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A B S T R A C T

Propensity Score Adjustment (PSA) is a widely accepted method to reduce selection bias
in nonprobability samples. In this approach, the (unknown) response probability of each
individual is estimated in a nonprobability sample, using a reference probability sample. This,
the researcher obtains a representation of the target population, reflecting the differences (for
a set of auxiliary variables) between the population and the nonprobability sample, from which
response probabilities can be estimated.

Auxiliary probability samples are usually produced by surveys with complex sampling
designs, meaning that the use of design weights is crucial to accurately calculate response
probabilities. When a linear model is used for this task, maximising a pseudo log-likelihood
function which involves design weights provides consistent estimates for the inverse probability
weighting estimator. However, little is known about how design weights may benefit the
estimates when techniques such as machine learning classifiers are used.

This study aims to investigate the behaviour of Propensity Score Adjustment with machine
learning classifiers, subject to the use of weights in the modelling step. A theoretical approxima-
tion to the problem is presented, together with a simulation study highlighting the properties
of estimators using different types of weights in the propensity modelling step.

1. Introduction

Novel information-gathering methods, such as online or smartphone surveys, have many advantages in terms of lower costs,
higher response rates and broader questionnaire possibilities, making them attractive for practitioners considering a finite pop-
ulation. However, these surveys are usually self-administered, beyond the researcher’s control, thus generating a nonprobability
sample.

In a probability sampling design, all the individuals of the finite population of interest have a known or calculable probability of
being included in the sample. If this condition does not apply, we have a nonprobability sample, which may be subject to selection
bias, i.e. the sampled population may be different from the nonsampled population in a way that could affect the study variable of
interest [1].
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Adjustment methods have been proposed to overcome or reduce the selection bias produced in nonprobability samples, but the
pplication and effectiveness of any such method depends on the amount of auxiliary information available. Commonly, a probability
ample from the same population is available, from which some auxiliary variables in common with the nonprobability sample can
e measured. These are known as reference samples in this context, as they reflect the structure of the population of interest for the
forementioned auxiliary variables, enabling useful analysis even if the actual population values are unknown.

Such methods include Propensity Score Adjustment (PSA) [2], Propensity-Adjusted Probability Prediction [1], Kernel Weight-
ng [3], Statistical Matching or Mass Imputation [4], and the combination of PSA and Mass Imputation known as Doubly Robust
stimators [5]. All of these methods are based on predictive modelling, but they differ regarding the variable that is predicted. Mass
mputation focuses on predicting the values of the variable of interest for individuals in the reference sample, while the remaining
ethods predict the probability of participating in the nonprobability sample, which is expressed as a binary classification problem

participation versus non-participation).
In using a reference sample, its sampling design must be taken into account, to ensure a correct, balanced representation is

ade of the population of interest. This sampling design is usually incorporated in linear estimators via design weights, which
epresent the inverse probability of an individual being selected in the reference sample. However, these weights are not always
pplied consistently in response propensity estimation, which can create problems, especially when nonparametric models are
sed for propensity prediction. In the present work, we study this issue and propose different approaches based on incorporating
achine learning algorithms (XGBoost and Random Forest) into nonprobability survey sampling. Our main aims in this study are

o determine the effect of weighting the algorithms (in the training step) used for propensity estimation, by training weighted
lgorithms leveraging the design weights available for the reference sample, and then to introduce a broader set of weighted
lgorithms for propensity estimation, as an alternative to logistic regression. We also provide empirical evidence of the performance
f each approach in real life situations, as a valuable resource for researchers and practitioners. The rest of this paper is structured
s follows: in Section 2, we introduce Propensity Score Adjustment, which is the base method for all other approaches based on
ropensity prediction, and discuss how design weights are used in this procedure. In Section 3, we examine the use of weighted
achine learning algorithms for propensity estimation, which in our view is one of the main contributions of this paper. In Section 4,
e describe the simulation study carried out to compare the modelling approaches considered, both with and without design weights,
nd under different scenarios. The simulation results are presented in Section 5. Finally, in Section 6 we discuss these results,
ummarise the main conclusions drawn and propose some recommendations for practitioners.

. Propensity estimation

.1. Propensity score adjustment

Let 𝑈 be the population of interest, of finite size 𝑁 , from which we wish to know a linear parameter of a variable of interest,
𝑦. This linear parameter can be the population mean, 𝑌 , the population total, 𝑇𝑦, or the proportion of an attribute of interest (for
example, the proportion of voters of a given political party in the population), 𝑃𝑦.

Let 𝑠𝑣 be the nonprobability sample of size 𝑛𝑣, drawn from a potentially covered population 𝑈𝑝𝑐 , such that 𝑈𝑝𝑐 ⊆ 𝑈 , following no
sampling design, and let 𝑠𝑟 be the reference probability sample of size 𝑛𝑟 also drawn from 𝑈 with design weights 𝑑𝑟 = 1∕𝜋𝑟, where
𝜋𝑟 is the probability of an individual being selected in 𝑠𝑟.

Let 𝑅 = 0, 1 be the participation indicator where:

𝑅𝑖 =
{

1 𝑖 ∈ 𝑠𝑣
0 𝑖 ∉ 𝑠𝑣

, 𝑖 ∈ 𝑈 (1)

and let

𝜋𝑣
𝑖 = 𝑃𝑟(𝑖 ∈ 𝑠𝑣|𝐱𝑖, 𝑦𝑖) = 𝑃𝑟(𝑅𝑖 = 1|𝐱𝑖, 𝑦𝑖) = 𝐸𝑞[𝑅𝑖|𝐱𝑖, 𝑦𝑖], 𝑖 ∈ 𝑈 (2)

where 𝐱 is a set of auxiliary variables and the subscript 𝑞 in the expectation refers to the model for the selection mechanism of
the nonprobability sample, i.e. the propensity model, following the notation used in [5]. We call the 𝜋𝑣

𝑖 the propensity scores or
propensities. These are unknown and require suitable model assumptions for valid estimation methods to be developed. On the
other hand, 𝐱 must have been measured for all individuals in 𝑠𝑟 and 𝑠𝑣 for the estimation to be performed. This set of variables
can be decided according to a reference sample available before obtaining 𝑠𝑣, to ensure that they will be measured in 𝑠𝑣 as well.
Alternatively, they might be decided on the basis of the common variables between 𝑠𝑣 and any probability sample that could
be leveraged (for example, a government survey). Propensity estimation is more effective if these variables are associated with
the selection mechanism and (especially) with the variable of interest, as shown in [6]. In this respect, we consider three basic
assumptions [5]:

1. 𝜋𝑣
𝑖 = 𝑃𝑟(𝑅𝑖 = 1|𝐱𝑖), 𝑖 ∈ 𝑈 , similar to the missing at random assumption for missing data analysis.

2. 𝜋𝑣
𝑖 > 0, 𝑖 = 1,… , 𝑁 , meaning that all units can be selected.

3. 𝑅 ,… , 𝑅 are independent given (𝐱 ,… , 𝐱 ), 1 = 1,… , 𝑁 .
780
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Assumption 1 is not very common in practice, as nonprobability surveys might have an unknown selection mechanism which is
elated to the variable of interest, violating the assumption. Assumption 2 is also violated when there is any kind of coverage error,
hich is also relatively common in nonprobability samples, especially when using new technologies for survey administration such
s internet surveys or smartphone surveys, as some members of the target population will be unable to take part in the survey. The
estability of these assumptions is difficult but not impossible: some measures of bias have been developed in literature that could
e helpful for assessing Assumption 1 [7,8]. The coverage error in Assumption 2 could be assessed by the practitioner if it is known
hich segments of the population will be reached by the survey.

In a nonprobability survey, as 𝜋𝑣 is not known (because there is no sampling design), the propensities have to be estimated in
rder to apply the usual Horvitz–Thompson or Hájek estimators. Propensity Score Adjustment (PSA) attempts to give an estimate,

�̂�𝑣, of its value for each individual in the available samples using a model 𝑚(𝐱, 𝜆), where 𝐱 is a set of covariates available in both
𝑣 and 𝑠𝑟 and 𝜆 is the vector of parameters of the model. The model 𝑚 that is often considered in literature is logistic regression.
he propensity scores are therefore estimated by pooling the non-probability sample 𝑠𝑣 with the reference probability sample 𝑠𝑟 and
itting a logistic regression to predict 𝑅∗

𝑖 , where 𝑅∗
𝑖 = 1 if 𝑖 ∈ 𝑠𝑣 and 0 if 𝑖 ∈ 𝑠𝑟. The estimator formula is:

�̂�𝑣 = 𝑃𝑟(𝑅∗
𝑖 = 1|𝐱𝑖) =

𝑒𝑥𝑝(𝜆𝐱𝑖)
1 + 𝑒𝑥𝑝(𝜆𝐱𝑖)

, 𝑖 ∈ 𝑠𝑟 ∪ 𝑠𝑣, (3)

where 𝜆 is the vector of coefficients that minimise the logistic loss function. [9] proposed to fit a survey weighted logistic
regression model. Some recent approaches involve machine learning classification algorithms for 𝑚, involving different estimators
or propensities [10–12]. Estimators of linear parameters using PSA have also been developed, using the propensities to construct
eights to be used in Horvitz–Thompson or Hajek estimators. The weights to be used in those estimators can be calculated using

everal transformations for propensities, including:

• The usual inverse probability weighting: 𝑤𝐼𝑃𝑊
𝑖 = 1∕�̂�𝑣

𝑖 , 𝑖 ∈ 𝑠𝑣.
• The modification of inverse probability weighting proposed in [13] which assumes that the individuals in the nonprobability

sample do not belong to the target population of the reference sample:

𝑤𝐼𝑃𝑊𝑀
𝑖 =

1 − �̂�𝑣
𝑖

�̂�𝑣
𝑖

, 𝑖 ∈ 𝑠𝑣. (4)

• Propensity stratification weighting. The propensities are classified into strata of roughly the same size, with individuals in
each stratum having similar propensities. The estimation can then be performed by multiplying the original weights of the
nonprobability sample (if any) by a correction factor that takes into account the design weights of the reference sample [14],
such that the final weights are 𝑤𝑆𝑡𝑟𝑎𝑡1

𝑖 = 𝑓𝑐 ⋅ 𝑁
𝑛𝑣
, 𝑖 ∈ 𝑠𝑣; this approach with the correction factor is further developed in

Section 2.2. Another option is to calculate the mean of the propensities of each strata and to use the result as the propensity
of each individual of a given stratum, thus obtaining the weights via inverse probability weighting [9].

𝑤𝑆𝑡𝑟𝑎𝑡2
𝑖 = 1∕�̂�𝑣

𝑔 , 𝑖 ∈ 𝑠𝑣, 𝑔 ∋ 𝑖 (5)

where �̂�𝑣
𝑔 is the mean propensity of stratum 𝑔 to which individual 𝑖 belongs. These approaches avoid very extreme propensities

that would increase the variance of the final estimates.

2.2. Design weights in propensity score adjustment

The use of design weights, available for the reference sample, in model fitting has been considered in various ways in the literature
on PSA. Many authors fit the propensity estimation models, m, and do not make use of weights. However, according to [9], this
approach gives biased estimates of linear parameters because the propensities are inflated only to the level of the combined sample
𝑠𝑣 ∪ 𝑠𝑟, rather than that of the target population.

Sometimes the design weights can be incorporated afterwards; [14] developed an approach in which the estimated propensities
�̂�𝑣 are sorted and partitioned into 𝐶 strata (ideally, 𝐶 = 5 following [15,16]). A correction factor 𝑓𝑐 is then defined for a given
stratum, 𝑐, based on the design weights of both the probability and the nonprobability sample:

𝑓𝑐 =

∑

𝑘∈𝑠𝑐𝑟
𝑑𝑟𝑘∕

∑

𝑘∈𝑠𝑟 𝑑
𝑟
𝑘

𝑛𝑐𝑣∕𝑛𝑣
, (6)

where 𝑛𝑐𝑣 is the number of individuals from the nonprobability sample that belong to the 𝑐th stratum, and 𝑠𝑐𝑟 and 𝑠𝑐𝑣 are the subset
f individuals from the reference and the nonprobability sample respectively that belong to the 𝑐th stratum. The final weights of
he nonprobability sample to be applied in linear estimators are defined as:

𝑤𝑆𝑡𝑟𝑎𝑡1
𝑖 = 𝑓𝑐 ⋅

𝑁
𝑛𝑣

, 𝑖 ∈ 𝑠𝑣, 𝑐 ∋ 𝑖 (7)

Other studies [9,17] have considered the use of weighted models, where the individuals from the nonprobability sample are
ssigned unitary weights, and the individuals for the probability sample are assigned their design weight with a correction factor:

𝑤𝑚
𝑖 =

⎧

⎪

⎨

⎪

1 𝑖 ∈ 𝑠𝑣

𝑑𝑟𝑖

(

1 − 𝑛𝑟
∑

𝑗∈𝑠 𝑑𝑟

)

𝑖 ∈ 𝑠𝑟
(8)
781
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On the other hand, [5] has observed that this approach may not lead to a consistent estimator of the parameters in the weighted
odel, as the score functions are not approximately unbiased.

To overcome this problem, these authors developed a consistent and unbiased estimator of linear parameters by maximising the
seudo-log-likelihood function with respect to the vector 𝜆 of parameters of the model (for example, the regression coefficients of

a logistic regression):

𝑙(𝜆) =
∑

𝑖∈𝑠𝑣

𝑙𝑜𝑔
(

𝑚(𝐱𝑖, 𝜆)
1 − 𝑚(𝐱𝑖, 𝜆)

)

+
∑

𝑖∈𝑠𝑟

𝑑𝑟𝑖 𝑙𝑜𝑔
(

1 − 𝑚(𝐱𝑖, 𝜆)
)

(9)

If a logistic regression model is used to estimate propensities, the function becomes

𝑙(𝜷) =
∑

𝑖∈𝑠𝑣

𝐱𝑇𝑖 𝜷 +
∑

𝑖∈𝑠𝑟

𝑑𝑟𝑖 𝑙𝑜𝑔
(

1 + 𝑒𝑥𝑝(𝐱𝑇𝑖 𝜷)
)

(10)

If we consider the approach from [9] as in Eq. (8), the pseudo-log-likelihood function would be equal to

𝑙(𝝀) +
∑

𝑖∈𝑠𝑣

𝑙𝑜𝑔
(

1 − 𝜋𝑣
𝑖
)

−
𝑛𝑣

∑

𝑖∈𝑠𝑟 𝑑
𝑟
𝑖

∑

𝑖∈𝑠𝑟

𝑑𝑟𝑖 𝑙𝑜𝑔
(

1 − 𝜋𝑣
𝑖
)

If the correction factor for individuals in the reference sample is omitted, i.e.,

𝑤𝐿𝑅
𝑖 =

{

1 𝑖 ∈ 𝑠𝑣
𝑑𝑟𝑖 𝑖 ∈ 𝑠𝑟

, (11)

the function would be equal to

𝑙(𝝀) +
∑

𝑖∈𝑠𝑣

𝑙𝑜𝑔
(

1 − 𝜋𝑣
𝑖
)

If the sampling fraction of the nonprobability sample is sufficiently small (𝑛𝑣∕𝑁 → 0), the above function is approximately equal
o 𝑙(𝝀) as the additional term converges to zero. Therefore, this approach could be used as an approximation for the pseudo-log-
ikelihood function, as noted in [6,18]. Nevertheless, the original one is preferable as it uses the equations developed in [5], thus
nsuring consistent estimators for 𝜆 are obtained, while the modified version may not reach exactly the same solution (although it
ill be very close if 𝑛𝑣∕𝑁 is sufficiently small).

.3. Tree-based inverse propensity weighting

An alternative to estimate propensities using decision trees was developed in [19], in an approach that also takes into account
ampling or calibration weights from 𝑠𝑟. This method obtains a prediction using decision trees, which can be defined as a set of
ules organised in a hierarchical structure, starting from the whole dataset and ending in a smaller subset of individuals who are
iven a prediction according to the rule applicable.

The Tree-based Inverse Propensity Weighting (TrIPW) algorithm fits a decision tree, using a modification of the Classification
nd Regression Tree (CART) algorithm, on individuals from 𝑠𝑣 using the data from 𝑠𝑟 in an auxiliary way to predict the value of

he participation indicator 𝑅, such that any individual 𝑖 in the population, and more precisely in the nonprobability sample, can be
ssigned to a terminal node, which could be seen as a population stratum. The propensities are obtained by dividing the number
f 𝑠𝑣 members classified in a node by the projected population that would fit on that node (estimated from the sum of the design
eights of the probability sample members that have been assigned to that node).

. Weighted machine learning algorithms for propensity estimation

In several contexts, especially those that involve machine learning (ML) classification algorithms, the combination of the
robability and the nonprobability sample can lead to class imbalance problems if any of the samples is significantly larger than the
ther one. This could easily be the case if a nonprobability large dataset is being used, and it is particularly troublesome in ML as
any algorithms assume that the distribution of the target variable is uniform across all classes. Class imbalance is usually tackled in
L contexts by creating artificial individuals or by randomly removing some individuals from the dataset. The rationale behind these
ethods is that many ML algorithms typically used in prediction do not allow the user to assign weights to the individuals in the

raining samples. However, this gap is closing with the development of weighted versions of some of the most popular algorithms.
If the model allows the specification of weights for individuals, one way to tackle class imbalance is to train weighted models

sing unitary weights for individuals in the nonprobability sample, and the quotient between the two sample sizes for individuals
f the probability sample, making the combination of samples completely balanced.

𝑤𝑚𝐵𝐴𝐿
𝑖 =

{

1 𝑖 ∈ 𝑠𝑣
𝑛𝑣
𝑛𝑟

𝑖 ∈ 𝑠𝑟
(12)

However, the aforementioned methods are only focused on balancing the sample to fulfil the requirements of uniform distribution
imposed by the ML algorithms; they do not take into account the sampling design of the probability sample. In the best case scenario,
they would only be able to inflate the estimations to the level of the pooled sample (𝑠𝑣 ∪ 𝑠𝑟), which is the same issue acknowledged
782
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current state-of-art. These alternatives use the design weights of the probability reference sample to better represent the structure of
the target population in the optimisation procedures, instead of just balancing the pooled sample, thus obtaining consistent estimates
of the propensities by the same principle developed in [5] and explained in Section 2.2. These design weights can be incorporated
using implementations of ML algorithms that allow the use of weights; these implementations normally give more or less importance
to the residuals of the model depending on the weight of the individuals, but when no optimisation is performed (for example, with
bagging algorithms such as Random Forests) the weights are used in resampling to give larger or smaller selection probabilities to
each individual, which can be seen as an attempt to reproduce the behaviour of the complete population. In both cases, as long as
the design weights are correctly specified, the results should be similar to those that would be obtained if the entire population was
used in the modelling step, which is the desirable case. These properties are further explained in the following subsections.

3.1. Random forests

The Random Forests [20] technique is based on combining of multiple decision trees for prediction in order to reduce overfitting.
n the case of propensity estimation (binary classification problem), the prediction in each case is carried out by averaging the
umber of times that an individual is classified as belonging to the nonprobability sample (that is, 𝑅∗ = 1) through a set of 𝑚 trees.

For each tree, a bootstrapped simple random sample with replacement (SRSWR) of individuals from the input dataset is selected,
𝑠𝑗 with size 𝑛𝑗 , 𝑗 = 1,… , 𝑚, and when fitting the tree the algorithm considers only a randomly selected subset (of fixed size) of
predictors drawn from the whole set of predictors available. The use of partial information for each tree is why they are known as
weak classifiers.

A formula for the propensity can then be considered, following notation from [10]:

�̂�𝑣
𝑖 =

∑𝑚
𝑗=1 𝜙𝑗 (𝐱𝑖)

𝑚
, 𝑖 ∈ 𝑠𝑣 ∪ 𝑠𝑟, 𝜙𝑗 (𝐱𝑖) =

{

1 𝐱𝑖 ∈ 1
𝑗

0 𝐱𝑖 ∈ 0
𝑗

, (13)

where 1
𝑗 and 0

𝑗 represent the set of terminal nodes of the 𝑗th decision tree, 𝜙𝑗 , where individuals from the nonprobability sample
are majority and minority, respectively.

A more interesting approach developed in [21] considers the proportion of successes (in our case, individuals in the nonproba-
bility sample) observed in the terminal nodes of each tree, instead of taking binary values depending on the majority/minority of
successes:

�̂�𝑣
𝑖 =

∑𝑚
𝑗=1 𝜙𝑗 (𝐱𝑖)

𝑚
, 𝑖 ∈ 𝑠𝑣 ∪ 𝑠𝑟, 𝜙𝑗 (𝐱𝑖) =

#
(

𝑙𝑗 (𝑖) ∩ 𝑠𝑣
)

#𝑙𝑗 (𝑖)
, (14)

where 𝑙𝑗 (𝑖) is the terminal node where the 𝑖th individual falls according to the 𝑗th tree of the forest.
If the unweighted pooled sample is used to fit the Random Forest, the probability of an individual in 𝑠𝑗 being in 𝑠𝑣 will be

𝑃 (𝑠𝑗𝑖 ∈ 𝑠𝑣) =
𝑛𝑣

𝑛𝑣 + 𝑛𝑟
, 𝑖 = 1,… , 𝑛𝑗

However, if the complete population 𝑈 is used to fit the Random Forest, the probability will be

𝑃 (𝑠𝑗𝑖 ∈ 𝑠𝑣) =
𝑛𝑣

𝑛𝑣 +𝑁 − 𝑛𝑣
=

𝑛𝑣
𝑁

, 𝑖 = 1,… , 𝑛𝑗

The immediate consequence of this is that the probabilities when fitting the Random Forest using the unweighted pooled sample
ill be inflated to 𝑠𝑣∪𝑠𝑟 instead of 𝑈 , which is a similar issue to that pointed out by [9]. To tackle this issue, we propose drawing the

bootstrapped samples 𝑠𝑗 , 𝑗 = 1,… , 𝑚 using the weighted pooled sample according to the design weights of each individual, meaning
that the case weights of the Random Forest will be

𝑤𝑅𝐹
𝑖 =

{

1 𝑖 ∈ 𝑠𝑣
𝑑𝑟𝑖 −

𝑛𝑣
𝑛𝑟

𝑖 ∈ 𝑠𝑟
, 𝑖 ∈ 𝑠𝑣 ∪ 𝑠𝑟 (15)

After this adjustment, if we draw a bootstrapped unequal probability sample with replacement from 𝑠𝑣 ∪ 𝑠𝑟, with probabilities
proportional to 𝑤𝑅𝐹 , the probability of an individual in 𝑠𝑗 being in 𝑠𝑣 will be

𝑃 (𝑠𝑗𝑖 ∈ 𝑠𝑣) =
𝑛𝑣

𝑛𝑣 +
∑

𝑘∈𝑠𝑟

(

𝑑𝑟𝑘 −
𝑛𝑣
𝑛𝑟

) =
𝑛𝑣

𝑛𝑣 +
∑

𝑘∈𝑠𝑟 𝑑
𝑟
𝑘 − 𝑛𝑣

=

𝑛𝑣
𝑛𝑣 + �̂� − 𝑛𝑣

=
𝑛𝑣
�̂�

, 𝑖 = 1,… , 𝑛𝑗 . (16)

where �̂� is a consistent estimator for the population size obtained from the probability sample. The term 𝑛𝑣∕𝑛𝑟 in 𝑤𝑅𝐹 becomes
negligible as the sampling fraction 𝑛𝑣∕𝑁 decreases. Considering that 𝑠𝑟 is a probability sample, this form of weighting the
bootstrapped samples should provide similar trees to those obtained using the complete target population (instead of the pooled
783

sample), but most importantly, it should contribute to inflating the nonprobability sample propensities to the target population.



Mathematics and Computers in Simulation 225 (2024) 779–793R. Ferri-García et al.

a
M
b

i
l

G
a

H
o
f
(

I

A

3.2. Extreme gradient boosting

The Extreme Gradient Boosting (XGBoost) method [22] is a regression and classification algorithm which has gained some
cceptance in recent years, and is also used in the context of nonprobability samples [23]. It is based on the Gradient Boosting
achine (GBM) algorithm [24], and the prediction works in a similar way to that found with Random Forests, with the final values

eing derived from the set of predictors:

�̂�𝑣
𝑖 = 𝜙(𝐱𝑖) =

𝑚
∑

𝑗=1
𝑓𝑗 (𝐱𝑖), 𝑖 ∈ 𝑠𝑣 ∪ 𝑠𝑟, (17)

where 𝑓𝑗 (𝐱𝑖) represents the score obtained in the 𝑚th tree of the set. This score should not be interpreted as a prediction given from
a decision tree, but as a weighted score, 𝜔𝑗 (𝐱𝑖), that also reflects the importance of each tree. In GBM, we consider the following
loss function:

(𝜙) =
∑

𝑖∈𝑠𝑣∪𝑠𝑟

𝑙(�̂�𝑖, 𝑅𝑖) +
𝑚
∑

𝑗=1
𝛺(𝑓𝑗 ), 𝛺(𝑓 ) = 𝛾𝑇 + 𝜆1

2
‖𝜔‖2, (18)

where 𝑇 is the number of leaves in the tree 𝑓 , 𝛾 and 𝜆 are regularisation parameters that control over-fitting, and where 𝑙 is a
differentiable convex function which measures the difference between the predicted values, �̂�, and the real values, 𝑅. This objective
function is then minimised using iterative methods, such as the Gradient Boosting Tree. In this approach, the objective function of
the iteration 𝑡 can be expressed as

(𝑡) =
∑

𝑖∈𝑠𝑣∪𝑠𝑟

𝑙(𝑅𝑖, �̂�
𝑡−1
𝑖 + 𝑓𝑡(𝐱𝑖)) +𝛺(𝑓𝑡), (19)

where �̂�𝑡−1
𝑖 is the value predicted for individual 𝑖 in the iteration 𝑡−1. Further details on the optimisation procedure for this function

are given in [23]. The additional contribution of XGBoost over GBM is the inclusion of shrinkage, to limit the importance of each
tree in the iterative optimisation, and the use of strategies to find split points for candidate trees, among other techniques [22].

As in Random Forests, the use of the unweighted blended sample 𝑠𝑣 ∪ 𝑠𝑟 could result in predicted probabilities that might be
nflated to the size of the sample, instead of the population. If we were using the true model fitted with the whole population, the
oss function could be expressed as:

(𝜙) =
𝑁
∑

𝑖=1
𝑙(�̂�𝑖, 𝑅𝑖) +

𝑚
∑

𝑗=1
𝛺(𝑓𝑗 ), (20)

iven that propensity scoring is a binary classification problem for machine learning algorithms, the function 𝑙 is the binary loss,
s implemented in the XGBoost algorithm by [22]. This function must then be minimised:

𝑙(�̂�𝑖, 𝑅𝑖) = −
(

𝑅𝑖𝑙𝑜𝑔(�̂�𝑖) + (1 −𝑅𝑖)𝑙𝑜𝑔(1 − �̂�𝑖)
)

= 𝑅𝑖𝑙𝑜𝑔

(

1 − �̂�𝑖

�̂�𝑖

)

− 𝑙𝑜𝑔(1 − �̂�𝑖) (21)

Hence, Eq. (20) can be expressed as follows:

(𝜙) =
𝑁
∑

𝑖=1
𝑅𝑖𝑙𝑜𝑔

(

1 − �̂�𝑖

�̂�𝑖

)

− 𝑙𝑜𝑔(1 − �̂�𝑖) +
𝑚
∑

𝑗=1
𝛺(𝑓𝑗 )

=
∑

𝑖∈𝑠𝑣

𝑙𝑜𝑔

(

1 − �̂�𝑖

�̂�𝑖

)

−
𝑁
∑

𝑖=1
𝑙𝑜𝑔(1 − �̂�𝑖) +

𝑚
∑

𝑗=1
𝛺(𝑓𝑗 ).

(22)

This setup is very similar to the pseudo-log-likelihood optimisation presented in [5]. As 𝑈−(𝑠𝑣∪𝑠𝑟) remains unobserved, an estimator
is needed to compute an unbiased loss function. To do so, we could use the following Horvitz–Thompson estimator:

∗(𝜙) =
∑

𝑖∈𝑠𝑣

𝑙𝑜𝑔

(

1 − �̂�𝑖

�̂�𝑖

)

−
∑

𝑖∈𝑠𝑟

𝑑𝑟𝑖 𝑙𝑜𝑔(1 − �̂�𝑖) +
𝑚
∑

𝑗=1
𝛺(𝑓𝑗 ). (23)

owever, it might not be possible to apply this solution because it requires the design of a new loss function for XGBoost (instead
f using the one already implemented), which could be a complex task. If this exact solution cannot be adopted, we could apply the
ollowing approximation based on weighting the algorithm, an approach that is already implemented in some versions of XGBoost
such as the xgboost library in R [25]), which is approximately equal to the previous equation:

∗∗(𝜙) =
∑

𝑖∈𝑠𝑟∪𝑠𝑣

𝑤𝑋𝐺𝐵
𝑖 𝑙(�̂�𝑖, 𝑅𝑖) +

𝑚
∑

𝑗=1
𝛺(𝑓𝑗 ), 𝑤𝑋𝐺𝐵

𝑖 =
{

1 𝑖 ∈ 𝑠𝑣
𝑑𝑟𝑖 𝑖 ∈ 𝑠𝑟

(24)

f 𝑙 is the binary loss function, the following equality holds:

∗∗(𝜙) = ∗(𝜙) +
∑

𝑖∈𝑠𝑣

𝑙𝑜𝑔(1 − �̂�𝑖) (25)
784

s noted in Section 2.2, both objective functions will be approximately equal if the sampling fraction of 𝑠𝑣 is sufficiently small.
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4. Simulations

Two simulations were conducted to evaluate the behaviour of these weighting procedures. In each simulation, the population
ean of the target variables was estimated using PSA with logistic regression, Random Forests, XGBoost, and TrIPW to predict
ropensities in three different ways: without using the design weights of the probability sample (unweighted models), using the
alancing weights 𝑤𝑚𝐵𝐴𝐿 described in Eq. (12), and using the design weights as described for each method (𝑤𝐿𝑅, 𝑤𝑅𝐹 and 𝑤𝑋𝐺𝐵)

in the previous section. For TrIPW, only one case was considered (using the design weights) given that the method is not intended to
work in the other two cases. The propensities were transformed into weights using all of the four methods described in Section 2.2.
For each simulation, the relative bias (𝑅𝐵) and efficiency ratio (weighted to unweighted estimation) of each estimator was obtained:

𝑅𝐵 =
|

∑𝐵
𝑖=1 �̂�

𝑘
𝑖 ∕𝐵 − 𝑌 |

|

∑𝐵
𝑖=1 �̂�

𝑈𝑛𝑤
𝑖 ∕𝐵 − 𝑌 |

𝐸𝑓𝑓. 𝑟𝑎𝑡𝑖𝑜 =
∑𝐵

𝑖=1(�̂�
𝑘
𝑖 − 𝑌 )2

∑𝐵
𝑖=1(�̂�

𝑈𝑛𝑤
𝑖 − 𝑌 )2

, (26)

here 𝐵 is the number of iterations of the simulation, �̂�
𝑘
𝑖 is the estimate of the mean of 𝑦 provided by method 𝑘 in the 𝑖th iteration,

and �̂�
𝑈𝑛𝑤
𝑖 is the estimate of the mean of 𝑦 provided by the unweighted estimator (�̂�

𝑈𝑛𝑤
=
∑

𝑖∈𝑠𝑣 𝑦𝑖∕𝑛𝑣) in the 𝑖th iteration.

4.1. Synthetic data simulation

The first simulation used a population of size 𝑁 = 500, 000 created from synthetic data, with one target variable (𝑦) and ten
predictors (𝑥1, 𝑥2,… , 𝑥10), with the following distributions:

𝑥1, 𝑥2, 𝑥4 ∼ 𝑁(10, 2) 𝑥3, 𝑥5, 𝑥9 ∼ 𝐵(0.5) 𝑥10 ∼ 𝑁(0, 1) (27)

𝑥6𝑖 ∼ 𝑁(10 + 2 ⋅ 𝑥1𝑖 + 𝑥3𝑖, 2) 𝑥7 ∼ 𝐵(0.5 + 0.2 ⋅ 𝑥1𝑖 + 0.2 ⋅ 𝑥2𝑖) 𝑥8 ∼ 𝑁(10 + 𝑥3𝑖, 2) (28)

𝑦𝑖 ∼ 𝑁(10 + 2(𝑥1𝑖 + 𝑥2𝑖 + 𝑥4𝑖) + 0.2(𝑥3𝑖 + 𝑥5𝑖), 1) (29)

with 𝑖 = 1, 2,… , 𝑁 . The ten predictors (𝑥1, 𝑥2,… , 𝑥10) were observed in both the probability and the nonprobability samples to be
drawn in each simulation run. These predictors were designed to represent a situation where some of the variables are related to the
variable of interest and the selection mechanism (meaning that they should be included in the propensity estimation model) while
others are unrelated (and therefore should be removed from the model). At the same time there is some level of multicollinearity
among predictors. Accordingly, a model that incorporates all ten predictors, which is a common choice in propensity estimation
(in order to use all the auxiliary variables available), is not the correct choice, and therefore variable selection must be performed.
Thus, ML algorithms are employed to internally select appropriate variables according to their importance.

In the present case, the simulation was conducted with 1000 iterations, in each of which a nonprobability sample was drawn
with an unequal probability sampling using the systematic method [26], implemented in the UPsystematic function from the sampling
package in the statistical software R [27], considering inclusion probabilities 𝜋𝑣. The probabilities were calculated in the first step
as follows:

𝑙𝑛
(

𝜋𝑣𝑖
1 − 𝜋𝑣𝑖

)

= −10 + 2
9
𝑦𝑖 + 𝑥1𝑖 + 𝑥2𝑖 + 0.1 ⋅ 𝑥3𝑖 + 𝑥4𝑖 + 0.1 ⋅ 𝑥5𝑖, 𝑖 ∈ 𝑈 (30)

In the second step, each probability was corrected so that the sum of probabilities equalled 𝑛𝑣, multiplying each probability by
𝑛𝑣∕

∑𝑁
𝑖=1 𝜋

𝑘
𝑣𝑖, 𝑘 = 1, 2, 3. This correction was made in order to have fixed size samples, as in that case the sum of all inclusion

probabilities must be 𝑛𝑣. The sizes 𝑛𝑣 = 500 and 𝑛𝑣 = 5, 000 were established for the nonprobability sample.
Three probability samples of size 𝑛𝑟 = 500 were also drawn in each iteration, following three different sampling schemes with

sampling weights 𝑑𝑟1, 𝑑𝑟2 and 𝑑𝑟3.

• The first sampling scheme was simple random sampling without replacement (SRSWOR) from the whole population, meaning
that 𝑑𝑟1𝑖 = 𝑁

𝑛𝑟
= 500000

500 = 1000, 𝑖 ∈ 𝑠𝑟 and 𝐷𝑒𝑓𝑓 = 1 for this design.

• The second sampling scheme was a stratified sampling considering three strata 𝑈1, 𝑈2, 𝑈3 that depended on the value of three
predictors: 𝑈1 = {𝑖 ∈ 𝑈∕𝑥1𝑖+𝑥2𝑖+𝑥4𝑖 = 3}, 𝑈2 = {𝑖 ∈ 𝑈∕𝑥1𝑖+𝑥2𝑖+𝑥4𝑖 = 0}, 𝑈3 = {𝑖 ∈ 𝑈∕0 < 𝑥1𝑖+𝑥2𝑖+𝑥4𝑖 < 3}. The sample was
allocated using Neyman’s minimum variance method. The design effect for the estimation of the mean of 𝑦 for this sampling
design is 𝐷𝑒𝑓𝑓 = 0.479, meaning that this design is more efficient than SRSWOR.

• The third sampling scheme was another stratified sampling considering three strata 𝑈4, 𝑈5, 𝑈6 that depended on the value of
two predictors: 𝑈4 = {𝑖 ∈ 𝑈∕𝑥9𝑖 = 0 ∩ 𝑥10𝑖 < 0}, 𝑈5 = {𝑖 ∈ 𝑈∕𝑥9𝑖 = 0 ∩ 𝑥10𝑖 ≥ 0}, 𝑈6 = {𝑖 ∈ 𝑈∕𝑥9𝑖 = 1}. The allocation of the
sample was arbitrary, with 𝑛4 = 𝑛5 = 200 and 𝑛6 = 100. The design effect for this sampling design is 𝐷𝑒𝑓𝑓 = 1.568, meaning
that this design is less efficient than SRSWOR.

For each design of 𝑠𝑟, 𝑌 =
∑𝑁

𝑖=1 𝑦𝑖∕𝑁 was estimated using PSA as described at the beginning of Section 4, with all ten predictors as
input variables of the models. This simulation has some similarities to a unit nonresponse study, except that in the unit nonresponse
case a sampling design is available and the propensities are defined only for the sample, while in this case there is no sampling
design and the propensities are defined for the whole population, as they are intended to replace the (nonexistent) sampling design.
785
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Table 1
Summary table of the results of relative bias in both simulations provided by each combination of algorithms and weighting strategy
for each one of them, across all scenarios considered in both simulations and in each one of them separately. Mean = mean relative
bias across all scenarios. Median = median relative bias across all scenarios. Best = number of times (scenarios) each combination of
algorithm and weighting strategy produced the smallest relative bias, or produced a relative bias less than 10% greater than the minimum
relative bias for the same scenario.
Method Both simulations Synthetic data Real-world data

Mean Median Best Mean Median Best Mean Median Best

Logistic regression (unweighted) 0.78 0.64 1 0.49 0.51 1 0.92 0.71 0
Logistic regression (balancing weights) 0.72 0.59 1 0.43 0.51 1 0.84 0.66 0
Logistic regression (design weights) 0.58 0.54 2 0.39 0.36 0 0.68 0.71 2

TrIPW 0.66 0.53 2 0.47 0.37 0 0.76 0.55 2

Random Forest (unweighted) 0.83 0.81 1 0.59 0.74 1 0.95 0.81 0
Random Forest (balancing weights) 0.76 0.70 3 0.54 0.62 1 0.84 0.70 2
Random Forest (design weights) 0.56 0.57 2 0.68 0.77 0 0.50 0.51 2

XGBoost (unweighted) 0.78 0.80 2 0.58 0.67 1 0.87 0.80 1
XGBoost (balancing weights) 0.71 0.68 0 0.52 0.55 0 0.78 0.68 0
XGBoost (design weights) 0.39 0.30 5 0.18 0.17 1 0.50 0.62 4

4.2. Real-world data simulation

The second simulation was performed using microdata from the 2012 edition of the Spanish Life Conditions Survey. This
imulation had 1000 iterations; in each one, a reference and a convenience sample were extracted from a pseudopopulation of
= 1, 000, 000 after bootstrapping the original filtered dataset of 𝑛 = 28,210 individuals (𝑛 = 27,949 after filtering individuals with

any missing data in any variable). Three different sampling designs were considered for the reference sample, with size 𝑛𝑟 = 2, 000:
a SRSWOR design, a stratified cluster sampling with Autonomous Communities as strata and households as clusters, and an unequal
probability sampling with probabilities proportional to income. This approach enabled us to evaluate the behaviour of the estimator
under complex survey designs. The convenience samples were drawn following an unequal probability sampling scheme, using the
generalisation of the successive sampling without replacement implemented in the sample function in the statistical software R, with
sizes 𝑛𝑣 = 2, 000 and 𝑛𝑣 = 6, 000 and probabilities

𝑙𝑛
(

𝜋𝑣𝑖
1−𝜋𝑣𝑖

)

∝ 2 ⋅ PC − 0.2 ⋅ Male − 0.01 ⋅ Age (years)−
0.2 ⋅ Medium Density − 0.4 ⋅ Low Density

, (31)

ith 𝑖 = 1, 2,… , 𝑁 . The variable PC represents having a computer at home (or not), while Medium Density and Low Density refer
o the type of area the individual lives in (medium or low population density respectively). Age (in years) and male gender (or not)
epresent the age and gender variables. This formula is intended to capture the behaviour of respondents in real nonprobability
urveys, although we do not expect these variables to be strongly related to the target variables, and so what is represented here
s likely to be a Missing At Random (MAR) situation. The population parameters calculated were the mean home expenses and
he proportion of households with a car, both of which are related to purchasing power and hence income. Again, this simulation
as some similarities to a unit nonresponse study but with the differences highlighted in the previous section. The covariates used
n PSA were five variables related to economic deprivation, four related to material deprivation and nineteen related to working
onditions (including twelve reflecting the employment status of the individual in each month of the previous year).

. Results

Table A.1 presents the results obtained for the estimation of 𝑌 in the synthetic data simulation with sample sizes 𝑛𝑣 = 500 and
𝑛𝑣 = 5, 000. For the real-world data simulation, the results for the estimation of the population proportion of households without a
car and the mean home expenses are shown in Tables A.2 and A.3 respectively.

Given the vast amount of data produced by the simulation, this section includes several tables and figures to summarise and
larify these results. Tables 1 and 2 present the relative bias and efficiency ratio results, respectively, jointly for the two simulations
nd also for each one separately, by means of their measures of central tendency (mean and median) and the number of times
ach method (algorithm and weighting strategy) produced the best result for a given scenario (considering dataset, size of 𝑛𝑣 and

sampling design of 𝑠𝑟) or was less than 10% greater than the best result.
The summary tables show that in general the proposed adjustments with Random Forest and XGBoost worked very well,

roducing mean and median relative biases and efficiency ratios below 1 (which means that they performed better than the
nweighted estimator), especially when these algorithms were weighted using the approach that involves design weights (𝑤𝐿𝑅,

𝑤𝑅𝐹 and 𝑤𝑋𝐺𝐵), although the performance was fairly heterogeneous across the simulations. For instance, in the synthetic data
simulation none of the methods consistently provided the best result in terms of bias (although by far the smallest mean was
provided by XGBoost with design weights), but the XGBoost and Random Forests methods provided the best efficiency ratio result
in most of the situations considered (4 out of 6 scenarios, 2 for each algorithm), with a mean and median efficiency ratio of almost 0
786

in the case of XGBoost. In the real-world data simulation too, no single approach was always best in terms of relative bias (although
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Table 2
Summary table of the results of efficiency ratio in both simulations provided by each combination of algorithms and weighting strategy
for each one of them, across all scenarios considered in both simulations and in each one of them separately. Mean = mean efficiency
ratio across all scenarios. Median = median efficiency ratio across all scenarios. Best = number of times (scenarios) each combination
of algorithm and weighting strategy produced the smallest efficiency ratio, or produced an efficiency ratio less than 10% greater than
the minimum efficiency ratio for the same scenario.
Method Both simulations Synthetic data Real-world data

Mean Median Best Mean Median Best Mean Median Best

Logistic regression (unweighted) 2.07 1.12 1 0.34 0.26 1 2.94 1.52 0
Logistic regression (balancing weights) 1.47 0.93 1 0.24 0.26 1 1.94 1.16 0
Logistic regression (design weights) 0.74 0.56 1 0.17 0.14 0 1.03 0.78 1

TrIPW 0.93 0.33 2 0.26 0.14 0 1.27 0.34 2

Random Forest (unweighted) 1.02 0.72 0 0.48 0.57 0 1.29 0.72 0
Random Forest (balancing weights) 0.91 0.56 2 0.42 0.42 1 1.09 0.56 1
Random Forest (design weights) 0.44 0.36 7 0.56 0.63 1 0.39 0.35 6

XGBoost (unweighted) 0.92 0.66 3 0.46 0.48 0 1.15 0.66 3
XGBoost (balancing weights) 0.83 0.50 1 0.38 0.38 0 1.00 0.50 1
XGBoost (design weights) 0.28 0.20 3 0.06 0.04 2 0.39 0.40 1

XGBoost with design weights provided the best performance in 4 out of 12 scenarios). In terms of efficiency, however, Random
Forest with design weights provided the best results in 6 of the 12 scenarios considered, although XGBoost also performed well,
especially when it was not weighted. The differences between these modelling approaches as regards their performance might be
related to the characteristics of the two datasets: the synthetic dataset contains mainly linear relationships with a smaller number
of covariates, while the real-world dataset may contain more non-linear ones and a larger number of covariates (many of them
categorical), a context in which Random Forests might be more suitable.

The results, however, can also vary depending on the size of the nonprobability sample, 𝑛𝑣, and the type of transformation applied
in calculating the final weights of the estimators (𝑤𝐼𝑃𝑊 , 𝑤𝐼𝑃𝑊𝑀 , 𝑤𝑆𝑡𝑟𝑎𝑡1, 𝑤𝑆𝑡𝑟𝑎𝑡2). Fig. 1 shows the boxplots of the efficiency ratio
results for each predictive algorithm and weighting strategy depending, on the one hand, on the simulation and the nonprobability
sample size, and on the other hand, on the transformation used for the final weights. In both simulations, the improvement provided
by adjustment methods is slightly greater when the sample sizes are not balanced, perhaps because the unbalanced cases considered
are those where the nonprobability sample size was larger, leading to smaller sampling errors. In addition, the variability of the
results is noticeably smaller when the algorithms are weighted in the training step with design weights instead of balancing weights
or no weights at all, which generate wider boxes. This could be a consequence of elevating the estimates to the actual population
size, which might swamp the effect of any other choices. Although the performance of each transformation for weighting seems to
be similar across the four approaches, there is an important divide: while 𝑤𝐼𝑃𝑊 and 𝑤𝑆𝑡𝑟𝑎𝑡2 benefit from using design weights in the
training of the algorithms, the performance of 𝑤𝐼𝑃𝑊𝑀 and 𝑤𝑆𝑡𝑟𝑎𝑡1 does not differ across weighting strategies in the training step,
xcept for providing a larger or smaller variability in some situations. The former two methods rely more strongly on the results of
he propensity estimation step, while the latter two take into account other elements (such as design weights via a correction factor
r the sum of the values of the variable of interest in the nonprobability sample).

For a fairer comparison of weighting and transformation approaches (as the boxplots show the aggregated results), we conducted
n analysis based on the raw differences in relative bias and efficiency ratio for the results of a given method applied in a given
imulation and dataset when the weighting strategy or the type of transformation was changed. We then considered how often
ach approach was the best, versus all other possibilities, and how often all approaches produced approximately the same results
less than 10% of difference among all of them). By doing so, we directly compared each approach with its counterfactual. In this
espect, Table Table 3 shows that weighting the algorithms using design weights of the probability sample (𝑤𝐿𝑅, 𝑤𝑅𝐹 and 𝑤𝑋𝐺𝐵

approaches) clearly produced the best results if the propensities were transformed into weights using the IPW approach, 𝑤𝐼𝑃𝑊 ,
or with the propensity stratification approach using the mean propensity of each stratum, 𝑤𝑆𝑡𝑟𝑎𝑡2. In the other two choices, using
design weights also produced the best results on some occasions (especially with the modified IPW approach, 𝑤𝐼𝑃𝑊𝑀 ), but on many
other occasions it was better to use balancing weights or no weighting at all; the latter approach would be the best (in terms of
efficiency) when taking the propensity stratification approach with a correction factor, 𝑤𝑆𝑡𝑟𝑎𝑡1. In addition, regarding which type
f transformation would be best for propensities, Table Table 4 shows that 𝑤𝐼𝑃𝑊𝑀 would be the best approach in terms of bias
hen using logistic regression or the TrIPW estimator, while in terms of efficiency ratio, it would be better to use 𝑤𝑆𝑡𝑟𝑎𝑡2 for logistic

egression. However, with Random Forests or XGBoost, the best choice on the majority of occasions, both in terms of relative bias
nd efficiency ratio, would be 𝑤𝑆𝑡𝑟𝑎𝑡1. This might seem contradictory given the results presented in Tables Table 1 and Table 2,
ccording to which the best results for both algorithms are obtained when they are trained with design weights, while according
o Table Table 3 𝑤𝑆𝑡𝑟𝑎𝑡1 works better if the algorithms are not weighted; the reason for this is that on most occasions where 𝑤𝑆𝑡𝑟𝑎𝑡1

s a better option for these algorithms, they are used with no weighting or with balancing weights, but when design weights are
sed in training, the differences are significantly smaller. This outcome is to a certain extent apparent in Fig. 1 and is presented in
787

reater detail in the tables in Appendix.
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Fig. 1. Boxplots of the efficiency ratio results for each adjustment method (algorithm and weighting strategy) depending on the dataset and nonprobability
sample size, and depending on the transformation applied to obtain the final weights of the estimator.

6. Discussion and conclusions

Various studies have been conducted to consider the use of design weights in propensity modelling for nonprobability survey
estimation, and several estimators, based on different methodologies, have been proposed. However, in order to introduce new
estimation methods for propensities it is necessary to determine the resulting properties when design weights are included or
excluded. The present work is an attempt to fill this knowledge gap, both theoretically and empirically.

The results obtained from our simulations show, as in many related experiments, that there is no one-size-fits-all method in
estimation. Nevertheless, some significant patterns can be observed. For example, the estimator proposed by [2], which includes
a correction factor for design weights, based on the stratification of propensities without requiring the use of weighted predictive
models in the propensity estimation step, does a good job in many of the simulations presented here, producing results that are close
in precision to those of the estimators that instead include design weights in the modelling step, which is the ideal case [5]. The
performance of this estimator is particularly good when XGBoost and Random Forest (trained with no weights or with balancing
788

weights) are used for propensity estimation. These methods tend to give propensity estimates that are very close to 0 or 1 [28],
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Table 3
Percentage of times each weighting strategy (in the algorithm training step) was the best versus all other possibilities, in terms of relative
bias and efficiency ratio, depending on the transformation applied to obtain the final weights. Design w. = weighting with design weights.
Bal. w. = weighting with balancing weights. No weight. = no weighting. No diff. = no difference (less than 10% of difference between
all three possibilities).
Transformation Best results in relative bias Best results in efficiency ratio

and sample size Design w. Bal. w. No weight. No diff. Design w. Bal. w. No weight. No diff.

Balanced (𝑛𝑟 = 𝑛𝑣)
𝑤𝐼𝑃𝑊 transformation 57.1% 9.5% 33.3% 76.2% 14.3% 9.5%
𝑤𝐼𝑃𝑊𝑀 transformation 47.6% 52.4% 0% 57.1% 42.9% 0%
𝑤𝑆𝑡𝑟𝑎𝑡1 transformation 38.1% 42.9% 19% 28.6% 61.9% 9.5%
𝑤𝑆𝑡𝑟𝑎𝑡2 transformation 71.4% 0% 28.6% 81% 19% 0%
Unbalanced (𝑛𝑟 ≠ 𝑛𝑣)
𝑤𝐼𝑃𝑊 transformation 78.8% 9.1% 6.1% 6.1% 97% 0% 0% 3%
𝑤𝐼𝑃𝑊𝑀 transformation 45.5% 15.2% 39.4% 0% 63.6% 9.1% 27.3% 0%
𝑤𝑆𝑡𝑟𝑎𝑡1 transformation 36.4% 21.2% 33.3% 9.1% 33.3% 27.3% 36.4% 3%
𝑤𝑆𝑡𝑟𝑎𝑡2 transformation 90.9% 6.1% 0% 3% 97% 0% 3% 0%

Table 4
Percentage of times each transformation procedure for obtaining the final weights (𝑤𝐼𝑃𝑊 , 𝑤𝐼𝑃𝑊𝑀 , 𝑤𝑆𝑡𝑟𝑎𝑡1, 𝑤𝑆𝑡𝑟𝑎𝑡2) was the best versus
all other possibilities, in terms of relative bias and efficiency ratio, depending on the algorithm used for propensity estimation. No diff.
= no difference (less than 10% of difference between all four possibilities).
Algorithm Best results in relative bias Best results in efficiency ratio

𝑤𝐼𝑃𝑊 𝑤𝐼𝑃𝑊𝑀 𝑤𝑆𝑡𝑟𝑎𝑡1 𝑤𝑆𝑡𝑟𝑎𝑡2 No diff. 𝑤𝐼𝑃𝑊 𝑤𝐼𝑃𝑊𝑀 𝑤𝑆𝑡𝑟𝑎𝑡1 𝑤𝑆𝑡𝑟𝑎𝑡2 No diff.

Log. regr. 0% 55.3% 19.1% 25.5% 0% 0% 27.7% 27.7% 42.6% 2.1%
TrIPW 0% 50% 22.2% 22.2% 5.6% 0% 55.6% 22.2% 22.2% 0%
Random F. 0% 21.3% 55.3% 12.8% 10.6% 2.1% 23.4% 55.3% 12.8% 6.4%
XGBoost 6.4% 8.5% 68.1% 17% 0% 6.4% 17% 63.8% 12.8% 0%

meaning that this estimator could be very suitable for the case in question. The estimator incorporates a correction factor, i.e. the
ratio of representation of a given stratum in the population and the nonprobability sample (essentially, this is what the estimator
reflects). The propensities are used to divide the blended sample into strata, but are not directly used to calculate the final weights,
meaning that disproportionately small or large propensities will not produce ill effects in this respect. On the other hand, when
Random Forests and XGBoost were trained using design weights, the advantage of this estimator in the simulations disappeared
(although it did not perform worse than the other approaches for transforming propensities). This fall-off might occur because using
design weights both in the modelling and in the transformation could lead to overfitting (as the same information is used twice).

Furthermore, the present study provides empirical proof of the consistency of estimators that include design weights in the
odelling step, which was theoretically demonstrated by [5] for the case in which logistic regression is used. In all of the scenarios

onsidered for the simulations, weighted logistic regression produced better results than the unweighted version, and it was better to
se design weights rather than our proposal of balancing weights. This improvement was especially clear with the inverse probability
eighting transformation for propensities [17] was used, which was also the transformation considered in [5]. The simulations also

how that this property holds in the XGBoost and Random Forest-based predictive algorithms we discuss, both of which outperform
ther approaches based on leveraging design weights in the modelling step, such as weighted logistic regression and the Tree-based
nverse Probability Weighted estimator.

In view of the results obtained, we recommend the use of the proposed modelling techniques in real applications, transforming
ropensities into weights using approaches that involve their stratification, namely those proposed by [2,9], although this choice
s less relevant if design weights are used in training. In recent years, various machine learning algorithms have been proposed for
ropensity estimation in the nonprobability sampling estimation problem [10–12,23], but they have been applied without taking
nto account the sampling design of the probability sample. To the best of our knowledge, the present study is the first to specifically
ddress this question and to compare its outcomes with those of the unweighted case, although some authors have proposed solutions
hich consider the impact of the sampling design [5,9,19]. These latter investigations have been taken into consideration in our

tudy. Given the results obtained in our simulations and the theoretical development presented, we believe future investigations
f the use of ML algorithms for propensity estimation should also contemplate including the probability sampling design in the
odelling step, through the design weights of the probability sample.

The present study has certain limitations that should be acknowledged. Firstly, the range of methods tested was not as large
s we could have wished; for example, some promising approaches such as Kernel Weighting [3] could also have been included.
oreover, the simulations only concerned two pseudopopulations with very specific characteristics and may not reflect all types

f behaviour that could be present in real applications. Finally, the question of estimating the variance is not addressed here; this
ssue is usually tackled with jackknife or bootstrapping techniques, but a theoretical framework could be developed for the methods
ntroduced in this work. Further studies of this matter should seek to include a wider range of techniques and populations, and also
ocus on the theoretical properties of the uncertainty presented by the estimators.
789
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I

Table A.1
Results from the simulation with synthetic data for the estimation of the mean of 𝑦. The columns represent the sampling design of the probability sample;
SRS = simple random sampling without replacement. Eff. = efficient stratified sampling. Ineff. = inefficient stratified sampling.
Algorithm Weights in Weighting 𝑛𝑣 = 500 𝑛𝑣 = 5, 000

training approach Relative bias Efficiency ratio Relative bias Efficiency ratio

SRS Eff. Ineff. SRS Eff. Ineff. SRS Eff. Ineff. SRS Eff. Ineff.

LR

No

𝑤𝐼𝑃𝑊 0.59 0.51 0.59 0.35 0.26 0.35 0.92 0.91 0.92 0.85 0.84 0.85
𝑤𝐼𝑃𝑊𝑀 0.17 0.03 0.17 0.04 0.01 0.04 0.12 0.07 0.13 0.02 0.01 0.02
𝑤𝑆𝑡𝑟𝑎𝑡1 0.22 0.18 0.44 0.05 0.04 0.19 0.29 0.25 0.51 0.09 0.06 0.26
𝑤𝑆𝑡𝑟𝑎𝑡2 0.62 0.58 0.63 0.39 0.34 0.39 0.93 0.93 0.94 0.87 0.87 0.88

Balancing

𝑤𝐼𝑃𝑊 0.58 0.50 0.58 0.34 0.25 0.34
𝑤𝐼𝑃𝑊𝑀 0.15 0.02 0.16 0.03 0.00 0.03
𝑤𝑆𝑡𝑟𝑎𝑡1 0.30 0.25 0.52 0.09 0.06 0.28
𝑤𝑆𝑡𝑟𝑎𝑡2 0.69 0.66 0.72 0.48 0.43 0.52

Design

𝑤𝐼𝑃𝑊 0.53 0.53 0.53 0.29 0.29 0.28 0.28 0.27 0.27 0.08 0.08 0.08
𝑤𝐼𝑃𝑊𝑀 0.53 0.53 0.53 0.29 0.28 0.28 0.27 0.27 0.26 0.07 0.07 0.07
𝑤𝑆𝑡𝑟𝑎𝑡1 0.23 0.22 0.25 0.06 0.05 0.07 0.31 0.27 0.32 0.10 0.07 0.10
𝑤𝑆𝑡𝑟𝑎𝑡2 0.55 0.55 0.54 0.30 0.30 0.30 0.41 0.42 0.41 0.17 0.17 0.17

TrIPW Design

𝑤𝐼𝑃𝑊 0.67 0.71 0.67 0.45 0.51 0.46 0.33 0.38 0.35 0.11 0.15 0.12
𝑤𝐼𝑃𝑊𝑀 0.67 0.71 0.67 0.45 0.51 0.46 0.33 0.38 0.34 0.11 0.14 0.12
𝑤𝑆𝑡𝑟𝑎𝑡1 0.30 0.32 0.44 0.10 0.11 0.20 0.35 0.37 0.32 0.13 0.14 0.11
𝑤𝑆𝑡𝑟𝑎𝑡2 0.72 0.75 0.65 0.52 0.57 0.43 0.29 0.32 0.33 0.08 0.10 0.11

RF

No

𝑤𝐼𝑃𝑊 0.90 0.88 0.91 0.81 0.78 0.83 0.96 0.96 0.96 0.92 0.92 0.93
𝑤𝐼𝑃𝑊𝑀 0.57 0.50 0.61 0.33 0.25 0.38 0.27 0.23 0.32 0.08 0.06 0.10
𝑤𝑆𝑡𝑟𝑎𝑡1 0.09 0.11 0.25 0.04 0.03 0.09 0.05 0.07 0.08 0.00 0.01 0.01
𝑤𝑆𝑡𝑟𝑎𝑡2 0.88 0.87 0.90 0.78 0.75 0.81 0.93 0.93 0.94 0.87 0.86 0.88

Balancing

𝑤𝐼𝑃𝑊 0.91 0.91 0.92 0.83 0.82 0.85
𝑤𝐼𝑃𝑊𝑀 0.37 0.32 0.42 0.14 0.10 0.18
𝑤𝑆𝑡𝑟𝑎𝑡1 0.01 0.03 0.14 0.00 0.00 0.02
𝑤𝑆𝑡𝑟𝑎𝑡2 0.83 0.81 0.85 0.68 0.66 0.72

Design

𝑤𝐼𝑃𝑊 0.95 0.95 0.95 0.91 0.91 0.90 0.58 0.55 0.60 0.34 0.30 0.36
𝑤𝐼𝑃𝑊𝑀 0.95 0.95 0.95 0.91 0.91 0.90 0.53 0.49 0.55 0.28 0.24 0.30
𝑤𝑆𝑡𝑟𝑎𝑡1 0.95 0.95 0.94 0.91 0.90 0.91 0.03 0.06 0.01 0.00 0.01 0.00
𝑤𝑆𝑡𝑟𝑎𝑡2 0.95 0.95 0.95 0.91 0.91 0.90 0.50 0.45 0.53 0.25 0.20 0.28

XGB

No

𝑤𝐼𝑃𝑊 0.86 0.84 0.87 0.74 0.71 0.75 0.95 0.95 0.96 0.91 0.91 0.92
𝑤𝐼𝑃𝑊𝑀 0.48 0.42 0.49 0.24 0.18 0.25 0.33 0.29 0.34 0.11 0.08 0.12
𝑤𝑆𝑡𝑟𝑎𝑡1 0.26 0.21 0.06 0.14 0.11 0.07 0.07 0.04 0.21 0.01 0.00 0.04
𝑤𝑆𝑡𝑟𝑎𝑡2 0.86 0.84 0.87 0.73 0.71 0.75 0.94 0.94 0.95 0.89 0.88 0.90

Balancing

𝑤𝐼𝑃𝑊 0.85 0.85 0.86 0.73 0.71 0.74
𝑤𝐼𝑃𝑊𝑀 0.28 0.24 0.29 0.08 0.06 0.09
𝑤𝑆𝑡𝑟𝑎𝑡1 0.09 0.05 0.23 0.01 0.00 0.06
𝑤𝑆𝑡𝑟𝑎𝑡2 0.84 0.82 0.86 0.70 0.67 0.74

Design

𝑤𝐼𝑃𝑊 0.13 0.07 0.14 0.03 0.02 0.04 0.07 0.07 0.00 0.01 0.01 0.01
𝑤𝐼𝑃𝑊𝑀 0.12 0.05 0.12 0.03 0.02 0.04 0.20 0.21 0.17 0.05 0.05 0.04
𝑤𝑆𝑡𝑟𝑎𝑡1 0.26 0.27 0.28 0.14 0.14 0.19 0.17 0.09 0.27 0.03 0.01 0.08
𝑤𝑆𝑡𝑟𝑎𝑡2 0.17 0.10 0.19 0.04 0.02 0.06 0.37 0.30 0.48 0.14 0.09 0.23
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Table A.2
Results from the simulation with real-world data for the estimation of the proportion of individuals whose household has a car. The columns represent the
sampling design of the probability sample; SRS = simple random sampling without replacement. Strat = stratified sampling. Uneq = unequal probabilities
sampling.
Algorithm 𝑛𝑣 = 2, 000 𝑛𝑣 = 6, 000

Weights in Weighting Relative bias Efficiency ratio Relative bias Efficiency ratio

training approach SRS Strat Uneq SRS Strat Uneq SRS Strat Uneq SRS Strat Uneq

LR

No

𝑤𝐼𝑃𝑊 0.67 0.65 1.02 1.12 1.12 1.40 0.63 0.56 1.07 1.58 1.72 1.73
𝑤𝐼𝑃𝑊𝑀 0.58 0.59 1.08 1.01 1.07 1.54 0.42 0.42 1.20 1.34 1.64 2.06
𝑤𝑆𝑡𝑟𝑎𝑡1 0.75 0.83 0.92 1.16 1.12 1.19 0.68 0.71 0.97 0.62 1.06 1.17
𝑤𝑆𝑡𝑟𝑎𝑡2 0.72 0.69 1.04 0.91 1.01 1.31 0.85 0.83 1.07 0.95 1.03 1.22

Balancing

𝑤𝐼𝑃𝑊 0.56 1.49 0.70 0.69 1.07 0.81 1.02 1.42
𝑤𝐼𝑃𝑊𝑀 0.51 1.49 0.56 0.60 1.16 0.62 0.91 1.65
𝑤𝑆𝑡𝑟𝑎𝑡1 0.83 1.12 0.68 0.76 0.96 0.62 0.86 1.08
𝑤𝑆𝑡𝑟𝑎𝑡2 0.65 0.96 0.72 0.71 1.08 0.76 0.85 1.29

Design

𝑤𝐼𝑃𝑊 0.82 0.90 0.81 0.79 0.92 0.73 0.71 0.83 0.71 0.54 0.78 0.54
𝑤𝐼𝑃𝑊𝑀 0.82 0.90 0.80 0.79 0.92 0.73 0.71 0.83 0.71 0.54 0.78 0.53
𝑤𝑆𝑡𝑟𝑎𝑡1 0.91 1.21 0.91 1.74 2.09 1.46 0.74 1.02 0.72 0.76 1.39 0.73
𝑤𝑆𝑡𝑟𝑎𝑡2 0.67 0.87 0.66 0.62 0.86 0.57 0.48 0.69 0.49 0.31 0.60 0.30

TrIPW Design

𝑤𝐼𝑃𝑊 0.63 0.63 0.63 0.42 0.42 0.42 0.54 0.52 0.55 0.30 0.30 0.32
𝑤𝐼𝑃𝑊𝑀 0.63 0.63 0.63 0.42 0.42 0.42 0.53 0.52 0.55 0.30 0.30 0.31
𝑤𝑆𝑡𝑟𝑎𝑡1 0.91 0.11 0.87 2.14 2.18 1.11 1.81 1.14 1.96 3.71 2.01 4.99
𝑤𝑆𝑡𝑟𝑎𝑡2 0.73 0.74 0.56 0.56 0.57 0.35 0.55 0.56 0.62 0.32 0.34 0.40

RF

No

𝑤𝐼𝑃𝑊 0.77 0.79 1.11 0.61 0.64 1.23 0.87 0.88 1.05 0.76 0.77 1.10
𝑤𝐼𝑃𝑊𝑀 0.52 0.53 1.24 0.31 0.33 1.52 0.46 0.47 1.21 0.23 0.25 1.47
𝑤𝑆𝑡𝑟𝑎𝑡1 0.34 0.34 1.37 0.26 0.39 1.84 0.23 0.31 1.31 0.10 0.22 1.72
𝑤𝑆𝑡𝑟𝑎𝑡2 0.78 0.79 1.11 0.63 0.64 1.22 0.88 0.87 1.05 0.78 0.77 1.10

Balancing

𝑤𝐼𝑃𝑊 0.79 0.64 0.77 0.79 1.12 0.60 0.64 1.25
𝑤𝐼𝑃𝑊𝑀 0.53 0.33 0.51 0.54 1.25 0.28 0.32 1.57
𝑤𝑆𝑡𝑟𝑎𝑡1 0.35 0.39 0.10 0.12 1.36 0.06 0.14 1.84
𝑤𝑆𝑡𝑟𝑎𝑡2 0.79 0.64 0.80 0.80 1.11 0.64 0.65 1.24

Design

𝑤𝐼𝑃𝑊 0.81 0.81 0.88 0.68 0.68 0.78 0.67 0.71 0.83 0.46 0.53 0.71
𝑤𝐼𝑃𝑊𝑀 0.81 0.81 0.88 0.67 0.68 0.78 0.67 0.70 0.83 0.46 0.53 0.70
𝑤𝑆𝑡𝑟𝑎𝑡1 0.77 0.68 0.84 0.63 0.53 0.73 0.56 0.53 0.76 0.34 0.36 0.60
𝑤𝑆𝑡𝑟𝑎𝑡2 0.84 0.83 0.91 0.72 0.71 0.83 0.75 0.78 0.92 0.58 0.63 0.86

XGB

No

𝑤𝐼𝑃𝑊 0.76 0.77 1.13 0.60 0.62 1.26 0.87 0.87 1.06 0.76 0.77 1.12
𝑤𝐼𝑃𝑊𝑀 0.51 0.51 1.27 0.30 0.32 1.59 0.46 0.47 1.24 0.23 0.26 1.52
𝑤𝑆𝑡𝑟𝑎𝑡1 0.20 0.13 1.27 0.13 0.18 1.58 0.27 0.18 1.22 0.10 0.10 1.49
𝑤𝑆𝑡𝑟𝑎𝑡2 0.79 0.78 1.12 0.63 0.63 1.24 0.89 0.89 1.05 0.80 0.79 1.11

Balancing

𝑤𝐼𝑃𝑊 0.77 0.62 0.76 0.78 1.13 0.58 0.61 1.28
𝑤𝐼𝑃𝑊𝑀 0.50 0.32 0.49 0.51 1.27 0.26 0.30 1.62
𝑤𝑆𝑡𝑟𝑎𝑡1 0.13 0.18 0.27 0.20 1.28 0.11 0.12 1.64
𝑤𝑆𝑡𝑟𝑎𝑡2 0.79 0.64 0.81 0.81 1.12 0.65 0.66 1.26

Design

𝑤𝐼𝑃𝑊 0.71 0.71 0.86 0.53 0.55 0.76 0.62 0.64 0.80 0.40 0.45 0.66
𝑤𝐼𝑃𝑊𝑀 0.70 0.70 0.86 0.53 0.55 0.76 0.61 0.64 0.80 0.40 0.45 0.66
𝑤𝑆𝑡𝑟𝑎𝑡1 0.34 0.41 0.54 0.20 0.29 0.35 0.43 0.51 0.63 0.22 0.32 0.42
𝑤𝑆𝑡𝑟𝑎𝑡2 0.70 0.70 0.90 0.52 0.56 0.82 0.70 0.75 0.94 0.51 0.60 0.90
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Table A.3
Results from the simulation with real-world data for the estimation of the mean of monthly home expenses. The columns represent the sampling design
of the probability sample; SRS = simple random sampling without replacement. Strat = stratified sampling. Uneq = unequal probabilities sampling.
Algorithm Weights in Weighting 𝑛𝑣 = 2, 000 𝑛𝑣 = 6, 000

training approach Relative bias Efficiency ratio Relative bias Efficiency ratio

SRS Strat Uneq SRS Strat Uneq SRS Strat Uneq SRS Strat Uneq

LR

No

𝑤𝐼𝑃𝑊 0.49 0.50 2.17 1.51 1.97 8.22 0.64 0.57 2.54 2.40 3.39 18.04
𝑤𝐼𝑃𝑊𝑀 0.35 0.41 2.92 1.40 1.94 15.81 0.29 0.28 4.07 2.14 3.45 29.06
𝑤𝑆𝑡𝑟𝑎𝑡1 0.67 0.78 0.96 1.71 2.36 2.20 0.49 0.56 1.08 0.76 1.05 1.72
𝑤𝑆𝑡𝑟𝑎𝑡2 0.56 0.55 1.57 1.26 1.55 3.04 0.75 0.74 1.42 1.25 1.56 3.15

Balancing

𝑤𝐼𝑃𝑊 0.40 2.13 0.55 0.52 2.44 1.02 1.32 7.80
𝑤𝐼𝑃𝑊𝑀 0.32 2.15 0.30 0.33 3.59 0.83 1.23 17.09
𝑤𝑆𝑡𝑟𝑎𝑡1 0.76 1.83 0.50 0.64 0.98 0.69 1.20 1.56

𝑤𝑆𝑡𝑟𝑎𝑡2 0.49 1.45 0.54 0.55 1.59 0.84 1.12 2.79

Design

𝑤𝐼𝑃𝑊 0.71 0.86 0.72 0.84 1.11 0.77 0.52 0.66 0.54 0.37 0.81 0.37
𝑤𝐼𝑃𝑊𝑀 0.71 0.86 0.72 0.84 1.11 0.77 0.52 0.66 0.54 0.37 0.81 0.36
𝑤𝑆𝑡𝑟𝑎𝑡1 0.70 0.96 0.44 5.42 3.54 2.70 0.45 0.79 0.49 1.38 2.60 1.94
𝑤𝑆𝑡𝑟𝑎𝑡2 0.38 0.78 0.39 0.71 1.03 0.58 0.00 0.38 0.06 0.31 0.62 0.21

TrIPW Design

𝑤𝐼𝑃𝑊 0.52 0.50 0.50 0.33 0.34 0.31 0.41 0.41 0.41 0.21 0.23 0.20
𝑤𝐼𝑃𝑊𝑀 0.51 0.50 0.50 0.33 0.34 0.31 0.41 0.40 0.41 0.21 0.22 0.19
𝑤𝑆𝑡𝑟𝑎𝑡1 1.59 0.52 1.36 5.97 5.22 2.07 2.48 1.55 2.83 6.95 3.76 8.93
𝑤𝑆𝑡𝑟𝑎𝑡2 0.65 0.64 0.41 0.47 0.48 0.25 0.42 0.42 0.48 0.22 0.25 0.26

RF

No

𝑤𝐼𝑃𝑊 0.69 0.68 1.57 0.52 0.50 2.34 0.85 0.85 1.34 0.74 0.73 1.76
𝑤𝐼𝑃𝑊𝑀 0.35 0.29 2.21 0.20 0.19 4.58 0.39 0.35 2.40 0.19 0.20 5.64
𝑤𝑆𝑡𝑟𝑎𝑡1 0.72 0.77 2.88 0.65 0.92 7.75 0.41 0.50 2.99 0.27 0.53 8.74
𝑤𝑆𝑡𝑟𝑎𝑡2 0.70 0.68 1.55 0.53 0.51 2.28 0.86 0.84 1.30 0.74 0.71 1.68

Balancing

𝑤𝐼𝑃𝑊 0.68 0.51 0.68 0.67 1.64 0.48 0.46 2.63
𝑤𝐼𝑃𝑊𝑀 0.29 0.19 0.33 0.25 2.34 0.15 0.14 5.37
𝑤𝑆𝑡𝑟𝑎𝑡1 0.77 0.93 0.51 0.65 2.84 0.36 0.70 7.89
𝑤𝑆𝑡𝑟𝑎𝑡2 0.68 0.51 0.71 0.66 1.58 0.51 0.45 2.44

Design

𝑤𝐼𝑃𝑊 0.19 0.09 0.31 0.11 0.11 0.17 0.15 0.02 0.42 0.06 0.08 0.20
𝑤𝐼𝑃𝑊𝑀 0.19 0.09 0.31 0.11 0.11 0.16 0.15 0.01 0.41 0.06 0.08 0.19
𝑤𝑆𝑡𝑟𝑎𝑡1 0.13 0.26 0.20 0.11 0.21 0.13 0.21 0.48 0.03 0.10 0.40 0.05
𝑤𝑆𝑡𝑟𝑎𝑡2 0.26 0.15 0.34 0.15 0.13 0.19 0.25 0.09 0.48 0.10 0.08 0.26

XGB

No

𝑤𝐼𝑃𝑊 0.69 0.66 1.67 0.52 0.49 2.64 0.83 0.82 1.35 0.70 0.69 1.79
𝑤𝐼𝑃𝑊𝑀 0.35 0.26 2.39 0.21 0.21 5.38 0.32 0.24 2.43 0.14 0.15 5.75
𝑤𝑆𝑡𝑟𝑎𝑡1 0.03 0.17 2.46 0.15 0.33 5.71 0.03 0.17 2.28 0.07 0.20 5.10
𝑤𝑆𝑡𝑟𝑎𝑡2 0.71 0.67 1.62 0.54 0.50 2.49 0.85 0.82 1.31 0.73 0.68 1.69

Balancing

𝑤𝐼𝑃𝑊 0.66 0.49 0.67 0.64 1.71 0.47 0.43 2.88
𝑤𝐼𝑃𝑊𝑀 0.27 0.21 0.32 0.20 2.48 0.15 0.14 6.00
𝑤𝑆𝑡𝑟𝑎𝑡1 0.15 0.32 0.03 0.24 2.41 0.08 0.26 5.69
𝑤𝑆𝑡𝑟𝑎𝑡2 0.68 0.51 0.70 0.64 1.61 0.51 0.43 2.55

Design

𝑤𝐼𝑃𝑊 0.44 0.17 0.76 0.27 0.19 0.62 0.28 0.00 0.69 0.13 0.11 0.50
𝑤𝐼𝑃𝑊𝑀 0.44 0.16 0.76 0.27 0.19 0.62 0.28 0.01 0.69 0.13 0.12 0.49
𝑤𝑆𝑡𝑟𝑎𝑡1 0.02 0.18 0.25 0.15 0.28 0.20 0.05 0.29 0.30 0.08 0.26 0.15
𝑤𝑆𝑡𝑟𝑎𝑡2 0.36 0.06 0.70 0.23 0.19 0.56 0.23 0.00 0.73 0.11 0.12 0.57

Appendix. Simulation results

See Tables A.1–A.3.
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