ℎ𝑡−1

(4)

Furthermore, [47] proposed a Bidirectional Recurrent unit to increase the model’s accuracy, which can be trained using all 
available input data in the sequence (past to future samples and vice versa), between 𝑡 = 0 and 𝑡 = 𝑡𝑛𝑜𝑤. Output is the combination 
of two directions of processing. For instance, bidirectional LSTM is expressed mathematically in Eq. (5). 𝑊⃖⃖⃗ℎ𝑦 and 𝑊⃖⃖⃖ℎ𝑦 are weights 

for forward and backward LSTM units, ⃖⃖⃗ℎ𝑡 and ⃖⃖ ⃖ℎ𝑡 are hidden vectors of forward and backward LSTMs, respectively, and 𝑏𝑦 is output 
layer bias. [48] Conducted a series of experiments in prediction using a bidirectional LSTM for various forecasting horizons of 5, 
15, and 30 minutes ahead. The experiments utilized actual PV power output data solely, in the absence of meteorological data. [49]

Experimented with BiLSTM, Bi-GRU, and a hybrid CNN-BiLSTM model for 1-day ahead prediction of global horizontal irradiance. The 
authors utilized historical irradiance measurement data from the public NASA database without considering other meteorological 
variables. The authors took into consideration the models’ parameters to fit and tune their proposed forecasting models.

𝑦𝑡 =𝑊⃖⃖⃗ℎ𝑦
⃖⃖⃗ℎ𝑡 +𝑊⃖⃖⃖ℎ𝑦

⃖⃖ ⃖ℎ𝑡 + 𝑏𝑦 (5)

CNN)-layers was introduced by [50]. It was inspired by the pattern of biological cortical neurons processing in the animal visual 
cortex, which focuses on a target area named the receptive field while ignoring the rest of the surrounding area. Although the CNN 
was created to deal with visual processing (images), [51] applied deep CNN to forecast timeseries PV power production for two farms 
in Belgium. The model forecasted five steps into the future with acceptable accuracy and robustness. In [52], the authors designed 
a CNN-BiLSTM prediction model, utilizing 1 year of meteorological input data from the target location and neighboring sites. The 
authors stated that the CNN was used to extract spatial features from the input variables, and the BiLSTM was added to extract the 
temporal characteristics. The process of the CNN algorithm is shown in Fig. 8. CNN extracts features (pixel trends and edges) from 
the input and groups them into small packets (convolutional operation). Two hyperparameters are related: kernel and filter. The 
kernel decides the number of elements in the input to be looked at once and slides over the input sequence, performing element-wise 
multiplication. Filter is the number of matrix features in the map (filters are randomly initialized). The CNN unit takes an input of 
size 𝑁 ×𝑁 and filters it using a matrix of size of 𝑚 × 𝑚, resulting in an output that has a size of (𝑁 − 𝑚 + 1) × (𝑁 − 𝑚 + 1) for 
convolution in the i-th layer. The procedure can be described mathematically in Eq. (6) where 𝑤, 𝑏, 𝑥, 𝑀 , and ⊗ are the weight, 
bias, input, sub-matrix, and convolutional operation, respectively, “𝑖” and “𝑗” represent the spatial coordination, 𝜎 represents the 
activation function for the unit output. Pooling layer is often added next to the convolutional layer to reduce the size of the newly 
created future map, which will increase the speed of processing. It is tuned with three main hyperparameters: Filter size to decide 
the new matrix dimension, stride that is similar to masking, and average pooling. It is described in Eq. (7) where “𝑓 ” denotes the 
filter and “𝑠” refers to the stride.

ℎ𝑖𝑗 =
𝑚−1∑
𝑎=0

𝑚−1∑
𝑏=0

𝑤𝑎𝑏 ⊗ 𝑥(𝑖+𝑎)(𝑖+𝑏)

𝑦𝑖𝑗 = 𝜎(ℎ𝑖𝑗 )

(6)

𝑃𝑜𝑜𝑙𝑖𝑛𝑔 𝑙𝑎𝑦𝑒𝑟 𝑂𝑢𝑡𝑝𝑢𝑡 ∶ ((𝑛ℎ − 𝑓 )∕𝑠+ 1) × ((𝑛𝑤 − 𝑓 )∕𝑠+ 1) (7)

Transformer Model was introduced by Vaswani et al. in 2017 [53], achieved state-of-the-art results in various natural language 
processing tasks, especially in language translation. The model utilizes The Attention mechanism, as proposed by Parikh et al. [54], 
to create a matrix representation of an input sequence by establishing connections between its elements. Unlike the sequential recur-

rence process in models like RNN, LSTM, and GRU, where the sequence is processed linearly, the Transformer processes the sequence 
in parallel using recurrent attention mechanisms, which has been proven to be a more efficient method for dealing with sequences. 
In [55], the authors demonstrated a prediction model utilizing an attention mechanism alongside CNN and LSTM layers. The model 
was designed to capture short-term and long-term temporal patterns to forecast day-ahead PV power output. A public dataset from 
the DKASC website was utilized, with the variables serving as input to this model. However, the authors stated the challenge of 
requiring huge computational resources when utilizing the attention mechanism. Saoud et al. [56] implemented a transformer to 
forecast energy consumption for households, using Time2vec positional encodings with weights for the input, and achieved state-

of-the-art results. [57] developed a novel multi-model forecasting approach that utilizes sky-image-derived information, coupling 
the correlations between sky images and historical data to improve ultra-short-term forecasting performance (10 minutes ahead). 
Specifically, it employs the Informer model to encode historical and empirically estimated clear-sky global horizontal irradiance 
(GHI) data. The ground-based sky images are transformed into optical flow maps, which can be processed by a vision transformer. 
9

An attention mechanism is proposed to explore the coupling correlations between these two modalities. Finally, a generation decoder 
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Fig. 8. Convolutional schematic.

Fig. 9. Attention mechanism schematic.

is used to implement multi-step ultra-short-term forecasting. The architecture of Transformers is constructed of stacked Attention 
blocks (Multi-Head Attention). Fig. 9 demonstrates the attention mechanism. This mechanism involves scaling the dot product of 
three copies of the input (Queries, Keys, and Values) and computing the output matrix as shown in Eq. (8). In this equation, each 
element in the Query matrix is multiplied with all elements in the Keys matrix and divided by the square root of the dimension of 𝑘
denoted by 𝑑𝑘. To obtain weights for the Values matrix, a Softmax function is applied to the resulting matrix. Finally, the subspaces 
𝑊 𝑄
𝑖

, 𝑊 𝐾
𝑖

, and 𝑊 𝑉
𝑖

are concatenated and linearly passed with the weight matrix 𝑊 𝑜 to obtain the final output.

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥((𝑄𝐾
𝑇√
𝑑𝑘

)𝑉 )

𝑀𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑(𝑄,𝐾,𝑉 ) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ..., ℎ𝑒𝑎𝑑𝑡)𝑊 𝑜

ℎ𝑒𝑎𝑑𝑖 =𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊
𝑄
𝑖
,𝐾𝑊 𝐾

𝑖 ,𝑉 𝑊
𝑉
𝑖 )

(8)

In addition to the attention mechanisms, the Transformer model incorporates Encoder-Decoder layers, as presented by [44], 
which have proven to be a powerful approach in sequence-to-sequence modeling. The encoder is responsible for processing the input 
sequence, which typically consists of time-based serial data, and converting it into a compressed representation known as the latent 
space. The latent space is a lower-dimensional representation that captures the essential information from the input sequence while 
removing unnecessary details. This compression enables the model to focus on the most important aspects of the input. On the other 
hand, the decoder takes the latent space representation produced by the encoder and generates the output sequence. In the context 
of sequence prediction, the decoder is given a one-time-shifted target sequence as an additional input. This means that at each time 
step, the decoder receives the elements of the target sequence up to the present time, without having access to future elements. 
By incorporating the target sequence into the decoder’s input, the model can utilize the ground truth information during training, 
which helps improve the quality of the generated sequence. This approach allows the model to capture dependencies and patterns in 
the data, making it effective in various sequence-to-sequence tasks. As shown in Fig. 10, the encoder is structured with three main 
components: an input, a positional encoding, and a stack of identical encoder layers. Positional encoding incorporates sequential 
information for the time series data and is applied using sine and cosine functions. This involves adding the positional encoding 
vector element-wise to the input vector. The resulting matrix is then passed through the encoder layers. Each encoder layer consists 
of two sub-layers: a Multi-Head Attention and a fully connected feed-forward layer. Following each sub-layer, a normalization layer 
is applied. The output matrix of the encoder is then passed into the decoder. The decoder block is structured similarly to the Encoder 
10

block with an input, decoder, and output layer, containing two sub-layers: Multi-Head Attention and a fully connected FFNN layer. 
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Fig. 10. Transformer architecture.

Additionally, the decoder has a third sub-layer that applies self-attention mechanisms to the encoder output matrix. To prevent any 
future information leakage, the decoder implements look-ahead masking, ensuring that the prediction of a time series data point is 
solely based on preceding data points. Positional encoding is used to retain the temporal information of the sequence while enabling 
parallel computation. It is added at the beginning, before the encoder and decoder layers. The positional encodings used in this 
model are sine and cosine functions with varying frequencies. They have the same dimension as 𝑑𝑚𝑜𝑑𝑒𝑙 , allowing them to be added 
element-wise to the input sequence, as shown in Eq. (9). Where “𝑝𝑜𝑠” denotes the position and “𝑖” refers to the dimension. The 
sine-cosine function was employed because it enables the model to associate each element with its corresponding time position, 
thereby facilitating the identification of correlations.

𝑃𝐸𝑝𝑜𝑠,2𝑖 = sin(𝑝𝑜𝑠∕100002𝑖∕𝑑𝑚𝑜𝑑𝑒𝑙 )

𝑃𝐸𝑝𝑜𝑠,2𝑖+1 = cos(𝑝𝑜𝑠∕100002𝑖∕𝑑𝑚𝑜𝑑𝑒𝑙 )
(9)

2.2.2. Hyperparameters

Determining the appropriate hyperparameters for deep learning models is crucial for achieving high accuracy in time series 
forecasting of photovoltaic (PV) power generation. Hyperparameters can be categorized into two types: those related to the model’s 
architectural design and those related to the learning process [58]. Hyperparameters pertaining to the model’s architectural design 
include the number of hidden layers, the number of units (or neurons) in each layer, and the type of activation function employed 
in the neurons. These hyperparameters significantly influence the model’s capacity and complexity, affecting its ability to capture 
11

intricate patterns in the data. On the other hand, hyperparameters related to the learning process such as the number of epochs 
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Table 1

Most popular activation functions.

Activation function Function First derivative Advantage Plot

Sigmoid(Z)
1

1+𝑒−𝑍
𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑍) ∗ (1 − 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑍)) Smooth gradient

Tanh(Z)
𝑒𝑍−𝑒−𝑍

𝑒𝑍+𝑒−𝑍
𝑡𝑎𝑛ℎ2(𝑍) Zero centric output

ReLU(Z) 𝑚𝑎𝑥(0,𝑍) 1 Computationally efficient

(iterations over the entire dataset), learning rate, and batch size, govern the optimization and training of the deep learning model. 
Additionally, selecting a suitable optimization technique is a key hyperparameter that can enhance the model’s performance and 
convergence. This section discusses the hyperparameters commonly utilized in deep learning models for time series forecasting of 
PV power and their impact on the model’s accuracy.

2.2.2.1. Design-related hyperparameters Number of hidden layers, the number of units (or neurons) in each layer, and the type of 
activation function are hyperparameters related to the model’s design. Furthermore, the internal flow connections are important. 
Techniques such as Residual Networks (ResNets) [59] are utilized to overcome the issue of vanishing gradients by skipping layers. 
Another popular network connection is the Densely Connected Convolutional Network (DenseNet). The innovation in DenseNet is 
that it connects each layer to every other layer in the network instead of only feed-forwarding to the next layer.

Activation functions play a crucial role in introducing non-linearity into deep learning models, enabling them to learn complex 
relationships in the data. The most commonly used activation functions are shown in Table 1, sigmoid, tanh, and ReLU, while Z 
represents the neural input signal. Sigmoid is the most frequently used function; it outputs a signal between [0, 1] and provides a 
smooth gradient through its first derivative. However, its output is not zero-centered, which can make the model unstable. Tanh is 
an improved version that centers the signal around zero. However, this comes at the cost of increasing the steepness of the gradient, 
often leading to the problem of vanishing gradients. ReLU is a computationally efficient activation function that outputs a signal in 
the range of [0, Z] and has a derivative of 1. However, this efficiency reduces the model’s capability to fit the data more accurately. 
Other activation functions, such as the softmax for output layers in classification tasks or the leaky ReLU, which addresses the dying 
ReLU problem, can also be considered depending on the specific requirements of the time series forecasting task for PV power.

2.2.2.2. Learning-related hyperparameters Selecting the appropriate optimization technique and tuning hyperparameters related to 
the learning process are crucial for enhancing the performance and efficiency of PV power generation forecasting models. Batch 
size, which refers to the number of training samples propagated through the model in each iteration, is a key hyperparameter for 
training deep learning models using mini-batch gradient descent, a variant of the Stochastic Gradient Descent (SGD) optimization 
algorithm. A smaller batch size generally leads to more frequent updates of the model parameters, which can sometimes result in 
better convergence but also increased computational overhead. Conversely, larger batch sizes can lead to smoother convergence but 
may get stuck in sub-optimal solutions. The learning rate is another critical hyperparameter that determines the step size at which the 
optimizer updates the model’s weights and biases during the training process. SGD, which stands as the most popular optimization 
technique for training deep learning models, including those used for time series forecasting of PV power, utilizes backpropagation 
to navigate the learning process and reduce the error. Other common optimization techniques include RMSprop, particle swarm 
optimization (PSO), gray wolf optimization, Bayesian optimization (BO), and the Marquardt algorithm.

Stochastic Gradient Descent (SGD) stands as the most popular optimization technique in contemporary deep learning. It finds its 
roots in the mathematical gradient descent iterative algorithm pioneered by [60] and [61], which successfully located local minima of 
differentiable functions. However, this algorithm systematically processes every individual data point, a practice that, when dealing 
with machine learning big data, demands substantial computational resources. To address this challenge, the stochastic variant of 
the algorithm was introduced by [62] and further elucidated in [63]. This approach significantly reduces the computational burden 
by selecting random data points for each iteration.

In this algorithm, the first derivative of the cost function is computed to determine the direction in which weights and biases 
should be updated. Referring to Eq. (10), where 𝜃 represents the weights or biases, they are updated by adding or subtracting the 
12

gradient. The learning rate (𝜂) and the derivative of the cost function (𝐽 ) jointly determine the magnitude of the gradient descent.
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Fig. 11. Feed forward neural network and gradient backpropagation schematics.

𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑 − 𝜂 ⋅
𝜕𝐽

𝜕𝜃
(10)

Fig. 11 demonstrates the algorithmic flows of feedforward and backpropagation for a single perceptron network. For explanation 
purposes, the MSE cost function and the ReLU activation function were selected as examples of how the gradient of a single perceptron 

is calculated. The derivatives of the MSE cost function are computed as follows: 𝜕𝐽
𝜕�̂�

= 
𝜕( 12 (�̂�−𝑦)

2)
𝜕�̂�

= �̂� − 𝑦. For the ReLU activation 

function, the derivative is 𝜕�̂�
𝜕𝑍

= 1. The weight gradient is calculated using Eq. (11), and similarly, the bias gradient is computed 
using Eq. (12).

Gradient for weight: 𝜕𝑍
𝜕𝑊

= 𝜕(𝑏+𝑥𝑊 )
𝜕𝑊

= 𝑥

𝜕𝐽

𝜕𝑊
= 𝜕𝐽
𝜕�̂�

𝜕�̂�

𝜕𝑍

𝜕𝑍

𝜕𝑊
= (�̂�− 𝑦) ∙ (1) ∙ (𝑥) (11)

Gradient for bias: 𝜕𝑍
𝜕𝑏

= 𝜕(𝑏+𝑥𝑊 )
𝜕𝑏

= 1

𝜕𝐽

𝜕𝑏
= 𝜕𝐽
𝜕�̂�

𝜕�̂�

𝜕𝑍

𝜕𝑍

𝜕𝑏
= (�̂�− 𝑦) ∙ (1) ∙ (1) (12)

The cost function, also known as the loss function, is a crucial component in training deep learning models as it evaluates the 
model’s performance by measuring the difference between the actual samples in the dataset and the model’s predictions. It quantifies 
the error between the labeled and predicted values, presenting it as a single scalar value. For regression tasks, such as time series 
forecasting of PV power generation, the Mean Squared Error (MSE) is more commonly employed as the cost function compared to 
the Mean Absolute Error (MAE). MSE calculates the average squared difference between the predicted and actual values, as shown in 
Equation (13), where �̂�𝑖 and 𝑦𝑖 represent the predicted and true values, respectively, for the 𝑖𝑡ℎ sample. MSE is particularly sensitive 
to outliers due to the squaring operation. In contrast, MAE measures the average absolute deviation between the predicted and actual 
values, as shown in Equation (14), without squaring the errors. While MAE is less sensitive to outliers, it does not provide as much 
weight to larger errors compared to MSE.

𝑀𝑆𝐸 ∶ 1
2𝑁

𝑁∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2 (13)

𝑀𝐴𝐸 ∶ 1
𝑁

𝑁∑
𝑖=1

||𝑦𝑖 − 𝑦𝑖|| (14)

The choice of the cost function can significantly impact the model’s training and performance, especially in the presence of noise 
or outliers in the PV power time series data. Therefore, understanding the properties and implications of different cost functions 
is essential for developing accurate and robust forecasting models in this domain. Similarly, other optimization algorithms are also 
utilized and investigated, such as PSO [64], GWO [65], BO [66], and the Marquardt algorithm [67]. Weights and biases are updated 
in every iteration, thus minimizing the error of the model. The learning rate, number of perceptrons, epochs, types of cost function, 
and activation function are the hyperparameters for a deep learning model. Tuning these hyperparameters is the main focus in 
achieving robust and accurate models.

2.2.3. Performance evaluation methods

For showcasing the performance of the deep learning model, it is essential to use evaluation metrics. Publications in this topic 
mostly use two primary groups of metrics: accuracy metrics, and error metrics. Error metrics quantify the difference between the 
predicted values and the true target values, while accuracy metrics assess how closely the predicted values match the ground truth. 
The most widely used error measures, mean absolute error (MAE), mean absolute percentage error (MAPE), mean squared error 
(MSE), and root mean square error (RMSE), each have distinct interpretations. MAE has a key advantage of its intuitive interpretabil-

ity. The MAE directly measures the average magnitude of errors in the same units as the original data, making it straightforward to 
comprehend the implications of the error value. Moreover, the MAE treats all errors equally, without disproportionately penalizing 
13

larger errors. [68] However, it does not inherently facilitate direct comparisons of model performance across different datasets or 
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Table 2

Evaluation Metrics.

Metric Abbreviation Formula

Mean Absolute Error MAE
1
𝑁

∑𝑁

𝑖=1
||𝑦𝑖 − 𝑦𝑖||

Mean Squared Error MSE
1
𝑁

∑𝑁

𝑖=1(𝑦𝑖 − 𝑦𝑖)
2

Mean Absolute Percentage Error MAPE
1
𝑁

∑𝑁

𝑖=1
||𝑦𝑖−𝑦𝑖 ||
𝑦𝑖

× 100

Root Mean Squared Error RMSE

√
1
𝑁

∑𝑁

𝑖=1(𝑦𝑖 − 𝑦𝑖)2

Normalized Root Mean Squared Error NRMSE

√
1
𝑁

∑𝑁
𝑖=1(𝑦𝑖−𝑦𝑖 )2

𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛

Coefficient of determination 𝑅2 1 −
∑𝑁
𝑖=1(𝑦𝑖−𝑦𝑖 )

2

∑𝑁
𝑖=1(𝑦𝑖−�̄�)2

target variables. The magnitude of the MAE is inherently tied to the scale and units of the specific dataset used for evaluation. 
MAPE offers a valuable advantage in its ability to provide a scale-independent and unitless measure of error while still preserving 
interpretability. By expressing the error as a percentage of the actual values, MAPE eliminates the influence of the target variable’s 
unit of measurement, making standard metrics useful when comparing models across different datasets [69]. On the other hand, 
MAPE should be interpreted cautiously due to its tendency to exhibit a bias towards smaller values in the dataset. When the actual 
or observed values are relatively low, even minor absolute errors can result in disproportionately high percentage errors, effectively 
inflating the MAPE metric [70]. This can be problematic when dealing with datasets that contain seasonality with both low and high 
values, such as in the case of generated power forecasting.

Furthermore, MSE is known to be sensitive to outliers due to the squaring of errors in its calculation. Its sensitivity stems from 
the fact that MSE amplifies the impact of larger errors by squaring them, effectively giving more weight to extreme deviations from 
the true values [71]. Consequently, the presence of outliers in the dataset can significantly inflate the MSE, potentially distorting 
the overall assessment of the model’s performance. This characteristic makes MSE more suitable for applications where outliers 
are expected to be infrequent or when the primary concern is minimizing the impact of large errors. On the other hand, RMSE 
offers a distinct advantage in its ability to provide an error metric that is directly interpretable in the same units as the target 
variable. By taking the MSE, RMSE effectively transforms the squared errors back to the original scale, allowing for a more intuitive 
understanding of the average magnitude of errors [72]. This property makes RMSE particularly valuable when evaluating model 
performance on datasets with high volatility or variability, such as weather time series data. Though, its interpretability is related 
to the dependent variable, making it challenging to compare across different datasets and models. Furthermore, The Normalized 
Root Mean Squared Error (NRMSE) is intended to facilitate comparisons of RMSE across multiple datasets and different forecasting 
models. RMSE is normalized by either the mean or the range of the true values. However, while NRMSE is often used as a standard 
metric for universal comparison, its interpretability depends on the chosen normalization method.

Regarding accuracy metrics, the coefficient of determination (𝑅2) offers a key advantage in its intuitive interpretability as a 
measure of goodness-of-fit between the predicted and actual values. Specifically, 𝑅2 quantifies the proportion of variance in the 
dependent variable that can be explained by the independent variables in the model [73]. Expressed as a value between 0 and 1, or 
alternatively as a percentage, 𝑅2 provides a readily comprehensible indication of how well the model’s predictions align with the 
ground truth data. Although 𝑅2 gives an instant measure of model performance, it can be misleading due to potential overfitting 
issues that may be present in the results. Selecting appropriate evaluation metrics is crucial, as it allows for a fair and objective 
comparison of different forecasting approaches.

The most commonly utilized evaluation metrics among researchers for time series forecasting models are MAE (Eq. (14)), MSE 
(Eq. (13)), MAPE, RMSE, NRMSE, and 𝑅2, as presented in Table 2. To comprehensively assess the performance of their proposed 
prediction models, investigators typically employ a combination of these metrics to provide an interpretable and multifaceted eval-

uation of the models’ accuracy and efficacy. By leveraging the strengths of each metric, researchers can gain insights into different 
aspects of the models’ performance, such as the average magnitude of errors, the sensitivity to outliers, and the goodness of fit, 
ultimately facilitating a more robust and comprehensive analysis.

𝑦𝑖 denotes predicted PV power output, 𝑦𝑖 denotes actual value, �̄� denotes mean of the observed data, and 𝑁 denotes the total 
number of samples.

3. State of the art

This section will explore the current state of PV power forecasting and the existing gaps in the field. Fig. 12 displays the types of 
models utilized in case studies published in 2022 and 2023. LSTM, CNN, and MLP were featured in PV power forecasting publications 
either as proposed models or as benchmarks for evaluations, with 31, 21, and 7 publications, respectively. Additionally, both BiLSTM 
and GRU were used in nine publications each. Notably, compared to previous years, the state-of-the-art attention-based Transformer 
has garnered more publications in the field, totaling 7 articles. Moreover, new models are emerging, such as the Autoformer, specifi-

cally in our domain. In contrast, basic RNN models have seen a significant decline, and many classical machine learning models have 
14

vanished.
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Fig. 12. PV forecasting models recent published articles (2022 and 2023).

From these publications, a selection of 36 case studies implementing unique algorithms to accomplish this task will be reviewed 
in two sections: an analysis of the system characteristics employed and an overall comparison of the proposed models.

3.1. Model characteristics analysis

This section demonstrates the literature statistics including top productive countries, datasets source, input variables, input length, 
and output forecasting horizon. Fig. 13 illustrates the distribution of implemented case studies worldwide. The United States leads 
in the number of case studies, followed by Australia and South Korea in second place, and China and the UK in third place. For 
this section, six main system parameters - input variable types and quantities, data granularity, lookback length, output types, and 
forecasting horizon - will be analyzed.

3.1.1. Data variables characteristics

Datasets play a crucial role in conducting investigations on this topic. Therefore, it is essential to review the sources of the datasets 
used in the selected case studies. Fig. 14 illustrates the sources of the datasets in these studies. Twenty-three articles have developed 
forecasting models using self-collected datasets, obtained from installed PV systems, as seen in [74]. On the other hand, public 
datasets are an alternative for developing forecasting models, even though they might not be specific to precise locations. Several 
online databases were utilized, including NASA like in [75], NREL in [76], and weather station datasets in [77]. Additionally, 
obtaining datasets through physical calculations was implemented in a few articles, as demonstrated in [78].

Fig. 15 illustrates the various types of variables utilized for PV power forecasting in recent publications. The selection of these 
variables depends on their correlations with main PV power production, availability, and ease of access to such data. The most 
common variable used is measured power, employed in 67% of the recently published articles, such as [79–83]. This direct method 
captures the energy production behavior at specific times and locations. Although PV power generation exhibits daily and yearly 
cycles, it often fluctuates unpredictably due to various factors. Hence, authors are incorporating additional variables to fill gaps and 
15

enhance prediction accuracy. Solar irradiance variables, including global horizontal, direct, and diffused irradiances, are widely used 
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Fig. 13. The distribution of the selected 36 case studies around the world.
16

Fig. 14. Sources of datasets utilized in selected case studies.
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Fig. 15. Variables types of recent published papers, (count).

in articles such as [78,84–87]. These variables enable the prediction model to capture more insights or compensate for the lack 
of historical measured PV power production records. They exhibit very high Pearson correlation coefficients (> 0.9). Furthermore, 
other variables are often implemented. Temperature variables are among the most popular, featured in recent publications like 
[88–91,75], due to their easy accessibility and high Pearson correlation coefficients, which can reach 0.9. Similarly, wind speed 
variables, as implemented in [92,81,77], and humidity [81,93], which have moderate Pearson correlation coefficients, are also 
utilized. Time-related variables, presented in [94,95], such as day of the year, datetime, and trigonometric representations of time, 
are frequently used to extract insights from the cyclic behavior of solar radiation produced by the sun. Other variables capturing 
insights from human activity, such as net load data demonstrated in articles like [96,56], or PV module parameter trends including 
the array’s voltage, current, temperature, etc., showcased in [97], are also employed.

The number of variables varies from author to author, as illustrated in Fig. 16. Recent papers on this topic have utilized anywhere 
from single input variables to as many as 17 variables. Univariate forecasting models that use a single variable are the most commonly 
implemented, as observed in publications like [98,85,99]. This method is convenient due to the low dimensionality of the input and 
the high correlation between historical data and future results. In contrast, multivariate systems can capture additional trends from 
historical data, which can include variables like weather, time features, and other indirectly related factors that might influence 
the system. However, increasing the dimensionality of the input data also escalates the processing load. Such systems, utilizing five 
variables, were frequently employed, as evidenced in [92,100,101]. It’s noteworthy that the highest number of variables used in a 
study was 17, as demonstrated in [87].

3.1.2. Characteristics of model inputs

Data granularity is an important parameter that affects model performance and computational requirements. In Fig. 17, the 
prevalent data granularities used in the compared articles have been shown as a function of number of published articles in which they 
have been utilized. In this set of articles, Hourly data is the most commonly employed, featuring in 19 different papers such as [88,

80,85,86,83]. This granularity strikes a balance between including substantial information in the model and managing computational 
resources effectively. The shortest data resolution used is 5 minutes, found in [92,102,56]. While this fine granularity provides highly 
accurate information for modeling, it significantly increases computational demands due to the large volume of data. On the other end 
of the spectrum, monthly data granularity is the longest resolution, noted in two publications [96,93]. This granularity is well-suited 
for long-term predictions but necessitates extensive datasets for effective forecasting. Fifteen-minute data granularity ranks second 
17

in popularity, presented in articles such as [79,94,77,99]. Daily granularity follows closely behind demonstrated in [98,91,75]. 
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Fig. 16. Number of variables utilized in recent published papers.

Fig. 17. Data resolutions of recent published papers.

Interestingly, 10-minute granularities were the least favored option, appearing in only one publication [97]. This variation in data 
granularity highlights the trade-off between data accuracy and computational resources in PV power forecasting models.

The input sequence length is a crucial parameter in time-series data forecasting, containing historical information essential for 
predicting the future. This length can vary widely, from as short as a single previous historical element to as long as the entire 
dataset. Fig. 18 illustrates the different input sequence lengths used in recent papers. The longest sequence utilized comprised 
26,298 past samples by [97], incorporating half a year of data with a resolution of 10 minutes, encompassing conventional daily, 
weekly, and monthly trends. It is noteworthy that the most commonly proposed lookback steps are 96 previous time steps, as 
demonstrated in [94,103]. This represents a one-day time frame using a 15-minute sampling rate for input data. It enables a more 
18

accurate daily behavior of the input variable in the predictive model, making it particularly suitable for short- to medium-term 
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Fig. 18. Input sequences length of recent published papers.

forecasting applications, where predicting daily trends is crucial. Similarly, 24-step lookbacks were implemented in five articles, 
such as [93,85], corresponding to one day of hourly data. However, this approach uses less data, potentially affecting the accuracy 
of forecasting results, in exchange for a reduced computational burden. Other input sequence lengths were utilized, such as 1 by 
[78,94], followed by 4 and 7 input sequence lengths by [104,75], and 48 and 72 lookback steps in [105,101], where the authors 
aimed to capture specific trends within certain time frames for various operational and management applications.

3.1.3. Characteristics of model outputs

The outputs generated by models in the compared articles on PV power forecasting using deep neural networks can be categorized 
into direct PV forecasting or indirect PV forecasting, which predicts highly correlated variables such as solar irradiance, temperature, 
or wind speed, as illustrated in Fig. 19. A majority of works (61%) adopted a direct approach, accomplishing the task by setting 
the model’s label as historical PV generation records, as demonstrated in studies like [79,80,90,82,83]. In contrary, while setting 
the model’s label based on historical PV generation offers the highest accuracy, obtaining real PV historical data from specific 
locations proves to be extremely challenging. Therefore, indirect methods have been explored. Solar irradiance stands out as the 
most correlated variable to PV power production. Articles such as [89,85–87] illustrate PV power forecasting methods by setting the 
model’s label to solar irradiance. Similar approaches have been used with different variables such as temperature [93] and weather 
[84]. This underscores the advantage of time series data, allowing tasks to be achieved using various datasets with specific levels of 
correlation, especially in situations where data scarcity is a challenge.

Fig. 20 illustrates the PV model forecasting horizons implemented in recent publications. Here, the numbers indicate the steps 
into the future, irrespective of the granularity of the data. As anticipated, the majority (15 articles) predicted a one-time step 
ahead since achieving high accuracy is less complicated in this scenario. This approach has been demonstrated in articles such as 
[79,89,90,86,106]. Forecasting 24 steps ahead can provide more valuable insights for power applications while considering moderate 
use of computer resources. This method, exemplified in papers like [78,107,100,74], generally corresponds to predicting one day 
ahead with hourly sampled data. Similarly, forecasting one day ahead using 15-minute data granularity resulted in the utilization of 
96 samples, as seen in works like [88,94,82]. Although implementing higher resolution increases the computational load, researchers 
believed it was worth it for gaining more accurate insights into future events. Researchers have explored various forecasting horizons, 
including 7, 12, and 2016 next samples ahead in studies like [75,87,102], and 4, 6, 288, and 336 forecasting horizons in papers such 
as [108,97,102,109]. This exploration showcases the effort to understand the effect of different forecasting horizons on enhancing 
the model’s accuracy and gaining valuable insights into future events. Notably, the longest forecasting horizon utilized was 16,128 
19

next samples by [92], corresponding to two months ahead with a data granularity of 5 minutes.
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Fig. 19. Output types of recent published papers.

Fig. 20. Forecasting horizons of recent published papers.

3.2. Models comparison

Unique algorithms that utilized deep learning model to forecast PV power generation will be compared in this section. Future PV 
20

power production can be determined through either direct or indirect forecasting methods. In direct forecasting, the model directly 
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Table 3

Summary of ANN Models and Parameters.

Ref. Year Model No. Input

Variables

Granularity Lookback

Length (steps)

Pre-

Forecasting

Forecasting

Horizon (steps)

Data

Coverage

Source

Country

Alaraj et al. [79] 2023 SSA-ANN 3 15 min - - 1 1 year Saudi Arabia

Scott et al. [88] 2023 ANN 8 15-min, hourly, daily 7, 24, 96 - 7, 24, 96 10 months UK

Brester et al. [78] 2023 ANN 8 Hourly 1, 2, 3, 6, 9 - 24 6 months Finland

Table 4

Recurrent based models papers.

Ref. Year Model No. Input

Variables

Granularity Lookback

Length

(steps)

Pre-

Forecasting

Forecasting

Horizon

(steps)

Data

Coverage

Source

Country

Al-Jaafreh et al. [89] 2022 LSTM 16 Hourly - PCC 1 6 years Switzerland

Singh et al. [80] 2022 LSTM, GRU 3 Hourly - - 1 6 months India

Piotrowski and Farret [98] 2022 LSTM 1 Daily 450; 810; 
1,150

- 50 - Brazil

Agga et al. [107] 2022 LSTM, MLP 1 Hourly 288 - 24 1 year Morocco

Admasie et al. [84] 2023 GWO-LSTM 3 Hourly 192 - 24 - South Korea

Sadeghi et al. [92] 2023 GSA-LSTM 5 5 min 150; 280 SCC, PCC 12; 144; 204; 
216; 864; 
1,728; 2,016; 
4,032; 16,128

1 month Iran

Wang et al. [76] 2023 SVR-BO-LSTM 1 5, 30, 60 (min) 504; 1,008; 
1,728; 
6,048

EEMD 168; 288; 336; 
2,016

- Arizona

Phan et al. [104] 2023 GRU 6 Hourly 4 KPCA 1 - Taiwan

Rubasinghe et al. [94] 2023 LSTM 5 15 min 1; 96 ICEEMDAN 96 4 years Australia

predicts PV power generation as its output. On the other hand, PV power forecasting can also be done indirectly by predicting related 
factors such as irradiance, temperature, and so on. The models are analyzed based on their deep learning architecture, algorithms, 
optimization techniques, and input variables. To facilitate model comparison, we categorize them into four types of building units: 
ANN-unit (MLP models), RNN-unit (RNN, LSTM, GRU, and bidirectional models), CNN-unit, and Attention-unit (Transformer and 
Autoformer models).

3.2.1. Artificial neural network-based model

Table 3 displays the latest paper that employs a basic neural network for PV power generation forecasting. In the study by [79], 
solar PV power forecasting was performed using an ANN model, optimized with the Salp Swarm Algorithm (SSA), and trained with 
one year of historical PV output records from Qasim, Saudi Arabia [110]. The model was fed with three variables, comprising two 
meteorological variables and measured PV output data. SSA optimization played a pivotal role as a propagation technique, facilitating 
the update of system weights and the fine-tuning of hyperparameters. [88] conducted research to evaluate the effectiveness of a 
basic MLP model in predicting power generation from a 30 kWh roof-mounted PV system located in the UK. The study explored 
three distinct data granularities: 15-minute, hourly, and daily, with the aim of forecasting the subsequent 96, 24, and 7 time steps 
ahead, respectively. The model was provided with a total of eight variables, including time-related factors like the time of day. 
[78] presented a study focused on day-ahead PV power forecasting, examining two different approaches. One approach incorporated 
input data derived from measured meteorological variables, while the other relied on data from Numerical Weather Prediction (NWP) 
output. The study utilized a dataset comprising six months of hourly data from three buildings in Finland, with a combined capacity 
of 33.2 kWh. The model was supplied with eight variables and considered various lookback periods, including 1, 2, 3, 6, and 9 
past hours for analysis. The latest models employing MLPs have shown a trend of utilizing diverse input variables (meteorological, 
time-related, and numerical weather prediction data), optimizing parameters through techniques like Salp Swarm Algorithm and 
Stochastic Gradient Descent, and forecasting PV power generation at multiple time scales ranging from 15 minutes to 1 week ahead.

3.2.2. Recurrent neural network-based model

RNN represents an evolved version of the basic neural network, specially designed for time-series learning, encompassing basic 
RNN, LSTM, and GRU architectures. Table 4 showcases the latest papers employing recurrent models for PV power output forecasting. 
In their work, [89] demonstrated short-term solar energy forecasting for PV output in Basel, Switzerland, using a vanilla LSTM unit. 
They investigated the impact of various meteorological variables on system accuracy and employed three groups of meteorological 
sets, each containing 6, 14, and 16 variables. The Pearson correlation coefficient was used to assess and rank the variables. Similarly, 
[80] explored vanilla GRU and LSTM units to predict power generation for campus rooftop PV arrays in Allahabad, India, with three 
meteorological variables as inputs. In contrast, [98] delved into the influence of historical data input quantity on PV power output 
forecasting accuracy. They conducted tests with three distinct lookback sizes: 450, 810, and 1150 past days, using a vanilla LSTM 
21

model. Additionally, [107] demonstrated short-term PV power prediction for a 15 kW grid-connected PV plant in Rabat, Morocco, 
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Table 5

Stacked and Two directional recurrent based models papers.

Ref. Year Model No. Input

Variables

Granularity Lookback

Length

(steps)

Pre-

Forecasting

Forecasting

Horizon

(steps)

Data

Coverage

Source

Country

Parida et al. [90] 2022 Stacked LSTM 2 Hourly 720 KELM 1 2 years Alabama

Hong et al. [85] 2022 Stacked 
PSO-LSTM

1 Hourly 24 - 1 - Taiwan

Garip et al. [81] 2023 stacked LSTM 
and BiLSTM

15 Daily 1,741 - 1 - Turkey

Xiao et al. [95] 2023 BiLSTM 7 Hourly 24 - 6 - China

Zhang et al. [103] 2023 BiLSTM 1 15 min 96 AP-CEEMDAN 1 - Australia

using the LSTM model. Their input consisted of one year of historical data sequenced for the 12 previous days. The study also involved 
investigating and selecting the model’s 52 hyperparameters using Gridsearch algorithms. In a different approach, [84] presented day-

ahead PV power output forecasts based on an empirical formula derived from forecasted weather data. They employed a vanilla LSTM 
model with an input sequence spanning 192 previous hours to predict weather variables. Additionally, the study explored the use 
of the Grey Wolf Optimizer (GWO) to optimize the model’s hyperparameters. Furthermore, [92] investigated PV power plant output 
forecasting across various time horizons using LSTM units in Iran. Their analysis considered different forecasting periods: 12 hours, 
3 days, and 2 weeks. They employed two types of correlation coefficients for variable selection: Pearson Correlation Coefficients 
(PCC) to assess linear relationships and Spearman Correlation Coefficients (SCC) for rank correlation. The study also emphasized 
the presence of autocorrelation at various lag intervals and employed Gridsearch to fine-tune hyperparameters for optimizing model 
performance. [76] conducted an experiment involving an LSTM model for PV power prediction. The model received two sub-signal 
inputs derived from decomposed PV historical data collected at two sites in Arizona, USA. Ensemble Empirical Mode Decomposition 
(EEMD) was applied to reduce randomness and volatility from the data. The model’s hyperparameters were selected using Bayesian 
optimization, and the output was filtered using the SVR model. Various tests were conducted with different forecasting horizons and 
input sequence lengths. Furthermore, [104] forecasted the next 1 hour of PV power generation using a model based on 3 GRU units 
tailored for different times of the day. They incorporated data from 10 PV sites in Taiwan, using four past PV generation records, solar 
irradiance data, and four NWP meteorological results as input. They also implemented a new error correction technique, involving 
the removal of samples with a standard deviation exceeding 1, and used Kernel Principal Component Analysis (KPCA) to reduce 
input variable dimensions. Lastly, [94] examined the improved complete Ensemble Empirical Mode Decomposition with Adaptive 
Noise (ICEEMDAN) to decompose PV historical data for 15-minute and 1-day (96 samples) ahead of PV net load prediction. They 
employed vanilla LSTM units, which were fed with historical, weather, and decomposed IMF subsignals data.

3.2.2.1. Stacked recurrent units Table 5 presents various stacked recurrent and dual-directional model architectures used for PV 
power generation forecasting. In their work, [90] demonstrated one-hour-ahead solar power forecasting using stacked LSTM units 
in the context of Alabama, US. The model incorporated two meteorological variables, and the input dataset was categorized into 
three groups: summer, rainy, and winter. Grey wolf optimization was employed to update the model’s parameters, and a Karnel 
extreme learning machine was utilized to mitigate the weight’s randomness, thereby reducing the impact of noise and outliers on the 
data. Additionally, [85] showcased one-hour-ahead solar Global Horizontal Irradiance (GHI) forecasting for PV power prediction, 
employing three cascaded LSTMs with a sequence input spanning the previous 24 hours. This research was conducted across five 
cities in Taiwan, and the input data was categorized into four seasons. The author used particle swarm optimization (PSO) to select 
the model’s hyperparameters. Furthermore, [81] exhibited one-day-ahead PV power forecasting by comparing two models, stacked 
LSTM and BiLSTM, using data from 26 solar panels in Istanbul, Turkey. The model was fed with two historical datasets and 13 
weather variables, with a sequence length covering the entire record. This study introduced two unique evaluation metrics: the 
Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC).

3.2.2.2. Bidirectional recurrent units [95] presented a model for next-six-hour PV power prediction using the BiLSTM model, based 
on data from Gansu province, China. In this study, NeuralProphet was incorporated to provide additional variables to the models, 
including trend and seasonal decompositions of the original data. The model inputs included historical PV output, meteorological 
data, and time index variables, with input sequence lengths spanning 24 hours. Moreover, [103] explored the benefits of utilizing 
decomposed PV power output to enhance prediction accuracy. The study focused on ultra-short-term (15-minute) PV power forecast-

ing horizons using BiLSTM units, which received an input sequence comprising the previous 96 values (equivalent to 1 day of data). 
The dataset was categorized into three different weather conditions: sunny, changeable, and cloudy days. To decompose the main 
signal into its constituent components, the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) was 
implemented, resulting in 12 intrinsic mode function (IMF) components.

Researchers explored different approaches to forecasting using recurrent models (vanilla, stacked, and bidirectional models). For 
vanilla models, authors utilized different input variables, lookback periods, and hyperparameter tuning techniques for PV power 
22

prediction using vanilla recurrent models (RNNs, LSTMs, and GRUs). Authors investigated the impact of varying numbers of mete-
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orological variables, ranging from 3 to 16. They also examined diverse lookback periods, from as short as 12 previous days to as 
long as 1150 past days. Hyperparameter tuning techniques employed included grid search, GWO, and Bayesian optimization. Ad-

ditionally, some studies incorporated techniques such as error correlation analysis and input data decomposition to enhance model 
performance. For stacked and bidirectional LSTM architectures, the models were used for short-term (one-hour) and day-ahead PV 
power forecasting, incorporating meteorological and historical data. They employed optimization techniques like GWO and PSO for 
parameter tuning and introduced new evaluation metrics like AIC and BIC. The studies highlight the use of bidirectional architec-

tures along with data preprocessing techniques like decomposition and additional input features to improve short-term PV forecasting 
performance.

3.2.3. Convolution neural network-based model

Table 6 presents the most recent papers demonstrating the prediction of power generation from PV panels, which incorporate 
CNN layers in their architecture, either alone or combined with other models. [86] conducted experiments involving an input feature 
extractor employing two layers of CNN for multistep short-term PV power forecasting. The study utilized four stacked LSTM layers 
and was based on data collected from Abu Dhabi, UAE. The investigation focused on two types of input variables: Global horizontal 
irradiance (GHI) and plane of array (POA) irradiance. Similarly, [91] conducted an experiment employing a CNN-LSTM model to 
forecast multiple upcoming days of PV power generation in Rabat, Morocco. The study incorporated seven variables, encompassing 
historical power generation, weather data, and energy consumption information, as inputs to the model. The approach involved 
utilizing three 1D CNN layers to extract spatial features and generate a novel time series representation for the sequence input. 
Subsequently, the transformed data was fed into three LSTM layers and a fully connected layer to predict the subsequent power 
generation. The hybrid model demonstrated the capability to offer more accurate predictions for both general and specific locations 
when compared to stand-alone models. Similarly, [96] delved into the CNN-LSTM model for predicting targeted domestic household 
PV systems by harnessing historical solar generation data from households. The study employed historical records of PV power 
generation at both regional (aggregated) and individual levels in Sydney, Australia, as inputs for the system. Diverse granularities, 
encompassing half-hourly, daily, and monthly intervals, were explored to enhance the capacity for predicting individual household 
solar power production using a broader dataset. [77] employed a comparable approach for predicting the next-step PV power output 
using the CNN-BiGRU model. The study involved the utilization of decomposed historical PV production achieved through variational 
mode decomposition, in conjunction with four meteorological data variables in Korea. The system incorporated an input look-back 
length of 20 time steps. To enhance the predictive capacity, CNN layers were employed to establish a novel matrix representing the 
extracted input-output relationship. This matrix was then fed into the BiGRU model for subsequent power output prediction. [82]

demonstrated PV power prediction for the next 96 steps using a combined input of decomposed historical data and predicted numer-

ical weather inputs. The approach involved utilizing a CNN-LSTM model with decomposed historical power generation data as the 
input. The measured data was decomposed using a discrete wavelet transform. Simultaneously, numerical weather input served as 
the input for the MLP model, which was subsequently combined with the CNN-LSTM model’s output. Both models were fed sequences 
of 96 elements. [102] investigated PV power forecasting using measured data from 1.5 MWp floating PV power plants across 111 
universities in Thailand. The study employed two models: Bi-LSTM for one-week ahead forecasting and CNN-BiGRU for day-ahead 
forecasting, with the input sequence length set to the 74 previous time steps. Three months’ worth of historical power and meteo-

rological data were incorporated into the forecasting model, including the grouping of regular and cloudy weather conditions. [93]

computed multi-step, long-term PV power output using recurrent (LSTM and GRU) and CNN forecasting models based on forecasted 
global solar irradiance and temperature data in the region of Zahedan City, Iran. The models were provided with four input variables 
from monthly data, spanning the previous 24 months. The forecasted results were then compared with the actual performance of 
a 20 MW PV plant. In contrast, [100] undertook the prediction of the following day’s PV power generation for a specific location, 
employing the BiLSTM-CNN model with generalized input variables. The study utilized historical PV and meteorological data with 
a granularity of 1-hour from Yunnan, China. To enhance spatial recognition in areas with limited historical data, PV plants were 
grouped into subregions using the k-means algorithm, and one robust CNN-BiLSTM model in the region was prepared. In conclusion, 
this section showcase forecasting models incorporated CNN layers, either alone or combined with other models like LSTMs, BiL-

STMs, and GRUs. It was demonstrated to extract spatial and temporal features from diverse input data sources (PV historical record, 
meteorological variables, NWE, and decomposed signal components). CNN-based hybrid models demonstrate enhanced forecasting 
capabilities across various time horizons, ranging from multi-step short-term to long-term predictions spanning multiple days or 
months ahead. Moreover, the studies highlight the importance of data preprocessing techniques, such as decomposition methods, 
and the strategic utilization of input variables tailored to specific locations or granularities.

3.2.4. Transformer-based model

Table 7 presents published articles on the cutting-edge deep learning transformer model used for time series PV power generation 
forecasting.

[56] conducted an experiment to test the benefits of decomposing historical energy data to forecast the next time step using 
a vanilla transformer model. This was done to enhance the model’s robustness and enable it to handle high noise, disturbances, 
and signal dips. The experiment utilized a dataset from 5 houses in London, UK, decomposed into 3 levels of sub-signals using 
the Stationary Wavelet Transform (SWT) and sequenced into 12 past readings input for the transformer model. Nevertheless, the 
proposed model still needs improvement for multi-step forecasting. [108] performed large-scale forecasting of time-series energy 
consumption using a vanilla Transformer model. The model predicted the power consumption of Birmingham Main Library for the 
23

next time step using only historical consumption records sequenced with an input length of 4 past readings. The author incorporated 
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Table 6

Ensemble with CNN models papers.

Ref. Year Model No. Input

Variables

Granularity Lookback

Length

(steps)

Pre-

Forecasting

Forecasting

Horizon

(steps)

Data

Coverage

Source

Country

Li et al. [82] 2022 CNN-LSTM-ANN 7 15 min 96 DWT 96 - China

Michael et al. [86] 2022 CNN-Stacked 
LSTM

2 Hourly - - 1 - UAE

Agga et al. [91] 2022 CNN-LSTM 7 Daily 14 - 1; 3; 7 - Morocco

de C. Costa [96] 2022 CNN, LSTM, 
CNN-LSTM

2 30 min, daily, 
monthly

- - 1 - Australia

Zhang et al. [77] 2022 BiGRU, CNN 5 15 min 20 VMD 1 - South Korea

Li et al. [100] 2023 CNN-BiLSTM, 
BiLSTM-CNN

5 Hourly 11 k-means 
clustring

24 - China

Azizi et al. [93] 2023 MLP, LSTM, 
GRU, CNN, 
CNN-LSTM

4 Monthly 24 - 120 37 Y Iran

Khortsriwong et al. [102] 2023 CNN-BiGRU, 
BiLSTM

4 5 min 21,312 - 288; 2,016 3 M Thailand

Table 7

Transformer based models papers.

Ref. Year Model No. Input

Variables

Granularity Lookback

Length

(steps)

Pre-

Forecasting

Forecasting

Horizon

(steps)

Data

Coverage

Source

Country

Saoud et al. [56] 2023 Transformer 1 5 min 12 SWT 1 - UK

Tian et al. [83] 2022 Transformer 13 Hourly 168 - 1 - -

Huang and Kaewunruen [108] 2023 Transformer 1 30 min 4 - 4 - UK

Jeong [99] 2023 Transformer 1 15 min 48; 96; 144 - 4, 8, 12, 24 - South Korea

Kothona et al. [101] 2022 Transformer 5 Hourly 72 - 24 - Greece

Trong et al. [97] 2023 CNN-Transformer 4 10 min 26,298 VMD 6 - Vietnam

Ziyabari et al. [87] 2022 Transformer-CNN 
Time embedded

17 Hourly 24 - 12 - Philadel-

phia

Sherozbek et al. [106] 2023 Vision 
Transformer-CNN

6 Hourly 1 - 1 - South Korea

Demir et al. [105] 2022 Transformer 1 Hourly 48 384 10 Y Texas

Pospíchal et al. [75] 2022 Vision 
Transformer 
(AdamW)

12 Daily 7 - 7 - India

Santos et al. [74] 2022 Temporal Fusion 
Transformer

12 Hourly 72 - 24 - Germany 
and 
Australia

skip layers by [111] to enhance computational efficiency by bypassing minor errors in deep layers that do not affect the learning 
process.

In the area of PV power forecasting, [83] investigated the vanilla transformer for ultra-short-term (1 step ahead) PV power 
forecasting. The model used up to 12 historical time series variables categorized into time indices, meteorological data, and PV 
data, collected from a real household microgrid dataset. To evaluate the model’s stability, the dataset was divided into three subsets: 
Summer, Autumn, and Spring. The robustness of the trained model was validated by applying it to a Public DC competition dataset. 
However, their proposed transformer setup required 571,409 parameters to perform the task. Similarly, [105] forecasted the next 384 
time steps of irradiance using vanilla transformers for PV power generation in Lubbock, Texas. Both supervised and unsupervised 
machine learning approaches were employed, using 48 past readings as input. For unsupervised forecasting, the rolling concept 
proposed by [112] in 2018 was implemented. The author found that, for unsupervised machine learning, the transformer is only 
capable of short-term forecasting (up to 48 steps ahead). In different approach, [99] studied how the forecasting horizon length 
and input sequence length affect the Transformer model’s ability to predict PV power generation. The study also demonstrated 
that it’s possible to make predictions using only a historical PV power output dataset from neighboring sites. For the experiment, 
data was collected from 50 neighboring sites in Suncheon, South Korea. The Transformer proved effective for long forecasting 
horizons. However, it’s worth noting that a long forecasting horizon requires a similarly long or longer input sequence length. On 
the other hand, for short-term forecasting, the Transformer provides similar results to recurrent-based models but demands more 
computational resources. Moreover [101] investigated different meteorological variables to forecast the next 24 time steps using a 
transformer model. The historical dataset, comprising PV power output, irradiation, and cloudiness index data, was collected from 
5 PV systems in Kozani, Greece, and aggregated. Additionally, forecasted irradiance and cloud coverage datasets were imported 
24

to support the model’s predictions. The model inputs were sequences of 72 and 24 elements for historical and forecasted data, 
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respectively. Although adding cloud coverage data significantly improved accuracy, solar irradiance data did not reduce the error. 
Furthermore, [97] experimented with Variational Mode Decomposition, as proposed by [113], to simplify a historical dataset and 
remove nonlinearity and nonstationarity from PV power output. This approach aimed to forecast the next 6 time steps ahead using a 
Transformer model. To enhance model performance, Trong replaced the input positional encoding in the original architecture with 
two 1-dimensional convolutional layers, allowing for the extraction of spatial information. Trong utilized the sub-signals from VMD 
and PV system parameters (current, voltage, and frequency) as input data. However, replacing positional encoding with convolutional 
layers increased the number of computational parameters.

In contrast, [87] conducted an investigation involving a CNN-transformer to predict solar irradiance over the next 12 hours, 
utilizing 17 variables. In this study, the original transformer model’s Feedforward Neural Network (FFNN) layers were replaced 
with a 1D-CNN network to enhance the model’s ability to capture local data trends. To facilitate this process, a sliding mechanism 
incorporating a 24-element input sequence was employed. Notably, achieving favorable results required implementing over one 
million parameters. Similarly, [106] adopted a similar approach to forecast PV power generation, integrating a 1D-CNN layer in 
place of the fully connected feed-forward network. The objective was to predict PV power production for the ensuing 1 hour in 
Buang-gun, Republic of Korea. The system used a retrospective input consisting of historical PV data, solar radiance, insolation, and 
temperature variables. Before entering the multihead attention blocks, the input was normalized. Furthermore, [75] proposed a 1-

step ahead spatiotemporal solar irradiance forecasting using a variant of the transformer model. The Vision Transformer architecture 
[114] was implemented, with the normalization layer placed before the attention layer in the encoder-decoder blocks. The model 
was fed with historical irradiance and weather data from the NASA Power Bot application, time variables encoded using sine-cosine 
encoding, and regional coordination vector encoding, with a sequence length of 7. To address the challenges posed by long input 
sequences in transformer models for time series problems, [115] proposed a solution that tackles two specific issues: improving input 
representation scores and selecting relevant time steps. To enhance the input representation scores, a local convolution block was 
introduced within the attention mechanism to further improve the representation matrix scores. To address the memory challenge 
associated with long input sequences, the LogSparse attention mechanism was introduced to dynamically select a subset of time 
steps that are most relevant for the prediction task. This mechanism employs a logarithmic sparsity pattern, where attention scores 
decrease logarithmically as the temporal distance between elements in the current time step increases.

In different approach, [116] introduced the Temporal Fusion Transformer (TFT), a variant of the Transformer model designed for 
multi-horizon forecasting. This innovative approach employs multiple networks and transforms static insights into time series inputs. 
The process begins with input variable selection networks, which identify variables that significantly impact the model’s accuracy. 
To incorporate static features within the time series dataset, LSTM units are integrated into the encoder-decoder layers, enabling 
their computation alongside other input variables. Gate Residual Networks are strategically deployed to disregard parameters with 
minimal impact on the model’s outcomes. Finally, Quantile forecasting is employed to determine the target range for multi-horizon 
forecasting. [74] conducted an investigation using the Temporal Fusion Transformer to forecast the PV power output for the up-

coming 24 hours across six PV facilities situated in Germany and Australia. The study reveals that the key inputs encompass three 
meteorological datasets: solar horizontal irradiation, temperature, and humidity; zenith and azimuth angles; along with sine and 
cosine representations of the monthly cycles. However, it is noteworthy that the model entails 361,000 parameters to accomplish the 
specified tasks. Summarizing published Attention Mechanisms and Transformer architecture, researchers have shown a promising ap-

proach for PV power forecasting. While vanilla Transformer models have demonstrated their capability for next-step and short-term 
forecasting, researchers have proposed various modifications and hybrid architectures to enhance their performance and address 
inherent limitations. These improvements include incorporating convolutional layers for spatial feature extraction, employing data 
decomposition techniques to simplify input representations, and introducing mechanisms like LogSparse attention and local convo-

lutions to handle long input sequences effectively. Furthermore, innovative variants like the Temporal Fusion Transformer have been 
developed to tackle multi-horizon forecasting challenges by fusing static and temporal data through variable selection networks and 
dedicated components. Despite the computational demands of these models, their ability to capture intricate temporal dependencies 
and leverage auxiliary data sources, such as meteorological variables and NWE.

4. Discussion

In delving into the discussion of trends, challenges, and future directions in deep learning-based time series forecasting for PV sys-

tems, it becomes evident that the field is witnessing a surge of innovation and exploration. The remarkable success of the transformer 
model in NLP has spurred researchers to adapt it for time series applications, resulting in various variants of the original architecture. 
In relation to timeseries forecasting, [117] aimed to predict future time series data related to influenza-like illnesses using the trans-

former model. Leveraging the attention mechanism inherent in transformers, the model effectively captured temporal data patterns, 
achieving state-of-the-art performance in the field. However, the model faces limitations when dealing with long input sequences. 
Transformers usually operate with fixed-size input windows, and as the input sequence length grows, so do the computational and 
memory requirements. The dot-product nature of the attention mechanism demands significant computational resources to build a 
robust model. A notable example of this resource-intensive nature is the Generative Pretraining Transformer (GPT) by [118], which 
required 1.5 billion parameters to achieve state-of-the-art results. Lastly, to confront the challenges faced by the transformer model 
in long-term series forecasting, such as handling complex temporal patterns and improving computation efficiency in data utilization, 
[109] introduced a novel approach called Autoformer. The Autoformer aims to enhance the natural periodicity of time series data 
and establish connections between input matrix representations in a series-wise manner rather than a point-wise approach. Several 
25

techniques were incorporated into the original transformer model to achieve these goals. Firstly, an Auto-Correlation mechanism 
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was introduced to capture period-based dependencies. This mechanism focuses on the similarity between sub-series by aggregating 
the auto-correlation values across different time delays. By emphasizing period-based dependencies, the Autoformer model can effec-

tively capture the relationships and patterns that occur at specific intervals within the time series. Secondly, a series decomposition 
block was implemented to aggregate the input long-term trend from medium prediction. In the encoder layers, the trend component 
was eliminated, leaving only the seasonal part intact. This decomposition helps isolate the repeating patterns and inherent period-

icity of the time series data, facilitating their integration into the model’s architecture. In the encoder, only the seasonal part of 
the input signal is retained, while the trend component is discarded. On the other hand, the decoder incorporates the trend-cyclical 
and seasonal parts of the original input signal, rather than relying solely on the shifted target sequence as in traditional transformer 
models.

One notable trend is the proliferation of hybrid architectures that leverage the strengths of various deep learning models to 
enhance forecasting accuracy and robustness. Researchers are increasingly integrating recurrent hybrid with models, such as LSTM, 
GRU [80,107], BiLSTM-NP [95] and CNN [82,86,91,96,77,100,93,102], to capture temporal dependencies and spatial features ef-

fectively. Moreover, the emergence of novel architectures like CNN-transformers signals a future trend [97,87,106], with studies 
indicating their potential to revolutionize PV forecasting by accommodating long input sequences and improving computational 
efficiency.

Additionally, researchers have investigated the utilization of new input variables, such as meteorological conditions [79,90,

85,103], cloud coverage data [101], historical data input quantities and spatiotemporal properties [98]. Further, techniques like 
numerical weather prediction [78,104] and empirical formulas derived from forecasted weather data [84] have been explored to 
enhance the forecasting accuracy.

Input decomposition methods have also gained significant attention, with researchers employing techniques like EMD, CEEM-

DAN, and ICEEMDAN [76,103,94], wavelet transforms, and stationary wavelet transform (SWT) [82,56], and variational mode 
decomposition (VMD) [77,97] to extract relevant features and handle non-stationarity in the data.

Furthermore, optimization techniques for model hyperparameter tuning, such as Grid Search Algorithms [107,92], Grey Wolf 
Optimizer (GWO) [84,90], Bayesian Optimization [76], and Particle Swarm Optimization (PSO) [85], have been widely explored to 
improve model performance. These trends underscore the evolving landscape of deep learning methodologies, paving the way for 
more accurate and comprehensive PV forecasting models.

Table 8 shows the error metrics employed by the reviewed papers. The most commonly used error metrics were the RMSE 
and MAE. Most studies utilized their own data and reported error metrics based on the statistical details of their data (maximum, 
minimum, variation, and standard deviation). These metrics were favored due to their straightforward representation of the error 
magnitude. However, for cross-comparison with other PV forecasting models, it is challenging to make meaningful comparisons 
without additional information such as the site’s rated capacity or the data range. For universal benchmarking purposes, nearly 
30% of the papers presented the MAPE, 𝑅2, and a few utilized the NRMSE, which allows readers to evaluate the overall accuracy 
strength instantly. Finally, very few studies employed pre-trained scaling or normalization techniques on their datasets, as this could 
potentially compromise the location-specific characteristics of the data.

Despite the advancements in deep learning for PV power forecasting, several challenges persist. One of the most significant 
challenges highlighted in the reviewed studies is the limited availability or insufficient amount of high-quality, comprehensive 
data required to effectively train deep learning models [79,88,78,98,85,75]. Additionally, the computational demands and resource 
requirements for training and deploying complex deep learning models, particularly when utilizing the transformers model, have 
been identified as a substantial limitation [83,97,87,74]. Handling non-stationary input signals, detecting and removing outliers [74], 
and data preprocessing steps such as decomposition techniques to transform non-stationary data to stationary form and reconstruct 
them back [82], have also been recognized as challenges.

In terms of future research directions, a huge potential is with the exploration of hybrid and ensemble model architectures that 
combine different deep learning units or techniques to leverage their respective advantages [100,102,108]. Additionally, researchers 
have emphasized the need for robust hyperparameter tuning optimization techniques to find the best set of hyperparameter values 
and architectures for specific forecasting tasks [76,85,86,105,106]. The development of universal or generalized models that can 
be applied to diverse scenarios and locations, by utilizing public datasets such as NASA POWER, has been pushed forward as a 
future research direction [75,96,100,108]. Furthermore, incorporating additional input variables, such as aerosol impact, variability 
indices, cloud data, and longer historical data sequences, have been suggested as potential avenues for improving forecasting accuracy 
[79,97,101].

5. Conclusion

The reliability of PV integrated systems is significantly influenced by the inherent variability of solar irradiance. Fluctuations in 
solar radiation levels lead to intermittent power generation, resulting in voltage and power fluctuations, posing challenges for utility 
companies, energy markets, and power distribution networks. Reliable forecasting techniques, spanning a wide range of forecast 
horizons from ultra-short-term to long-term predictions, are pivotal in addressing these challenges. Current research and industry 
practices heavily rely on data-driven models for short-term, day-ahead forecasting due to their higher accuracy and ability to capture 
cloud dynamics effectively. Conversely, long-term forecasts have gained increasing importance for strategic planning and resource 
allocation in power systems.

Achieving highly accurate predictions remains a formidable challenge; consequently, various methodologies encompassing physi-
26

cal, statistical, and artificial intelligence approaches have been extensively investigated. Among these methods, deep learning neural 
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Table 8

Errors table.

Ref. Peak Power RMSE MAE MAPE 𝑅2 MSE NRMSE

Brester et al. [78] 20 kW 436.507 W 172.032 W - - - 2.15%

Alaraj et al. [79] 6.3 kW 1.45% - 18% - 2.12% -

Scott et al. [88] 30 kWh 1.76 kW - - - - -

Singh et al. [80] 1 MW 1.34 kW 1.0163 kW - - 2.1816 kW -

Agga et al. [107] 15 kW 6.76 4.5 23.667% - - -

Wang et al. [76] 100 MW 4.12 MW 2.054 MW - - - -

Rubasinghe et al. [94] 3500 MW - 42.85 MW - - - -

Al-Jaafreh et al. [89] Scaled 0.035 - - - 0.0013 -

Piotrowski and Farret [98] 550.68 kWh 151.89 - - - - -

Admasie et al. [84] 900 𝑊 ∕𝑚2 0.0298 - - - - -

Sadeghi et al. [92] 10 MW - - - 97.95% 0.15 -

Phan et al. [104] 907.68 kW - - - - - 8.11%

Parida et al. [90] Scaled 0.012 0.01 1.57% - - -

Xiao et al. [95] 2.4 kW 0.29 kW 0.16 kW 3.09% - - -

Zhang et al. [103] 6 MW 0.055 error/MW 0.029 error/MW 2.77% - - -

Hong et al. [85] 1957.7 𝑊 ∕𝑚2 0.04035 0.2871 - 95.79% - -

Garip et al. [81] 157.1 kWh 19.17 kW 13.15 kW - 96% - -

Michael et al. [86] 8.12 𝑘𝑊 ℎ∕𝑚2 0.36 0.18 3.11% 98% 0.13 11%

Agga et al. [91] 46 kWh 6.65 kWh 4.97 kWh 19.85% - - -

Zhang et al. [77] 20 MW 0.63 MW 0.49 MW 5.77% 98.8% - 7.47%

Khortsriwong et al. [102] 1.5 MW 67.53 kW 28.34 kW 8.32% - - -

Li et al. [100] 18 MW 0.0409 0.1019 - - 0.0018 -

Azizi et al. [93] - 12.87 𝑤∕𝑚2 10.42 𝑤∕𝑚2 - 95.77% - 5.23%

Li et al. [82] 700 kW 69.07 kW 39.05 kW - - - -

de C. Costa [96] 3 kWh 540.8 W 426 W - - - 19%

Saoud et al. [56] 300 Wh 4 W 1.8 W 4.88% - - -

Trong et al. [97] 42 kW 0.43 kW 0.36 kW - - - -

Ziyabari et al. [87] - 0.06 𝑊 ∕𝑚2 0.04 W/m2 - 87% - -

Sherozbek et al. [106] 3.5 kWh 210 Wh 170 Wh - - 40 Wh -

Santos et al. [74] 6 kW 0.064 0.033 - 99.8% - -

Tian et al. [83] - - 0.092 0.879 - 0.036 -

Pospíchal et al. [75] 8 𝑘𝑊 ℎ∕𝑚2∕𝑑𝑎𝑦 - 131.5 W 3.45% - - -

Jeong [99] 3 - 0.1722 - - 0.0971 -

Kothona et al. [101] 60 kWh - 1388.7 Wh - 92% - -

Huang and Kaewunruen [108] 27000 kWh 76.9611 kWh - - 82.38% - -

Demir et al. [105] 1,124.90 𝑊 ∕𝑚2 84 𝑊 ∕𝑚2 - - - - -

networks, particularly transformer architectures or their hybrid variants employed in ensemble setups with intricate hyperparameter 
tuning, have demonstrated the most promising potential in terms of predictive accuracy. The optimization technique plays a crucial 
role in the model’s learning process, making it an increasingly attractive line of investigation to explore for developing more ro-

bust, accurate, and computationally efficient forecasting models. In addition, unifying accuracy measurement and presentation will 
increase the cross-comparison between available models to accelerate the development of accurate models.

Looking ahead, a promising avenue for future research lies in exploring hybrid and ensemble architectures that combine various 
deep learning modules or techniques to capitalize on their respective strengths synergistically. Moreover, researchers have under-

scored the importance of robust hyperparameter optimization strategies to identify the optimal set of hyperparameter values and 
architectures tailored to specific forecasting tasks. The development of universal or generalized models, facilitated by leveraging 
publicly available datasets like NASA POWER, has garnered attention as a potential future research direction, enabling the appli-

cation of these models across diverse scenarios and locations. Additionally, the creation of a shared database dedicated to PV farm 
data from various locations will accelerate the development of PV power forecasting. Furthermore, incorporating additional input 
variables, such as aerosol effects, variability indices, cloud data, and extended historical data sequences, has been proposed as a 
potential pathway to further enhance forecasting accuracy.
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