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Abstract— We introduce and characterize the Multi-cluster
Fluctuating Two-Ray (MFTR) fading channel, generalizing both
the fluctuating two-ray (FTR) and the κ-µ shadowed fading mod-
els through a more general yet equally mathematically tractable
model. We derive all the chief probability functions of the MFTR
model such as probability density function (PDF), cumulative
distribution function (CDF), and moment generating function
(MGF) in closed-form, having a mathematical complexity similar
to other fading models in the state-of-the-art. We also provide two
additional analytical formulations for the PDF and the CDF: (i) in
terms of a continuous mixture of κ-µ shadowed distributions, and
(ii) as an infinite discrete mixture of Gamma distributions. Such
expressions enable to conduct performance analysis under MFTR
fading by directly leveraging readily available results for the κ-µ
shadowed or Nakagami-m cases, respectively. We demonstrate
that the MFTR fading model provides a much better fit than
FTR and κ-µ shadowed models for small-scale measurements of
channel amplitude in outdoor Terahertz (THz) wireless links.
Finally, the performance of wireless communications systems
undergoing MFTR fading is exemplified in terms of classical
benchmarking metrics like the outage probability, both in exact
and asymptotic forms, and the amount of fading.

Index Terms— Generalized fading channels, wireless channel
modeling, moment generating function, multipath propagation,
fluctuating two-ray.

I. INTRODUCTION

AS RADIO signals travel along a certain propagation
environment, their interaction with objects, system agents
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and the propagation medium itself causes a number of effects
that ultimately determine the amount of power being received
at a given location. Classically, these phenomena have been
well-characterized through the central limit theorem (CLT),
that gives rise to a family of Gaussian models, being the most
popular and widespread-used the Rayleigh/Rician models and
also including more general ones like the Hoyt and Beckmann
models [1], [2]. While CLT-based models have sufficed to
characterize the effects of fading for decades, the rapid growth
of wireless technologies along the 21st century requires more
sophisticated efforts to properly capture the intrinsic nature of
wireless propagation as we move up in frequency (where the
CLT assumption may no longer hold) [3], [4], or when new
use cases demand for improved accuracy, especially in highly
low-outage regimes [5], [6].

The key advances in wireless fading channel modeling
during the last years have been largely based on two
different approaches. On the one hand, power envelope-based
formulations were used by Yacoub to propose two families
of generalized models: the κ-µ and the η-µ distributions
[7]. These distributions were later generalized and unified
through the κ-µ shadowed fading distribution [8], [9], which
has become rather popular in the literature thanks to its
ability to model a wide number of propagation conditions
through a limited set of physically-justified parameters. On the
other hand, ray-based formulations express the received signal
as a superposition of a number of scattered waves with
random phases [10]. Despite their clear physical motivation,
the mathematical complexity associated to ray-based models
grows when more than a few dominant waves are individually
accounted for [11]. However, Durgin’s Two-Wave with
Diffuse Power (TWDP) fading model and its subsequent
generalizations [3], [12], [13] have also managed to become
popular in the context of wireless channel modeling for
higher-frequency bands. Specifically, the Fluctuating Two-Ray
(FTR) fading model [3] has widely been adopted in mm-
Wave environments, and even recently in terahertz (THz)
bands [14].

Key to their success, the κ-µ shadowed and the FTR
fading models share a number of features that are desirable
for a stochastic fading model to be of practical use:
(i) have a small number (three, in both cases) of physically
justified parameters; (ii) have a reasonably good mathematical
tractability; (iii) include simpler but popular fading models
as special cases. However, because these two models arise
from different physical formulations, they do not capture the
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same type of propagation behaviors. For instance, the FTR
model has the ability to exhibit bimodality that often appears
in field measurements [14], [15], [16], while the κ-µ shadowed
one is inherently unimodal in its original formulation [8].
On the other hand, the κ-µ shadowed model can exhibit
any sort of power-law asymptotic decay (diversity order),
while ray-based models asymptotically decay with unitary
slope [11].

Aiming to reconcile the two dominant approaches in the
literature of stochastic fading channel modeling, which have
hitherto evolved separately, we here introduce the Multi-cluster
Fluctuating Two-Ray (MFTR) fading model. This newly
proposed model is presented as the natural generalization and
unification of both the FTR and the κ-µ shadowed fading
models. Such generalization enables the presence of additional
multipath clusters in the purely ray-based FTR model, and the
consideration of two fluctuating specular components within
one of the clusters, typically the first one received, of the
κ-µ shadowed formulation. Despite being a generalization of
the FTR and the κ-µ shadowed models, only one additional
parameter is required over these baseline models. As we will
later see, the MFTR model not only inherits the bimodality
and asymptotic decay properties exhibited separately by the
FTR and κ-µ shadowed models, respectively, but also brings
out additional flexibility to model propagation features not
captured by the models from which it is originated. The
resulting formulations of the MFTR statistics are as tractable
as those of the simpler baseline models, and of other fading
models in the state-of-the-art. The key contributions of this
work can be listed as follows:
• We derive the chief probability functions for the MFTR

model, i.e., probability density function (PDF), cumula-
tive distribution function (CDF), and moment generating
function (MGF) in closed-form. These expressions allow
for the computation of the MFTR statistics using
special functions similar to those used in simpler, well-
established fading models such as Rician shadowed [17],
κ-µ shadowed [8], or FTR [3].

• Aiming to facilitate the use of the MFTR fading
model for performance analysis purposes, we provide
two alternative analytical formulations for the PDF and
the CDF: one in terms of a continuous mixture of
κ-µ shadowed distributions, and another one as an
infinite discrete mixture of Gamma distributions. This
allows to leverage the rich literature of performance
analysis, so that existing results available either for
the κ-µ shadowed or the Nakagami-m cases can be
used as a starting point to straightforwardly analyze the
performance under MFTR fading.

• To experimentally validate the suitability of our model
for experimental data, we carried out a fit of the MFTR
model to small-scale fading field measurements in the
terahertz (THz) band for outdoor line-of-sight (LOS) and
non-line-of-sight (NLOS) environments.

• These results are used to analyze i) the outage probability,
ii) the average bit error rate (BER), and iii) the ergodic
capacity (EC), under MFTR fading channels. The former
two metrics are derived in exact and asymptotic form.

Also, we study the impact of the model parameters on
the amount of fading (AoF) metric.

The remainder of this paper is organized as follows:
preliminaries and channel models are described in Section II.
In Section III, analytical expressions are derived for the main
statistics of the MFTR model. In section IV, we introduce
the empirical validation of our fading model by fitting the
MFTR model to a small-scale fading measurements campaign
in outdoor THz wireless channels. Then, in Section V,
performance analysis over MFTR fading channels is exem-
plified. Section VI shows illustrative numerical results and
discussions. Finally, concluding remarks are provided in
Section VII.

Notation: In what follows, f(·)(·) and F(·)(·) denote the PDF
and CDF, respectively; E {·} and V {·} are the expectation
and variance operators; Pr {·} represents probability; |·| is the
absolute value, ≃ refers to “asymptotically equal to”, ≡ reads
as “is equivalent to”, ≈ denotes “approximately equal to”
and ∼ refers to “statistically distributed as”. In addition,
Γ(·) denotes the gamma function [18, Eq. (6.1.1)], γ(·, ·)
is the lower incomplete gamma function [18, Eq. (6.5.2)],
(a)n = Γ(a+n)

Γ(a) represents the Pochhammer’s symbol [18],
U (·, ·, ·) is the confluent hypergeometric Kummer function
[19, Eq. (9.211)], 2F1 (·, ·; ·; ·) is the Gauss hypergeometric
function [18, Eq. (15.1.1)], Pα(z) = 2F1

(
−α, α + 1; 1; 1−z

2

)
is the Legendre function of the first kind of real degree
α [18, Eq. (8.1.2)], F

(4)
D (·, ·, ·, ·, ·; ·; ·, ·, ·, ·) denotes the

Lauricella hypergeometric function in four variables [20,
Eq. (4), p. 33], Φ(4)

2 (·, ·, ·, ·; ·; ·, ·, ·, ·) denotes the confluent
hypergeometric function in four variables [20, Eq. (8), p. 34],
and Φ2 (·, ·; ·; ·, ·) is the bivariate confluent hypergeometric
function [21, Eq. (4.19)].

II. PRELIMINARIES AND CHANNEL MODELS

According to [12], the small-scale random fluctuations of
a radio signal transmitted over a wireless channel can be
structured at the receiver as a superposition of N waves
arising from dominant (specular) components, plus a group
of multipath waves associated to diffuse scattering. Therefore,
under this model, the received complex baseband signal
representing the wireless channel can be expressed as

Vr =
N∑

n=1

Vn exp (jϕn) + X1 + jY1, (1)

where Vn exp(jϕn) denotes the nth specular component with
constant amplitude Vn and uniformly distributed random phase
ϕn ∼ U(0, 2π). On the other hand, X1 + jY1 is a circularly-
symmetric complex Gaussian random variable (RV) with total
power 2σ2, such that X1, Y1 ∼ N (0, σ2), representing the
scattering components associated to the NLOS propagation.
This model allows to individually account for a number of
dominant waves, together with the application of the CLT to
the diffuse component, where a sufficiently large number of
weak diffuse waves with independent phases is assumed.

The FTR channel model was proposed in [3] as a
generalization of the TWDP model [12], where the latter arises
when considering two dominant specular components (i.e.,
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N = 2) in (1). For its definition, the FTR model considers that
the amplitudes of these two dominant components experience a
joint fluctuation due to natural situations in different wireless
scenarios (e.g., human body shadowing do to user motion,
electromagnetic disturbances, and many others). Based on this,
the complex signal under FTR fading can be formulated as [3]

VFTR =
√

ζV1 exp (jϕ1) +
√

ζV2 exp (jϕ2) + X1 + jY1,

(2)

where ζ is a unit-mean Gamma distributed RV whose PDF is
given by

fζ(x) =
mmxm−1

Γ(m)
exp (−mx) , (3)

where m denotes the shadowing severity index of the specular
components. Note that when m →∞, then ζ degenerates into
a deterministic value and the amplitudes of the two dominant
specular components in (2) become constant. The FTR model
in (2), besides fitting well with the field measurements
in different wireless scenarios, also encompasses important
statistical wireless channel models as particular cases. For
instance, when no specular components are present in (2), i.e.,
N = 0, the classical Rayleigh fading model arises. For a single
LOS component, i.e., N = 1, two fading models are obtained,
namely, Rician and Rician shadowed [17] for constant and
fluctuating amplitudes, respectively. Finally, for the case in
which there are two dominant components (i.e., N = 2) with
constant amplitudes, (2) reduces to the TWDP fading model,
also referred to as the Generalized Two-Ray fading model with
uniformly distributed phases (GTR-U) [13].

On the other hand, power-envelope based formulations as
those originally proposed by Yacoub [7] are defined from
a different approach. Specifically, the squared amplitude (or
instantaneous received power) of the κ-µ shadowed fading
model is expressed as [8]

R2 =
µ∑

i=1

|Zi +
√

ζpi|2, (4)

where µ wave clusters are defined, the complex variables Zi

denote the diffuse components associated to each cluster, ζ is
a unit-mean Gamma distributed RV, as given in (3), and pi are
complex amplitudes for the dominant components within each
cluster. Notice that the FTR model in (2) can be physically
interpreted as a single cluster in which both the specular and
the diffuse components are part of the same cluster structure.
With this in mind, we can combine a power-envelope definition
as the one in (4) with the ray-based structure in (2) as follows.

As in [7], we consider a wireless signal composed
of clusters of waves propagating in a non-homogeneous
environment. Within each cluster, the scattered waves have
random phases and similar delay times, while the intercluster
delay-time spreads are assumed to be relatively large. All
clusters of the multipath waves are assumed to have scattered
waves with identical powers. Now, in the first cluster (which
typically represents the first one arriving), two dominant
specular components with random phases and arbitrary power
are considered, as in (2), whereas in the rest of the clusters

a specular component may also be present. Similarly to
the models in [3] and [8], a dominant components are
subject to the same source of random fluctuations. Under this
channel model, the squared amplitude of the received signal
is expressed as

R2 =

∣∣∣∣∣∣∣
√

ζ
(
V1e

jϕ1 + V2e
jϕ2
)

+ Z1︸ ︷︷ ︸
cluster 1:VFTR

∣∣∣∣∣∣∣
2

+
µ∑

i=2

∣∣∣√ζUie
jφi + Zi

∣∣∣2︸ ︷︷ ︸,
additional clusters

(5)

where Zi = Xi + jYi, for i = {1, . . . , µ} in which Xi and
Yi are mutually independent zero-mean Gaussian processes
with σ2 variance, i.e., E{X2

i } = E{Y 2
i } = σ2. In cluster 1,

the complex RVs represented by Vn exp(jϕn), for n = {1, 2}
denote the dominant specular components of the first arriving
cluster, whereas Ui exp(jφi) denotes the specular component
of the ith cluster with constant amplitude Ui and uniformly
distributed random phase φi ∼ U(0, 2π). All the clusters are
subject to the same source of random fluctuations as in the
FTR and κ-µ shadowed models, denoted by the normalized
RV ζ. For the model in (5), we coin the name multicluster
FTR (MFTR) model, to indicate the presence of additional
multipath clusters in the original FTR model.

Because of the way it has been defined, the MFTR model
defined in (5) includes both the FTR and the κ-µ shadowed
models as special cases, which have independently been
validated, empirically matching different wireless scenarios
[3], [8], which guarantees the practical usefulness of the
proposed model.

As in [7] and [8], even though the cluster number µ
is inherently a natural number, the MFTR model admits
a generalization for µ ∈ R+, which is considered in the
subsequent derivations.

III. STATISTICAL CHARACTERIZATION
OF THE MFTR FADING MODEL

In this section, the key first-order statistics of the newly
proposed MFTR model are derived: the MGF, PDF and CDF.
In the following derivations, let us consider the received power
signal of the MFTR model, i.e., W = R2, which from (5) can
be rewritten as

W =
(√

ζ (V1 cos ϕ1 + V2 cos ϕ2) + X1

)2

+
(√

ζ (V1 sin ϕ1 + V2 sin ϕ2) + Y1

)2

+
µ∑

i=2

[(√
ζUi cos φi + Xi

)2

+
(√

ζUisinφi + Yi

)2
]

.

(6)

As in [3], the MFTR model can be conveniently expressed by
introducing the parameters K and ∆, which are respectively
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defined as

K =
V 2

1 + V 2
2 +

µ∑
i=2

U2
i

2σ2µ
, (7)

∆ =
2V1V2

V 2
1 + V 2

2 +
µ∑

i=2

U2
i

. (8)

The MFTR fading model is univocally defined by four shape
parameters: {K, m, µ} ∈ R+ and ∆ ∈ [0, 1]. Similar to the
interpretation of the Rician K factor, K represents the ratio of
the average power of the specular components to the power of
the remaining scattered components. On the other hand, the ∆
parameter ranging from 0 to 1 shows how similar to each other
are the average received powers of the dominant components
in cluster 1 and how much power is allocated to the specular
components of the rest of the clusters. Thus, when only one
specular component is present in cluster 1 (V1 or V2 = 0) then
∆ = 0, and the MFTR model collapses to the κ-µ shadowed
model. When the magnitudes of the two specular components
of the first cluster are equal (V1 = V2) and the remaining
clusters lack specular components (Ui = 0 for i = {2, . . . , µ})
then ∆ = 1. Furthermore, notice that for µ = 1 the MFTR
model yields the FTR fading model and the definitions of K
and ∆ of both models coincide.

Next, we introduce the distribution of the received power
signal (or equivalently the instantaneous signal-to-noise ratio
(SNR) when the noise comes into play) of the MFTR
fading model. It is worth mentioning that the statistical
characterization of the instantaneous received SNR, here
denoted by γ, plays a pivotal role in designing or evaluating
the performance of many practical wireless systems. Let
γ ≜ (Es/N0)W be the instantaneous received SNR through
the MFTR fading channel, with Es and N0 representing,
respectively, the energy density per symbol and the power
spectral density. Mathematically speaking, from (6), γ can be
formulated as

γ =
Es

N0
E {W}

=
Es

N0

(
E
{∣∣∣√ζ

(
V1e

jϕ1 + V2e
jϕ2
)

+ X1 + jY1

∣∣∣2}

+
µ∑

i=2

E
{∣∣∣√ζUie

jφi + Xi + jYi

∣∣∣2})

=
Es

N0

(
V 2

1 + V 2
2 + 2σ2 +

µ∑
i=2

(
U2

i + 2σ2
))

=
Es

N0

(
V 2

1 + V 2
2 +

µ∑
i=2

U2
i + 2σ2µ

)
(a)
=

Es

N0
2σ2µ(1 + K). (9)

where in step (a), we employ (7) with the respective
substitutions. With the aid of the previous definitions, the chief
probability functions concerning the MFTR channel model can
be derived as follows.

A. MGF

In the first Lemma, presented below, we obtain a closed-
form expression for the MGF.

Lemma 1: The MGF of the instantaneous received SNR γ
under MFTR fading can be expressed as

Mγ (s) =
mmµµ(1 + K)µ(µ (1 + K)− γs)m−µ(√

R(µ, m,K, ∆; s)
)m

× Pm−1

(
mµ (1 + K)− (µK + m) γs√

R(µ, m,K, ∆; s)

)
(10)

where R(µ, m,K, ∆; s) is a polynomial in s given by

R(µ, m,K, ∆; s) =
[
(m + µK)2 − (µK∆)2

]
γ2s2− 2mµ

×(1+K) (m + µK) γs+[(1 + K) mµ]2.
(11)

Proof: See Appendix A. □
Note that the result in Lemma 1 is valid for any positive

real value of m.

B. PDF and CDF

Here, we derive the PDF and CDF of the SNR of the
MFTR model.1 Even though these can be computed by
performing a numerical Laplace inverse transform over the
MGF in Lemma 1 for any arbitrary set of values of the
shape parameters [1], it is possible to obtain closed-form
expressions by assuming that the fading parameter m takes
integer values. For this purpose, we take advantage of the fact
that, for m ∈ Z+, the Legendre function in the MGF obtained
in (10) has an integer degree; thus, such Legendre function
becomes a Legendre polynomial. The Legendre polynomial of
an integer degree n can be formulated as in [18, Eq. (22.3.8)]
by

Pn(z) =
1
2n

⌊n/2⌋∑
q=0

(−1)nCn
q zn−2q, (12)

where the Cn
q term is expressed as

Cn
q =

(
n

q

)(
2n− 2q

n

)
=

(2n− 2q)!
q!(n− q)!(n− 2q)!

. (13)

From the MGF in (10) and with the help of (12), the closed-
form expressions for the PDF and CDF of the RV γ are
obtained in the following Lemma.

Lemma 2: Assuming that m ∈ Z+, the PDF and CDF
of the SNR under MFTR fading can be formulated as (14)
and (15), shown at the bottom of the next page, respectively.

Proof: See Appendix B-A. □
The chief statistics of the MFTR fading model in (14)

and (15) are given in terms of the multi-variate confluent
hypergeometric function Φ(4)

2 (·), which is rather common in
well-established fading models such as Rician shadowed [17],
κ-µ shadowed [8], or FTR [3]. Moreover, the computation

1The PDF and CDF of the received signal envelope R under MFTR
channels can be obtained through a standard variable transformation, yielding
fR(r) = 2rfγ(r2) and FR(r) = Fγ(r2), with γ replaced by Ω = E

{
R2

}
.
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of this function can be performed by resorting to an inverse
Laplace transform as described in [1, Appendix 9B], and
whose implementation in a simple and efficient way through
MATLAB is given in [22]. Therefore, the evaluation of MFTR
probability distributions does not pose any additional challenge
compared to other well-known fading models in the state-of-
the-art.

C. Alternative Formulations

Expressions in Lemmas 1 and 2 provide a complete
formulation for the MFTR, equivalent in complexity to
those originally proposed in [3] and [8] for the baseline
FTR and κ-µ shadowed fading distributions, respectively.
However, aiming to provide additional flexibility to the newly
proposed MFTR model, as well as to facilitate its use
for performance evaluation purposes, we now provide two
alternative formulations for the PDF and CDF of the MFTR
model.

We first propose a formulation of the MFTR model as a
continuous mixture of κ-µ shadowed distributions. Secondly,
we propose a formulation of the MFTR model as an infinite
discrete mixture of Gamma distributions. These formulations
are provided in the following two lemmas, and are valid
for the entire range of values of the shape parameters
κ, µ,m and ∆.

Lemma 3: When m ∈ R+, the PDF and CDF of the
SNR of the MFTR distribution can be obtained by averaging
the conditional κ-µ shadowed statistics over all possible
realizations of θ, as

fγ(x) =
1
π

∫ π

0

fγ|θ (x)dθ, (16)

Fγ(x) =
1
π

∫ π

0

Fγ|θ (x)dθ, (17)

where

fγ|θ (x)

=
µµmm(1 + K)µ

Γ(µ)γ(µK (1 + ∆ cos θ) + m)m

(
x

γ

)µ−1

× e−
µ(1+K)

γ x
1F1

(
m; µ;

µ2K (1 + ∆ cos θ) (1 + K)
µK (1 + ∆ cos θ) + m

x

γ

)
,

(18)
Fγ|θ (x)

=
µµ−1mm(1 + K)µ

Γ(µ)(µK (1 + ∆ cos θ) + m)m

(
x

γ

)µ

Φ2

(
µ−m,

m; µ + 1;−µ (1 + K) x

γ
,−µ (1 + K)

γ

× mx

µK (1 + ∆ cos θ) + m

)
. (19)

Proof: The conditional κ-µ shadowed PDF and CDF are
obtained from [8, Eq. (4)] and [8, Eq. (6)] by substituting κ and
γ by (43) and (44), respectively. Then, using the relationships
given in (45) and (48) that connect the κ-µ shadowed and
MFTR models, (18) and (19) are obtained. □

It must be noted that the Rician shadowed distribution is a
particular case of the κ-µ shadowed distribution for the case
when µ = 1. Thus, the integral connection between the FTR
and the Rician shadowed distributions presented in [23], for
arbitrary positive real m, is a particular case of Lemma 3 for
µ = 1.

Lemma 4: When m ∈ R+, the PDF and CDF of the
SNR of the MFTR distribution can be obtained as an infinite
discrete mixture of Gamma distributions. The corresponding
expressions are given in equations (20) and (21), shown at
the bottom of the next page, respectively, where fG

X (·) and
FG

X (·) represent the PDF and CDF, respectively, of a Gamma
distribution, which are both given in (23), shown at the bottom
of the page.

fγ(x) =
(1 + K)µ

µµ

2m−1Γ(µ)γµ

 m√
(m + µK)2 − µ2K2∆2

m ⌊m−1
2 ⌋∑

q=0

(−1)q
Cm−1

q

 m + µK√
(m + µK)2 − µ2K2∆2

m−1−2q

× xµ−1Φ(4)
2

(
1 + 2q −m, m− q − 1/2, m− q − 1/2, µ−m; µ;− (1 + K) mµ

(m + µK) γ
x,− (1 + K) mµ

(m + µK (1 + ∆)) γ
x,

− (1 + K) mµ

(m + µK (1−∆)) γ
x,− (1 + K) µ

γ
x

)
. (14)

Fγ(x) =
(1 + K)µ

µµ

2m−1Γ(µ + 1)γµ

 m√
(m + µK)2 − µ2K2∆2

m ⌊m−1
2 ⌋∑

q=0

(−1)q
Cm−1

q

 m + µK√
(m + µK)2 − µ2K2∆2

m−1−2q

× xµΦ(4)
2

(
1 + 2q −m, m− q − 1/2, m− q − 1/2, µ−m; µ + 1;− (1 + K) mµ

(m + µK) γ
x,− (1 + K) mµ

(m + µK (1 + ∆)) γ
x,

− (1 + K) mµ

(m + µK (1−∆)) γ
x,− (1 + K) µ

γ
x

)
. (15)
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Proof: See Appendix B-B. □
Here, we point out that the PDFs and CDFs in Lemmas 3

and 4 are valid for non-constrained fading values of the MFTR
model. Expressions in Lemma 3, i.e., (16) and (17), are
given in simple finite-integral form in terms of well-known
functions in communication theory, where the integrands are
continuous bounded functions and the integration interval is
finite. Therefore, the evaluation of these integrals through
numerical integration routines in commercial mathematical
software packages poses no challenge, and in fact is an
standard approach in communication theory – cfr. the proper
integral forms of the Gaussian Q-function [24], or Simon
and Alouini’s MGF approach to the performance analysis of
wireless communication systems [1]. Expressions in Lemma 4,
i.e., (20) and (21), are given as weighted sums of gamma
distributions, which are a basic building block in many
communication theory applications, and correspond to the case
of assuming Nakagami-m fading. These sets of expressions
allow for leveraging the rich literature devoted to study
baseline fading models like κ-µ shadowed and Nakagami-m,
to directly evaluate the case of the more general MFTR model,
when desired.

D. Special Cases and Effect of Parameters

The MFTR model derived here is connected to other fading
distributions commonly used in several wireless application
scenarios, by specializing the corresponding set of parameters
as stated in Table I. In order to avoid confusion, the parameters
related to the MFTR distribution are underlined. We would
like to mention that a multicluster version of the TWDP
model in [12] and [13] naturally appears as we let m → ∞;
however, this model alone has its own entity an deserves
special attention as a separate item [25].

In Figs. 1-4, we illustrate how different propagation
conditions affect the shape of the MFTR distribution,
by evaluating the PDF of the received signal envelope fR(r)
for a set of values of the shape parameters: K, ∆, m and
µ. The PDFs illustrated in the figures have been obtained by

TABLE I
CONVENTIONAL AND GENERALIZED FADING CHANNEL MODELS

DERIVED FROM THE MFTR DISTRIBUTION

evaluating (14), although all mathematical expressions along
this section have been double-checked through Monte Carlo
(MC) simulations, which have been included with markers
in the figures, whenever they don’t affect readability. Also,
we also checked that the same results are obtained when eqs.
(16) and (20) are used to evaluate the PDFs.

In Fig. 1, we clearly perceive that the MFTR model’s
behavior is inherently bimodal2 (see Case A). Interestingly,
thanks to the presence of the µ parameter adequately combined
with the other fading parameters, the MFTR model can exhibit
a more pronounced bimodality as µ increases (see Case B).
Specifically, the MFTR model can exhibit both a left-
bimodality (i.e., the first local maximum is larger) and a right-

2The bimodality of the distribution is related to the existence of two local
maxima in its PDF.

fγ(x) =
∞∑

i=0

wif
G
X

(
µ + i;

γ(µ + i)
µ(K + 1)

; x
)

. (20)

Fγ(x) =
∞∑

i=0

wiF
G
X

(
µ + i;

γ(µ + i)
µ(K + 1)

; x
)

. (21)

wi =
Γ(m + i)(µK)imm

Γ(m)Γ(i + 1)
(1−∆)i

√
π(µK(1−∆) + m)m+i

i∑
q=0

(
i

q

)
Γ
(
q + 1

2

)
Γ (q + 1)

(
2∆

1−∆

)q

× 2F1

(
m + i, q +

1
2
; q + 1;

−2µK∆
µK(1−∆) + m

)
, m ∈ R+, (22)

fG
X (λ; ν; y) =

λλ

Γ(λ)νλ
yλ−1 exp

(
−λy

ν

)
, FG

X (λ; ν; y) =
1

Γ(λ)
γ

(
λ,

λy

ν

)
. (23)

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on June 21,2024 at 10:20:10 UTC from IEEE Xplore.  Restrictions apply. 



SÁNCHEZ et al.: MULTI-CLUSTER FLUCTUATING TWO-RAY FADING MODEL 4205

Fig. 1. PDF of the MFTR signal envelope by varying µ in two different
scenarios: Case A: ∆ = 0.9, m = 8, K = 8, γ = 2 and Case B: ∆ = 0.9,
m = 4, K = 15, γ = 1.

Fig. 2. PDF of the MFTR signal envelope for different values of ∆, with
µ = 2, m = 6, K = 15, and γ = 1.5. Markers correspond to MC
simulations.

Fig. 3. PDF of the MFTR signal envelope for different values of m, with
∆ = 0.9, µ = 3, m = 4, K = 20, and γ = 1. Markers correspond to MC
simulations.

bimodality (i.e., the second local maximum is larger). This is
in stark contrast with the behavior of the baseline κ-µ shad-
owed (unimodal) or FTR distributions (only right-bimodality)
from which the MFTR distribution originates. This feature
brings additional flexibility to improve the versatility of

Fig. 4. PDF of the MFTR signal envelope for different values of K, with
m = 5, ∆ = 0.9, µ = 3, and γ = 1. Markers correspond to MC simulations.

the MFTR model to fit field measurements in emerging
wireless scenarios such as mm-Wave and sub-terahertz
bands [14].

In Fig. 2, it is confirmed that for low values of ∆,
i.e., one specular component is dominant in cluster 1, the
MFTR distribution exhibits a unimodal behavior similar to
the κ-µ shadowed case. Conversely, for larger values of ∆,
i.e., two specular components with similar amplitudes are
present in cluster 1 which dominate the power of the specular
components of the remaining clusters, the MFTR distribution
exhibits a bimodal behavior. From Figs. 3-4, we can see
that such bimodality of the MFTR distribution is also closely
linked to parameters m and K. Specifically, large values of
m or K yield a more pronounced bimodality. Conversely, low
values of m or K tend to smoothen such bimodality.

IV. EMPIRICAL VALIDATION

In this section, we validate the suitableness of the MFTR
model to capture the stochastic features of outdoor THz
wireless links in the 142 GHz band. For this purpose,
we employ the empirical data presented in [26], in which sets
of experimental measurements have been conducted on the
campus of Aalto University in Finland by assuming LOS and
NLOS scenarios. More details concerning the experimental
setup can be found in [27]. Here, our goal is to assess the
ability of the MFTR to capture the the physical behavior
of the THz wireless link by means of multipath clusters
in the presence of two dominant specular components with
fluctuating amplitudes.

In order to quantify the fitting accuracy, we use the well-
defined and widely-accepted mean-square-error (MSE) test.
Specifically, the MSE measures the goodness of fit between the
empirical and theoretical PDFs, denoted by f̂R(·) and fR(·),
respectively, i.e.,

MSE =
1
T

T∑
i=1

(
f̂R(ri)− fR(ri)

)2

, (24)

where T denotes the number of empirical PDF values.
Table II reports the values of the MSE and the estimated
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TABLE II
FITTING RESULTS OF MFTR, FTR AND κ-µ SHADOWED FADING MODELS FOR DIFFERENT SCENARIOS

Fig. 5. Empirical vs theoretical PDFs of the received signal amplitude for
LOS and NLOS scenarios.

fading parameters using the fminsearch function of the Opti-
mization Toolbox of MATLAB for each target distribution.
Bold-faced numbers highlight the best-fitting result in each
scenario. Here, according to the MSE criteria, we can see
that the MFRT fading channel model has achieved the best
fittings in all scenarios under study. On the other hand,
in Fig. 5, we compare the theoretical PDFs of MFTR, FTR,
and κ-µ shadowed fading models against the THz channel
measurements for LOS and NLOS environments described
in [26, Fig. 1]. From all traces, it can be observed that the
MFRT model yields a more accurate fit to the empirical
distributions. This is in accordance with the MSE values shown
in Table II. At this point, an important remark is in order.
Firstly, we want by no means to provide a thorough and tedious
comparison between the proposed MFTR model and existing

fading models when applied to fit channel measurements
in THz or millimeter bands. Instead, we mainly want to
provide some evidence that, for selected channel measurement
campaigns, the proposed MFTR fading model offers a good
balance between versatility, flexibility, the goodness of fit
and physical underpinnings. For instance, for the NLOS
environment in Fig. 5a, the MFTR captures the richness of the
dispersion through a high value of µ (i.e., 39.99), which also
allows capturing the pronounced bimodality of the distribution.
Another key interpretation of this fading parameter is that as
µ increases, the MFTR model smooths out the goodness of fit
as the distribution moves away from the origin on the x-axis.
In particular, this behavior is present in Figs. 5a and 5e, where
the empirical distributions start at approximately 0.7 and
0.5 on the x-axis, respectively. Conversely, in all other figures,
the empirical measurements begin at 0 on the x-axis, which
translates to small values of µ. In short, the MFTR model
provides additional flexibility (i.e., more degrees of freedom)
to characterize small-scale empirical fading data compared to
κ-µ shadowed and FTR models from which it originates.

V. PERFORMANCE ANALYSIS IN WIRELESS SYSTEMS

In this section, we illustrate the flexibility of the MFTR
model when used for performance analysis. For exemplary
purposes, we analyze key performance metrics such as the
outage probability (OP), both in exact and asymptotic forms,
as well as the AoF [1].

A. Outage Probability

The instantaneous Shannon channel capacity per unit
bandwidth is defined as

C = log2(1 + γ). (25)

The outage probability is defined as the probability that the
capacity C falls below a certain threshold rate Rth, i.e.,

Pout = Pr {C < Rth} = Pr {log2(1 + γ) < Rth}

= Pr

γ < 2Rth − 1︸ ︷︷ ︸
γth

 . (26)

Consequently, the OP is given in terms of SNR’s CDF as

Pout = Fγ

(
2Rth − 1

)
, (27)

in which Fγ (·) is given by either (15), (21) or (17). Although
expressed in exact form in terms of the MFTR CDFs
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previously derived, Pout provides a limited insight concerning
the effect of fading parameters on the system performance.
Thus, we introduce a closed-form asymptotic OP expression
to evaluate the high-SNR regime’s system performance below.

B. Asymptotic Outage Probability

Here, to get further insights about the role of the fading
parameters on system performance, we derive an asymptotic
expression to investigate the behavior of the OP given in (27)
in the high-SNR regime. Our goal is to obtain an asymptotic
expression in the form Pout ≃ Gc (γth/γ)Gd [28], where
Gc and Gd denote the power offset and the diversity order,
respectively. Hence, the corresponding asymptotic OP is given
in the following Proposition.

Proposition 1: The asymptotic expression of the OP over
MFTR channels can be obtained as

Pout ≃
µµ−1(1 + K)µmm(2Rth − 1)µ

Γ(µ)γµ (m− (∆− 1) Kµ)m

× 2F1

(
1/2, m; 1;

2∆Kµ

Kµ (1−∆) + m

)
. (28)

Proof: See Appendix C-A. □
From (28), notice that the diversity order is linked to the
number of multipath waves clusters, i.e., Gd = µ.

C. Amount of Fading

The AoF is a popular metric used to quantify the severity of
fading experienced during transmission under fading channels.
It is defined as [1]

AoF =
V {γ}
E {γ}2

=
E
{
γ2
}
− E {γ}2

E {γ}2
=

E
{
γ2
}

E {γ}2
− 1. (29)

Based on (29), a closed-form expression of the AoF is given
as stated in the following Proposition.

Proposition 2: Assuming non-constrained arbitrary fading
values, a closed-form expression for the AoF over MFTR
channels can be formulated as

AoF =
(

1− K2

(1 + K)2

)(
1 +

1
µ

)
+

K2

(1 + K)2

×
(

1 +
1
m

)(
1 +

∆2

2

)
− 1. (30)

Proof: See Appendix C-B. □

D. Average BER

The exact solution for the average BER affected by additive
white Gaussian noise (AWGN), over the output SNR can be
defined as in [1] by

Pe =
∫ ∞

0

PE(x)fγ(x)dx, (32)

where PE(x) denotes the conditional error probability (CEP).
Considering integration by parts in (32), the average BER can
be computed as function of the CDF, given by

Pe = −
∫ ∞

0

P ′E(x)Fγ(x)dx, (33)

where P ′E(x) denotes the first order derivative of the CEP. For
several modulation schemes, PE(x) can be defined as in [1]
by

PE(x) =
R∑

r=1

αrQ
(√

βrx
)

, (34)

where {βr, αr}R
r=1 are constants that depend on the type of

modulation. Taking the derivative of (34), it follows that

P ′E(x) = −
R∑

r=1

αr

√
βr

8πx
e−

βrx
2 . (35)

Finally, by substituting (15) and (35) into (33) followed by
some manipulations and then making use of [21, Eq. (43)],
a closed-form fashion of the average BER can be expressed
as in (31).

E. Asymptotic Average BER

In this section, we derive an asymptotic closed-form
expression for the average BER in order to gain more insights
into the impact of the fading parameters of the systems. Here,
we consider the behavior in the high SNR regime where
γ →∞. Again, our aim is to express the asymptotic average
BER as Pe

∞ ≃ Gcγ
−Gd [28]. For that purpose, we use the

approach in [28, Proposition 3], where asymptotic Pe can be
obtained from the MGF given in (10). In light of this, we first
compute |Mγ (s)| as

|Mγ (s)| = mmµµ(1 + K)µ(√
(m + µK)2 − (µK∆)2

)m

× Pm−1

 mµ (1 + K)√
(m + µK)2 − (µK∆)2

 |s|−1

γµ

+ o
(
|s|−1

)
, (36)

where we write a function a(x) of x as o(x) if
limx→0 a(x)/x = 0, in which the Legendre polynomial
is computed from (12). Then, by carrying out the same
methodology given in [28, Proposition 1 and 3], Pe

∞
can

be defined as

Pe
∞

≃ mmµµ(1 + K)µ(√
(m + µK)2 − (µK∆)2

)m

R∑
r=1

αr
2µ−1

βµ
r
√

π
Γ
(
µ + 1

2

)

× Pm−1

 mµ (1 + K)√
(m + µK)2 − (µK∆)2

 1
γµ . (37)

As in Pout metric, from (37), it is clearly seen that the diversity
order of Pe is associated to the number of multipath waves
clusters, i.e., Gd = µ.
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Fig. 6. Pout as a function of the average SNR, for different values of µ and
m. The remaining fading parameters are: K = 15, ∆ = 0.1, Rth = 1. Solid
lines correspond to the Pout derived from (27), and dotted lines correspond
to the asymptotic Pout derived from (28). Markers denote MC simulations.

F. Ergodic Capacity

The EC is defined as the maximum achievable rate averaged
over all the fading contributions. Mathematically speaking, the
EC can be expressed as [1]

C =
∫ ∞

0

log2 (1 + x) fγ(x)dx, (38)

where fγ(·) is the PDF of the received SNR γ under MFTR
fading channels. For the sake of mathematical tractability,
we employ the alternative PDF of the MFTR model given
in terms of the mixture of Gamma Distributions to compute
C. Hence, substituting (20) into (38), and after some
manipulations, EC can be obtained as

C =
∞∑

i=0

wi

(
λ
ν

)λ
Γ(λ) ln(2)

∞∑
k=1

1
k

Γ(k + λ)U
(

k + λ, 1 + λ,
λ

ν

)
,

(39)

where wi is given by (22), shown at the bottom of page 6,
λ = µ + i, and ν = γ(µ+i)

µ(K+1) .

VI. NUMERICAL RESULTS

In this section, we provide illustrative numerical results
along with MC simulations3 to verify the analytical perfor-

3Reproducible Research: The simulation code on how to generate the
PDF and CDF of the MFTR model in both amplitude and power/SNR
distributions, as well as the Monte Carlo simulation, is available at:
https://github.com/JoseDavidVega/MFTR-Fading-Channel-Model

Fig. 7. Pout as a function of the average SNR, for different values of µ and
∆. The remaining parameters are: K = 15, m = 5, Rth = 1. Solid lines
correspond to the Pout derived from (27), and dotted lines correspond to the
asymptotic Pout derived from (28). Markers denote MC simulations.

mance metrics derived in the previous section by assuming
different fading conditions.

Figs. 6 and. 7 illustrate the impact of different propagation
mechanisms, namely, NLOS- LOS-condition, LOS fluctuation,
the existence of one/two dominant components in cluster 1,
and clustering of multipath waves, on the OP performance.
In both figures, we assume K = 15 and Rth = 1. Specifically,
in Fig. 6, we evaluate the OP vs. the average SNR by
varying µ and m for ∆ = 0.1. From all traces, it can be
observed that a contribution of the LOS component with a
mild fluctuation (m = 10) together with a rich scattering
environment (µ = 3) favors the OP performance. Conversely,
when both the LOS fluctuation is severe (i.e., lower values
of m), and a poor scattering condition exists (µ = 1), the
OP performance is noticeably reduced. On the other hand,
in Fig. 7, we show the OP as a function of the average SNR for
different fading values of ∆ and µ, assuming a mild fluctuation
(m = 5) for the LOS component. Here, we can see that
the combination of similar (∆ = 0.9) specular components
with many clusters of multipath waves (µ = 4) derives into
a better OP behavior. However, in the opposite scenario,
i.e., dissimilar (∆ = 0.1) specular components together with
reduced clustering of scattering waves, the OP significantly
deteriorates.

Furthermore, in Figs. 6 and. 7, we see that the number
of clusters of multipath waves contributes directly to the OP

Pe =
(1 + K)µ

µµ

2m−1Γ(µ + 1)γµ

 m√
(m + µK)2 − µ2K2∆2

m ⌊m−1
2 ⌋∑

q=0

(−1)q
Cm−1

q

 m + µK√
(m + µK)2 − µ2K2∆2

m−1−2q

×
R∑

r=1

αr
2µ−1

βµ
r
√

π
Γ (µ + 1/2) F

(4)
D

(
µ +

1
2
, 1 + 2q −m, m− q − 1

2
, m− q − 1

2
, µ−m; µ + 1;− 2 (1 + K) mµ

βr (m + µK) γ
,

− 2 (1 + K) mµ

βr (m + µK (1 + ∆)) γ
,− 2 (1 + K) mµ

βr (m + µK (1−∆)) γ
,−2 (1 + K) µ

βrγ

)
. (31)

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on June 21,2024 at 10:20:10 UTC from IEEE Xplore.  Restrictions apply. 



SÁNCHEZ et al.: MULTI-CLUSTER FLUCTUATING TWO-RAY FADING MODEL 4209

Fig. 8. Pe for BPSK modulation as a function of the average SNR, for
different values of µ and ∆. The remaining parameters are: K = 10, m = 2.
Solid lines correspond to the Pe derived from (31), and dotted lines correspond
to the asymptotic Pe

∞ derived from (37). Markers denote MC simulations.

slope. This means that the decay in the OP is steeper (i.e.,
better performance) as the number of scattering wave clusters
increases. This is in coherence with the derived diversity order,
i.e., Gd = µ.

Finally, Fig. 8 depicts the average BER for binary phase-
shift keying (BPSK) modulation vs. the average SNR by
varying µ and ∆ for a fixed LOS fluctuation, i.e., m = 2.
The parameters for BPSK modulation in (31) are set to
R = 1, and {βr, αr}R

r=1 = {2, 1}. From all curves, we can
see that the eventual similarity specular components in the
first cluster does not dominate (∆ = 0.1), experiencing a
moderate fluctuation (m = 2) in a rich scattering condition
(µ = 3) yields the best Pe behavior. Conversely, average
BER performance worsens as ∆ increases coupled with a
dispersion-poor environment. Also, as in the Pout metric,
the Pe slope directly depends on the number of clusters
of multipath waves, which is associated with the obtained
diversity order Gd = µ.

VII. CONCLUSION

We introduced, for the first time in the literature, a stochastic
fading model that combines the key features of ray-based
and power envelope-based approaches. This newly proposed
fading model unifies and generalizes both the FTR and the κ-
µ shadowed fading models, with a comparable mathematical
complexity. The MFTR model captures, through a limited set
of physically-meaningful parameters, a number of propagation
conditions that appear in many practical scenarios: LOS/NLOS
propagation, amplitude imbalances between dominant specular
components, random fluctuation of the dominant specular
waves, and clustering of multipath waves. In order to
facilitate its use for performance analysis purposes, alternative
expressions for its statistics are derived, which enable us to
express the desired performance metric under MFTR fading
directly from those available either for κ-µ shadowed or
Nakagami-m fading. All these features make the MFTR
model a strong contender to being the most generalized and

comprehensive fading channel model in the state-of-the-art up
to the present date.

APPENDIX A
PROOF OF LEMMA 1

Departing from a generalized physical cluster-based model
[7], [8], let us consider a compact form expression for the
signal power, W , as in (4), given by

W =
µ∑

i=1

∣∣∣Zi +
√

ζpi

∣∣∣2 . (40)

In purely cluster-based models, the total power of the dominant
components can be distributed indistinctly throughout the
clusters. Here, without loss of generality, we assume that two
specular components are allocated to cluster 1, and each of
the remaining clusters may include one specular component.
With this in mind, the dominant specular component, denoted
by pi, of the ith cluster can be expressed as

pi =

{
Uie

jφi , for ∀i > 1
V1e

jϕ1 + V2e
jϕ2 = ejϕ1

(
V1 + V2e

jα
)
, for i = 1,

(41)

where α = ϕ2 − ϕ1 is the phase difference between the
specular components of cluster 1. Given that ϕn ∼ U(0, 2π)
and because of the modulo 2π operation, it follows that,
α ∼ U(0, 2π) [13].

Let us consider the channel model given in (40) conditioned
to a particular realization α = θ of the RV characterizing the
phase difference between the two LOS components in cluster
1. Then, (40) can be seen as a κ-µ shadowed distributed RV
for a given θ, where |p1| is now constant (i.e., deterministic)
and no longer arbitrarily distributed. Based on this, the mean
power of the dominant components for the underlying κ-µ
shadowed RV in (40), conditioned on θ, i.e., d2

θ
∆= d2|α=θ is

given by

d2
θ =

µ∑
i=1

|pi|2 =
∣∣V1 + V2e

jθ
∣∣2 +

µ∑
i=2

U2
i

= |V1 + V2(cos θ + j sin θ)|2 +
µ∑

i=2

U2
i

= (V1 + V2 cos θ)2 + (V2 sin θ)2 +
µ∑

i=2

U2
i

= V 2
1 + 2V1V2 cos θ + V 2

2 (cos2 θ + sin2 θ) +
µ∑

i=2

U2
i

= V 2
1 + V 2

2 + 2V1V2 cos θ +
µ∑

i=2

U2
i . (42)

With the help of (42), the ratio between the total power of
the dominant components and the total power of the scattered
waves, conditioned on θ can be formulated as

κθ =
d2

θ

2σ2µ
. (43)
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The conditional average SNR for the fading model described
in (40) will be

γθ =
Es

N0
E {Wθ}

=
Es

N0

(
V 2

1 + V 2
2 + 2V1V2 cos θ +

µ∑
i=2

U2
i + 2σ2µ

)
=

Es

N0
2σ2µ(1 + κθ). (44)

where Wθ denotes the signal power in (40), in which |p1|
is conditioned on θ. Hence, with the above definitions,
we are ready to find an insightful connection between the
κ-µ shadowed and the MFTR models. To accomplish this,
by inserting (7), (8) and (42) into (43), we get

κθ =
V 2

1 + V 2
2 + 2V1V2 cos θ +

µ∑
i=2

U2
i

2σ2µ

=

(
V 2

1 + V 2
2 +

µ∑
i=2

U2
i

)
(1 + ∆ cos θ)

2σ2µ

= K (1 + ∆ cos θ) . (45)

Note that from (9) and (44) we can write, respectively

1 + K

γ
=

1
Es

N0
2σ2µ

, (46)

1 + κθ

γθ

=
1

Es

N0
2σ2µ

, (47)

and equating (46) and (47), it is clear that

1 + κθ

γθ

=
1 + K

γ
. (48)

Here, we point out that with the aid of the key findings in (45)
and (48), we can derive the MGF of the MFTR model from
the conditional MGF of the κ-µ shadowed, which is given by

Mκµs
γ|θ (s) =

(
1− γθ

µ(1+κθ)s
)m−µ

(
1− µκθ+m

m
γθ

µ(1+κθ)s
)m (49)

Now, taking into account (45) and (48) into (49), yields

Mκµs
γ|θ (s) =

mmµµ(1 + K)µ(µ (1 + K)− γs)m−µ

(a(s) + b(s) cos θ)m (50)

where, we have defined

a(s) = mµ (1 + K)− (µK + m) γs, b(s) = −µK∆γs.

(51)

The MGF of the SNR of the MFTR model can be obtained
by averaging (50) with respect to the RV4 θ, i.e.,

Mγ (s) =
mmµµ (1 + K)µ

(µ (1 + K)− γs)µ−m

1
π

∫ π

0

dθ

(a(s) + b(s) cos θ)m︸ ︷︷ ︸
I1

,

(52)

Using [19, Eq. (3.661.4)], I1 can be evaluated in exact closed-
form; thus (10) is obtained, in which R(µ, m,K, ∆; s) =
[a(s)]2 − [b(s)]2. This completes the proof.

APPENDIX B
PROOFS OF LEMMAS 2 AND 4

A. Proof of Lemma 2

Notice that the R(µ, m,K, ∆; s) polynomial within the
MGF given in (10) can be factored as

R(µ, m,K, ∆; s)
= [(1 + K) mµ− (m + µK (1 + ∆)) γs]
× [(1 + K) mµ− (m + µK (1−∆)) γs] . (53)

For the sake of mathematical legibility, we define the following
ancillary terms

a1 =
(1 + K) mµ

(m + µK) γ
, a2 =

(1 + K) mµ

(m + µK (1 + ∆)) γ
,

a3 =
(1 + K) mµ

(m + µK (1−∆)) γ
, a4 =

(1 + K) µ

γ
. (54)

Inserting (12) together with (53)-(54) into (10), the MGF of
the MFTR model with m ∈ Z+ can be rewritten as

Mγ (s) =
(a2a3)

m/2

Γ (µ) 2m−1am−µ
4

⌊m−1
2 ⌋∑

q=0

Cm−1
q

(−1)−q

[√
a2a3

a1

]m−1−2q

× Γ (µ)
sµ

(
1− a1

s

)m−1−2q (
1− a2

s

) 1
2+q−m

×
(
1− a3

s

) 1
2+q−m (

1− a4

s

)m−µ

. (55)

Finally, the PDF is obtained straightforwardly from this MGF
through the inverse Laplace transform (LT), i.e., fγ(x) =
L−1 [Mγ(−s); x]; thus, (14) arises from (55) with the help
of the LT pair given in [20, Eq. (4.24.3)]. Similarly, (15) is
obtained by considering that Fγ(x) = L−1 [Mγ(−s)/s; x].

B. Proof of Lemma 4

Many distributions in the literature of wireless channel
modeling can be expressed in terms of a mixture of Gamma
distributions, either in exact [29] or approximate form [30].
On this basis, we aim to express the MFTR’s statistics as a
mixture of Gamma distributions. To do this, we start from the
exact expression of the κ-µ shadowed model as an infinite
mixture of Gamma distributions [31, eq. 25]. Hence, the
statistics of the MFTR distribution when conditioned on θ are

4Recall that 1
2π

∫ 2π
0 f(θ)dθ ≡ 1

π

∫ π
0 f(θ)dθ because the integrand is

symmetric with respect to π.
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those of the κ-µ shadowed model, so that the PDF and CDF
can be given as:

fκµs
γ|θ (x) =

∞∑
i=0

wi |θ fG
X

(
µ + i;

(µ + i)γθ

µ(1 + κθ)
; x
)

, (56)

Fκµs
γ|θ (x) =

∞∑
i=0

wi |θ FG
X

(
µ + i;

(µ + i)γθ

µ(1 + κθ)
; x
)

, (57)

where the PDF and CDF of the Gamma distribution were
defined in (23), and the conditional mixture coefficients are
given by

wi |θ =
Γ(m + i)(µκθ)imm

Γ(m)Γ(i + 1) (µκθ + m)m+i
. (58)

Applying the connection between the κ-µ shadowed and the
MFTR models as shown in (45) and (48), the PDF and
CDF distributions of the MFTR model are formulated after
averaging over the distribution of θ as

fγ(x) =
∞∑

i=0

wif
G
X

(
µ + i;

(µ + i)γ
µ(1 + κ)

; x
)

, (59)

Fγ(x) =
∞∑

i=0

wiF
G
X

(
µ + i;

(µ + i)γ
µ(1 + κ)

; x
)

, (60)

where now the weighting coefficients, wi, are rewritten as

wi =
Γ(m + i)(µK)imm

Γ(m)Γ(i + 1)

× 1
π

∫ π

0

(1 + ∆ cos θ)i

(µK (1 + ∆ cos θ) + m)m+i
dθ︸ ︷︷ ︸

I2

. (61)

Using the results in the Appendix of [23], I2 can be evaluated
in closed-form fashion as

I2

=
(1−∆)i

√
π(µK(1−∆) + m)m+i

i∑
q=0

(
i
q

)
Γ
(
q + 1

2

)
Γ (q + 1)

(
2∆

1−∆

)q

× 2F1

(
m + i, q +

1
2
; q + 1;

−2µK∆
µK(1−∆) + m

)
, (62)

when m is an arbitrary real number.
Then, by substituting (62) into (61) and then combining the

resulting expression with (59) and (60), the PDF and CDF
of the MFTR model for arbitrary values can be expressed as
in (20) and (21), respectively. This completes the proof.

APPENDIX C
PROOFS OF PROPOSITIONS 1, AND 2

A. Asymptotic Outage Probability

In order to derive the asymptotic outage probability, we take
advantage of the connections between the κ-µ shadowed and
the MFTR models obtained in Appendix A. For this purpose,
we start from the conditional5κ-µ shadowed asymptotic CDF,

5In practice, it suffices to replace γ and κ by γθ and κθ , respectively, in the
original κ-µ shadowed asymptotic CDF, as indicated in Appendix A.

given by [32, Eq. (35)]

Fκµs
γ|θ (x) ≃ µµ−1(1 + κθ)µmm

(κθµ + m)m Γ(µ)

(
x

γθ

)µ

. (63)

Next, using the relationships between the κ-µ shadowed and
the MFTR models given in (45) and (48) into (63), we get

Fγ(x) ≃ µµ−1(1 + K)µmm

Γ(µ)

(
x

γ

)µ

× 1
π

∫ π

0

1
(µK (1 + ∆ cos θ) + m)m dθ︸ ︷︷ ︸

I3

. (64)

Employing [33, eq. (38)], the integral in I3 can be expressed
in simple exact closed-form as

I3 = (m− (∆− 1) Kµ)−m

× 2F1

(
1
2
, m; 1;

2∆Kµ

Kµ (1−∆) + m

)
(65)

Substituting (65) into (64), the MFTR asymptotic CDF is
attained as

Fγ(x) ≃ µµ−1(1 + K)µmm

(m− (∆− 1) Kµ)m Γ(µ)

(
γ

γ

)µ

× 2F1

(
1
2
, m; 1;

2∆Kµ

Kµ (1−∆) + m

)
. (66)

Finally, taking into account that Pout ≃ Fγ(2Rth − 1) with
Fγ(·) given in (66), the asymptotic outage probability can be
reached as in (28), which concludes the proof.

B. AoF

Similar to the methodology described in Appendix C-A,
we calculate the AoF of the MFTR model from the conditional
second moment of the κ-µ shadowed distribution, which is
given by [34, Eq. (3.10)]

E
{

γ2
|θ

}κµs

=
γ2

θ

(
m(1 + µ)(1 + 2κθ) + µκ2

θ(1 + m)
)

mµ(1 + κθ)2

(67)

Then, using the connections between the κ-µ shadowed and
the MFTR models obtained in (45) and (48) into (67), the
second moment of the MFTR model is expressed as

E
{
γ2
}

=
γ2
(
m(1 + µ)(1 + 2E {κθ}) + µE

{
κ2

θ

}
(1 + m)

)
mµ(1 + K)2

(68)

where

E {κθ} =
1
π

∫ π

0

K(1 + ∆ cos θ)dθ = K, (69)

and

E
{
κ2

θ

}
=

1
π

∫ π

0

(K(1 + ∆ cos θ))2 dθ = K2

(
1 +

∆2

2

)
.

(70)
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Substituting (69) and (70) into (68) yields

E
{
γ2
}

=
γ2

mµ(1 + K)2

(
m(1 + µ)(1 + 2K) + µK2

×
(

1 +
∆2

2

)
(1 + m)

)
. (71)

Finally, inserting (71) together with E {γ}2 = γ2 into (29)
and after some algebraic manipulations, the AoF of the
MFTR model can be attained as in (30). This completes the
proof.
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