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A B S T R A C T

We present a proposal to extend the functional logistic regression model – which models a
binary scalar response variable from a functional predictor – to the case where the functional
observations are not independent because the same functional variable is measured in the same
individuals in different experimental conditions (repeated measures). The extension is addressed
by including a random effect in the model. The functional approach of this model assumes
that all functional objects are elements of the same finite-dimensional subspace of the space
of square-integrable functions 𝐿2 in the same compact domain allowing the functions to be
treated through the basis coefficients on the basis that spans the subspace to which functional
objects belong (basis expansion). This methodology usually induces a multicollinearity problem
in the multivariate model that emerges, which is solved with the use of the functional principal
components of the functional predictor, resulting in a new functional principal component
random effects model. The proposal is contextualized through a simulation study that contains
three simulation scenarios for four different functional parameters and considering the lack of
independence.

1. Introduction

Functional data analysis (FDA) is a branch of statistics where the main studied objects are continuous functions, and not only
scalar values as in classical statistics. FDA has its beginnings in the works of [28], but its popularity has increased since the works
of [14,26,27] as a result of its multiple applications in a number of scientific disciplines and technological advances, allowing for
increasingly precise measurements of continuous phenomena.

The developed theory for FDA has been possible thanks to the extension of concepts and methods from scalar statistics to
functions, as can be seen in the works of [13,16,17,27]. Accordingly, one of the crucial techniques for scientific research is functional
regression analysis, which attempts to find the relationship between a variable called dependent from one or more variables called
covariates or explanatory variables. In functional regression it is possible to find different combinations between the types of
variables and covariates. This is the case of functional logistic regression, which aims to model a binary random variable from
a set of functional observations. This type of model is important in problems where the response can be categorized into two levels,
commonly referred to as success and failure (see for example [11] in the case of peak levels of olive pollen). In this context [23]
evaluates three approaches for functional logistic regression: dimension reduction using functional principal component analysis,
penalized functional regression, and wavelet expansions in combination with Least Absolute Shrinking and Selection Operator
penalization. Authors conclude that none of the three methods convince in their ability to reconstruct the parameter function,
showing the difficulty of an accurate estimation of the functional parameter in this type of models.
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There are different approaches to modelling a binary response, but in this work we consider a parametric approach that assumes
he existence of a functional parameter. The interpretation of this parameter explains not only the relationship between response
nd covariates, but also provides an explanation of how changes in parameter generate changes in the odds ratio. Thus, the main
bjective of this approach is to obtain a correct estimation of the functional parameter that can be carried out by different methods,
here the most appropriate for the functional logistic regression problem is the maximum likelihood (ML) method. ML requires
bservations to be independent, however, when the observations come from the same experimental unit or subject measured
epeatedly in different conditions or in different periods of time, the framework is repeated measures. In this context, to assume
ndependence is unrealistic [7] because the phenomenon of repetition can generate a correlation structure in the design matrix
f the model [8]. This problem can be addressed by adding a random effect as is done in the scalar case (see [19]), where it is
onsidered that part of the collected variability comes from the correlation structure caused by repeated measurements. Repeated
easures in FDA context have a limited development in literature, its study focuses mainly on the curves comparison problem for

nstance. In [22] authors study the k-sample problem when the data are from the same subjects, proposing a statistic that takes
nto account the variability between groups. Subsequently, in [31,32] authors consider the variability in each group for a similar
roblem. Additionally, in [1] a basis expansion approach is used for functional analysis of variance with repeated measures. Most
f these methods treat these problems of repeated measures in FDA by adding a random effect into the model, i.e. in functional
ixed models (FMM) context. FMM have been developed in literature by some authors, e.g., in [20] a linear mixed effects model

s formulated from a non-parametric context. In a same way, in [30] authors address a functional additive mixed models. In [25]
ayesian perspective is used by authors to introduce a functional logistic mixed-effects model for estimating learning curves in

ongitudinal experiments. In the last three cases, the random effect considered is functional. Alternatively, scalar random effects are
ncluded in [21] for a functional linear mixed model in the context of scalar on function regression – functional predictor and scalar
esponse–.

On the other hand, as a consequence of the algebraic structure of some functional spaces, it is possible to consider the functional
ata as elements of a finite-dimensional subspace of square integrable functions space 𝐿2[𝑎, 𝑏]. This consideration allows the use
f all vector space properties, as the representation of any element in terms of a basis of fixed functions. This representation
roduces, for each functional datum, a unique vector of scalars that are the coefficients of the linear combination of the elements
f the basis that span the subspace to which the functional data belong. This treatment of functional data allows models to be
educed to a multivariate scalar problem, as already done in works such as those seen in [1,5,10,33], among other examples.
owever, the treatment of functional data through their basis coefficients within the context of regression can generate a problem
nown as multicollinearity i.e. correlation among the explanatory variables of a model, leading to high standard errors and another
roblems in the model parameters estimation [15]. This concern in the context of the functional logistic regression was worked
n by [9,10], where functional principal components logistic regression (FPCLR) was introduced, and an extended FPCLR model
nd R-package were developed. FPCLR model provides the advantage that the new vectors of coefficients no longer present the
roblem of multicollinearity, since no correlation is theoretically guaranteed. Additionally, FPCLR model allows the reduction of
he dimensionality of the problem, through the choice of a reduced number of functional principal components.

Functional logistic models for repeated measures on basis coefficients have problems of correlation attributable to repetition, and
ulticollinearity caused by the same basis representation for predictor and functional parameter (see [10]). The approach proposed
ere consists of the combination of two methodologies to address these issues: the random effect inclusion in the model to capture
ome of the variability attributable to repetition of functional observations, and the use of the functional principal components to
eal with the possible multicollinearity problem that may exist in the model. As far as we know, the case of repeated measures
or functional logistic regression model has not been considered in literature, much less the effect of multicollinearity in the model
stimation.

This paper is divided into 4 sections. The introductory section shows some background in the context of functional data analysis,
epeated measures and functional mixed models. Section 2 presents the theoretical framework on functional data and functional
ogistic regression model for repeated measures. Section 3 develops a simulation study with three different scenarios on four different
unctional parameters. Finally, Section 4 contains a summary and discussion of the main results and conclusion obtained.

. Methodology

.1. Functional data

There are different approaches to extend concepts from scalar statistics to continuous functions. One of these approaches
onsiders that a functional datum  is an observation of a second order stochastic process {(𝑡) ∶ 𝑡 ∈ [𝑎, 𝑏]}, i.e. it satisfies the
roperty of Eq. (1)

∫

𝑏

𝑎
2(𝑡)𝑑𝑡 < ∞. (1)

e assume that  ∈  ∶  ⊂ 𝐿2[𝑎, 𝑏] ∧ 𝑑𝑖𝑚() = 𝑑 ∈ N, where  and 𝐿2[𝑎, 𝑏] are vector spaces over the field R, whose elements
re square integrable functions on the same domain [𝑎, 𝑏], and which has a Hilbert space structure (see [18,29]) with inner product
efined as in Eq. (2):

⟨𝑓, 𝑔⟩ =
𝑏
𝑓 (𝑡)𝑔(𝑡)𝑑𝑡, ∀𝑓, 𝑔 ∈ 𝐿2[𝑎, 𝑏]. (2)
67
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This inner product induces the usual norm and distance 𝑚 defined by ‖𝑓‖ =
√

⟨𝑓, 𝑓⟩ and 𝑚(𝑓, 𝑔) = ‖𝑓 − 𝑔‖ respectively. Here, 𝑑
epresents the dimension of the subspace . These assumptions allow the use of functional finite basis concept of . Consequently,
iven

{

𝑖
}𝑛
𝑖=1 a set of 𝑛 functional data, then ∀𝑖 ∈ , ∃

(

𝑎𝑖𝑗
)𝑑
𝑗=1 ∈ R𝑑 ∶ 𝑖(𝑡) =

∑𝑑
𝑗=1 𝑎𝑖𝑗𝜙𝑗 (𝑡), where the set 𝛷 =

{

𝜙𝑗
}𝑑
𝑗=1 ⊂  is a

asis for , and the 𝑎𝑖𝑗 ∈ R are called basis coefficients or coefficients of representation of the 𝑖 − 𝑡ℎ functional datum in basis 𝛷.
The vector of basis coefficients for each function is unique, then it is possible to establish an isomorphism between the spaces
and R𝑑 . As a consequence, the use of a vector of basis coefficients (𝑎𝑖𝑗 )𝑑𝑗=1 ∈ R𝑑 instead of function 𝑖 is conceptually coherent

nd simplifies the data treatment and the simulation process, reducing some functional problems to the multivariate scope, as can
e seen for example in [2] for detecting changes in air pollution during the COVID-19 pandemic by using functional ANOVA.

It is important to note that different proposals exist for functional basis in order to obtain the representation in basis coefficients
uch as Fourier, B spline (see [27]), CONS basis (see [12]) or wavelets (see [4]).

.2. Functional logistic model for repeated measurements

Let 𝐿2[𝑎, 𝑏] be the vector space over R, with Hilbert space structure, of square integrable functions defined on the interval [𝑎, 𝑏],
nd  ⊂ 𝐿2[𝑎, 𝑏] a subspace such that 𝑑𝑖𝑚() = 𝑑 ∈ N. Suppose 𝑁 individuals measured in different experimental conditions for the
ame continuous domain, where the curve 𝑖𝑠 is given by the 𝑠−𝑡ℎ functional repetition for the 𝑖−𝑡ℎ individual. The set of functional
bservations ⋃𝑁

𝑖=1
{

𝑖𝑠
}𝑛𝑖
𝑠=1 ⊂ , being 𝑐𝑎𝑟𝑑(

⋃𝑁
𝑖=1

{

𝑖𝑠
}𝑛𝑖
𝑠=1) =

∑𝑁
𝑖=1 𝑛𝑖 = 𝑛 the total number of functional observations. Furthermore,

et us suppose that
{

𝑦𝑖𝑠
}𝑁,𝑛𝑖
𝑖=1,𝑠=1 is a set of binary responses that represent the success or failure of a phenomenon related to the

unctional observations, and which are defined as in the Eq. (3)

𝑦𝑖𝑠 =
{

1 𝑖𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠
0 𝑖𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒.

(3)

ach 𝑦𝑖𝑠, 𝑖 = 1, 2,… , 𝑁 ; 𝑠 = 1, 2,…… , 𝑛𝑖 is an observation of a random variable 𝑌 , such that 𝑌 |𝑖𝑠 ∼ 𝐵𝑒(𝜋𝑖𝑠), where 𝐵𝑒(𝜋𝑖𝑠) represents
Bernoulli probability distribution with parameter 𝜋𝑖𝑠 = 𝑃 (𝑌 = 1|𝑖𝑠). The issue of repeated measures has been addressed in

iterature mainly through mixed models. These models add different random effects to the models themselves (see [8]). With this
n mind, we propose the mixed functional logistic model for repeated measurements treatment and that is represented by Eq. (4)

𝑙𝑖𝑠 = 𝑙𝑛
[

𝜋𝑖𝑠
1 − 𝜋𝑖𝑠

]

= 𝛼 + ∫

𝑏

𝑎
𝑖𝑠(𝑡)𝛽(𝑡)𝑑𝑡 + 𝑧𝑖𝑠𝑢𝑖, 𝑖 = 1, 2,… , 𝑁 ; 𝑠 = 1, 2,… , 𝑛𝑖, (4)

where 𝑙𝑖𝑠 is the logarithm of the odds of success over failure, 𝐸
[

𝑌 |𝑖𝑠
]

= 𝜋𝑖𝑠, ∫
𝑏
𝑎 𝑖𝑠(𝑡)𝛽(𝑡)𝑑𝑡 is a fixed effect, 𝑢𝑖 is the vector of random

effects and 𝑧𝑖𝑠 is a repetition indicator vector. This is the classical formulation of the mixed logit model, seen as a Generalized Linear
Model (GLM) with logit transformation as link function (see [3,8] for scalar case).

The 𝛽 ∈  is the functional parameter whose accurate estimation is the objective of the methods proposed here. As can be seen
in [10] for the functional logistic regression model, this functional parameter allows an interpretation of the relationship between
the binary response and the functional predictor in terms of odds ratio. Then, since 𝑖𝑠, 𝛽 ∈ ; 𝑖 = 1, 2,… , 𝑁, 𝑠 = 1, 2,… , 𝑛𝑖, there
are vectors (𝑏𝑗 )𝑑𝑗=1, and (𝑎𝑖𝑠,𝑗 )𝑑𝑗=1, such that

𝑖𝑠 =
𝑑
∑

𝑗=1
𝑎𝑖𝑠,𝑗𝜙𝑗 ∧ 𝛽 =

𝑑
∑

𝑗=1
𝑏𝑗𝜙𝑗 . (5)

Then in Eq. (4) it follows

∫

𝑏

𝑎
𝑖𝑠(𝑡)𝛽(𝑡)𝑑𝑡 = ∫

𝑏

𝑎

[ 𝑑
∑

𝑗=1
𝑎𝑖𝑠𝑗𝜙𝑗 (𝑡)

][ 𝑑
∑

𝑗=1
𝑏𝑗𝜙𝑗 (𝑡)

]

𝑑𝑡

=

[ 𝑑
∑

𝑗=1
𝑎𝑖𝑠𝑗𝑏𝑗

‖

‖

‖

𝜙𝑗
‖

‖

‖

2
]

+

[ 𝑑
∑

𝑗=1,𝑘≠𝑗
𝑎𝑖𝑠𝑗𝑏𝑘

⟨

𝜙𝑗 , 𝜙𝑘
⟩

]

. (6)

Thus, the functional logit model for repeated measures can be written in matrix form as

𝐿 = 𝟏𝛼 + 𝐴𝛹 +𝑍𝑈, (7)

with 1 being a vector of ones, 𝐿 the vector of the 𝑛 logit transformations 𝑙𝑖𝑠, 𝐴 the matrix of basis coefficients of curves, 𝛹 the
matrix of inner products of the elements of the basis 𝛷, and  the parameter vector to be estimate that coincides with the vector of
basis coefficients of functional parameter 𝛽. 𝑈 is the random effects vector and 𝑍 the design matrix associated to 𝑈 that contains
the repetition framework.

In this way the functional logistic regression model for repeated measures is transformed into a multivariate logistic model
(for repeated measures). Assuming a spherical Gaussian distribution for the random effects, the estimation of the basis coefficients
𝑏𝑗 , 𝑗 = 1, 2,… , 𝑑 of the functional parameter 𝛽 can be obtained by classic methods for repeated measures as restricted maximum
likelihood (REML), and penalized iteratively re-weighted least squares (PIRLS) (see [6]). However, this formulation poses drawbacks
caused by possible multicollinearity in the new explanatory variables, since it is not possible to ensure that the basis coefficients
of curves are independent by columns. To deal with the multicollinearity issue, it is possible to restate the problem in terms of
68
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the functional principal components (FPCs), see [10]. Let us thus consider the functional principal components of sample curves
{

𝑖𝑠
}𝑁,𝑛𝑖
𝑖=1,𝑠=1 as

𝜉𝑖𝑠,𝑤 = ∫

𝑏

𝑎

(

𝑖𝑠(𝑡) − (𝑡)
)

𝑓𝑤(𝑡)𝑑𝑡, (8)

where the functions 𝑓𝑤 ∈ , (𝑤 = 1, 2,… , 𝑑) are the solutions to the eigenequation

∫

𝑏

𝑎
𝐶(𝑟, 𝑡)𝑓𝑤(𝑟)𝑑𝑠 = 𝜆𝑓𝑤(𝑡), (9)

with 𝐶 being the functional sample covariance defined by

𝐶(𝑟, 𝑡) = 𝑛−1
𝑛
∑

𝜄=1

(

𝜄(𝑟) − (𝑟)
)(

𝜄(𝑡) − (𝑡)
)

. (10)

The vectors 𝜉𝑤 and 𝜉𝑗 are independent for all 𝑤 ≠ 𝑗, and it is well known that each functional datum 𝑖𝑠 can be approximated in
erms of a reduced set of 𝑝 eigenfunctions 𝑓𝑤 and 𝜉𝑖𝑠,𝑤 by

𝑖𝑠 ≈  +
𝑝
∑

𝑤=1
𝜉𝑖𝑠,𝑤𝑓𝑤. (11)

Then, from Eq. (4) we can obtain the functional principal components logit model for repeated measures (in terms of logit
transformation) by

𝑙𝑖𝑠 = 𝛼 + ∫

𝑏

𝑎

(

(𝑡) +
𝑝
∑

𝑤=1
𝜉𝑖𝑠𝑤𝑓𝑤(𝑡)

)

𝛽(𝑡)𝑑𝑡 + 𝑧𝑖𝑠𝑢𝑖, 𝑖 = 1, 2,… , 𝑁 ; 𝑠 = 1, 2,… , 𝑛𝑖. (12)

The model in the Eq. (12) can be expressed in matrix form as

𝐿 = 𝟏𝛾0 + 𝛤𝛾 +𝑍𝑈, (13)

where 𝛤 is the matrix of the functional principal components (𝜉𝑖𝑠,𝑤), 𝛾0 = 𝛼 + ∫ 𝑏
𝑎 (𝑡)𝛽(𝑡)𝑑𝑡 and 𝛾 the vector of parameters with

lements 𝛾𝑤 = ∫ 𝑏
𝑎 𝑓𝑤(𝑡)𝛽(𝑡)𝑑𝑡. The model in Eq. (13) avoids the problem of multicollinearity since the principal components are

ncorrelated, so it is possible to use all the usual methods to obtain an estimate 𝛾̂ of the parameter vector 𝛾, and through this an
estimate of the original parameter vector , through ̂ = 𝑉 𝛾̂, with 𝑉 being the matrix of the basis coefficients of eigenfunctions 𝑓𝑤
in .

3. Simulation

In order to evaluate the performance of the proposed methods we have developed a simulation study, considering three different
scenarios:

• Scenario 1: Functional logit model without repeated measures.
• Scenario 2: Functional logit model with repeated measures.
• Scenario 3: Functional logit model with repeated measures, and multicollinearity

For all scenarios, four functional parameters 𝛽 in  (subspace spanned by finite basis in Eq. (14)) were generated from expression
𝑠
(

𝑠𝑖𝑛(𝑤1 ⋅ 𝑡)
) (

𝑐𝑜𝑠(𝑤2 ⋅ 𝑡)
)

, where 𝑠, 𝑤1, and 𝑤2 are scalar values that, when modified, generate changes in the scale, oscillation and
roughness of the 𝛽 function. The 4 types of functional parameters considered can be seen in Fig. 1.

3.1. Scenario 1

The functional curves considered in this scenario belong to subspace  spanned by finite basis 𝛷 with 𝑑 = 8. The elements
of the basis come from a complete orthonormal sequence (CONS), which provides multiple operational advantages thanks to its
orthonormality, see [12,24]. These elements are described in Eq. (14), and shown in the left panel of Fig. 2.

𝜙𝑗 (𝑥) =

{

1 𝑖𝑓 𝑗 = 1
√

2 cos((𝑗 − 1)𝜋𝑥) 𝑖𝑓 2 ≤ 𝑗 ≤ 𝑑.
(14)

So, 𝑛 = 750 curves
{

𝜄
}𝑛
𝜄=1 were considered by simulating their basis coefficients with uniform values, i.e. (𝑎𝜄,𝑗 )𝑑𝑗=1 = 𝐴𝑖 ∼

𝑈𝑛𝑖𝑓 [0.5, 3]. A sample of 100 simulated curves can be seen in Fig. 2 (Right).
After simulating the predictor curves, we calculate the linear predictor 𝑙𝜄 given by Eq. (6) using the functional parameters 𝛽1,

2, 𝛽3 and 𝛽4. After adding an error term 𝐸 ∼ 𝑁(0, 𝐼𝑑𝑛×𝑛) to the linear predictor the response was simulated by using a Bernoulli
istribution with probabilities given by exp(𝑙𝜄)∕(1 + exp(𝑙𝜄)). Four different models were then fitted, and the 𝛽 functional parameter
stimated:

• Model 1: 𝐿 = 𝟏𝛼 + 𝐴𝛹, i.e. the proposed model in Eq. (4) without random effects – called Classic Model (CL_Model) –. The
69
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Fig. 1. Top left: Functional parameter 𝛽1(𝑡) generated with the values 𝑠 = 10, 𝑤1 = 15 and 𝑤2 = 5. Top right: Functional parameter 𝛽2(𝑡) generated with the
values 𝑠 = 10, 𝑤1 = 3 and 𝑤2 = 5. Bottom left: Functional parameter 𝛽3(𝑡) generated with the values 𝑠 = 80, 𝑤1 = 0.3, 𝑤2 = 1.5. Bottom right: Functional parameter
𝛽4(𝑡) generated with the values 𝑠 = 70, 𝑤1 = 25, 𝑤2 = 25.

Fig. 2. Left: 8 functions of the basis 𝛷 of subspace . Right: a sample of 100 functional data simulated as elements of subspace 𝐻 .

• Model 2: 𝐿 = 𝟏𝛼 + 𝐴𝛹 + 𝑍𝑈 , i.e. the proposed model in Eq. (4) with random effects – called Repeated Measures Model
(RM_Model) –. The estimates were obtained by 𝑅𝐸𝑀𝐿.

• Model 3: 𝐿 = 𝟏𝛾0+𝛤𝛾 i.e. the proposed model in Eq. (12) model without random effects – called Classic Model on the Principal
Components (PC_Model) –. The estimates were obtained by 𝑀𝐿.

• Model 4: 𝐿 = 𝟏𝛾0 + 𝛤𝛾 +𝑍𝑈 i.e. the proposed model in Eq. (12) with random effects – called Repeated Measurements Model
on the Principal Components (RMPC_Model) –. The estimates were obtained by 𝑅𝐸𝑀𝐿.
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a

Fig. 3. For all figures: In red dashed line, the target functional parameter 𝛽1, in black solid lines, the functional estimations 𝛽1. On the top left for the first
model 𝐶𝐿_𝑀𝑜𝑑𝑒𝑙. On top right for the second model 𝑅𝑀_𝑀𝑜𝑑𝑒𝑙. Bottom left, for the third model 𝑃𝐶_𝑀𝑜𝑑𝑒𝑙. Bottom right, for the fourth model 𝑅𝑀𝑃𝐶_𝑀𝑜𝑑𝑒𝑙.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

In 𝑃𝐶_𝑀𝑜𝑑𝑒𝑙 and 𝑃𝐶𝑅𝑀_𝑀𝑜𝑑𝑒𝑙, the number of functional principal components used was fixed as to explain 99% of the total
variability. Fig. 3 shows an example of the simulated functional parameter 𝛽1 and estimated 𝛽1 with four models for Scenario 1.

The performance of the logit models was carried out by the correct classification rate (𝐶𝐶𝑅), an indicator of the percentage
of items whose prediction perfectly matches the original observation. The 𝐶𝐶𝑅 is a good indicator of model accuracy and can be
calculated using the Eq. (15)

𝐶𝐶𝑅 = 1
𝑛

𝑛
∑

𝑖=1
𝐼(𝑦𝑖 = 𝑦̂𝑖), (15)

where 𝑦𝑖 is the binary observation for the 𝑖−𝑡ℎ individual, and 𝑦̂𝑖 is the prediction made for the same individual. Thus, the proportion
of model successes is obtained with all the predictions of the model, moreover, the accuracy of the estimations of the functional
parameters was tested by the integrated squared error 𝐼𝑆𝐸, defined by Eq. (16)

𝐼𝑆𝐸 = ∫

𝑏

𝑎
(𝛽(𝑡) − 𝛽(𝑡))2𝑑𝑡, (16)

This process was carried out 100 times, wherein we obtained 100 functional parameter estimations
{

𝛽𝑖
}100
𝑖=1, 𝐶𝐶𝑅 and 𝐼𝑆𝐸 for

each model, The evaluation of the 100 simulations was tested by the averages of 𝐶𝐶𝑅 and 𝐼𝑆𝐸 – referred to as 𝑀𝐶𝐶𝑅 and 𝑀𝐼𝑆𝐸
respectively – in addition to the standard deviation of the 𝐶𝐶𝑅 (𝑆𝐷𝐶𝐶𝑅). Furthermore, scalar variance for functional data (𝑆𝑉 𝐹𝐷)
developed by [33] was used to provide a scalar value of the variability of a set of curves within a single finite-dimensional subspace.
This is useful for comparing the consistency of the estimates from the four models. The scalar variance for functional data is defined
in Eq. (17)

𝑆𝑉 𝐹𝐷 = 1
𝑛 − 1

𝑛
∑

𝑖=1
∫

𝑏

𝑎
(𝛽𝑖(𝑡) − 𝛽(𝑡))2𝑑𝑡 (17)

where 𝛽𝑖(𝑡) is the 𝑖 − 𝑡ℎ estimation of functional parameter 𝛽𝑖(𝑡), and 𝛽(𝑡) is the functional mean of the estimations. One of the
dvantages of 𝑆𝑉 𝐹𝐷 is that it can be calculated directly from the basis coefficients, offering operational advantages, even more so
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Table 1
Accuracy measures in Scenario 1 for four target 𝛽 functions.
Accuracy measure Functional parameter 𝛽1 Functional parameter 𝛽2

CL RM PC RMPC CL RM PC RMPC

𝑆𝑉 𝐹𝐷 0.24 0.27 0.24 0.27 0.29 0.31 0.29 0.31
𝐼𝑆𝐵 0.23 0.16 0.23 0.16 0.21 0.17 0.21 0.17
𝑀𝐼𝑆𝐸 0.47 0.43 0.47 0.43 0.50 0.48 0.50 0.48
𝑀𝐶𝐶𝑅 0.90 0.90 0.90 0.90 0.91 0.91 0.91 0.91
𝑆𝐷𝐶𝐶𝑅 0.02 0.02 0.02 0.02 0.01 0.02 0.01 0.02

Functional parameter 𝛽3 Functional parameter 𝛽4
CL RM PC RMPC CL RM PC RMPC

𝑆𝑉 𝐹𝐷 0.47 0.58 0.47 0.58 0.19 0.20 0.19 0.20
𝐼𝑆𝐵 0.43 0.28 0.43 0.28 0.20 0.17 0.20 0.17
𝑀𝐼𝑆𝐸 0.90 0.85 0.90 0.85 0.39 0.37 0.39 0.37
𝑀𝐶𝐶𝑅 0.92 0.93 0.92 0.93 0.89 0.89 0.89 0.89
𝑆𝐷𝐶𝐶𝑅 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

when the basis is orthonormal. Accordingly, the scalar variance for functional data in the subspace spanned by 𝛷 orthonormal basis
can be calculated as in Eq. (18)

𝑆𝑉 𝐹𝐷 =
𝑑
∑

𝑗=1
𝑉𝑗 (18)

where 𝑉𝑗 is the variance of the 𝑗 − 𝑡ℎ vector of basis coefficients from estimations of 𝛽(𝑡). The bias in the functional estimations was
alculated using the integrated squared bias 𝐼𝑆𝐵 according to Eq. (19)

𝐼𝑆𝐵 = ∫

𝑏

𝑎
(𝛽(𝑡) − 𝛽(𝑡))2𝑑𝑡, (19)

where 𝛽(𝑡) is the simulated functional parameter, and 𝛽 is the mean of the functional estimations of 𝛽(𝑡). The 𝐼𝑆𝐵 provides a general
calar measure of the bias in the estimates.

Fig. 4 shows the results of the 100 estimations of simulated functional parameters, for the four models in simulation Scenario 1.
ere, there is no multicollinearity, and there is no correlation structure due to repeated measurements of the same individual. As
xpected in this case, the four models produce similar estimates, which can be verified through accuracy measures in the top left
able 1. The graphic results are consistent in all functional parameters.

In order to compare the accuracy of the fits for the four models in simulation Scenario 1, Table 1 shows the accuracy measures
or the four simulated parameters considered. It is possible to note that the results in fact show stability even with changes in the
orm of the functional parameter. In all cases 𝐶𝐶𝑅 are high, hanging around 90%, and there are almost negligible differences in
𝑉 𝐹𝐷, 𝐼𝑆𝐵 and 𝑀𝐼𝑆𝐸 among models and functional parameters.

.2. Scenario 2

In this scenario, the predictor curves were simulated by assuming the same subspace  spanned by the same finite basis 𝛷 as
cenario 1. In this case, we assumed 𝑁 = 50 individuals and 𝑛𝑖 = 15 repetitions for 𝑖 = 1, 2… , 𝑁 , 𝑛 = 750 curves in total. For the
epeated measures the random effects were simulated by using a Gaussian distribution, i.e. 𝑈 ∼ 𝑁(0, 3.5). The covariance matrix

was generated without multicollinearity but the responses had random effect because of repeated measurements. The response was
also simulated in the same terms as Scenario 1. As in Scenario 1, the process was replicated 100 times, the fits and the accuracy
were tested by using the same measures and techniques as in that scenario.

Fig. 5 shows the results of the 100 estimates of the functional parameters for the four models in simulation Scenario 2. Here,
no multicollinearity between the columns of the design matrix was considered, but there existed a correlation structure caused by
repetition and that was added through the random effects simulation. Here, it is possible to observe that the models 𝐶𝐿_𝑀𝑜𝑑𝑒𝑙 and
𝐶_𝑀𝑜𝑑𝑒𝑙 – which use ML estimation – show a bias in the functional mean of the estimates, while in the models 𝑅𝑀_𝑀𝑜𝑑𝑒𝑙 and
𝑀𝑃𝐶_𝑀𝑜𝑑𝑒𝑙 – which use REML estimation – the functional means of the estimates are closer. You can also observe how including

unctional principal components in the models, in this scenario, has no effect on the accuracy and bias of the functional parameter
stimates compared to not including them. On the other hand, when comparing the results obtained for the different functional
arameters, one might suspect that the shape of them could be influencing the accuracy and bias of the estimates. For example,
t can be observed that in functional parameter like 𝛽2 and 𝛽3, the discrepancies from not using random effects in the models are
reater than in 𝛽1 and 𝛽4. In any case, the inclusion of a random effect in the model always improves the estimates.

In Table 2 (top left), as expected, the prediction ability of the four models is very accurate with similar and high 𝐶𝐶𝑅 in all
odels. However, it is possible to observe an increase in bias and error in the estimates of the 𝐶𝐿_𝑀𝑜𝑑𝑒𝑙 and 𝑃𝐶_𝑀𝑜𝑑𝑒𝑙 models

with respect to scenario 1, since the increase in the bias of the estimates is just a consequence of repeated measures. Despite this,
the decreases from 2.65 to 0.26 in 𝐼𝑆𝐵 and from 2.81 to 0.55 in 𝑀𝐼𝑆𝐸 show the importance of including the random effect in the
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Fig. 4. Scenario 1: For all figures, in red dashed line the target functional parameter, in grey solid lines, the 100 functional estimations, in blue long dashed
ine, the functional mean of the 100 estimations. Each line shows for each functional parameter the results of fitted models 𝐶𝐿_𝑀𝑜𝑑𝑒𝑙, 𝑅𝑀_𝑀𝑜𝑑𝑒𝑙, 𝑃𝐶_𝑀𝑜𝑑𝑒𝑙

and 𝑅𝑀𝑃𝐶_𝑀𝑜𝑑𝑒𝑙 respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

logit model for repeated measures to improve the estimation of the functional parameter, and for obtaining a precise interpretation
of the functional parameter in terms of odds ratios. As in Scenario 1, the results show stability decreasing 𝐼𝑆𝐵 and 𝑀𝐼𝑆𝐸 in models
with random effect, even with changes in the form of the functional parameter given by 𝛽2, 𝛽3 and 𝛽4. In terms of the 𝑆𝑉 𝐹𝐷, as in
cenario 1, an increase is observed in the models with random effect, which is because the REML method can increase the variance
y reducing the bias in the estimates. This can be seen in the tested functional parameters 𝛽1, 𝛽2, 𝛽3, and 𝛽4, although the excessive
ncrease in the 𝑆𝑉 𝐹𝐷 in 𝛽3 for the 𝑅𝑀_𝑀𝑜𝑑𝑒𝑙 and 𝑅𝑀𝑃𝐶_𝑀𝑜𝑑𝑒𝑙 may be an indication that the it is influenced by the shape of
he functional parameter.
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l

Fig. 5. Scenario 2: For all figures, in red dashed line the target functional parameter, in grey solid lines, the 100 functional estimations, in blue long dashed
ine, the functional mean of the 100 estimations. Each line shows for each functional parameter the results of fitted models 𝐶𝐿_𝑀𝑜𝑑𝑒𝑙, 𝑅𝑀_𝑀𝑜𝑑𝑒𝑙, 𝑃𝐶_𝑀𝑜𝑑𝑒𝑙

and 𝑅𝑀𝑃𝐶_𝑀𝑜𝑑𝑒𝑙 respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3.3. Scenario 3

In this scenario we deal with a more realistic case, where multicollinearity exists due to basis expansion representation of the
functional objects of our models. Thus, 𝑁 = 50 individuals and 𝑛𝑖 = 15 repetitions for 𝑖 = 1, 2… , 𝑁 , 𝑛 = 750 curves in total were
now simulated with repeated measures and multicollinearity. In this scenario, a Normal distribution instead of Uniform was used
for basis coefficients simulation of the functional predictors, i.e. (𝑎𝑖𝑠,𝑗 )𝑑𝑗=1 = 𝐴𝑗 ∼ 𝑁(0, 𝛴), 𝑖 = 1, 2,… , 𝑁 , where covariance matrix 𝛴
was generated with multicollinearity. The response simulation, replication, fits, and accuracy evaluation were carried out as in the
two previous scenarios.

Fig. 6 shows the results of the estimations of the functional parameters for simulation of this Scenario 3, which considers
multicollinearity and correlation structure because of repetition. Here it can be seen that the four models have difficulty estimating
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Fig. 6. Scenario 3: For all figures, in red dashed line the target functional parameter, in grey solid lines, the 100 functional estimations, in blue long dashed
ine, the functional mean of the 100 estimations. Each line shows for each functional parameter the results of fitted models 𝐶𝐿_𝑀𝑜𝑑𝑒𝑙, 𝑅𝑀_𝑀𝑜𝑑𝑒𝑙, 𝑃𝐶_𝑀𝑜𝑑𝑒𝑙

and 𝑅𝑀𝑃𝐶_𝑀𝑜𝑑𝑒𝑙 respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 2
Accuracy measures in Scenario 2 for four target 𝛽 functions.
Accuracy measure Functional parameter 𝛽1 Functional parameter 𝛽2

CL RM PC RMPC CL RM PC RMPC

𝑆𝑉 𝐹𝐷 0.16 0.29 0.16 0.29 0.19 0.34 0.19 0.34
𝐼𝑆𝐵 2.65 0.26 2.65 0.27 3.09 0.32 3.09 0.32
𝑀𝐼𝑆𝐸 2.81 0.55 2.81 0.55 3.28 0.66 3.28 0.66
𝑀𝐶𝐶𝑅 0.87 0.92 0.87 0.92 0.88 0.93 0.88 0.93
𝑆𝐷𝐶𝐶𝑅 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01

Functional parameter 𝛽3 Functional parameter 𝛽4
CL RM PC RMPC CL RM PC RMPC

𝑆𝑉 𝐹𝐷 0.35 0.92 0.35 0.85 0.12 0.21 0.12 0.21
𝐼𝑆𝐵 4.50 0.18 4.50 0.20 1.89 0.15 1.89 0.15
𝑀𝐼𝑆𝐸 4.84 1.09 4.84 1.04 2.01 0.36 2.01 0.36
𝑀𝐶𝐶𝑅 0.90 0.94 0.90 0.94 0.85 0.90 0.85 0.90
𝑆𝐷𝐶𝐶𝑅 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.01

Table 3
Accuracy measures in Scenario 3 for four target 𝛽 functions.
Accuracy measure Functional parameter 𝛽1 Functional parameter 𝛽2

CL RM PC RMPC CL RM PC RMPC

𝑆𝑉 𝐹𝐷 334.90 676.02 2.13 3.83 41.20 82.05 2.21 4.56
𝐼𝑆𝐵 6.30 7.19 7.08 4.00 6.04 2.35 10.42 5.58
𝑀𝐼𝑆𝐸 337.82 676.38 9.19 7.80 46.82 83.58 12.61 10.10
𝑀𝐶𝐶𝑅 0.90 0.94 0.89 0.93 0.84 0.91 0.83 0.90
𝑆𝐷𝐶𝐶𝑅 0.03 0.02 0.03 0.02 0.04 0.02 0.04 0.03

Functional parameter 𝛽3 Functional parameter 𝛽4
CL RM PC RMPC CL RM PC RMPC

𝑆𝑉 𝐹𝐷 147.34 165.11 5.75 7.50 1853.57 2692.48 1.24 19.52
𝐼𝑆𝐵 4.18 2.48 11.51 8.84 20.05 22.81 3.56 0.78
𝑀𝐼𝑆𝐸 150.02 165.93 17.20 16.26 1854.89 2688.09 4.79 20.10
𝑀𝐶𝐶𝑅 0.91 0.93 0.90 0.92 0.95 0.97 0.94 0.97
𝑆𝐷𝐶𝐶𝑅 0.03 0.02 0.04 0.03 0.01 0.01 0.01 0.01

the target functional parameter, with the cases in the 𝐶𝐿_𝑀𝑜𝑑𝑒𝑙 and 𝑅𝑀_𝑀𝑜𝑑𝑒𝑙, being notable since multicollinearity produces
bad estimations with dramatic differences. Although the principal components models (𝑃𝐶_𝑀𝑜𝑑𝑒𝑙 and 𝑅𝑀𝑃𝐶_𝑀𝑜𝑑𝑒𝑙) improve
by decreasing the bias, error and variance of estimates, and produce stable results if compared to the other two models, this is
not enough for 𝛽2 and 𝛽3, where no methods are able to provide suitable estimates. As in scenario 2, in this scenario, there is
suspicion that the shape of the parameter function may influence the accuracy of the estimates. However, for all parameter functions
considered, indicate that only the inclusion of a random effect does not improve the estimates in the presence of multicollinearity,
so the use of functional principal components is necessary for a more precise estimation. On the other hand, the use of functional
principal components alone does not improve the estimates in the case of repeated measures. It is the combination of both
methodologies that produces a significant gain in the estimates. These conclusions can also be checked in Table 3.

4. Conclusions

In this work we propose functional principal components logistic regression for modelling a binary response variable from a
functional covariate, when the observations are of repeated functional type. It is important to note here that the fundamental
contribution sought is the appropriated estimation of the functional parameter because, as Section 1 indicates, the goal of the
functional logistic model – from a parametric perspective – is the interpretation of the functional parameter, which will be realistic
as long as the estimates recover the shape of the target functional parameter. From this point of view, our conclusions about the
model from simulation results are the following:

• The inclusion of a random effect in the functional logistic model is effective for improving the estimation of the functional
parameter in the case of functional repeated measures. As can be seen in all scenarios the inclusion of the random effect
significantly improves the prediction of the response as well as the estimation of the functional parameter and, therefore,
improves the interpretation.

• The use of functional principal components allows the estimation of the functional parameter to be improved, even in the
random effects model in the presence of multicollinearity.

• Although the results in Section 3 show some regularity in model performance when the functional parameter is changed, the
shape of the parameter could be influencing the estimates. This is more evident in Scenario 3, where it is shown that in the
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presence of multicollinearity and repeated measures, no model produce suitable estimates for parameter functions with low
variability along their trajectory, like 𝛽2 and 𝛽3. However, in the presence of multicollinearity and repeated measures, using
the principal component model with random effects (𝑅𝑀𝑃𝐶_𝑀𝑜𝑑𝑒𝑙) is appropriate for functions with higher variability, such
as 𝛽1 and 𝛽4.

According to this last item, future model evaluation studies should examine the sensitivity of the model to changes in internal
variability structures of functional parameters.
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