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A B S T R A C T

In this paper we propose the use of 𝐶1-continuous cubic quasi-interpolation schemes expressed
in Bernstein–Bézier form to approximate functions with jumps. The construction of these
schemes is explicit and consists of directly attaching the Bernstein–Bézier coefficients to
appropriate combinations of the given data values. This construction can lead to quasi-
interpolation schemes with free parameters. This allows to write these schemes of optimal
convergence order as a non-negative convex combination of certain quasi-interpolation schemes
of lower convergence order. The idea behind that, is to divide the data set used to define a quasi-
interpolant of optimal order into subsets, and then define the associated quasi-interpolants.
The free parameters facilitate the choice of the convex combination weights. We then apply
the WENO approach to the weights to eliminate the Gibbs phenomenon that occurs when we
approximate in a non-smooth region. The proposed schemes are of optimal order in the smooth
regions and near optimal order is achieved in the neighboring region of discontinuity.

1. Introduction

Splines are piecewise functions glued together with certain smoothness conditions. They represent a fundamental tool in various
applications, among them numerical solution of equations or systems of equations of differential, integral or integro-differential
equations and their applications. Some of these applications imply the use of approximation methods to generate a spline function
from discrete data. Interpolation and least squares are frequently used as popular methods. Both require the solution of a system of
linear equations which have as equal number of unknowns as the dimension of the spline space, and then they are not convenient
for real-time processing of large data streams. Furthermore, interpolation approach has to match the data at selected points and this
requirement might be a problem in case of dealing with noisy data. To this end, local methods, that determine the spline coefficients
using only local information, are more suitable. Besides, the methods should reproduce polynomials and preferably functions in the
given spline space to ensure the best approximation properties. An example of a local method is the spline quasi-interpolation
approach.

The quasi-interpolation approach is a powerful approximation method that was introduced by Schoenberg [24,25] for the
approximation of functions and referred to as smoothing interpolation. It has several advantages, among them: quasi-interpolation is
efficient and relatively easy to formulate for scattered and meshed nodes and for any number of data, and it is not necessary to
solve any linear system of equations.
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A linear quasi-interpolation operator 𝑄 maps a function 𝑓 to an element

𝑄𝑓 =
∑

𝑖∈𝐴
𝜆𝑖(𝑓 )𝑁𝑖

of a suitable spline space 𝑆, where 𝐴,
{

𝜆𝑖(𝑓 ), 𝑖 ∈ 𝐴
}

and
{

𝑁𝑖, 𝑖 ∈ 𝐴
}

, respectively are a set of indices linked to the information
on the function to be approximated, a set of linear functionals and a set of spline functions spanning 𝑆. The reader can find more
details on the spline quasi-interpolation construction in [1,8,10,11] and references therein.

The spline functions 𝑁𝑖 should be locally supported and form a non-negative partition of unity. These properties are very
important because they make the spline curve can be locally adapted in an intuitive and flexible way. Classical examples of a
such basis are the Bernstein basis and any polynomial B-spline bases [9].

The functionals 𝜆𝑖 can be of different types, chosen according to the provided information about the function 𝑓 to be
approximated. Usually they are point [16,23], derivative [13] or integral linear functionals [15,22]. In this work, we consider
the first case, in which 𝜆𝑖(𝑓 ) is a finite linear combination of values of 𝑓 .

The quasi-interpolation operator 𝑄 is defined to offer optimal convergence for smooth functions by imposing its exactness on
the space of polynomials of maximal degree included in 𝑆, but in the presence of sharp jumps or discontinuities, it may result in
overshooting and undershooting, known as Gibbs phenomenon [12]. Similar to Fourier series, this can lead to oscillations around
jump discontinuities, reducing accuracy, particularly in non-smooth regions like image processing or shock capture schemes.

Coefficients 𝜆𝑖(𝑓 ) are defined from discrete values of 𝑓 within a stencil around the B-spline 𝑁𝑖. Discontinuities across this stencil
lead to poor accuracy and over- or undershooting. Maximizing accuracy involves selecting stencils that avoid singularities, as done
in the Essentially Non-Oscillatory (ENO) approach, introduced in [18]. ENO methods construct polynomials using information only
smooth regions, and choosing stencils with the lowest smoothness indicator.

For greater flexibility, the Weighted-ENO (WENO) concept combines multiple stencils, improving accuracy [3,19]. WENO
methods assign weights based on smoothness indicators and accuracy properties, enhancing performance in smooth regions and
around discontinuities [17].

Choosing appropriate weights is crucial. They should form a convex combination favoring smooth stencils and minimizing
contributions from those crossing singularities. Negative weights, a potential issue, are addressed in the literature, with techniques
discussed in [4,26], ensuring non-negativity and preserving accuracy.

This paper explores approximating discrete values coming from functions with jump discontinuities using quasi-interpolating
cubic splines in the Bernstein basis. Specifically, we focus on constructing 𝐶1 cubic quasi-interpolation spline schemes in Bernstein–
Bézier (BB-) form. These schemes are directly determined by fixing their BB-coefficients to suitable combinations of given data
values, as initially introduced in the bivariate case in [5,7,27], with subsequent comprehensive studies in the univariate case in [6].

These constructions result in spline quasi-interpolation schemes with free parameters, offering flexibility to achieve additional
properties such as super-convergence at specific points. In our approach, this flexibility is utilized in selecting non-negative weights
for the WENO method. Unlike previous strategies, our method allows for non-unique weights, enabling users to tailor weights for
each stencil by imposing conditions on the free parameters. This approach yields spline schemes of optimal order in smooth regions
while mitigating Gibbs phenomena near singularity points.

The rest of paper is organized as follows. In Section 2 we define the cubic spline quasi-interpolation schemes in BB-form and see
how it can be constructed. In Sections 3–5 we use nonlinear techniques (ENO and WENO) to obtain the BB-coefficients and we see
the properties that each of the operators we obtain have. In Section 6, through numerical results, we validate the results obtained
in the previous sections. Finally, in Section 7, we present some conclusions.

2. 𝑪𝟏 cubic spline quasi-interpolation schemes in BB-form

Let 𝑃𝑛 ∶=
{

𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛−1 < 𝑥𝑛 = 𝑏
}

be a partition of a bounded interval 𝐼 ∶= [𝑎, 𝑏] with equispaced knots 𝑥𝑖 ∶= 𝑎 + 𝑖ℎ,
𝑖 = 0,… , 𝑛, where ℎ ∶= 𝑏−𝑎

𝑛 . It induces a decomposition of 𝐼 into the subintervals 𝐼𝑖 ∶=
[

𝑥𝑖, 𝑥𝑖+1
]

, 𝑖 = 0,… , 𝑛 − 1.
The space 𝑆1

3
(

𝑃𝑛
)

of 𝐶1 cubic polynomial splines on 𝑃𝑛 is defined by

𝑆1
3
(

𝑃𝑛
)

∶=
{

𝑠 ∈ 𝐶1 (𝐼) ∶ 𝑠
|𝐼𝑖 ∈ P3, 𝑖 = 0,… , 𝑛 − 1

}

,

where P3 represents the linear space of cubic polynomials. The restriction of a spline 𝑠 ∈ 𝑆1
3
(

𝑃𝑛
)

to 𝐼𝑖, 𝑠𝑖, is a cubic polynomial,
hen it can be represented in terms of cubic Bernstein polynomials B𝛼 (𝑡) ∶= 3!

𝛼1! 𝛼2!
(1 − 𝑡)𝛼1 𝑡𝛼2 , for an multi-index 𝛼 ∶=

(

𝛼1, 𝛼2
)

with non-negative integer entries, relative to the unit interval [0, 1]. In general, the 1-norm of 𝜉 ∶=
(

𝜉1,… , 𝜉𝑑
)

∈ R𝑑 is defined as
𝜉‖1 ∶= |

|

𝜉1|| +⋯ + |

|

𝜉𝑑 ||, so that the length of a multi-index 𝛼 is equal to ‖𝛼‖1 = 𝛼1 + 𝛼2. The Bernstein polynomials B𝛼 , ‖𝛼‖1 ∶= 3,
orm a basis of P3, and

𝑠𝑖 (𝑥) =
∑

∥𝛼∥1=3
𝑏𝛼,𝑖B

𝑖
𝛼 (𝑥) , (1)

here B𝑖
𝛼 (𝑥) ∶= B𝛼

(

𝑥−𝑥𝑖
ℎ

)

.
The restriction 𝑠𝑖 is a linear combination of the BB-coefficients 𝑏𝛼,𝑖 with non-negative weights B𝑖

𝛼 , so that the graph of 𝑠𝑖 lies
in the convex hull of the Bézier control points

{(

𝜉𝛼,𝑖, 𝑏𝛼,𝑖
)

, ‖𝛼‖1 = 3
}

, where each domain point 𝜉𝛼,𝑖 ∶=
𝛼1
3 𝑥𝑖 +

𝛼2
3 𝑥𝑖+1 is naturally

associated with the BB-coefficient 𝑏 . The Bézier control net represents the linear piecewise interpolant of the Bézier control points.
514

𝛼,𝑖



Mathematics and Computers in Simulation 225 (2024) 513–527F. Aràndiga et al.

𝑖
t
t

Fig. 1. Schematic representation of the BB-form of the cubic polynomial on 𝐼𝑖.

Fig. 2. Labeling the domain points of various sub-intervals.

Fig. 1 shows an example of a schematic representation of the domain points, Bézier control points, Bézier control net, and a spline
curve that lies inside the convex hull of Bézier control points. The representation given in (1) is said to be the BB-form of 𝑠𝑖. It will
be extensively used in this work to define the quasi-interpolating spline schemes.

Let  ∶=
{

𝑎 + 𝑖 ℎ3 , 𝑖 = 0,… , 3𝑛
}

be the union without repetitions of the domain points associated with all the subintervals 𝐼𝑖,
= 0,… , 𝑛 − 1, and suppose that the discrete values 𝑓

(

𝑥𝑖
)

of a real function 𝑓 at the knots of 𝑃𝑛 are known. We are interested in
he construction of quasi-interpolating spline schemes 𝑄𝑓 in the space 𝑆1

3
(

𝑃𝑛
)

. The construction is explicit and consists in setting
he BB-coefficients related to the domain points in . They will be linear combinations of a fixed number of point values of 𝑓 .

We deal with the construction of a cubic quasi-interpolating 𝑄𝑓 to 𝑓 in the space 𝑆1
3
(

𝑃𝑛
)

by setting directly the BB-coefficients
of its restriction to each subinterval 𝐼𝑖. They will be linear combinations of a fixed number of point values of 𝑓 . The partition
is uniform, therefore, it is reasonable to think that it is possible to define the BB-coefficients in each of the intervals by defining
a reduced number of them linked to well-selected domain points. For this purpose, we consider a specific partition of the set ,
namely,  =

⋃

0≤𝑖≤𝑛 𝑖, with 𝑖 ∶=
{

𝑢𝑖, 𝑥𝑖, 𝑣𝑖
}

, where 𝑢𝑖 ∶= 𝑥𝑖 −
ℎ
3 and 𝑣𝑖 ∶= 𝑥𝑖 +

ℎ
3 . In Fig. 2 the above partition is illustrated.

Following this notation, the restriction of the quasi-interpolant 𝑄𝑓 on the sub-interval 𝐼𝑖 can be rewritten as

𝑄𝑓
|𝐼𝑖

(𝑥) = 𝑐
(

𝑥𝑖
)

B𝑖
(3,0) (𝑥) + 𝑐

(

𝑣𝑖
)

B𝑖
(2,1) (𝑥) + 𝑐

(

𝑢𝑖+1
)

B𝑖
(1,2) (𝑥) + 𝑐

(

𝑥𝑖+1
)

B𝑖
(0,3) (𝑥) , (2)

where 𝑐(𝑝) represents the BB-coefficient related to the domain point 𝑝. In Fig. 2 we can see the four domain points whose associated
BB-coefficients are used in (2).

We will define the BB-coefficients of 𝑄𝑓
|𝐼𝑖

as linear combinations of the values of 𝑓 at the neighboring knots.

Problem 1. Define for each knot 𝑥𝑖 the stencil 𝑆𝑖 ∶=
{

𝑥𝑖−2, 𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1, 𝑥𝑖+2
}

, 𝑖 = 0,… , 𝑛, and 𝑓 (𝑆𝑖) ∶=
{

𝑓
(

𝑥𝑖−2
)

, 𝑓
(

𝑥𝑖−1
)

, 𝑓
(

𝑥𝑖
)

,
𝑓
(

𝑥𝑖+1
)

, 𝑓
(

𝑥𝑖+2
)}

. Find masks 𝛽 ∶=
(

𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4
)

, 𝛾 ∶=
(

𝛾0, 𝛾1, 𝛾2, 𝛾3, 𝛾4
)

and 𝛿 ∶=
(

𝛿0, 𝛿1, 𝛿2, 𝛿3, 𝛿4
)

such that the quasi-interpolant
𝑄𝑓 defined in each interval 𝐼𝑖 with BB-coefficients

𝑐
(

𝑢𝑖
)

∶=< 𝛿, 𝑓 (𝑆𝑖) >, 𝑐
(

𝑥𝑖
)

∶=< 𝛽, 𝑓 (𝑆𝑖) >, 𝑐
(

𝑣𝑖
)

∶=< 𝛾, 𝑓 (𝑆𝑖) >, (3)

is 𝐶1-continuous and 𝑄𝑓 = 𝑓 is satisfied for all 𝑓 ∈ P3.

For 𝑝 =
(

𝑝0, 𝑝1, 𝑝2, 𝑝3, 𝑝4
)

and 𝑞 =
(

𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4
)

, the notation < 𝑝, 𝑞 > has been used to represent the value ∑4
𝑙=0 𝑝𝑙𝑞𝑙. The masks

𝛽, 𝛾 and 𝛿 have been asked to be interval-independent since the partition is uniform.
In view of the chosen stencils, working with functions defined on a bounded interval requires to properly define the BB-

coefficients of the subintervals 𝐼0, 𝐼1, 𝐼𝑛−1 and 𝐼𝑛. To facilitate the development of the ideas considered in this work, until otherwise
stated, the functions and their quasi-interpolants will be defined on the real line, with the uniform partition 𝑎 + ℎZ.

Proposition 1. The quasi-interpolant 𝑄𝑓 defined by (2) and (3) is 𝐶1-continuous if, and only if,

2𝛽𝑘 = 𝛾𝑘 + 𝛿𝑘, 𝑘 = 0,… , 4.

Proof. We have that 𝑄𝑓 is 𝐶1-continuous if, and only if, 2𝑐
(

𝑥𝑖
)

− 𝑐
(

𝑢𝑖
)

− 𝑐
(

𝑣𝑖
)

= 0 for all 𝑖 ∈ Z. Substituting the BB-coefficients
𝑐
(

𝑥𝑖
)

, 𝑐
(

𝑢𝑖
)

and 𝑐
(

𝑣𝑖
)

by their expressions given in (3), it results
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
515

2𝑐 𝑥𝑖 − 𝑐 𝑢𝑖 − 𝑐 𝑣𝑖 = 𝛬0𝑓 𝑥𝑖−2 + 𝛬1𝑓 𝑥𝑖−1 + 𝛬2𝑓 𝑥𝑖 + 𝛬3𝑓 𝑥𝑖+1 + 𝛬4𝑓 𝑥𝑖+2 , (4)
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c
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where 𝛬𝑘 ∶= 2𝛽𝑘 − 𝛾𝑘 − 𝛿𝑘, 𝑘 = 0,… , 4, from which the claim follows. □

Once the 𝐶1-conditions have been imposed and characterized in terms of the masks, we must now establish the conditions that
ensure the exactness on the space of cubic polynomials.

Lemma 2. The BB-coefficients of the monomials 𝑚𝑘 =
(

𝑥−𝑥𝑖
ℎ

)𝑘
, 𝑘 = 0,… , 3, restricted to the subinterval 𝐼𝑖 are (1, 1, 1, 1),

(

0, 13 ,
2
3 , 1

)

,
(

0, 0, 13 , 1
)

and (0, 0, 0, 1), respectively.

Now, we are in a position to solve Problem 1.

roposition 3. Problem 1 has infinitely many solutions, provided by the masks

𝛽 = {𝜆,−4𝜆, 6𝜆 + 1,−4𝜆, 𝜆} ,

𝛾 =
{

𝜇,−4𝜇 − 1
9
, 6𝜇 + 5

6
, 1
3
− 4𝜇, 𝜇 − 1

18

}

,

𝛿 =
{

2𝜆 − 𝜇,−8𝜆 + 4𝜇 + 1
9
, 12𝜆 − 6𝜇 + 7

6
,−8𝜆 + 4𝜇 − 1

3
, 2𝜆 − 𝜇 + 1

18

}

,

being 𝜆 and 𝜇 free parameters.

Proof. The BB-coefficients 𝑐
(

𝑥𝑖
)

, 𝑐
(

𝑣𝑖
)

, 𝑐
(

𝑢𝑖+1
)

and 𝑐
(

𝑥𝑖+1
)

of 𝑄𝑓 relative to 𝐼𝑖 are given by (3). They need to satisfy the 𝐶1-
conditions (4), as well as the exactness on P3. To this end, the BB-coefficients of 𝑄𝑚𝑘 in 𝐼𝑖 and those of 𝑚𝑘 must be the same
Lemma 2). Those of 𝑄𝑚𝑘, 𝑘 = 0,… , 3, are

(

𝛽0 + 𝛽1 + 𝛽2 + 𝛽3 + 𝛽4, 𝛾0 + 𝛾1 + 𝛾2 + 𝛾3 + 𝛾4, 𝛿0 + 𝛿1 + 𝛿2 + 𝛿3 + 𝛿4, 𝛽0 + 𝛽1 + 𝛽2 + 𝛽3 + 𝛽4
)

,
(

−2𝛽0 − 𝛽1 + 𝛽3 + 2𝛽4,−2𝛾0 − 𝛾1 + 𝛾3 + 2𝛾4,−𝛿0 + 𝛿2 + 2𝛿3 + 3𝛿4,−𝛽0 + 𝛽2 + 2𝛽3 + 3𝛽4
)

,
(

4𝛽0 + 𝛽1 + 𝛽3 + 4𝛽4, 4𝛾0 + 𝛾1 + 𝛾3 + 4𝛾4, 𝛿0 + 𝛿2 + 4𝛿3 + 9𝛿4, 𝛽0 + 𝛽2 + 4𝛽3 + 9𝛽4
)

,
(

−8𝛽0 − 𝛽1 + 𝛽3 + 8𝛽4,−8𝛾0 − 𝛾1 + 𝛾3 + 8𝛾4,−𝛿0 + 𝛿2 + 8𝛿3 + 27𝛿4,−𝛽0 + 𝛽2 + 8𝛽3 + 27𝛽4
)

.

Therefore, there are 5 equations ensuring the 𝐶1-smoothness and 16 equations that guarantee the exactness on P3. In total, there
re 21 equations and 15 unknowns. The general solution in the statement is determined by using a Computer Algebra System. □

The existence of two degrees of freedom allows additional conditions to be imposed on the masks. Since 𝛽 is symmetric, one
ould require 𝛿 to be the symmetric mask of 𝛾, i.e. 𝛿𝓁 = 𝛾4−𝓁 , 𝓁 = 0, 1, 2. This will be true if 𝜆 = 𝜇 − 1

36 . This condition leads to the
following masks:

𝛽𝜇 =
(

𝜇 − 1
36

,−4𝜇 + 1
9
, 6𝜇 + 5

6
,−4𝜇 + 1

9
, 𝜇 − 1

36

)

,

𝛾𝜇 =
(

𝜇,−4𝜇 − 1
9
, 6𝜇 + 5

6
,−4𝜇 + 1

3
, 𝜇 − 1

18

)

, (5)

𝛿𝜇 =
(

𝜇 − 1
18

,−4𝜇 + 1
3
, 6𝜇 + 5

6
,−4𝜇 − 1

9
, 𝜇

)

.

They produce the quasi-interpolation operator 𝑄𝜇 defined as 𝑄𝜇[𝑓 ] ∶= 𝑄𝜇𝑓 whose infinity norm is bounded by 𝑈 (𝜇) ∶=
max

{

‖𝛽‖1 , ‖𝛾‖1 , ‖𝛿‖1
}

. A possibility is to select the parameter 𝜇 consist of minimizing

𝑈 (𝜇) = 1
18

max {5 |1 − 36𝜇| + 3 |5 + 36𝜇| , 6 |1 − 12𝜇| + 18 |𝜇| + |1 − 18𝜇| + 2 |1 + 36𝜇| + 3 |5 + 36𝜇|} .

It is a strictly convex function and attains its minimum value (equal to 11
9 ) uniquely at 𝜇1 = − 1

36 . Fig. 3 shows the objective
function in a neighborhood of the point at which the minimum value is attained. The masks for this value of 𝜇 are

𝛽𝜇1 =
{

− 1
18

, 2
9
, 2
3
, 2
9
,− 1

18

}

, 𝛾𝜇1 =
{

− 1
36

, 0, 2
3
, 4
9
,− 1

12

}

, 𝛿𝜇1 =
{

− 1
12

, 4
9
, 2
3
, 0,− 1

36

}

. (6)

Alternatively, the free parameter 𝜇 can be chosen so that 𝑄 becomes an interpolating operator. This is achieved for 𝜇2 =
1
36 . The

masks in this case are

𝛽𝜇2 = {0, 0, 1, 0, 0} , 𝛾𝜇2 =
{ 1
36

,−2
9
, 1, 2

9
,− 1

36

}

, 𝛿𝜇2 =
{

− 1
36

, 2
9
, 1,−2

9
, 1
36

}

. (7)

The following result holds.

heorem 4. For the masks given in (6) or (7) then

(1) 𝑄𝜇𝑓 is 𝐶1-continuous,
(2) 𝑄𝜇𝑓 = 𝑓 for all 𝑓 ∈ P3,
(3) ‖

‖

‖

𝑄𝜇𝑓 − 𝑓‖‖
‖∞,𝐼

= (ℎ4) for all 𝑓 ∈ 𝐶4 (𝐼).
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Proof. The result follows as a consequence of Proposition 1, Lemma 2 and Proposition 3 (see [14, Prop. 4.1]). □
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Fig. 3. Plot of the objective function.

Fig. 4. Reconstructions of a discontinuous function (19) with 𝑄𝜇1
(left) and 𝑄𝜇2

(right).

In Fig. 4 we can see the reconstruction that we obtain from the function (19) with 𝜇1 = − 1
36 and 𝜇2 =

1
36 .

An oscillation occurs around the discontinuity point, and it is clear that the magnitude of the overshoot and undershoot is lower
n the case of quasi-interpolation, i.e. 𝑄𝜇1 . This happens, because in the setting of the BB-coefficients relative to the interval in which
he discontinuity is located, values of a non-smooth stencil are used. In what follows, we will provide a non-linear improvement of
he setting of these BB-coefficients based on the WENO approach.

. WENO schemes with three points

The idea behind WENO is to split a large stencil into a number of small sub-stencils, and then associate a weight to each of them.
he weight should override the use of the values in the associated stencil if there is a jump within it. To this end, we will write each
f the three above masks as linear combinations of masks associated with stencils with three or four point values. More precisely,
e will write the quasi-interpolant 𝑄𝜇𝑓 as a convex combination of several quasi-interpolants using stencils of fewer values than

hat of the quasi-interpolant 𝑄𝜇𝑓 , i.e., we will determine three operators 𝑄𝓁 , 𝑄𝑐 and 𝑄𝑟 defined from three sub-stencils of 𝑆𝑖, such
that

𝑄𝜇𝑓|𝐼𝑖 = 𝜏𝓁𝑄𝓁𝑓
|𝐼𝑖

+ 𝜏𝑐𝑄𝑐𝑓
|𝐼𝑖

+ 𝜏𝑟𝑄𝑟𝑓
|𝐼𝑖
, (8)

with 𝜏𝓁 + 𝜏𝑐 + 𝜏𝑟 = 1, 𝜏𝑝 ≥ 0 and 𝑝 = 𝓁, 𝑐, 𝑟.
In fact, the WENO technique [2,3,19,21] is mainly based on defining

𝜔 𝓁 𝓁 𝑐 𝑐 𝑟 𝑟
517
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where 𝜔𝑝
𝑖 , 𝑝 = 𝓁, 𝑐, 𝑟, has to be built so that if 𝑓 is smooth, then 𝜔𝑝

𝑖 ≈ 𝜏𝑝 and 𝑄𝜔
𝜇𝑓|𝐼𝑖 ≈ 𝑄𝜇𝑓|𝐼𝑖 . On the other hand, if 𝑓 has a

discontinuity at (𝑥𝑖, 𝑥𝑖+1] then 𝜔𝓁
𝑖 ≈ 1, 𝜔𝑝

𝑖 ≈ 0, 𝑝 = 𝑐, 𝑟, and 𝑄𝜔
𝜇𝑓|𝐼𝑖 ≈ 𝑄𝓁

𝜇𝑓|𝐼𝑖 , keeping the properties of the latter.
Unfortunately, this cannot be apply directly to the different polynomials 𝑄𝑝

𝜇𝑓|𝐼𝑖 because the BB-coefficients that we use to
construct them depend on different stencils. What we do is to define

𝑄𝜔
𝜇𝑓|𝐼𝑖 (𝑥) = 𝑤

(

𝑥𝑖
)

B𝑖
(3,0) (𝑥) +𝑤

(

𝑣𝑖
)

B𝑖
(2,1) (𝑥) + 𝑐

(

𝑢𝑖+1
)

B𝑖
(1,2) (𝑥) +𝑤

(

𝑥𝑖+1
)

B𝑖
(0,3) (𝑥) , (10)

where, for each 𝑖,

𝑤
(

𝑥𝑖
)

= 𝜔𝓁
𝑖 < 𝛽𝓁 , 𝑓 (𝑆𝓁

𝑖 ) > + 𝜔𝑐
𝑖 < 𝛽𝑐 , 𝑓 (𝑆𝑐

𝑖 ) > + 𝜔𝑟
𝑖 < 𝛽𝑟, 𝑓 (𝑆𝑟

𝑖 ) >,

𝑤
(

𝑣𝑖
)

= 𝜔𝓁
𝑖 < 𝛾𝓁 , 𝑓 (𝑆𝓁

𝑖 ) > + 𝜔𝑐
𝑖 < 𝛾𝑐 , 𝑓 (𝑆𝑐

𝑖 ) > + 𝜔𝑟
𝑖 < 𝛾𝑟, 𝑓 (𝑆𝑟

𝑖 ) >,

𝑤
(

𝑢𝑖
)

= 𝜔𝓁
𝑖 < 𝛿𝓁 , 𝑓 (𝑆𝓁

𝑖 ) > + 𝜔𝑐
𝑖 < 𝛿𝑐 , 𝑓 (𝑆𝑐

𝑖 ) > + 𝜔𝑟
𝑖 < 𝛿𝑟, 𝑓 (𝑆𝑟

𝑖 ) >,

with [2,3,19]

𝛼𝑝𝑖 = 𝜏𝑝

(𝜀 + 𝐼𝑆𝑝
𝑖 )2

and 𝜔𝑝
𝑖 =

𝛼𝑝𝑖
𝛼𝓁𝑖 + 𝛼𝑐𝑖 + 𝛼𝑟𝑖

, (11)

for 𝑝 = 𝓁, 𝑐, 𝑟, where 𝜀 = ℎ2 and

𝐼𝑆𝓁
𝑖 = 13

12
(𝑓 (𝑥𝑖−2) − 2𝑓 (𝑥𝑖−1) + 𝑓 (𝑥𝑖))2 +

1
4
(𝑓 (𝑥𝑖−2) − 4𝑓 (𝑥𝑖−1) + 3𝑓 (𝑥𝑖))2,

𝐼𝑆𝑐
𝑖 = 13

12
(𝑓 (𝑥𝑖−1) − 2𝑓 (𝑥𝑖) + 𝑓 (𝑥𝑖+1))2 +

1
4
(𝑓 (𝑥𝑖−1) − 𝑓 (𝑥𝑖+1))2,

𝐼𝑆𝑟
𝑖 =

13
12

(𝑓 (𝑥𝑖) − 2𝑓 (𝑥𝑖+1) + 𝑓 (𝑥𝑖+2))2 +
1
4
(3𝑓 (𝑥𝑖) − 4𝑓 (𝑥𝑖+1) + 𝑓 (𝑥𝑖+2))2.

3.1. Interpolatory WENO

The stencil 𝑆𝑖 can be divided into three sub-stencils 𝑆𝓁
𝑖 ∶=

(

𝑥𝑖−2, 𝑥𝑖−1, 𝑥𝑖
)

, 𝑆𝑐
𝑖 =

(

𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1
)

and 𝑆𝑟
𝑖 =

(

𝑥𝑖, 𝑥𝑖+1, 𝑥𝑖+2
)

. We are
interested in defining masks leading to BB-coefficients providing 𝐶1-cubic quasi-interpolants exact on some space P𝑑 . Of course,
𝑑 < 3 because of the lowest number of point values used.

Problem 2. Consider the stencils 𝑆𝑝
𝑖 , where the symbol 𝑝 refers to one of the labels 𝓁, 𝑐 and 𝑟. Then, find masks 𝛽𝑝 ∶=

(

𝛽𝑝0 , 𝛽
𝑝
1 , 𝛽

𝑝
2
)

,
𝛾𝑝 ∶=

(

𝛾𝑝0 , 𝛾
𝑝
1 , 𝛾

𝑝
2
)

and 𝛿𝑝 ∶=
(

𝛿𝑝0 , 𝛿
𝑝
1 , 𝛿

𝑝
2
)

such that the quasi-interpolant 𝑄𝑝𝑓 defined on each sub-interval 𝐼𝑖 according to (2) with
BB-coefficients

𝑐
(

𝑢𝑖
)

= ⟨𝛿𝑝, 𝑓 (𝑆𝑝
𝑖 )⟩, 𝑐

(

𝑥𝑖
)

= ⟨𝛽𝑝, 𝑓 (𝑆𝑝
𝑖 )⟩, 𝑐

(

𝑣𝑖
)

=< 𝛾𝑝, 𝑓 (𝑆𝑝
𝑖 ) >

is 𝐶1-continuous and 𝑄𝑝𝑓 = 𝑓 for all 𝑓 ∈ P2.

Using the same approach used to solve Problem 1, the following result holds.

Proposition 5. Problem 2 has a unique solution provided by the following masks

1. For the left stencil 𝑆𝓁
𝑖 ,

𝛽𝓁𝜇2 = (0, 0, 1) , 𝛾𝓁𝜇2 =
( 1
6
,−2

3
, 3
2

)

, 𝛿𝓁𝜇2 =
(

−1
6
, 2
3
, 1
2

)

.

2. For the centered stencil 𝑆𝑐
𝑖 ,

𝛽𝑐𝜇2 = (0, 1, 0) , 𝛾𝑐𝜇2 =
(

−1
6
, 1, 1

6

)

, 𝛿𝑐𝜇2 =
( 1
6
, 1,−1

6

)

.

3. For the right stencil 𝑆𝑟
𝑖 ,

𝛽𝑟𝜇2 = (1, 0, 0) , 𝛾𝑟𝜇2 =
( 1
2
, 2
3
,−1

6

)

, 𝛿𝑟𝜇2 =
( 3
2
,−2

3
, 1
6

)

.

Proof. The proof is done only for the case of the masks associated with the left stencil being similar for the other cases. 𝑄𝓁𝑓 is
𝐶1-continuous if, and only if, 𝛽𝓁𝑘 −

𝛾𝓁𝑘
2 −

𝛿𝓁𝑘
2 = 0, 𝑘 = 0, 1, 2.

The quasi-interpolant 𝑄𝓁𝑓 should be exact on P2, i.e. 𝑄𝓁
(

𝑥−𝑥𝑖
ℎ

)𝑘
=
(

𝑥−𝑥𝑖
ℎ

)𝑘
, 𝑘 = 0, 1, 2. This is achieved if

𝛽𝓁0 + 𝛽𝓁1 + 𝛽𝓁2 = 1, 𝛾𝓁0 + 𝛾𝓁1 + 𝛾𝓁2 = 1, 𝛿𝓁0 + 𝛿𝓁1 + 𝛿𝓁2 = 1, 𝛽𝓁0 + 𝛽𝓁1 + 𝛽𝓁2 = 1,

2𝛽𝓁0 + 𝛽𝓁1 + 1 = 0, 2𝛾𝓁0 + 𝛾𝓁1 + 1 = 0, 𝛿𝓁0 + 1 − 𝛿𝓁2 = 0, 𝛽𝓁0 − 𝛽𝓁2 + 1 = 0,

4𝛽𝓁0 + 𝛽𝓁1 = 1, 4𝛾𝓁0 + 𝛾𝓁1 = 1, 𝛿𝓁0 + 𝛿𝓁2 = 1, 𝛽𝓁0 + 𝛽𝓁2 = 1.

It results a linear system of 14 equations, 3 guaranteeing 𝐶1-continuity and 11 ensuring the optimal order. The main matrix of
his system is non-singular, which means that there is a unique solution, which is provided in the statement. □
518
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𝑄𝜇2𝑓 defined according (2) from the masks given in (7) can be written as a convex combination of 𝑄𝓁
𝜇2
𝑓 , 𝑄𝑐

𝜇2
𝑓 and 𝑄𝑟

𝜇2
𝑓 as:

𝑄𝜇2𝑓 = 1
6

(

𝑄𝓁
𝜇2
𝑓 + 4𝑄𝑐

𝜇2
𝑓 +𝑄𝑟

𝜇2
𝑓
)

.

Theorem 6. If we take 𝜏𝓁 = 𝜏𝑟 = 1∕6, 𝜏𝑐 = 4∕6 in (11) and define

𝑄𝜔
𝜇2
𝑓
|𝐼𝑖

(𝑥) = 𝑤
(

𝑥𝑖
)

B𝑖
(3,0) (𝑥) +𝑤

(

𝑣𝑖
)

B𝑖
(2,1) (𝑥) +𝑤

(

𝑢𝑖+1
)

B𝑖
(1,2) (𝑥) +𝑤

(

𝑥𝑖+1
)

B𝑖
(0,3) (𝑥) , (12)

then, if 𝑓 is smooth, we have

• 𝑄𝜔
𝜇2
𝑓 is 𝐶1-continuous,

• 𝑄𝜔
𝜇2
𝑓 = 𝑓 for all 𝑓 ∈ P2,

• ‖

‖

‖

𝑄𝜔
𝜇2
𝑓 − 𝑓‖‖

‖∞,𝐼
= (ℎ4) for all 𝑓 ∈ 𝐶4 (𝐼),

and if 𝑓 has a discontinuity at (𝑥𝑖−1, 𝑥𝑖) then

• 𝑄𝜔
𝜇2
𝑓 is 𝐶1-continuous,

• ‖

‖

‖

𝑄𝜔
𝜇2
𝑓 − 𝑓‖‖

‖∞,[𝑎,𝑥𝑖−1]∪[𝑥𝑖 ,𝑏]
= (ℎ3).

Proof. In both cases, 𝑄𝜔
𝜇2
𝑓 is 𝐶1 smooth, since is just a combination of three smooth operators. Thus,

‖

‖

‖

𝑄𝜔
𝜇2
𝑓 − 𝑓‖‖

‖∞,𝐼
= ‖

‖

‖

𝑄𝜔
𝜇2
𝑓 −𝑄𝜇2𝑓 +𝑄𝜇2𝑓 − 𝑓‖‖

‖∞,𝐼

≤ ‖

‖

‖

𝑄𝜔
𝜇2
𝑓 −𝑄𝜇2𝑓

‖

‖

‖∞,𝐼
+ ‖

‖

‖

𝑄𝜇2𝑓 − 𝑓‖‖
‖∞,𝐼

.

By construction, if 𝑓 is smooth, then ‖

‖

‖

𝑄𝜔
𝜇2
𝑓 −𝑄𝜇2𝑓

‖

‖

‖∞,𝐼
= (ℎ4), and by Theorem 4, we have ‖

‖

‖

𝑄𝜇𝑓 − 𝑓‖‖
‖∞,𝐼

= (ℎ4), which proves

that ‖‖
‖

𝑄𝜔
𝜇2
𝑓 − 𝑓‖‖

‖∞,𝐼
= (ℎ4). This not ensures that 𝑄𝜔

𝜇2
𝑝 = 𝑝, 𝑝 ∈ P3. Although, the operator 𝑄𝜔

𝜇2
is a combination of three operator

that are exact on P2, which proves the statements in the case that 𝑓 is smooth.
If 𝑓 is discontinuous at 𝑥̄ ∈ (𝑥𝑖−1, 𝑥𝑖), then the BB-coefficients related to the intervals 𝐼𝑖+𝑗 , 𝑗 = −2,−1, 0, 1, will be affected.

Namely, at maximum two weights (𝜔𝑝) should be ≈ 0, and then

‖

‖

‖

𝑄𝜔
𝜇2
𝑓 −𝑄𝜇2𝑓

‖

‖

‖∞,𝐼𝑖
= max

{

‖

‖

‖

𝑄𝓁
𝜇2
𝑓 −𝑄𝜇2𝑓

‖

‖

‖∞,𝐽𝑖
, ‖‖
‖

𝑄𝑐
𝜇2
𝑓 −𝑄𝜇2𝑓

‖

‖

‖∞,𝐽𝑖
, ‖‖
‖

𝑄𝑟
𝜇2
𝑓 −𝑄𝜇2𝑓

‖

‖

‖∞,𝐽𝑖

}

,

being 𝐽𝑖 = [𝑎, 𝑥𝑖−1] ∪ [𝑥𝑖, 𝑏]. Moreover, ‖‖
‖

𝑄𝑝
𝜇2𝑓 −𝑄𝜇2𝑓

‖

‖

‖∞,𝑅
= (ℎ3), 𝑝 = 𝓁, 𝑐, 𝑟, in smooth regions 𝑅, which concludes the proof. □

In the case of quasi-interpolants 𝑄𝑝
𝜇𝑓 , 𝑝 = 𝓁, 𝑐, 𝑟, exact on P2, we get masks without free parameters so that we cannot write

𝑄𝜇𝑓 as a combination of 𝑄𝑝
𝜇𝑓 for any 𝜇. This can only be achieved in the case of 𝜇2 =

1
36 . Therefore, we will consider operators 𝑄𝑝

𝜇
that are exact only on P1.

3.2. Quasi-interpolatory WENO

Taking into account the previous comment, we will consider now operators 𝑄𝑝 exacts only in P1.

Proposition 7. Consider again the stencils 𝑆𝑝
𝑖 , 𝑝 = 𝓁, 𝑐, 𝑟. Define on each sub-interval 𝐼𝑖 the operators 𝑄𝑝 according to (2) with

BB-coefficients

𝑐
(

𝑢𝑖
)

= ⟨𝛿𝑝, 𝑓 (𝑆𝑝
𝑖 )⟩, 𝑐

(

𝑥𝑖
)

= ⟨𝛽𝑝, 𝑓 (𝑆𝑝
𝑖 )⟩, 𝑐

(

𝑣𝑖
)

= ⟨𝛾𝑝, 𝑓 (𝑆𝑝
𝑖 )⟩.

Then, 𝑄𝑝𝑓 are 𝐶1-continuous and 𝑄𝑝𝑓 = 𝑓 for all 𝑓 ∈ P1 if, and only if, the masks are as follows:

1. for the left stencil 𝑆𝓁
𝑖 ,

𝛽𝓁 =
(

𝛼𝓁 ,−2𝛼𝓁 , 𝛼𝓁 + 1
)

, 𝛾𝓁 =
(

𝜌𝓁 ,−2𝜌𝓁 − 1
3
, 𝜌𝓁 + 4

3

)

, 𝛿𝓁 =
(

2𝛼𝓁 − 𝜌𝓁 ,−4𝛼𝓁 + 2𝜌𝓁 + 1
3
, 2𝛼𝓁 − 𝜌𝓁 + 2

3

)

;

2. for the centered stencil 𝑆𝑐
𝑖 ,

𝛽𝑐 = (𝛼𝑐 , 1 − 2𝛼𝑐 , 𝛼𝑐 ) , 𝛾𝑐 =
(

𝜌𝑐 , 2
3
− 2𝜌𝑐 , 𝜌𝑐 + 1

3

)

, 𝛿𝑐 =
(

2𝛼𝑐 − 𝜌𝑐 ,−4𝛼𝑐 + 2𝜌𝑐 + 4
3
, 2𝛼𝑐 − 𝜌𝑐 − 1

3

)

;

3. for the right stencil 𝑆𝑟
𝑖 ,

𝛽𝑟 = (𝛼𝑟, 2 − 2𝛼𝑟, 𝛼𝑟 − 1) , 𝛾𝑟 =
(

𝜌𝑟, 5
3
− 2𝜌𝑟, 𝜌𝑟 − 2

3

)

, 𝛿𝑟 =
(

2𝛼𝑟 − 𝜌𝑟,−4𝛼𝑟 + 2𝜌𝑟 + 7
3
, 2𝛼𝑟 − 𝜌𝑟 − 4

3

)

,

𝛼𝑝 and 𝜌𝑝 being free parameters.
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The BB-coefficients of the quasi-interpolant 𝑄𝑓 defined on 𝐼𝑖 from the stencil 𝑆𝑖 and the masks given by (6) are

𝑐
(

𝑥𝑖
)

= ⟨𝛽𝜇1 , 𝑓 (𝑆𝑖)⟩, 𝑐
(

𝑣𝑖
)

= ⟨𝛾𝜇1 , 𝑓 (𝑆𝑖)⟩, 𝑐
(

𝑢𝑖+1
)

=< 𝛿𝜇1 , 𝑓 (𝑆𝑖+1) > and 𝑐
(

𝑥𝑖+1
)

=< 𝛽𝜇! , 𝑓 (𝑆𝑖+1) > .

We want to express 𝑄𝜇𝑓 in terms of the masks in Proposition 7. Then for 𝜇 = 𝜇1 we look for coefficients 𝛼𝑝 and 𝜌𝑝, 𝑝 = 𝓁, 𝑐, 𝑟, such
hat

𝑐
(

𝑥𝑖
)

= ⟨𝛽𝜇1 , 𝑓 (𝑆𝑖)⟩ =
1
3
(

⟨𝛽𝓁 , 𝑓 (𝑆𝓁
𝑖 )⟩+ < 𝛽𝑐 , 𝑓 (𝑆𝑐

𝑖 ) > +⟨𝛽𝑟, 𝑓 (𝑆𝑟
𝑖 )⟩

)

,

𝑐(𝑣𝑖) = ⟨𝛾𝜇1 , 𝑓 (𝑆𝑖)⟩ =
1
3
(

< 𝛾𝓁 , 𝑓 (𝑆𝓁
𝑖 ) > +⟨𝛾𝑐 , 𝑓 (𝑆𝑐

𝑖 )⟩+ < 𝛾𝑟, 𝑓 (𝑆𝑟
𝑖 ) >

)

, (13)

𝑐(𝑢𝑖) = ⟨𝛿𝜇1 , 𝑓 (𝑆𝑖)⟩ =
1
3
(

< 𝛿𝓁 , 𝑓 (𝑆𝓁
𝑖 ) > +⟨𝛿𝑐 , 𝑓 (𝑆𝑐

𝑖 )⟩+ < 𝛿𝑟, 𝑓 (𝑆𝑟
𝑖 ) >

)

.

It is straightforward to prove the following result.

Proposition 8. There are unique values 𝛼𝑝 and 𝜌𝑝, 𝑝 = 𝓁, 𝑐, 𝑟, such that equalities (13) are satisfied. They are

𝛼𝓁 = −1
6
, 𝛼𝑐 = 1

3
, 𝛼𝑟 = 5

6
, 𝜌𝓁 = − 1

12
, 𝜌𝑐 = 1

6
, 𝜌𝑟 = 5

12
.

The coefficients in Proposition 8 give the following masks for the interpolants 𝑄𝑝𝑓 , 𝑝 = 𝓁, 𝑐, 𝑟, defined in Proposition 7:

𝑄𝓁𝑓 ∶ 𝛽𝓁 =
(

−1
6
, 1
3
, 5
6

)

, 𝛾𝓁 =
(

− 1
12

,−1
6
, 5
4

)

, 𝛿𝓁 =
(

−1
4
, 5
6
, 5
12

)

,

𝑄𝑐𝑓 ∶ 𝛽𝑐 =
( 1
3
, 1
3
, 1
3

)

, 𝛾𝑐 =
( 1
6
, 1
3
, 1
2

)

, 𝛿𝑐 =
( 1
2
, 1
3
, 1
6

)

,

𝑄𝑟𝑓 ∶ 𝛽𝑟 =
( 5
6
, 1
3
,−1

6

)

, 𝛾𝑟 =
( 5
12

, 5
6
,−1

4

)

, 𝛿𝑟 =
( 5
4
,−1

6
,− 1

12

)

.

These quasi-interpolants are exact on P1. However, the parameters have been calculated in such a way that the initial quasi-
interpolant 𝑄𝜇1 defined from the masks in (6), which is exact on P3, is expressed from them, i.e., 𝑄𝜇1𝑓 = 𝜏𝓁𝑄𝓁𝑓 + 𝜏𝑐𝑄𝑐𝑓 + 𝜏𝑟𝑄𝑟𝑓 .
In the next result, we provide the explicit values of the parameters 𝜏𝓁 , 𝜏𝑐 and 𝜏𝑟.

Theorem 9. If we take 𝜏𝓁 = 𝜏𝑐 = 𝜏𝑟 = 1∕3 in (11) and define

𝑄𝜔
𝜇1
𝑓
|𝐼𝑖

(𝑥) = 𝑤
(

𝑥𝑖
)

B𝑖
(3,0) (𝑥) +𝑤

(

𝑣𝑖
)

B𝑖
(2,1) (𝑥) +𝑤

(

𝑢𝑖+1
)

B𝑖
(1,2) (𝑥) +𝑤

(

𝑥𝑖+1
)

B𝑖
(0,3) (𝑥) (14)

then, if 𝑓 is smooth, we have

• 𝑄𝜔
𝜇1
𝑓 is 𝐶1-continuous,

• 𝑄𝜔
𝜇1
𝑓 = 𝑓 for all 𝑓 ∈ P1,

• ‖

‖

‖

𝑄𝜔
𝜇1
𝑓 − 𝑓‖‖

‖∞,𝐼
= (ℎ4) for all 𝑓 ∈ 𝐶4 (𝐼),

and if 𝑓 has a discontinuity at (𝑥𝑖−1, 𝑥𝑖) then

• 𝑄𝜔
𝜇1
𝑓 is 𝐶1-continuous,

• ‖

‖

‖

𝑄𝜔
𝜇1
𝑓 − 𝑓‖‖

‖∞,[𝑎,𝑥𝑖−1]∪[𝑥𝑖 ,𝑏]
= (ℎ2).

Proof. Similar arguments as in Theorem 6 can be applied, however, in this case the quasi-interpolants 𝑄𝑝
𝜇1 , 𝑝 = 𝓁, 𝑐, 𝑟, are exact on

P1, meaning that ‖‖
‖

𝑄𝑝
𝜇1𝑓 −𝑄𝜇1𝑓

‖

‖

‖∞,𝑅
= (ℎ2) in smooth regions 𝑅. □

In Fig. 5 we see the reconstruction that we obtain with the WENO techniques of this section.
The BB-coefficients in (13) are specifically calculated under the condition 𝜇 = 𝜇1 = − 1

36 . However, this computation can be
extended to encompass any arbitrary free parameter 𝜇, resulting in the derivation of the masks 𝛽𝜇 , 𝛾𝜇 , and 𝛿𝜇 , as formally defined
in (5).

𝑐
(

𝑥𝑖
)

= ⟨𝛽𝜇 , 𝑓 (𝑆𝑖)⟩ = 𝑎
(

< 𝛽𝓁𝜇 , 𝑓 (𝑆
𝓁
𝑖 ) > +⟨𝛽𝑐𝜇 , 𝑓 (𝑆

𝑐
𝑖 )⟩+ < 𝛽𝑟𝜇 , 𝑓 (𝑆

𝑟
𝑖 ) >

)

,

𝑐(𝑣𝑖) = ⟨𝛾𝜇 , 𝑓 (𝑆𝑖)⟩ = (1 − 2𝑎)
(

< 𝛾𝓁𝜇 , 𝑓 (𝑆
𝓁
𝑖 ) > +⟨𝛾𝑐𝜇 , 𝑓 (𝑆

𝑐
𝑖 )⟩+ < 𝛾𝑟𝜇 , 𝑓 (𝑆

𝑟
𝑖 ) >

)

, (15)

𝑐(𝑢𝑖) = ⟨𝛿𝜇 , 𝑓 (𝑆𝑖)⟩ = 𝑎
(

< 𝛿𝓁𝜇 , 𝑓 (𝑆
𝓁
𝑖 ) > +⟨𝛿𝑐𝜇 , 𝑓 (𝑆

𝑐
𝑖 )⟩+ < 𝛿𝑟𝜇 , 𝑓 (𝑆

𝑟
𝑖 ) >

)

.

It is straightforward to prove the following result.

Proposition 10. There exist unique values 𝛼𝑝 and 𝜌𝑝 such that equalities (15) are satisfied. They are

𝛼𝓁 =
36𝜇 − 1
36𝑎

, 𝛼𝑐 =
36𝜇 − 1

18(2𝑎 − 1)
, 𝛼𝑟 =

36𝜇 − 1 + 36𝑎
36𝑎

, 𝜌𝓁 =
𝜇
𝑎
, 𝜌𝑐 = 1 + 18𝜈 − 3𝑎

9(2𝑎 − 1)
, 𝜌𝑟 =

18𝜇 − 1 + 12𝑎
18𝑎

.

Next, we will split the stencil 𝑆𝑖 into just two sub-stencils, which is maybe lead to a good accuracy, but as we will show it is not
appropriate, because we cannot avoid using the values in a non-smooth stencil, and that is due to the fact that the two sub-stencils
overlap.
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P

Fig. 5. Reconstructions of a discontinuous function (19) with 𝑄𝜔
𝜇1

(left) and 𝑄𝜔
𝜇2

(right).

4. WENO with four values

In the previous section a specific quasi-interpolant has been constructed to approximate discontinuous functions by adopting a
WENO procedure. The stencil has been decomposed into three sub-stencils, from which three quasi-interpolants are defined and
combined to form the approximant we are looking for. It is natural to ask whether such a stencil could be decomposed into two
sub-stencils and obtain a spline approximant with good properties. To do so, let us define

𝑆
𝓁
𝑖 =

(

𝑥𝑖−2, 𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1
)

and 𝑆
𝑟
𝑖 =

(

𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1, 𝑥𝑖+2
)

.

From them, two quasi-interpolants 𝑄
𝓁
𝑓 and 𝑄

𝑟
𝑓 of the form (1) are constructed in such a way that they are 𝐶1-continuous and

he quadratic/cubic polynomials are reproduced. As before, their BB-coefficients will be of the form

𝑐
(

𝑥𝑖
)

= ⟨𝛽𝑝, 𝑓 (𝑆
𝑝
𝑖 )⟩, 𝑐

(

𝑣𝑖
)

= ⟨𝛾𝑝, 𝑓 (𝑆
𝑝
𝑖 )⟩ and 𝑐

(

𝑢𝑖
)

= ⟨𝛿𝑝, 𝑓 (𝑆
𝑝
𝑖 )⟩

for labels 𝑝 equal to 𝓁 and 𝑟.
In what follows, we start by providing two interpolating cubic splines 𝑄

𝓁
𝜇𝑓 and 𝑄

𝑟
𝜇𝑓 which reproduce cubic polynomials and

they meet

𝑄𝜇𝑓 = 𝜏𝑄
𝓁
𝜇𝑓 + (1 − 𝜏)𝑄

𝑟
𝜇𝑓. (16)

Proposition 11. The quasi-interpolants 𝑄
𝓁
𝜇𝑓 and 𝑄

𝑟
𝜇𝑓 are 𝐶1-continuous and reproduce cubic polynomials if, and only if,

𝛽𝓁 = (0, 0, 1, 0) , 𝛾𝓁 =
( 1
18

,−1
3
, 7
6
, 1
9

)

, 𝛿𝓁 =
(

− 1
18

, 1
3
, 5
6
,−1

9

)

,

and

𝛽𝑟 = (0, 1, 0, 0) , 𝛾𝑟 =
(

−1
9
, 5
6
, 1
3
,− 1

18

)

, 𝛿𝑟 =
( 1
9
, 7
6
,−1

3
, 1
18

)

.

The next result shows the relation between 𝑄𝜇 , 𝑄
𝓁
𝜇 and 𝑄

𝑟
𝜇 .

roposition 12. Eq. (16) holds if, and only if, 𝜏 = 1
2 and 𝜇 = 𝜇2 =

1
36 .

Proof. The proof is straightforward, simply substitute 𝜏 and 𝜇 by their values and the result follows. □

Theorem 13. If we take 𝜏𝓁 = 𝜏𝑟 = 1∕2, 𝜏𝑐 = 0 in (11) where, now,

𝐼𝑆
𝓁
𝑖 = 1

2
(𝑓 (𝑥𝑖−2) − 2𝑓 (𝑥𝑖−1) + 𝑓 (𝑥𝑖))2 +

1
2
(𝑓 (𝑥𝑖−1) − 2𝑓 (𝑥𝑖) + 𝑓 (𝑥𝑖+1))2

+ (𝑓 (𝑥𝑖−2) − 3𝑓 (𝑥𝑖−1) + 3𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑖+1))2,

𝐼𝑆
𝑟
𝑖 =

1
2
(𝑓 (𝑥𝑖−1) − 2𝑓 (𝑥𝑖) + 𝑓 (𝑥𝑖+1))2 +

1
2
(𝑓 (𝑥𝑖) − 2𝑓 (𝑥𝑖+1) + 𝑓 (𝑥𝑖+2))2

+ (𝑓 (𝑥𝑖−1) − 3𝑓 (𝑥𝑖) + 3𝑓 (𝑥𝑖+1) − 𝑓 (𝑥𝑖+2))2,

and define

𝑄̂𝜔 𝑓 𝑥 = 𝑤
(

𝑥
) 𝑖 ( ) 𝑖 ( ) 𝑖 ( ) 𝑖
521
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where, for each 𝑖,

𝑤
(

𝑥𝑖
)

= 𝜔𝓁
𝑖 < 𝛽𝓁 , 𝑓 (𝑆𝓁

𝑖 ) > +𝜔𝑟
𝑖 ⟨𝛽

𝑟, 𝑓 (𝑆𝑟
𝑖 )⟩,

𝑤
(

𝑣𝑖
)

= 𝜔𝓁
𝑖 < 𝛾𝓁 , 𝑓 (𝑆𝓁

𝑖 ) > +𝜔𝑟
𝑖 ⟨𝛾

𝑟, 𝑓 (𝑆𝑟,
𝑖 )⟩,

𝑤
(

𝑢𝑖
)

= 𝜔𝓁
𝑖 < 𝛿𝓁 , 𝑓 (𝑆𝓁

𝑖 ) > +𝜔𝑟
𝑖 ⟨𝛿

𝑟, 𝑓 (𝑆𝑟
𝑖 )⟩,

hen, if f is smooth, it holds

• 𝑄̂𝜔
𝜇2
𝑓 is 𝐶1-continuous,

• 𝑄̂𝜔
𝜇2
𝑓 = 𝑓 for all 𝑓 ∈ P3,

• ‖

‖

‖

𝑄̂𝜔
𝜇2
𝑓 − 𝑓‖‖

‖∞,𝐼
for all 𝑓 ∈ 𝐶4 (𝐼),

and if 𝑓 has a discontinuity at (𝑥𝑖−1, 𝑥𝑖) then

• 𝑄̂𝜔
𝜇2
𝑓 is 𝐶1-continuous,

• ‖

‖

‖

𝑄̂𝜔
𝜇2
𝑓 − 𝑓‖‖

‖∞,[𝑎,𝑥𝑖−2]∪[𝑥𝑖 ,𝑏]
= (ℎ4).

Proof. The claims in the case that 𝑓 is smooth follow from the fact that both operators 𝑄
𝓁
𝜇 and 𝑄

𝑟
𝜇 are exact on P3.

If 𝑓 has a jump 𝑥̄ ∈ [𝑥𝑖−1, 𝑥𝑖], then only the BB-coefficients related to the domain points 𝑥𝑖, 𝑢𝑖, and 𝑣𝑖 will be affected. For the
BB-coefficients associated with the rest of domain points in , at least one operator 𝑄

𝓁
𝜇 and/or 𝑄

𝑟
𝜇 should be used to compute them.

Which leads to an accuracy of order 4. □

As shown in the last result, Eq. (16) fulfills only in the case of 𝜇 = 1
36 , to get a large variety of possible values of 𝜇, we may

consider that the operators 𝑄
𝓁

and 𝑄
𝑟

are of near-optimal order, i.e. instead of reproducing cubic polynomials we will assume that
they only reproduce quadratic polynomials.

Proposition 14. The quasi-interpolants 𝑄
𝓁
𝑓 and 𝑄

𝑟
𝑓 are 𝐶1-continuous and reproduce quadratic polynomials if, and only if,

𝛽𝓁 =
(

𝛼𝓁 ,−3𝛼𝓁 , 3𝛼𝓁 + 1,−𝛼𝓁
)

,

𝛾𝓁 =
(

𝜌𝓁 ,−3𝜌𝓁 − 1
6
, 3𝜌𝓁 + 1, 1

6
− 𝜌𝓁

)

,

𝛿𝓁 =
(

2𝛼𝓁 − 𝜌𝓁 ,−6𝛼𝓁 + 3𝜌𝓁 + 1
6
, 6𝛼𝓁 − 3𝜌𝓁 + 1,−2𝛼𝓁 + 𝜌𝓁 − 1

6

)

,

nd

𝛽𝑟 = (𝛼𝑟, 1 − 3𝛼𝑟, 3𝛼𝑟,−𝛼𝑟) ,

𝛾𝑟 =
(

𝜌𝑟, 1
2
− 3𝜌𝑟, 3𝜌𝑟 + 2

3
,−𝜌𝑟 − 1

6

)

,

𝛿𝑟 =
(

2𝛼𝑟 − 𝜌𝑟,−6𝛼𝑟 + 3𝜌𝑟 + 3
2
, 6𝛼𝑟 − 3𝜌𝑟 − 2

3
,−2𝛼𝑟 + 𝜌𝑟 + 1

6

)

,

where 𝛼𝓁 , 𝛼𝑟, 𝜌𝓁 and 𝜌𝑟 are free parameters.

The following result holds.

Proposition 15. Eq. (16) holds if, and only if,

𝜇 = (𝜏 − 1)𝛼𝑟 + 1
36

, 𝛼𝓁 =
(𝜏 − 1)𝛼𝑟

𝜏
, 𝜌𝓁 =

36(𝜏 − 1)𝛼𝑟 + 1
36𝜏

, 𝜌𝑟 = 𝛼𝑟 + 5 − 6𝜏
36(𝜏 − 1)

, (17)

r

𝜇 = 𝜏 + 1
36

, 𝛼𝓁 = 1
36

, 𝛼𝑟 = 𝜏
36(𝜏 − 1)

, 𝜌𝓁 = 𝜏 + 1
36𝜏

, 𝜌𝑟 = − 5
36

. (18)

Taking 𝜏 = 1∕2 and 𝜇 = 𝜇1 = −1∕36 in (17), we obtain the masks

𝛽𝓁 =
(

−1
9
, 1
3
, 2
3
, 1
9

)

, 𝛾𝓁 =
(

− 1
18

, 0, 5
6
, 2
9

)

, 𝛿𝓁 =
(

−1
6
, 2
3
, 1
2
, 0
)

,

𝛽𝑟 =
( 1
9
, 2
3
, 0,−1

9

)

, 𝛾𝑟 =
(

0, 1
2
, 2
3
,−1

6

)

, 𝛿 =
( 2
9
, 5
6
, 0,− 1

18

)

.

Now, taking 𝜏 = 1∕2 in (18), we obtain 𝜇3 =
1
24

𝛽𝓁 =
( 1
36

,− 1
12

, 13
12

,− 1
36

)

, 𝛾𝓁 =
( 1
12

,− 5
12

, 5
4
, 1
12

)

, 𝛿𝓁 =
(

− 1
36

, 1
4
, 11
12

,− 5
36

)

,

𝛽𝑟 =
(

− 1 , 13 ,− 1 , 1 )

, 𝛾𝑟 =
(

− 5 , 11 , 1 ,− 1 )

, 𝛿𝑟 =
( 1 , 5 ,− 5 , 1 )

.
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Theorem 16. If we take the masks given in Propositions 14 and 15 and define 𝑄̂𝜔
𝜇 using the WENO strategy like in Theorem 13, if 𝑓 is

smooth, we have

• 𝑄̂𝜔
𝜇𝑓 is 𝐶1-continuous,

• 𝑄̂𝜔
𝜇𝑓 = 𝑓 for all 𝑓 ∈ P2,

• ‖

‖

‖

𝑄̂𝜔
𝜇𝑓 − 𝑓‖‖

‖∞,𝐼
= (ℎ4) for all 𝑓 ∈ 𝐶4 (𝐼),

and if 𝑓 has a discontinuity at (𝑥𝑖−1, 𝑥𝑖) then

• 𝑄̂𝜔
𝜇𝑓 is 𝐶1-continuous,

• ‖

‖

‖

𝑄̂𝜔
𝜇𝑓 − 𝑓‖‖

‖∞,[𝑎,𝑥𝑖−2]∪[𝑥𝑖 ,𝑏]
= (ℎ3).

Proof. The proof is similar to that of Theorem 13. □

5. ENO with four points

The use of 4-valued sub-stencils is not suitable, because it may be that the discontinuity occurs for example between the points
𝑥𝑖 and 𝑥𝑖+1, in this case, the two operators 𝑄

𝓁
𝜇 and 𝑄

𝑟
𝜇 become affected by the discontinuity. Therefore, it is better to apply, in case

one wants to use four values in each sub-stencil, ENO technique with four points on the right and four points on the left.
In this section we consider two stencils of four points that are not centered at 𝑥𝑖. Define,

𝑆
𝓁
𝑖 =

{

𝑥𝑖−3, 𝑥𝑖−2, 𝑥𝑖−1, 𝑥𝑖
}

, 𝑆
𝑟
𝑖 =

{

𝑥𝑖, 𝑥𝑖+1, 𝑥𝑖+2, 𝑥𝑖+3
}

.

Again consider two quasi-interpolants 𝑄
𝓁
𝜇𝑓 and 𝑄

𝑟
𝜇𝑓 of the form (1) such that both quasi-interpolants are 𝐶1-continuous and

reproduce cubic polynomials. More precisely, their BB-coefficients will be of the form:

𝑐
(

𝑥𝑖
)

= ⟨𝛽𝑝, 𝑓 (𝑆
𝑝
𝑖 )⟩, 𝑐

(

𝑢𝑖
)

= ⟨𝛿𝑝, 𝑓 (𝑆
𝑝
𝑖 )⟩ and 𝑐

(

𝑣𝑖
)

= ⟨𝛾𝑝, 𝑓 (𝑆
𝑝
𝑖 )⟩, 𝑝 = 𝓁, 𝑟.

Proposition 17. The quasi-interpolant 𝑄
𝓁
𝜇𝑓 , resp. 𝑄

𝑟
𝜇𝑓 , is 𝐶1-continuous and reproduce cubic polynomials if and only if:

𝛽𝓁 = {0, 0, 0, 1}, 𝛾𝓁 =
{

−1
9
, 1
2
,−1, 29

18

}

, 𝛿𝓁 =
{1
9
,−1

2
, 1, 7

18

}

,

resp.

𝛽𝑟 = {1, 0, 0, 0}, 𝛾𝑟 =
{ 7
18

, 1,−1
2
, 1
9

}

, 𝛿𝑟 =
{29
18

,−1, 1
2
,−1

9

}

.

Proof. The proof runs as in Proposition 3. □

Theorem 18. If we define

𝑄̄𝑒
𝜇𝑓|𝐼𝑖 (𝑥) = 𝑤

(

𝑥𝑖
)

B𝑖
(3,0) (𝑥) +𝑤

(

𝑣𝑖
)

B𝑖
(2,1) (𝑥) + 𝑐

(

𝑢𝑖+1
)

B𝑖
(1,2) (𝑥) +𝑤

(

𝑥𝑖+1
)

B𝑖
(0,3) (𝑥) ,

where, for each 𝑖,

𝑤
(

𝑥𝑖
)

= (𝐼𝑆
𝓁
𝑖 < 𝐼𝑆

𝑟
𝑖 ) ⟨𝛽

𝓁 , 𝑆
𝓁
𝑖 ⟩ + (𝐼𝑆

𝓁
𝑖 ≥ 𝐼𝑆

𝑟
𝑖 ) ⟨𝛽

𝑟, 𝑆
𝑟
𝑖 ⟩,

𝑤
(

𝑣𝑖
)

= (𝐼𝑆
𝓁
𝑖 < 𝐼𝑆

𝑟
𝑖 ) ⟨𝛾

𝓁 , 𝑆
𝓁
𝑖 ⟩ + (𝐼𝑆

𝓁
𝑖 ≥ 𝐼𝑆

𝑟
𝑖 ) ⟨𝛾

𝑟, 𝑆
𝑟
𝑖 ⟩,

𝑤
(

𝑢𝑖
)

= (𝐼𝑆
𝓁
𝑖 < 𝐼𝑆

𝑟
𝑖 ) ⟨𝛿

𝓁 , 𝑆
𝓁
𝑖 ⟩ + (𝐼𝑆

𝓁
𝑖 ≥ 𝐼𝑆

𝑟
𝑖 ) ⟨𝛿

𝑟, 𝑆
𝑟
𝑖 ⟩,

where [3,21]

𝐼𝑆
𝓁
𝑖 = 1

2
(𝑓 (𝑥𝑖−3) − 2𝑓 (𝑥𝑖−2) + 𝑓 (𝑥𝑖−1))2 +

1
2
(𝑓 (𝑥𝑖−2) − 2𝑓 (𝑥𝑖−1) + 𝑓 (𝑥𝑖))2

+ (𝑓 (𝑥𝑖−3) − 3𝑓 (𝑥𝑖−2) + 3𝑓 (𝑥𝑖−1) − 𝑓 (𝑥𝑖))2,

𝐼𝑆
𝑟
𝑖 =

1
2
(𝑓 (𝑥𝑖) − 2𝑓 (𝑥𝑖+1) + 𝑓 (𝑥𝑖+2))2 +

1
2
(𝑓 (𝑥𝑖+1) − 2𝑓 (𝑥𝑖+2) + 𝑓 (𝑥𝑖+3))2

+ (𝑓 (𝑥𝑖) − 3𝑓 (𝑥𝑖+1) + 3𝑓 (𝑥𝑖+2) − 𝑓 (𝑥𝑖+3))2,
523
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Fig. 6. Reconstructions of a discontinuous function (19) with 𝑄̂𝜔
𝜇2
𝑓 (left) and 𝑄̄𝑒

𝜇𝑓 (right).

then, if f is smooth, it holds

• 𝑄̄𝑒
𝜇𝑓 is 𝐶1-continuous,

• 𝑄̄𝑒
𝜇𝑓 = 𝑓 for all 𝑓 ∈ P3,

• ‖

‖

‖

𝑄
𝑒
𝜇𝑓 − 𝑓‖‖

‖∞,𝐼
= (ℎ4) for all 𝑓 ∈ 𝐶4 (𝐼),

and if 𝑓 has a discontinuity at (𝑥𝑖−1, 𝑥𝑖) then

• 𝑄̄𝑒
𝜇𝑓 is 𝐶1-continuous,

• ‖

‖

‖

𝑄
𝑒
𝜇𝑓 − 𝑓‖‖

‖∞,[𝑎,𝑥𝑖−1]∪[𝑥𝑖 ,𝑏]
= (ℎ4).

Proof. The claims in both cases are stated from the fact that 𝑄
𝑝
𝜇𝑓 = 𝑓 , 𝑓 ∈ P3, 𝑝 = 𝓁, 𝑟. □

In Fig. 6 we see the results that we obtain with the techniques of this and the previous sections. It is clear that WENO with four
oints cannot eliminate the oscillations around the singularity, as shown in Fig. 6 (left) on the left. However, the ENO technique
ith four points yields good results (Fig. 6, right).

. Numerical experiments

In this section we show numerical experiments that corroborate the theoretical results presented in this paper.

.1. Order of reconstruction

We consider the interval 𝐼 = [0, 1] and the discontinuous function

𝑓 (𝑥) ∶=

{

𝑒𝑥, if 0 ≤ 𝑥 < 0.5,

1 + 𝑒𝑥2 , if 0.5 ≤ 𝑥 ≤ 1.
(19)

We use the set of grids 𝑃𝑁𝑘
with 𝑁𝑘 = 2𝑘, 𝑘 = 6,… , 11, to obtain different approximations 𝑓𝑘(𝑥) ∶= 𝑄𝑓 (𝑥) to 𝑓 (𝑥). We calculate

the approximation errors on the intervals [𝑐, 1], 𝑐 ∈ {𝑥𝑘𝑁𝑘∕2
, 𝑥𝑘𝑁𝑘∕2+1

, 𝑥𝑘3𝑁𝑘∕4
}, by

𝑒𝑐𝑘 ∶= sup
𝑥∈[𝑐,1]

{|𝑓𝑘(𝑥) − 𝑓 (𝑥)|}.

For 𝑐 = 𝑥𝑘3𝑁𝑘∕4
= 0.75, we are evaluating the error on a smooth area. For 𝑐 = 𝑥𝑘𝑁𝑘∕2

= 0.5 we have a region next to a discontinuity.
The value 𝑐 = 𝑥𝑘𝑁𝑘∕2+1

is used due to theoretical results in Theorem 13. We also evaluate log2(𝑒𝑐𝑘+1∕𝑒
𝑐
𝑘) for 𝑘 = 4,… , 8. Note that if

𝑒𝑐𝑘 = 𝑂( 1
𝑁𝑛

𝑘
) then log2(𝑒𝑐𝑘+1∕𝑒

𝑐
𝑘) ≈ 𝑛. We use all the methods presented in this paper, which are 𝑄𝜇1 (Theorem 4), 𝑄𝜇2 (Theorem 4),

𝜔
𝜇2

(Theorem 6), 𝑄𝜔
𝜇1

(Theorem 9), 𝑄̂𝜔
𝜇2

(Theorem 13) and 𝑄̄𝑒
𝜇 (Theorem 18) (see Tables 1–3).

.2. Reconstruction

Now, we give some graphical results to confirm the reduction of the Gibbs phenomenon using the WENO technique. Now, we
iscretize function (19) with 23 + 1 = 9 points and from them we reconstruct the function with different QI operators. In Figs. 7–9
524

e see the results we obtain. In Figs. 4–6 we see a zoom of these figures.
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Table 1
Numerical orders of approximation log2(𝑒𝑐𝑘+1∕𝑒

𝑐
𝑘) for different QI

splines and 𝑐 = 𝑥𝑘3𝑁𝑘∕4
= 0.75 (smooth area [[0.75, 1]).

𝑄𝜇1
𝑄𝜇2

𝑄𝜔
𝜇2

𝑄𝜔
𝜇1

𝑄̂𝜔
𝜇2

𝑄̄𝑒
𝜇

3.98 3.97 4.02 3.98 3.97 3.91
3.99 3.99 3.99 3.98 3.99 3.94
3.99 3.99 3.99 3.99 3.99 3.97
4.00 4.00 4.00 4.00 4.00 3.99
4.00 3.99 3.97 4.00 3.99 3.99

Table 2
Numerical orders of approximation log2(𝑒𝑐𝑘+1∕𝑒

𝑐
𝑘) for different QI

splines and 𝑐 = 𝑥𝑘2𝑁𝑘∕2
= 0.5 (next to a discontinuity [0.5, 1]).

𝑄𝜇1
𝑄𝜇2

𝑄𝜔
𝜇2

𝑄𝜔
𝜇1

𝑄̂𝜔
𝜇2

𝑄̄𝑒
𝜇

0.00 0.01 3.03 2.03 0.01 3.91
0.00 0.00 3.01 2.01 0.00 3.94
0.00 0.00 3.01 2.01 0.00 3.97
0.00 0.00 3.00 2.00 0.00 3.99
0.00 0.00 3.00 2.00 0.00 3.99

Table 3
Numerical orders of approximation log2(𝑒𝑐𝑐𝑘+1∕𝑒𝑐𝑘) for different
QI splines and 𝑐 = 𝑥𝑘2𝑁𝑘∕2+1

(close to a discontinuity [𝑥𝑘𝑁𝑘∕2+1
, 1].

𝑄𝜇1
𝑄𝜇2

𝑄𝜔
𝜇2

𝑄𝜔
𝜇1

𝑄̂𝜔
𝜇2

𝑄̄𝑒
𝜇

0.01 0.01 3.03 2.03 3.97 3.91
0.00 0.00 3.01 2.02 3.99 3.94
0.00 0.00 3.01 2.01 3.99 3.97
0.00 0.00 3.00 2.00 4.00 3.99
0.00 0.00 3.00 2.00 3.99 3.99

Fig. 7. Reconstruction with 𝑄𝜇1
(left) and 𝑄𝜇2

(right).

Finally, we consider 𝑢0(𝑥) taken from [20] and which a function that is the initial condition of a conservation laws equation.

𝑢0(𝑥) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(𝐺(𝑥, 𝑧 − 𝛿) + 𝐺(𝑥, 𝑧 + 𝛿) + 4𝐺(𝑥, 𝑧))∕6, −0.8 ≤ 𝑥 ≤ −0.6,

1, −0.4 ≤ 𝑥 ≤ −0.2,

1 − |10 (𝑥 − 0.1)|, 0 ≤ 𝑥 ≤ 0.2,

(𝐹 (𝑥, 𝑎 − 𝛿) + 𝐹 (𝑥, 𝑎 + 𝛿) + 4𝐹 (𝑥, 𝑎))∕6, 0.4 ≤ 𝑥 ≤ 0.6,

0, otherwise,

(20)

where 𝐺(𝑥, 𝑧) = 𝑒−𝛽(𝑥−𝑧)2 and 𝐹 (𝑥, 𝑎) = max(1−𝛼2(𝑥−𝑎), 0)1∕2. We take the constants 𝑎 = 0.5, 𝑧 = −0.7, 𝛿 = 0.005, 𝛼 = 10 and 𝛽 = 𝑙𝑜𝑔2
36𝛿2 .

The function (20) is discretized with 𝑁5 = 25 values and with them we have applied the 𝑄𝜇2 and 𝑄𝑤
𝜇2

methods. In Fig. 10 we
how the obtained results. It is clear that the reconstruction obtained from 𝑄𝑤 is better than 𝑄 . We observe that the use of linear
525
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Fig. 8. Reconstructions with 𝑄𝜔
𝜇1

(left) and 𝑄𝜔
𝜇2

(right).

Fig. 9. Reconstructions with Left 𝑄̂𝜔
𝜇2

(left) and 𝑄̄𝑒
𝜇 (right).

Fig. 10. Reconstructions with different cubic QI splines. 𝑄̂𝜔
𝜇2

, right 𝑄̄𝑒
𝜇 .
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spline schemes causes oscillations around the jumps, whereas non-linear enhancement based on the WENO technique ensures the
avoidance of these oscillations.

7. Conclusion

In this paper several non-linear spline schemes in Bernstein–Bézier form are presented. All of them are optimal in smooth regions,
nd have different behaviors and orders of accuracy near the singularity point.

The construction used here allows a direct choice of positive weights for the WENO technique, which permits us to avoid
upplementary treatment whenever negative weights appear.
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