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Abstract Global warming caused by greenhouse 
gas emissions, transportation, and the transforma-
tion of land use caused by population growth is a 
critical problem that requires immediate and urgent 
interventions, especially in popular tourism destina-
tions where the impact on quality of life is intense. 
In recent years, while new urban developments have 
been carried out for higher education institutions, less 
attention has been paid to the environmental impli-
cations of such expansions. Surprisingly, despite a 
growing interest in climate change action in edu-
cational institutions, little is known about the link 
between Land Surface Temperature (LST) variabil-
ity and Surface Urban Heat Island (SUHI) of univer-
sity campuses and their host communities. To fill the 
gaps mentioned earlier, this study aims to provide a 
comprehensive analysis of the spatial and temporal 
variability of the SUHI and the LST within a univer-
sity campus and its surrounding urban environment. 
Using Sentinel 3 images and the TsHARP algorithm, 
the LST was determined, the SUHI was calculated, 
and the hot spots were obtained in an educational 

tourism hub; Famagusta, Cyprus. The Panel Data 
and ANOVA techniques were used for the subsequent 
analysis of the findings. Findings indicated that due 
to its low-rise buildings and large green areas, the 
studied campus not only had little contribution to the 
creation of SUHI but even minimized its effects on 
the urban areas attached to it. These findings provide 
valuable implications for authorities in standardizing 
criteria for future university establishments.

Keywords Surface Urban Heat Island (SUHI) · 
Land Surface Temperature (LST) · Land use 
changes · Remote sensing · University campus · 
Community development

1 Introduction

One of the most critical challenges that human-
ity needs to deal with today is the extreme weather 
events linked to global warming (An et  al., 2020; 
Santamouris, 2020). The transformation and modi-
fication of soil through the increase of new areas 
motivated by the significant growth of the population 
is a process that contributes significantly to global 
warming (Song et  al., 2020). The forecast is that by 
2050 the urban population will reach 70% of the total 
population (UNO, 2018). But these processes not 
only increase the LST on their own but also gener-
ate an increase in greenhouse gas emissions (Blessy 
et  al., 2023) due to the industrial construction and 
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manufacturing process. The forecasts for the years 
2041–2060 are not positive and continue to report an 
increase of around 23.8% in environmental emissions 
(Zhang et al., 2021). In turn,  CO2 from construction 
materials that are usually used in urban areas causes 
a process called carbonization (Zhao et al., 2023) that 
further increases the concentrations of this gas in the 
atmosphere.

The greatest increases in LST are occurring in 
urban areas where the urban climate alteration phe-
nomenon called Urban Heat Island (UHI) is preva-
lent. Some studies (Santamouris, 2020) report that 
this phenomenon is intensified by human activities. 
In this way, and usually, temperatures in rural areas 
are lower than in urban areas. This circumstance 
produces a degradation of air quality, loss of biodi-
versity (Arnfield, 2003), and an increase in morbidity 
(Arbuthnott & Hajat, 2017), which worsens people’s 
quality of life (Macintyre et al., 2018).

In recent decades, remote sensing has allowed the 
generation of a methodology that allows quick and 
accurate evaluation of changes in the urban surface 
and urban climate. The appearance and implementa-
tion of thermal sensors have made it possible to inves-
tigate issues related to temperatures, such as LST and 
SUHI (Song et  al., 2018). The relationship between 
the LST and the different land covers (LULC) is 
very important to establish and determine the impor-
tance of how changes in the covers due to the build-
ing process can affect the LST and thus the SUHI 
(Tepanosyan et al., 2021). Recently, a study was car-
ried out in New York City between 2001 and 2020 
(Yin et al., 2023) that reported an increase in LST of 
between 3 and 4ºC, mainly motivated by changes in 
urban coverage that very negatively affected the envi-
ronmental comfort of 50% of the population. Along 
these lines, the study carried out in the city of Gra-
nada (Spain) between 1985 and 2020 reported an 
increase in the LST stemmed mainly from changes in 
LULC (Hidalgo García and Arco-Díaz, 2022). These 
changes in LULC and increases in LST affect peo-
ple’s quality of life (Das & Das, 2020). For all these 
reasons, it is vitally important to analyze extreme 
temperature changes in urban areas.

One of the thermal comfort indices commonly 
used to determine thermal well-being is the Thermal 
Field Variance Index (UTFVI). Urban spaces with 
high temperatures known as Urban Hot Spot (UHS) 
(Sharma et al., 2021) are also related to the different 

LULC coverages. Recent studies have reported that 
the urban areas with the highest values of LST and 
SUHI contain the areas identified as UHS and warn 
of significant growth of these during the last decade 
(Amindin et al., 2021). Recently, studies were carried 
out in the cities of Delhi and Mumbai (India) between 
the years 1991–2018 (Shahfahad et  al., 2021) and 
in the city of Granada (Spain) (Hidalgo García and 
Arco-Díaz, 2022) between the years 1985 and 2020 
reported that the areas classified as UHS were located 
in the areas with the highest UTFVI index and, there-
fore, with the areas with the highest LST values.

In recent years motivated by the increase in the 
number of university students, an important boom has 
been taking place in the transformation of land uses 
for the construction of university campuses (Cheng 
et al., 2020). Therefore, the development of university 
campuses should be considered an important element 
in the study of the SUHI of adjoining urban areas due 
to the ability of these large surfaces to alter the urban 
climate. In this way and for a few years, the study of 
the variation of the LST and SUHI on university cam-
puses through remote sensing has begun. For instance, 
the study of the Wangling campus of Sichuan Uni-
versity (China) reported LST differences of up to 4 K 
within the campus (Cheng et  al., 2020), the study 
on the campuses of the University of Indonesia and 
the University of Malaya (Malaysia) between 2013 
and 2016 reported differences in SUHI of up to 8 K 
between the different areas of the campus (Wibowo 
et al., 2020). The study carried out between 2014 and 
2019 on the campus of King Abdelaziz University 
in Jeddah (Saudi Arabia) reported LST differences 
between different areas of the campus of between 7 
and 9 K. In turn, negative correlations were reported 
between vegetation and LST (Addas et al., 2020).

However, we found a main drawback and that is 
that the existing literature only studies the relation-
ships of the LST and SUHI in the interior space of 
the campus, not taking into account its relationship 
with the city that hosts it. It is important to note that 
SUHI is a phenomenon of alteration of the urban cli-
mate and therefore, it is necessary to study it globally 
and not locally (Gaur et al., 2018; Keeratikasikorn & 
Bonafoni, 2018). At the same time, it also happens 
that these investigations use LST values calculated 
using Landsat 8 images whose main characteristics 
are a resolution of 100  m and an orbit constantly 
every 16  days. Consequently, the LST and SUHI 
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findings in these studies are representative of the spe-
cific day(s) chosen for analysis and coincide with the 
satellite’s overpass time. These studies extrapolated 
the results obtained to longer periods to obtain global 
results of LST and SUHI on campus. This is not the 
correct approach as recent research (Anjos et  al., 
2020; Hidalgo García and Arco-Díaz, 2022) indicates 
the existence of significant variability of SUHI and 
LST, both throughout the day and over time. For this 
reason, having the availability of daily images derived 
from satellites that orbit the same place several times 
a day, such as MODIS or Sentinel 3, is an impor-
tant element. However, these satellites have a major 
drawback in that the resolution of thermal images is 
1000 m, which is not an adequate pixel size on small 
campuses. Nevertheless, a multitude of studies and 
research endeavours employ the TsHARP algorithm, 
enabling the conversion of these low-resolution 
images (1000  m) into fresh high-resolution images 
with a pixel size of 10  m (Belgiu & Stein, 2019; 
Huryna et al., 2019; Zhou et al., 2020). In this way, 
by using high-resolution Sentinel 3 images, more 
precise LST and SUHI results can be achieved in the 
study of urban areas.

The objective of this research is to study and analyze 
the spatio-temporal variability of the LST and SUHI 
using high-resolution Sentinel 3 images over Northern 
Cyprus. This small island state is usually known as a 
center of educational tourism as it is home to numer-
ous universities that receive international students 
from more than 100 countries (Rezapouraghdam et al., 
2022a, b). Of all the existing universities in Northern 
Cyprus, EMU is the only public one and is also the 
largest and oldest in the region. For this reason, it was 
selected to be investigated in this study. To this end, the 
city where the EMU is located was classified using the 
world-known classification of Local Climatic Zones 
(LCZ). This will allow us to fully understand the vari-
ability of the LST and SUHI of each LCZ and, in turn, 
be able to extrapolate our results to any other city with 
similar characteristics. Using Sentinel 2 images, the 
Proportion Vegetation (PV), LULC, and the normalized 
difference vegetation index (NDVI) were obtained. By 
using the TsHARP algorithm and Sentinel 3 images, 
the LST was obtained and the SUHI and UHS were 
determined in order to determine the different areas 
according to the UTFVI classification. Subsequently, 
and after obtaining all the data, they were statistically 
analyzed using Panel Data and ANOVA techniques. 

This statistical analysis methodology can be considered 
more appropriate.

Concerning existing research, the application of this 
method presents an innovative element by including 
high-resolution daytime and nighttime thermal images 
thanks to the use of the Sentinel 3 sensor and the use of 
the TsHARP algorithm. This method is different from 
traditional studies where they use a single image per 
day using the Landsat satellite. Therefore, our research 
will allow us to analyze the variability of the variables 
mentioned at various times of the day and obtain more 
complete results. In turn, our research not only analyzes 
the structure of the campus but also the city where it is 
located through the LCZ classification (Stewart & Oke, 
2012). This allows us to have the possibility of under-
standing and analyzing how the EMU university cam-
pus could influence the urban climate of the city where 
it is hosted. With this research, the authors intend to 
answer the following questions:

1. How are SUHI and LST developed in the host 
city and the university campus?

2. Is the urban development of the university impor-
tant in the variability of the SUHI and LST of the 
city?

3. Is there any relationship between the indices (PV, 
LULC, and NDVI) and the areas with higher 
temperatures?

4. How the findings of this study can contribute to 
the sustainable urban planning and development 
of university campuses?

The insights derived from this investigation can play 
a pivotal role in alleviating the ramifications associated 
with heightened SUHI, LST, and UHS, thereby enhanc-
ing the environmental comfort index in these locales 
and the adjoining urban regions. Ultimately, this trans-
formation can contribute to the creation of sustainable 
environments capable of withstanding the challenges 
posed by global warming.

2  Materials and Methods

2.1  Research area

The area under study (Fig. 1) is the city of Famagusta, 
where the campus of the Eastern Mediterranean Uni-
versity (EMU) is located.



 Water Air Soil Pollut (2024) 235:319

1 3

319 Page 4 of 26

Vol:. (1234567890)

This location is a popular vacation spot and an 
educational tourism center that attracts many inter-
national students annually (Rezapouraghdam et  al., 
2022a, b). Accordingly, as an island state, the issues 
of climate change, sustainable planning, and devel-
opment are highly critical topics in this travel hub 
(Rezapouraghdam & Vahedi, 2024). The average 
annual temperature of this destination ranges from 
297.15  K to 306.15  K in January and July, respec-
tively. However, a minimum of 279.15  K can be 
reached in winter, and a maximum of 310.15  K 
can be reached in summer. The city has an average 
of 3,978  h of sunshine per year. The population of 
Famagusta is 57,442 inhabitants and it has an area of 
1,979  km2, resulting in an average population den-
sity of 29.02 inhabitants/km2. Since 1979, the East-
ern Mediterranean University has started to provide 
higher education, and today it hosts a total of 16,000 
students within an area of 0.87  km2. The campus con-
sists of 15 buildings for faculties, 3 for administrative 
purposes, and 21 for residential and other uses. These 

buildings cover 55% of the campus area, while the 
remaining 45% is allocated to green spaces (Fig. 2).

2.2  Methodology

Figure  3 describes the methodology carried out in 
this research. Using Sentinel 2 images, the NDVI, 
PV, and LULC were determined at a resolution of 
10 m. The Support Vector Machine (SVM) method-
ology was implemented for land cover classification 
within the QGIS software, and the accuracy of the 
land cover classification was assessed using a preci-
sion matrix (Xu et al., 2009). This tool allows a clas-
sification to be carried out through an autonomous 
learning system. Its main objective is to establish and 
determine a decision-making process to classify and 
determine the different classes automatically previ-
ously established.

Subsequently, NDVI and PV images were 
extracted from the Ocean and Land Cover Instru-
ment (OLCI) multispectral sensor, providing a spatial 

Fig. 1  Study Area, Famagusta; Northern Cyprus
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resolution of 500 m. Using the open source software 
SNAP, Sentinel 3 thermal images of the Earth’s sur-
face were obtained at a resolution of 1000  m. An 
atmospheric correction and band reclassification pro-
cess was applied and the images were resampled with 
a resolution of 10  m using the TsHARP algorithm 

using the PV and NDVI images from Sentinel 2 as 
a basis (Belgiu & Stein, 2019). Subsequently, and in 
order to characterize the Earth’s surface, urban areas 
were classified into different LCZs (Stewart & Oke, 
2009). Using the QGIS software, the SUHI, UHS, 
and UTFVI were determined and subsequently, the 

Fig. 2  EMU Campus

Fig. 3  Methodology
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data were analyzed statistically using the STATA 
software, version 16.

2.3  Classification of LCZ.

The area under study was classified using different 
LCZs (Stewart & Oke, 2009). These are areas that 
have the same coverage, characteristics and build-
ing density in order to allow cataloging of Earth’s 
surface. Each LCZ has its own specific properties 
and characteristics (Stewart & Oke, 2012). This 
classification has been used in numerous studies 
(Qiu et al., 2020; Stewart, 2011) to obtain the dif-
ferent LULCs and their climatic variables, such 
as LST and SUHI (Brousse et  al., 2019; Equere 
et  al., 2020). Therefore, its use has the objective 
of characterizing the landscape through a classifi-
cation used worldwide and that allows the results 
obtained in each LCZ to be extrapolated to the rest 
of the cities.

Firstly, the city was classified into the different 
LCZ typologies according to the description of the 
authors Stewart and Oke (2012). Eleven LCZ were 
obtained: bushes, bare soil, sparsely built, scattered 
trees, bodies of water, compact and open of medium 
and low height. -Boom and heavy industry, and EMU 
Campus (Fig. 4). The steps carried out to obtain these 
LCZ are as follows: (1) Collection of metadata for 
each area based on high-resolution images from the 
Sentinel 2 and Google Earth satellites (Yang et  al., 
2019). (2) These images were compared with the 
LCZ images obtained. (3) Realization of the defini-
tive delimitation of each LCZ. (4) Cataloging of the 
different LCZ obtained. In general terms, the LCZ 
obtained had values similar to those referenced by the 
authors Stewart and Oke (2009).

In the comparison between Sentinel 2 and LCZ 
images obtained, it was reported that only three of the 
50 control points did not coincide. Therefore, a man-
ual correction was carried out in order to determine a 
high degree of agreement, which finally reached 94%.

Fig. 4  LCZ of the area under study
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2.4  Sentinel 2 Images

Sentinel 2 provides multispectral images of the 
Earth’s surface at a resolution of 10  m. This allows 
us to observe the possible alterations or modifications 
that occur on the Earth’s surface at any point on the 
planet. Each Sentinel 2 image has 12 spectral bands 
with resolutions ranging between 10 and 60 m. Our 
research used a total of twelve images (6 daytime and 
6 nighttime). All of them were carried out during the 
months of July and August 2022. The images were 
obtained from the Copernicus Open Access Hub level 
2 program. This consists of a repository owned by the 
ESA (ESA).

2.4.1  LULC

In order to obtain the LULC plans of the ground, 
bands 2 (red), 3 (green) and 4 (blue) (RGB) of Sen-
tinel 2 were used. Next, and using the QGIS software 
and the SVM, the city was classified. and the EMU 
campus and the LULC coverage planes were obtained 
in raster images (Amindin et  al., 2021; Otukei & 
Blaschke, 2010).

2.4.2  NDVI

With the red (R) and near-infrared (NIR) bands, the 
NDVI was calculated. Through this index, the pres-
ence of vegetation on the soil can be visualized. 
NDVI values range between -1 (light soils and sparse 
vegetation) and 1 (dense vegetation) (Amindin et al., 
2021):

With the results obtained in Eq. 1, the PV can be 
calculated using Eq. 2 (Yu et al., 2014). This allows 
establishing the proportion of existing vegetation in 
an area (Rajeshwari A, 2014):

where NDVI max and NDVI min are the maximum 
and minimum values of the NDVI interval, and NDVI 
is the normalized vegetation index obtained by Eq. 2.

(1)NDVI =
NIR − Red

NIR + Red

(2)PV =

[

NDVI − NDVImin

NDVImax − NDVImin

]2

2.5  Sentinel 3 Images

Using the Sentinel 3 images, the surface tempera-
ture can be obtained since they have 3 thermal bands 
with a pixel size of 1000 m and 6 bands (S1 to S6) 
with a resolution of 500 m. NDVI and PV images are 
included directly and associated with thermal images 
within Sentinel 3 level 2 products.

The study area is accessible through Sentinel 3 
images. Sentinel 3A’s transit time is from 11:00 a.m. 
to 12:00 p.m., while Sentinel 3B’s transit time is from 
10:00 p.m. to 11:00 p.m. Six daytime images and 
another six nighttime images matching the Sentinel 2 
images have been selected. These have a cloud index 
of less than 5%. The images used have been acquired 
from ESA for level 2. The correction process carried 
out has been the same as for Sentinel 2 images.

2.6  Image Reclassification using the TsHARP 
Algorithm

Since Sentinel 3 images have a resolution of 1000 m 
and given the need to have high resolution images, in 
recent years different techniques or methodologies have 
been carried out that allow images to be transformed 
from low to high resolution. Among these methods, the 
following stand out: Distrad, STARFM and TsHARP. 
All of them allow for improving the resolution of the 
images through an interpolation method with others 
that do have better resolutions such as NDVI and PV 
images. The most used method due to its simplicity, 
excellent results and precision is the TsHARP algo-
rithm (Agam et al., 2007; Zhou et al., 2020). This uses 
a linear correlation model based on the direct relation-
ship that numerous authors have reported between LST 
and PV. It is calculated using formula 3:

PVcoarse and  LSTcoarse represent the PV and LST 
determined using Sentinel 3 imagery at 1000 m res-
olution. The regression coefficients are the variables 
"a" and "b" and are determined by statistical analy-
sis. Next, we use Eq. 4:

PVfine comes from Sentinel 2 images that present 
a resolution of 10 m. Next,  LSTfine comes from the 
LST derived at 10  m resolution. The coefficients 

(3)LSTcoarse = a + b × PVcoarse

(4)LSTfine = a + b × PVfine
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"a" and "b" have been determined through statisti-
cal analysis. Finally, it is mandatory in all statistical 
analysis to add the residual error (residual) in order 
to increase precision. All this, according to Eq. 5:

2.7  SUHI Estimation

The SUHI is characterized by temperature dispari-
ties between urban and rural regions measured con-
currently (Oke, 1987), as described by Eq. 6:

The urban LST has been obtained with the pixels 
located in urban areas, while the rural LST has been 
determined with the value of the LCZ pixels classified 
as Scattered Trees. These are located at an adequate 
distance from urban areas and do not have paved areas 
around them. Using day and night LST images from 
Sentinel and using the equation, Eq. 6 can be obtained.

2.8  UHS Estimation

From the LST within the study area, the UHS hot 
spots are located. They are areas within the high 
temperature zones and are usually uncomfortable 
for people. These zones are located using the fol-
lowing Eq. 7 (Guha, 2017; Sharma et al., 2021):

σ and µ are the standard deviation and the mean val-
ues of the LST in K, respectively. By applying this 
formula, hot urban areas with LST values higher than 
the mean values in a 95% confidence interval are 
located.

2.9  UTFVI Estimation

SUHI generates a significant impact on the qual-
ity of life in urban areas. The impact of the SUHI is 
measured and valued through the UTFVI index that 
compares the temperature of each pixel with the aver-
age values of the entire surface (Guha et  al., 2018). 
This generates a scale of six classes and six indices 
(Liu & Zhang, 2011) of ecological evaluation (Table 

(5)LSTdownscale = LSTfine + Residual

(6)SUHI = LSTurban − LSTrural

(7)LST > μ + 2 ∗ σ

[9). The six ecological evaluation indices are organ-
ized according to the strength of the SUHI and have a 
range between excellent and worse. The UTFVI index 
is calculated Eq. 8 (Guha et al., 2018):

where  Tmean is the average LST of the entire area 
(K) and LST is the temperature of each pixel (K). 
Through the day and night LST, the day and night 
UTFVI indices of the area under study have been 
determined. The absence of the SUHI effect is indi-
cated by values below zero in the UTFVI. They cor-
respond to maximum comfort or excellent quality. As 
UTFVI values increase, thermal comfort deteriorates 
(Sharma et al., 2021) due to an increase in SUHI.

2.10  Strategy of Analysis

The statistical analysis used two methodologies: 
ANOVA and Panel Data. The first allows us to com-
pare the variances between the means of the differ-
ent groups in order to check if there are statistically 
significant differences. For that means, an ANOVA 
has been used with a dependent variable (LST) and 
an independent variable (LCZ). Some already pub-
lished studies have used this methodology in similar 
research (Safarrad et al., 2021; Sharma et al., 2022). 
Secondly, the Data Panel allows us to obtain bet-
ter results in analyzes that have cross-sectional and 
time data (Alcock et  al., 2015; Fang & Tian, 2020). 
To carry out this last analysis, the steps described in 
Chen et al., (2011) have been followed. This was done 
using the STATA software following Eq. 9:

where β is an independent variable, Xit are explanatory variables, �it
 is 

the error of the model and αi represents the individual 
effects.

3  Results

3.1  NDVI and PV Indices

Figure 5 illustrates the PV and NDVI indices. NDVI 
is a metric that gauges the health and condition of 

(8)UTFVI =
LST − Tmean

Tmean

(9)Yit = βXit +
(

αi + μit
)
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vegetation covering the Earth’s surface, whereas PV 
reflects the relative amount of vegetation in a given 
area in contrast to urbanized regions. In Fig. 5a, the 
NDVI index demonstrates an average range fluctuat-
ing between its highest value (0.2972), observed in 
green regions, and its lowest value (0.1500), found in 
urban and non-vegetated rural areas. The overall aver-
age NDVI value across the entire study area was cal-
culated as 0.184. In Fig. 5b, the PV index displays an 
average span varying between its peak value (0.1300), 
noted in green and open urban regions, and its lowest 
value (0.0170), observed in densely populated urban 
areas and non-vegetated rural zones. The average 
PV value for the entire study area was computed as 
0.0722. The acquired NDVI values suggest that the 
vegetation in the study area is suitable for the summer 
period. On the other hand, the PV values report that 
the city has few areas of vegetation and a dispersed 
location.

Table  1 displays the mean PV and NDVI values 
within each LCZ.

Specifically, the NDVI index exhibits its highest 
values in the Scattered Trees (0.2105), EMU Cam-
pus (0.1953), and Bare Soil (0.1920) zones, while 
the lowest values are observed in the Water Bodies 
(0.1678), Bush and Scrub (0.1728), and Heavy Indus-
trial (0.1746) areas. Conversely, the PV index regis-
ters its highest values in the Scattered Trees (0.0844), 
Bush and Scrub (0.0840), and Water Bodies (0.0705) 
zones, while the lowest values are found in the Com-
pact Midrise (0.0376), Heavy Industrial (0.0426), and 
Open Low-Rise (0.0453) zones.

Figure  6 shows the average values of the NDVI 
and PV indices by area: urban, rural, EMU and 
heavy industrial. In this way, the highest NDVI 
value is located in the EMU campus area (0.1953) 
while the lowest value is located in the heavy indus-
trial area (0.1746). The highest value of PV is 
located in the rural zone group (0.0718) while the 
lowest value is located in the heavy industrial area 
(0.0426). From these results, the extensive develop-
ment of green areas located within the EMU cam-
pus is corroborated, being an important factor in the 
control of high temperatures in the city.

The outcomes of the ANOVA test conducted on 
the NDVI and PV indices have revealed that these 
data do not conform to normal distributions across 

Fig. 5  Index a) NDVI and b) PV of the area under study

Table 1  Index NDVI and PV of the area investigated by LCZ

LCZ NDVI PV

Compact Mid Rise 0.1763 0.0376
Compact Low Rise 0.1826 0.0496
Open Mid Rise 0.1816 0.0626
Open Low Rise 0.1856 0.0452
Heavy Industrial 0.1746 0.0426
Bush, Scrub 0.1728 0.0841
Bare Soil 0.1923 0.0442
Sparsely Built 0.1846 0.0457
Scattered Trees 0.2105 0.0884
Water bodies 0.1678 0.0705
EMU Campus 0.1953 0.0878
Mean 0.1841 0.0722
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various LCZs, as indicated by the Shapiro–Wilk 
test with p-values less than 0.05. Consequently, to 
proceed with the analysis under non-normal dis-
tribution conditions, the Kruskal–Wallis test was 
executed, and the resulting findings are presented in 
Table 2.

Hence, based on the reported results, it can be con-
cluded that the values of the PV and NDVI indices 
exhibit statistically significant relationships between 
the various LCZs at a significance level of above 
99%.

3.2  Evaluation of the LULC

The coverage of the LCZ taken into account is rep-
resented in Fig. 7 and 8. Regarding the average val-
ues, the coverage with the largest area in the city of 

Famagusta is the Built up (54.1%) while the cover-
age with smaller surface is the vegetation (10.8%). 
Bare soil coverage (17.3%), farmland (17.7%) and 
water bodies (10.9%) are found with intermediate val-
ues. Figure 9 shows the different coverages by LCZ. 
The compact midrise (90.2%) and heavy industrial 
(89.7%) zones present a higher average proportion 
of built-up coverage. On the contrary, the bare soil 
(18%) and bush, scrub (19.1%) areas present the low-
est average proportion of this coverage. These results 
are in line with those obtained for the NDVI and PV 
indices in the previous section.

It is important to note how the compact areas of the 
city have a higher average built-up coverage (73.5%) 
than the open areas (62.2%). However, the aver-
age vegetation cover is also higher in compact areas 
(12.85%) as opposed to open areas (10.6%). How-
ever, the latter present a greater coverage of farmland 
(16.9%) than the compact zones (8.6%). Therefore, 
the non-built-up areas of the open areas are intended 
for vegetation and, to a greater extent, for farmland.

Figure 9 shows the different investigated coverages 
grouped by zones: rural, urban, heavy industrial and 
EMU campus. It can be seen how the heavy indus-
trial area has a very low vegetation coverage (0.3%) 
while the majority coverage is built up (89.7%). The 

Fig. 6  Mean index values 
a) NDVI and b) PV of the 
investigated area

Table 2  ANOVA test results between the NDVI, PV and LCZ 
indices

F: Statistical.  R2: Linear regression coefficient.

Source NDVI PV

Difference of Square 0.0001*** 0.0001***
R2 52.03 48.63
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Fig. 7  LULC coverage of the area Under study

Fig. 8  Average LULC val-
ues in the different LCZ
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farmland (5.2%) and bare soil (4.7%) coverages also 
have very low surfaces. In the rural zone, the great-
est coverage is bare soil (37.5%) followed by farm-
land (30.3%), built up (22.8%) and vegetation (9.3%). 
In the urban areas of the city of Famagusta, built up 
coverage stands out (64.7%) followed by farmland 
coverage (14.1%), vegetation (11.9%) and bare soil 
(9.2%). With regard to the EMU campus area, the 
area devoted to vegetation (20.3%) is higher than the 
rest of the areas and the built-up coverage (58.9%) is 
lower than the rest of the urban areas. These results 
are in line with the values reported in the previous 
sections for the NDVI and PV indices.

Table 3 shows the results of the precision matrix. 
The global precision has been 84.74% with a confi-
dence interval of 95%. The Tau coefficient is 0.791 
and the Kappa coefficient is 0.808. After determining 
these results, a manual correction of the points has 
been made.

The outcomes of the ANOVA test performed 
on LULC data have indicated, based on the 

Shapiro–Wilk test with a P value greater than 0.05, 
that these data follow a normal distribution within 
the various LCZs. The results presented in Table  4 
confirm the presence of statistically significant differ-
ences exceeding the 99% confidence level among the 
means of the distinct land cover categories and the 
different LCZs under investigation. The statistic F > 0 
and the variable Prob >  Chi2 < 0.001 further support 
this conclusion.

3.3  Spatio-temporal evaluation of LST

Figure  10 shows the distribution of daytime and 
nighttime LST. During the mornings, the maximum 
value of LST was 323.7  K while the average value 
was 318.5 K and the lowest value was 311.1 K. The 
difference in daytime LST within the EMU campus 
was 5.3  K. Figure  11a illustrates the phenomenon 
where urban areas exhibit lower LST values com-
pared to the higher temperatures observed in rural 
areas. This phenomenon can be attributed to several 

Fig. 9  Average LULC 
values by zones

Table 3  Precision matrix

UA (5): User accuracy. PA 
(5): Producer Accuracy

Water bodies Vegetation Built up Farmland Bare soil UA (%)

Water bodies 10 0 0 0 0 100
Vegetation 0 10 0 0 0 100
Built up 1 0 10 1 2 60
Farmland 0 0 5 10 0 50
Bare soil 0 0 0 0 10 100
PA (%) 90 100 50 90 80 50
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factors. One significant factor is the higher solar 
radiation received in rural areas during the morn-
ing hours, which surpasses the radiation received in 
urban areas. This difference is a consequence of the 
shading effect produced by buildings and vegetation 
in urban areas, which limits the heating of imperme-
able surfaces such as streets. Additionally, vegetated 
areas in rural regions experience more efficient cool-
ing processes, contributing to lower temperatures 
(Lemus et al., 2020). During the nights, the maximum 
value of LST has been 299.6  K while the average 
value has been 298.2 K and the lowest value has been 
297 K. The difference of night LST within the EMU 
campus has been 1.9  K. Figure  11b shows how the 
highest values of LST are located in the interior of the 
city, while rural areas have lower values of LST. This 
is because urban areas tend to cool more slowly than 
rural areas once the sun goes down, as they retain 
heat. The waterproof construction materials used in 

cities absorb heat from solar radiation, and at night, 
after the sun goes down, they release it, heating up the 
atmosphere (Hidalgo García and Arco-Díaz, 2022).

In Fig. 11, the mean day and night LST are repre-
sented by LCZ. It can be seen how the highest day-
time LST is located in the bush, scrub (320.5 K) and 
bare soil (317.2 K) zones, while the lowest LST val-
ues are located in the water bodies (313.6 K), EMU 
Campus (314.5 K) and open low-rise (314.9 K). Dur-
ing the nights, the highest LST is located in the com-
pact midrise (299.1  K) and open midrise (298.8  K) 
zones, while the lowest values are located in the bare 
soil (297.3  K), scattered trees (297.7  K) and EMU 
Campus (297.8 K).

Figure 12 shows the mean daytime and night-time 
LST by area: urban, rural, EMU campus and heavy 
industrial. In this way and during the mornings, the 
highest LSTs are found in the rural zones (316.5 K) 
as opposed to the lowest LSTs that are located in the 
EMU campus area (315.1  K). The urban areas have 
presented an average LST of 315.6 K and the heavy 
industrial areas an LST of 315.9 K. On the contrary, 
and during the nights, the highest LST is located in 
the urban zones (298.6 K) while the lowest LST they 
are located in rural areas (297.6 K). The areas clas-
sified as heavy industrial have an average nighttime 
LST of 298.2  K and the EMU Campus an LST of 
298 K. In this way, it can be seen how the EMU Cam-
pus has the lowest daytime LST of the areas studied 
while it has the lowest LST lowest nightlife in urban 
and industrial areas. This is due to the urban planning 

Table 4  ANOVA test results between LULC and LCZ

F: Statistical.  R2: Linear regression coefficient.

Source LULC

Sum of Square 39.5268
Df 10
Mean of Square 3.9526
F 5.11
Prob >  Chi2 0.000***
R2 0.269

Fig. 10  LST a) daytime and b) night-time of the area under study
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Fig. 11  LST daytime and 
night-time by LCZ

Fig. 12  Average LST day-
time and nighttime by area
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that presents the campus with low-rise buildings and 
large open spaces with vegetation that generate shad-
ows in the morning and high percentages of cool-
ing at night. There are numerous investigations that 
report significant cooling rates in urban areas that 
have extensive green areas (Hidalgo, 2023).

The outcomes of the ANOVA test conducted on 
LST data have revealed, based on the Shapiro–Wilk 
test with a P-value less than 0.05, that these data do 
not conform to normal distributions across different 
LCZs. Consequently, to proceed with the ANOVA 
test under the assumption of non-normal distribu-
tions, it was essential to perform the Kruskal–Wallis 
test. The results of this test are presented in Table 5.

Hence, based on the reported results, it can be con-
cluded that the LST values exhibit statistically signifi-
cant relationships exceeding the 99% confidence level 
across different LCZs. To determine the relationships 
between LST and the PV, LULC, and NDVI indices 
within the study area, the Data Panel method will be 
employed. This approach allows for a comprehensive 
analysis of the interactions and dependencies among 
these variables, taking into account both time and 
value data.

In Table 6 it can be seen how temperatures have a 
significant negative correlation with NDVI (-0.1935) 
and PV (-0.2742) and positive with LULC (0.3246).

The following results are reported (Table  7) sta-
tistically significant relationship above 99% between 
temperatures and LULC, greater than 99% and nega-
tive with the PV variable and 99% and negative with 
the NDVI variable. In summary, areas with higher 
PV and NDVI values tend to have lower tempera-
tures, whereas areas with lower PV and NDVI values 
exhibit higher temperatures. Additionally, it’s worth 
noting that changes in LULC coverage are associated 
with temperature variability, indicating a connection 
between urban development and temperature patterns.

sd: Standard deviation; F: Statistical.  R2: Linear 
regression coefficient; β: Coefficient.

3.4  SUHI Spatio-Temporal Evaluation

Figure  13 shows day and night SUHI in the city of 
Famagusta.

During the mornings, the maximum value of 
SUHI has been 7.5  K while the average value has 
been 2.2  K and the lowest value has been -5.1  K. 
The difference in daytime SUHI within the EMU 
campus was 5.2  K. Figure  14a shows how the 
highest SUHI values are located in rural areas as 
opposed to the lowest SUHI values that are located 
in urban areas. The diurnal SUHI difference within 
the EMU campus has been 5.2 K. In Fig. 14a, Dur-
ing the nights, the maximum value of SUHI has 
been 1.7 K while the average value has been 0.3 K 
and the lowest value has been -0.9 K. The difference 
in nocturnal SUHI within the EMU campus was 
0.9 K. Figure 14b shows how the highest values of 
SUHI are located in the interior of the city while 
rural areas show higher values. lower than SUHI. In 
Fig. 14, the mean daytime and nighttime SUHI are 
represented by LCZ. It can be seen how the highest 
daytime SUHI is located in the Bush, scrub (4.3 K) 
and bare soil (1.1  K) zones, while the lowest LST 
values are located in the water bodies (-2.6 K) and 
scattered zones. trees (-1.7  K). During the nights, 
the highest SUHI is located in the compact midrise 
(1.1 K) and open midrise (0.9 K) zones, while the 
lowest values are located in the bare soil (-0.7  K) 
and water bodies (-0.2 K) zones.

Table 5  ANOVA test results between the LST and LCZ

F: Statistical.  R2: Linear regression coefficient.

Source LST

Difference of Square 0.0001***
R2 61.76

Table 6  Correlation coefficient

LST PV NDVI LULC

LST 1
PV -0.2742 1
NDVI -0.1935 0.2280 1
LULC 0.3246 0.0342 -0.1664 -0.8831

Table 7  Data Panel results

β ρ sd

NDVI -18.5793 0.006** 6.6853
PV -28.9176 0.000*** 7.1469
LULC 1.15046 0.000*** 1.2355

R2 = 0.22 F = 12.78 Prob >  chi2 = 0.000
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Figure 15 shows the average day and night SUHI 
by areas: urban, rural, EMU campus and heavy 
industrial. In this way and during the mornings, the 
highest SUHIs are found in the rural zones (0.3  K) 
as opposed to the lowest SUHIs that are located in 
the urban zone (-0.8  K). Both the heavy industrial 
(-0.3  K) and EMU campus (-0.1  K) zones present 

SUHI with negative values, respectively. This situa-
tion reveals that rural areas have higher temperatures 
than urban ones during the mornings. This situation is 
identified as an urban cooling island (García & Díaz, 
2023; Yang et  al., 2020a, b). On the contrary, and 
during the nights, the highest SUHIs are located in 
the urban (0.7 K) and heavy industrial (0.7 K) areas, 

Fig. 13  SUHI a) daytime and b) nighttime of the area Under study

Fig. 14  SUHI daytime and 
nighttime by LCZ
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while the lowest SUHI values are located in the rural 
area (-0.1  K) and EMU campus (0.4  K). This cir-
cumstance suggests that rural areas have lower tem-
peratures than urban areas at night. Numerous authors 
have reported this situation, identifying it as an urban 
heat island (Hidalgo García and Arco Díaz, 2021; 
Yang et al., 2020a, b). It is observed how the campus 
EMU zone presents lower day and night SUHI than 
the urban zones. This situation is once again moti-
vated by the urbanism that the campus presents with 
low-rise buildings and large open spaces with vegeta-
tion that generate shadows in the morning and high 
cooling percentages at night. Numerous investiga-
tions report a minimization of temperatures in urban 
areas with large areas of green cover.

The outcomes of the ANOVA test conducted 
on the SUHI data have indicated, as per the Shap-
iro–Wilk test with a P-value less than 0.05, that these 
data do not adhere to normal distributions across 
different LCZs. Consequently, in order to proceed 
with the ANOVA test under the assumption of non-
normal distributions, it was imperative to conduct the 
Kruskal–Wallis test. The results of this test can be 
found in Table 8.

According to the reported results, it can be inferred 
that the SUHI values demonstrate statistically signifi-
cant relationships exceeding the 99% confidence level 
across different LCZs. Subsequently, employing the 
Data Panel method will help determine and explore 
the relationships between SUHI and various factors 
within the study area.

Table  9 shows how the SUHI presents a strong 
negative correlation with the NDVI (-0.1598) and PV 
(-0.3017) indices and positive with the LST (0.8434) 
and LULC (0.4729). The results report the follow-
ing results (Table 10) a relationship greater than 99% 
and statistically significant positive between LST and 
SUHI and LST and LULC, greater than 99% and neg-
ative with the PV variable and 95% and negative with 
the NDVI variable

Fig. 15  Average SUHI 
daytime and nighttime by 
area

Table 8  ANOVA test results of the SUHI between the LCZ

F: Statistical.  R2: Linear regression coefficient.

Source SUHI

Difference of Square 0.0001***
R2 78.97
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3.5  UHS identification

Figure  16 and Table  11 show the UHS during the 
day (11.95%) and at night (24.77%) in the city. A 
clear spatial variability can be seen between the 
areas classified as UHS during the mornings and 
evenings. Thus, in the former, the UHS is located 
in rural areas, while at night the UHS is located in 
the center of the city. This circumstance is motivated 
by the fact that during the mornings, rural areas 

without vegetation heat up more quickly than urban 
areas due to the shadows produced by buildings 
or trees on the streets. On the contrary, during the 
night, construction materials that have been heated 
during the day release heat into the atmosphere, pro-
ducing the UHI phenomenon.

Figure  17 shows the percentage of occupation of 
the territory by day and night UHS based on the LCZ. 
It can be seen how all the daytime UHS are located 
in the LCZ Bush, scrub, while the night UHS are 
located mainly in urban areas. Highlight the high 
occupancy (51%) of the areas classified as compact 
midrise as UHS during the nights. The EMU campus 
zone only has 1% of its surface occupied as UHS dur-
ing the nights. These results denote a construction 
system, spaces intended for vegetation, and adequate 
LULC on the part of the EMU university campus that 
allows for improving the climatic conditions of the 
adjacent city.

3.6  Evaluation using UTFVI

Figure  18 and Table  12 show the day and night 
UTFVI evaluation. In general terms and during the 
mornings, the city presents the vast majority of its 

Table 9  Pearson`s correlation

SUHI LST NDVI PV LULC

SUHI 1
LST 0.8434 1
NDVI -0.1598 -0.1935 1
PV -0.3017 -0.2742 0.2280 1
LULC 0.4729 0.3246 -0.1664 0.0342 1

Table 10  Data Panel results

sd: Standard deviation; F: Statistical.  R2: Linear regression 
coefficient. β: Coefficient.

β ρ sd

LST 0.5836 0.000*** 0.0369
NDVI -10.7067 0.029* 5.1867
PV -23.2890 0.000*** 5.1867
LULC 1.04483 0.000*** 0.1709

R2 = 0.33 F = 22.41 Prob >  chi2 = 0.000

Fig. 16  UHS a) daytime and b) nighttime by area

Table 11  Temperatures for UHS

Non UHS (K) UHS (K) UHS (ha) UHS (%)

Daytime  < 322.0  ≥ 322.0 236.61 11.95
Nighttime  < 299.1  ≥ 299.1 489.25 24.77
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territory classified according to four UTFVI typolo-
gies: class 1 (48.8%), 3 (21.8%), 2 (19.7%), and 
4 (9.5%). The areas with the highest rankings are 
located in urban areas while the areas with the lowest 

rankings are located in rural areas. On the contrary, 
during the night, the city presents the great major-
ity of its territory classified according to two UTFVI 
typologies: class 4 (91.7%) and 3 (7.6%). The areas 

Fig. 17  UHS a) daytime 
and b) nighttime by LCZ

Fig. 18  UTFVI a) daytime and b) nighttime of the area Under study

Table 12  Daytime and 
nighttime occupation of 
UTFVI

Class UTFVI SUHI presence Ecological index Daytime (%) Nighttime (%)

1  < 0 None Excellent 48.8 0.0
2 0—0.005 Weak Good 19.7 0.0
3 0.005—0.010 Middle Normal 21.8 7.6
4 0.010—0.015 Strong Bad 9.5 91.7
5 0.015—0.020 Stronger Worse 0.2 0.8
6  > 0.020 Strongest Worst 0.0 0.0
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with the best rankings are located in rural areas while 
the areas with the worst rankings are located in urban 
areas.

Figure  19 shows the occupation of the differ-
ent classes of UTFVI soil according to the different 
LCZ in detail. Thus, during the mornings, the heavy 
industrial and EMU campus areas present 100% of 
their territory as UTFVI class 1. On the contrary, 
the Bush, scrub areas present only 10% of the soil as 
class 1 while class 3 is 34%, class 2 is 31% and class 
4 is 25%. In turn, the bare soil zone has 64% cover-
age classified as UTFVI class 3. During the nights, 
the Bush, scrub, and bare soil cover are the ones that 
present the highest % of soil as UTFVI class 1, 76%, 
and 84%, respectively. The areas with the highest land 
occupation through UTFVI class 5 are compact mid-
rise (4%) and heavy industrial, scattered trees, and 
water bodies (1%). The areas with the highest occu-
pancy percentages through UTFVI class 4 are the 
EMU campus (100%), water bodies (99%), compact 
midrise (96%), and heavy industrial and sparsely built 
(91%).

4  Discussion

Our results report that PV and NDVI values, which 
are indicative of vegetation, exhibit higher values in 
rural areas compared to urban and industrial areas, 
where these values are notably lower. Furthermore, 
when considering the diverse LCZs, it is evident that 
open areas tend to have higher PV and NDVI values 

in contrast to compact and industrial zones, where 
these values are relatively lower. These findings 
highlight the distinctions in vegetation cover and 
land use patterns across the different zones within 
the study area. Therefore, the greater the compact-
ness of the buildings and the building density of 
the areas, the lower the values in the PV and NDVI 
indices. From the LULC results, it has been reported 
that the predominant coverage in urban areas is built 
up, while in rural areas, it is bare soil. The vegeta-
tion cover found is greater in urban areas than in 
rural areas, being practically nil in industrial areas. 
Concerning the results of these indices in the EMU 
campus area, it should be noted that the NDVI and 
PV indices have been higher than those in the rest 
of the urban areas, while the predominant coverage 
has been built up, followed by vegetation. The latter 
presents an occupation of approximately double that 
found in urban and rural areas. These results are in 
line with the spatial distribution and the area desig-
nated for green areas that the campus currently pre-
sents. These results are in line with those obtained 
in another research (Avdan & Jovanovska, 2016; 
Diallo-Dudek et al., 2015; Hidalgo García and Arco 
Díaz, 2021; Kafy et  al., 2021; Wang et  al., 2019) 
allowing us to validate those reported here. However, 
it is necessary to report that the variability observed 
in the NDVI and PV indices cannot only be assigned 
to a territorial planning system carried out by differ-
ent public organizations but also due to rainfall and 
irrigation systems (Nicholson & Farrar, 1994). These 
last variables can contribute greatly to the variability 

Fig. 19  Occupation of soil classes UTFVI a) daytime and b) night-time by LCZ



Water Air Soil Pollut (2024) 235:319 

1 3

Page 21 of 26 319

Vol.: (0123456789)

of these factors and therefore this circumstance must 
be taken into account.

Our results tell us that daytime LST tends to be 
higher in rural areas and lower in urban areas. In turn, 
and within the latter, the LST is lower in compact 
zones than in open and industrial zones. This circum-
stance could be motivated by the fact that compact 
areas receive less solar radiation due to the shadows 
of trees and buildings. Lower radiation allows the 
waterproof materials with high thermal absorption 
usually used in the construction processes of cities 
and buildings not to heat up and therefore allows a 
reduction in the LST. In this way, it is necessary to 
report that the more vegetation, the lower the LST, 
while the less vegetation, the higher the LST. If shad-
ows prevent the entry of solar radiation, the walls will 
not heat up and heat will not be released (Dwivedi 
& Mohan, 2018; Lemus-Canovas et  al., 2020). In 
contrast, the average nighttime LST is lower in rural 
areas compared to urban areas where it is higher. In 
turn and within the latter, the LST is higher in com-
pact and industrial areas compared to open areas due 
to the less available vegetation. This is mainly due to 
the fact that rural areas tend to cool quickly after sun-
set due to the low thermal inertia of the soil. On the 
contrary, urban areas retain the heat received during 
the day from solar radiation due to the high thermal 
inertia of the materials used. Our results show that the 
more compact an area is, the more surfaces of imper-
meable materials it has and therefore, the more heat 
it retains. The use of waterproof materials with high 
thermal absorption means that after hiding from the 
sun, they release the heat absorbed during the day 
(Saaroni et al., 2018; Suhail et al., 2019; Yang et al., 
2020a, b).

Focusing now on the EMU area, it has been 
reported that during the mornings it has lower LST 
than the adjacent rural and urban areas. On the con-
trary, during the night, it has presented lower LST 
than urban areas but higher than neighboring rural 
areas. However, important thermal differences have 
been found within the campus between areas with 
more and less vegetation. This circumstance is once 
again motivated by the configuration that the cam-
pus presents with low-rise buildings and large green 
spaces with vegetation. Numerous studies have 
reported that vegetation has a cooling effect in urban 
areas (Du et  al., 2020; Lin et  al., 2015; Qiu et  al., 
2017), which ranges between 0.5 and 2.5 K. However, 

the results reported here from LST are below the 
results reported by other authors (Addas et al., 2020; 
Cheng et  al., 2020; Wibowo et  al., 2020) in studies 
carried out on other university campuses. This cir-
cumstance could be mainly motivated by the signifi-
cant percentage of green areas in the EMU campus 
with values above those obtained in other campuses. 
Therefore, it becomes evident that high areas of veg-
etation in urban areas make it possible to minimize 
LST and improve the environmental conditions of 
these areas, improving people’s quality of life.

Additionally, an important spatial variability of 
the diurnal and nocturnal SUHI of the city of Fama-
gusta has been evidenced. The average daytime and 
night-time SUHI results obtained revealed that the 
study area experiences an urban heat island since 
urban temperatures are higher than rural tempera-
tures throughout the day. However, this circum-
stance must be analysed since the daytime temper-
atures of the urban LCZ have been lower than the 
daytime temperatures of the rural LCZ. Therefore, 
although the average daytime SUHI is positive 
if we analyse only urban areas, the average SUHI 
obtained has a negative value. This circumstance 
is defined as an urban cooling island and has been 
studied and corroborated by numerous investiga-
tions (Hidalgo García and Arco Díaz, 2021; Saaroni 
et  al., 2018; Wu et  al., 2019). The mean daytime 
SUHI according to the LCZ seems to indicate that 
the open zones present higher intensities than the 
compact zones. This circumstance changes during 
the night when compact and industrial areas show 
higher SUHI intensities than open areas. Chun and 
Guldmann (2014) reported for the city of Columbia 
that urban areas with higher densities had higher 
temperatures than areas with lower densities. This 
is because the former and due to the higher alti-
tudes do not have airflow and therefore their cool-
ing effects are considerably reduced. These results, 
together with the research carried out by other 
authors (García-Santos et al., 2018; Hu et al., 2020; 
Saaroni et al., 2018; Sekertekin & Bonafoni, 2020; 
van Hove et  al., 2015) come to support the values 
obtained in our research. Regarding the UEM cam-
pus area, our results indicate that during the morn-
ings an urban cooling island occurs, that is, that 
the campus is at lower temperatures than the sur-
rounding rural areas. On the contrary, at night an 
urban heat island occurs, that is, the campus is at 
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higher temperatures than the surrounding rural 
areas but with a much lower intensity than the rest 
of the urban areas. The large green areas that exist 
within the EMU campus contribute to this situation. 
Therefore, there is a mitigating effect on noctur-
nal LST and SUHI. The statistical analysis reports 
a relationship between SUHI and LST, PV, LULC, 
and NDVI. However, it is important to report that 
the reported SUHI minimization values are lower 
than those reported in other studies on university 
campuses (Addas et  al., 2020; Cheng et  al., 2020; 
Wibowo et  al., 2020). This variation should be 
attributed to differences in the local climate, geo-
graphical location, urban planning of the adjacent 
cities, and to the extent of the vegetation zones 
that each campus presents. On the other hand, it 
is important to take into account the factor of the 
proximity to the sea. Both the campus of the EMU 
and the city where they are located are attached to 
the coastline. For this reason, the UHI effect could 
present lower intensities since water acts as a mod-
erator of thermal variations being an important fac-
tor in the control of ambient temperature (Cuerdo-
Vilches et al., 2023; Hidalgo, 2022).

A great diurnal and nocturnal variability of the 
UHS spaces has been evidenced. It is evident that 
this circumstance is motivated by the variability of 
the LST and SUHI already reviewed and that has 
been evidenced by statistical analysis. During the 
mornings, the UHS zones have been located mainly 
in rural areas while during the nights, the UHS 
zones have been located in urban areas, mainly in 
compact high-density areas. There are numerous 
studies (Shahfahad et al., 2021; Sharma et al., 2021) 
that show identical situations with the UHS identi-
fied, validating the results obtained. However, these 
studies are based on a single image not reporting 
the variability between night and day. Concerning 
the EMU Campus area, it should be noted that its 
distribution and configuration have made it possible 
not to have daytime UHS and only 1% of its area is 
affected by night UHS. Exhibiting lower figures than 
the average values obtained in urban areas contrib-
utes to the quality of life of the students who live 
within the campus and at the same time, indicates 
that it does not negatively affect the city’s climate. 
Therefore, the climatic conditions of the city are 
typical of its construction, morphological, and green 
areas characteristics.

The notable difference between day and night in 
UTFVI areas has been evident in this study. During 
the daytime, the predominant classes are 2, 1, and 3, 
while at night, classes 3 and 4 dominate. Class 1 is 
primarily situated in rural areas, whereas class 3 is 
more commonly found in urban areas. This distinc-
tion is driven by the spatial variability observed in 
LST and SUHI values, as discussed previously. In 
the mornings, LST tends to be higher in rural areas, 
whereas at night, LST is higher in urban areas due to 
the characteristics of impermeable construction mate-
rials and their high thermal absorption. This phenom-
enon is corroborated by numerous studies conducted 
in other cities or urban areas (Guha, 2017; Majumder 
et al., 2021; Shahfahad et al., 2021), lending support 
to the results presented in this study.

5  Conclusions

This study analysed the distribution of SUHI, LST, 
UTFVI, and UHS during July and August 2022 in 
the city of Famagusta and the EMU Campus. It also 
studied the relationship between LST and PV, NDVI 
indices, motivated by the need to identify the spa-
tial variability of the nocturnal and diurnal UHS and 
UTFVI variables. The goal was to obtain a compre-
hensive overview that can inform climate change mit-
igation measures for future university campuses. The 
results of this study are particularly relevant in light 
of reports of high temperatures and heat waves in the 
northern hemisphere during the summer of 2022 and 
2023.

Changes in the different LULC coverages moti-
vated by urban growth and development or the con-
struction of new university campuses with large 
extensions alter the urban climate through the appear-
ance or intensification of the UHI phenomenon. This 
can greatly alter the quality of life of the people who 
live in these areas. This is mainly due to the use of 
waterproof materials with high thermal absorption 
that, after heating, release heat into the atmosphere 
and the scarcity of green areas. Our research results 
on the EMU campus have reported that its morpho-
logical configuration with low-rise buildings, with 
large separation distances and large green areas, 
greatly minimizes this phenomenon and does not alter 
the climatic conditions of the city where it is located. 
In more detail, the structure of urban development 
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in EMU facilitates the minimization of LST, SUHI, 
and UHS and improves the quality of the UTFVI 
index. Therefore, it is suggested that higher educa-
tion administration in the region use the results of 
this study as a standard for making future decisions 
on establishing new universities or modifying older 
ones. On the other hand, and taking into account that 
the world-known LCZ classification has been used for 
the study, our results could be extrapolated to other 
future campuses that may be carried out in the com-
ing years in different parts of the planet and that have 
similar characteristics.
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