Cognitive Computation
https://doi.org/10.1007/512559-024-10295-z

®

Check for
updates

Smart Data Driven Decision Trees Ensemble Methodology
for Imbalanced Big Data

2

Diego Garcia-Gil'® - Salvador Garcia? - Ning Xiong? - Francisco Herrera

Received: 2 September 2021 / Accepted: 4 May 2024
© The Author(s) 2024

Abstract

Differences in data size per class, also known as imbalanced data distribution, have become a common problem affecting data
quality. Big Data scenarios pose a new challenge to traditional imbalanced classification algorithms, since they are not prepared
to work with such amount of data. Split data strategies and lack of data in the minority class due to the use of MapReduce
paradigm have posed new challenges for tackling the imbalance between classes in Big Data scenarios. Ensembles have been
shown to be able to successfully address imbalanced data problems. Smart Data refers to data of enough quality to achieve
high-performance models. The combination of ensembles and Smart Data, achieved through Big Data preprocessing, should
be a great synergy. In this paper, we propose a novel Smart Data driven Decision Trees Ensemble methodology for addressing
the imbalanced classification problem in Big Data domains, namely SD_DeTE methodology. This methodology is based on
the learning of different decision trees using distributed quality data for the ensemble process. This quality data is achieved
by fusing random discretization, principal components analysis, and clustering-based random oversampling for obtaining
different Smart Data versions of the original data. Experiments carried out in 21 binary adapted datasets have shown that our

methodology outperforms random forest.

Keywords Big data - Smart data - Classification - Ensemble - Imbalanced data - Decision tree

Introduction

We are experiencing a constant revolution in terms of data
generation and transmission speeds. Technologies such as
4G networks have been surpassed by faster standards like

B Diego Garcia-Gil
djgarcia@decsai.ugr.es

Salvador Garcia
salvagl @decsai.ugr.es

Ning Xiong
ning.xiong@mdh.se

Francisco Herrera
herrera@decsai.ugr.es

Department of Software Engineering, Andalusian Research
Institute in Data Science and Computational Intelligence
(DaSCI), University of Granada, Granada 18071, Spain

Department of Computer Science and Artificial Intelligence,
Andalusian Research Institute in Data Science and
Computational Intelligence (DaSCI), University of Granada,
Granada 18071, Spain

School of Innovation, Design and Engineering, Mélardalen
University Visteras, Visterds, SE 72123, Sweden

Published online: 31 May 2024

the novel 6G network, which is expected to revolutionize the
Internet of Things (IoT) [1] and its different domains, such as
the Internet of Healthcare Things (IoHT) [2]. This increasing
amount of data contains very valuable insights for businesses.
This is the era of Big Data [3]. Big Data can be defined as a
high volume of data, generated at a high velocity, composed
of a wide variety of data types, with a potential high value
and high veracity. This conforms to what is known as the five
Big Data V’s (among many others) [4].

Most of nowadays real-world data is generated from an
Internet of Things (IoT) context. This IoT scenario is com-
posed of a myriad of sensors that generate temporal data in
the form of time series [5] or tabular data [6]. Real-world
classification problems based on tabular data are not usually
balanced. This means that one class (usually the one that
contains the concept of interest) is underrepresented in the
dataset [7]. This is known as imbalanced classification [8] and
causes machine learning algorithms to bias towards the class
with the greater representation. The imbalanced classifica-
tion task has been extensively researched in the literature [8].

Imbalanced classification has a critical role in Big Data
environments, where the imbalance between classes may

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-024-10295-z&domain=pdf
https://orcid.org/0000-0002-1927-8673

Cognitive Computation

be greater. This is known as imbalanced Big Data classi-
fication [9]. Despite the extensive list of imbalanced clas-
sification methods proposed in the literature, we can find
only a handful of classic sampling proposals extended to
Big Data domains, such as random oversampling (ROS),
random undersampling (RUS) [10], or “Synthetic Minority
Oversampling TEchnique” (SMOTE) [11, 12]. As stated by
recent surveys [13, 14], current imbalanced Big Data pro-
posals are usually a direct extension of classic oversampling
imbalanced methods to Big Data environments. This entails
a key issue for those methods, which is suffering from lack
of data in the different maps within the already very small
minority class space [13]. SMOTE and its extensions con-
stitute the current state-of-the-art for imbalanced problems;
however, it lacks a quality extension to Big Data environ-
ments due to suffering from the aforementioned issue [14].
This leads to a sub-par performance of these methods in Big
Data domains [13].

In imbalanced Big Data scenarios, there is the challenge
of new approaches that take into account the peculiarities
of distributed MapReduce processing and the availability
of several maps with imbalanced subsets that require their
own processing [13]. In [14], the authors identified two gaps
within the imbalanced Big Data classification scenario: “the
few ensemble methods designed for Big Data problems, and
perhaps even fewer for processing imbalance within Big
Data.” This assessment for the design of efficient distributed
algorithms, in particular ensembles, capable of analyzing the
nature of maps by performing an imbalanced analysis of the
data [9], drives our current proposal, advancing towards the
use of Smart Data and ensembles.

Recently, the term Smart Data has emerged in the Big Data
ecosystem. Smart Data refers to the challenge of extracting
quality data from raw Big Data [3, 9]. This new concept
aims to achieve quality data with value and veracity proper-
ties [15]. Data preprocessing clearly resembles the concept of
Smart Data to ensure achieving quality data. Data preprocess-
ing is also inherent in all imbalanced approaches [8]. In Big
Data environments, Big Data preprocessing has a crucial role
for enabling Smart Data [9]. On the other hand, ensembles
have been established as the most popular algorithm-level
solution for tackling the imbalanced classification prob-
lem [8, 16]. Ensembles and Smart Data have proven to
perform consistently in Big Data environments when fac-
ing label noise [17, 18]. Our hypothesis in this paper is their
combined use to tackle the imbalanced Big Data classifica-
tion problem.

We propose a novel Smart Data driven Decision Trees
Ensemble methodology for addressing the imbalanced Big
Data classification, namely SD_DeTE methodology. SD_
DeTE methodology produces a decision tree-based ensem-

@ Springer

ble combined with Smart Data for introducing diversity in
the datasets, creating different decision trees that result in
an efficient distributed ensemble algorithm. Quality data
is achieved through the application of several data pre-
processing techniques in order to enable different Smart
Data approaches of the dataset, that will enable the learn-
ing of better base classifiers and achieve efficient distributed
algorithms. Therefore, SD_DeTE methodology is com-
posed of a Smart Data generation process and an ensemble
learning process:

1. Smart Data: The first objective is to add the required
level of diversity to the dataset. For this, the combination
of random discretization (RD) and randomized princi-
pal component analysis (PCA), proposed in Principal
Components Analysis Random Discretization Ensemble
(PCARDE) algorithm [19], is used. For a data balancing
step, a novel combination of clustering and ROS is pre-
sented. SD_DeTE methodology performs clustering to
the expanded data resulting from the combination of RD
and PCA datasets. Then, it balances the clusters using the
ROS technique. The result of this process is a distributed
Smart Data version of the dataset, with the appropriate
level of diversity.

2. Ensemble learning: This process creates the ensemble
through the learning of different base classifiers using a
decision tree as a classifier. The distributed Smart Data
will produce better base classifiers.

To assess the performance of SD_DeTE methodology,
we have conducted an extensive experimentation, using 21
binary adapted Big Data imbalanced datasets. All datasets
have been selected from the latest literature in tabular data
and Big Data. We have compared SD_DeTE methodology
against Spark’s MLIib implementation of a decision tree,
random forest [20], and PCARDE algorithm [19]. These
three classifiers have been tested without any data balanc-
ing technique applied, and using RUS, ROS, and SMOTE
techniques. Results obtained have been validated by different
Bayesian Sign Tests, in order to assess if SD_DeTE method-
ology achieves statistically better performance than the rest
of the tested methods [21].

The rest of this paper is organized as follows: ‘“Related
Work™ section gives a description of the imbalanced data
classification and Big Data problem. “Smart Data Driven
Decision Trees Ensemble Methodology for Imbalanced Big
Data” section describes the proposal in detail. “Experimental
Results” section shows all the experiments carried out to
prove the performance of SD_DeTE methodology for several
Big Data problems. Finally, “Conclusions” section concludes
the paper.

Cognitive Computation

Related Work

In this section, we provide an introduction to the class imbal-
ance problem in classification, among with the different
proposals to tackle it (“Imbalanced Data Classification” sec-
tion). Then, the state of Big Data and MapReduce framework
is analyzed in “Big Data and MapReduce” section. The state-
of-the-artregarding imbalanced Big Data scenario is depicted
in “Imbalanced Big Data” section.

Imbalanced Data Classification

In a binary classification problem, a dataset is said to be
imbalanced when there is a notable difference in the num-
ber of instances belonging to different classes [8, 22]. The
class with the larger number of instances is known as the
majority class. Similarly, the class with the lower number of
instances is known as the minority class and usually contains
the concept of interest.

As stated earlier, this problem poses a major challenge to
standard classifier learning algorithms, since they will bias
towards the class with the greater representation, as their
internal search process is guided by a global search measure
weighted in favor of accuracy [9]. In datasets with a high
imbalance ratio (IR), classifiers that maximize the accuracy
will treat the minority class as noise and ignore it, achieving
a high accuracy by only classifying the majority class, since
more general rules will be preferred.

Many techniques have been proposed to tackle imbalanced
data classification. However, ensembles have established
themselves as the state-of-the-art in performance [8, 16,
23]. Because of their accuracy orientation, ensembles cannot
be directly applied to imbalanced datasets, since the base
classifiers will ignore the minority class. Their combina-
tion with other techniques that tackle the class imbalance
problem can improve ensemble performance in these scenar-
ios. These hybrid approaches involve the addition of a data
sampling step that allows the classifier to better detect the
different classes.

In the literature, data preprocessing methods for imbal-
anced data classification can be divided into different cate-
gories: oversampling methods, undersampling methods, and
hybrid approaches [8, 9]. The former (such as ROS [24])
replicates the minority class instances until a certain bal-
anceisreached. On the other hand, undersampling techniques
(such as RUS [24]) remove examples from the majority class
until the proportion of classes is adjusted. Hybrid approaches
combine the previous two techniques, usually starting with an
oversampling of the data, followed by an undersampling step
that removes samples from both classes, in order to remove
noisy instances and improve the classifier performance.

The SMOTE algorithm, along with its many exten-
sions [12, 25, 26], constitutes the current state-of-the-art in

data preprocessing for imbalanced data. It adds synthetic
instances from the minority class until the class distribution
is balanced. Those new instances are created by the interpo-
lation of several minority class instances that belong to the
same neighborhood. SMOTE calculates the k nearest neigh-
bors of each minority class example. Then, in the segment
that connects every instance with its k closest neighbors, a
synthetic instance is randomly created [27].

Clustering has also been employed effectively for the data
imbalanced problem as a way to increase the density of points
belonging to certain neighborhoods [28, 29]. These methods
balance the data by localizing groups of instances belonging
to different neighborhoods and then applying a data sampling
technique, improving the later learning process [30, 31].

Performance evaluation is a key factor for assessing the
classification performance. In binary classification problems,
the confusion matrix (shown in Table 1) collects correctly and
incorrectly classified examples from both classes.

Traditionally, accuracy (Eq. (1)) has been the most extend-
ed and widely used metric for assessing classification perfor-
mance. However, accuracy is not a valid metric when dealing
with imbalanced datasets, since it will not show the classi-
fication of both classes, only the majority class, and it will
lead to wrong conclusions.

B TP+TN
" TP+FN+FP+TN

Acc (1

The geometric mean (GM), described in Eq. (2), attempts
to maximize the accuracy of both minority and majority
classes at the same time [32]. The accuracy of both minority
and majority classes is represented by the true positive rate

(TPR) = TPTJF—I}N and true negative rate (TNR) = TNT—JZVP.

GM = NVTPR*TNR 2)

Another popular evaluation metric for imbalanced data
is the area under the curve (AUC) [33, 34]. AUC combines
the classification performance of both classes, showing the
trade-off between the TPR and false positive rate. This met-
ric provides a single measure of a classifier performance,
compared against a random classifier.

Table 1 Confusion matrix for binary classification problems

Positive prediction Negative prediction

Positive class True positive (TP)

False positive (FP)

False negative (FN)

Negative class True negative (TN)

@ Springer

Cognitive Computation

Big Data and MapReduce

In order to tackle Big Data problems, not only new algo-
rithms are needed, but also new frameworks that operate
in distributed clusters are required. Google introduced the
MapReduce paradigm in 2004 [35]. This paradigm is nowa-
days the most popular and widely used paradigm for Big
Data processing. It was born for allowing users to generate
and/or process Big Data problems, while minimizing disk
and network use.

MapReduce follows the simple but powerful divide-and-
conquer approach. It can be divided into two phases, the
map and reduce phase. Before entering the map stage, all
data is split and distributed across the cluster by the master
node. The map function applies a transformation to each key-
value pair located in each computing node. This way, all data
is processed independently in a distributed fashion. When
the map phase is finished, all pairs of data belonging to the
same key are redistributed across the cluster. Once all pairs
belonging to the same key are located in the same computing
node, the reduce stage begins. The reduce phase can be seen
as an aggregation operation that generates the final values.

MapReduce is a programming paradigm for dealing with
Big Data. Apache Hadoop is the most popular open-source
implementation of the MapReduce paradigm [36]. Despite its
popularity and performance, Hadoop presents some impor-
tant limitations [37]:

e Not suitable for iterative algorithms.

e Very intensive disk usage. All map and reduce processes
are read/write from/to disk.

e No in-memory computation.

Apache Spark can be seen as the natural evolution of
Hadoop. It is an open-source framework, focused on speed,
easy of use, and advanced analytics [38]. Spark is the solu-
tion of Hadoop problems; it has in-memory computation and
allows in-memory data persistence for iterative processes.
Spark is built on top of a novel distributed data structure,
namely Resilient Distributed Datasets (RDDs) [39]. These
data structures are immutable and unsorted by nature. They
can be persisted in memory for repetitive uses and tracked
using a lineage, so that each split can be computed again
in case of data lost. RDDs support two types of opera-
tions: transformations and actions. The former transforms
the dataset by applying a function to each split and produces
anew RDD. They are lazy operations, meaning that they are
not computed until needed. On the other hand, actions trigger
all previous transformations of an RDD and return a value.

In2012, adistributed machine learning library was created
as an extra component of Apache Spark, named MLIib [40].
It was released and open-sourced to the community in 2013.
The number of contributions has been increasing steadily

@ Springer

since its conception, making it the most popular machine
learning library for Big Data processing nowadays. MLIib
includes several algorithms for alike tasks, such as classifi-
cation, clustering, regression, or data preprocessing.

Imbalanced Big Data

With the automation in data acquisition and storage and
the explosion of sensors and available data, the problem of
imbalanced data classification has been severely affected.
It is considered to be one of the worsened or even directly
provoked problems by Big Data [9]. Moreover, classic algo-
rithms are not able to tackle the imbalanced problem in a
reasonable amount of time.

The imbalanced data classification problem has not been
disregarded in Big Data. However, most of the proposals
in the literature follow two main approaches: data sam-
pling and distance-based solutions. The former consists of an
adaptation of ROS and RUS methods to Big Data domains
using the MapReduce paradigm [41]. Distance-based meth-
ods are mainly composed of different adaptations of SMOTE
algorithm to Big Data environments, ranging from an exact
version of SMOTE [11], SMOTE for multi-class prob-
lems [42], or a GPU-based SMOTE [12]. There are also
proposals that combine both approaches in the form of an
ensemble [43]. However, the SMOTE algorithm for Big Data
scenarios is affected by the lack of data in the different maps
and the presence of small disjuncts [13, 14].

In recent surveys [9, 13, 14], the authors agree that, in
comparison with studies for standard problems, there is still
little research devoted to address the problem of imbalanced
classification in Big Data scenarios. There is a need for
proposals born for and to tackle imbalanced Big Data prob-
lems effectively and efficiently. In particular, the design and
implementation of new classifiers for Big Data frameworks,
capable of internally processing the imbalanced situation, are
of special interest [14]. The thorough design at the implemen-
tation level of algorithms to address imbalanced Big Data
problems is one of the open challenges nowadays [9]. There-
fore, we aim to provide an efficient and effective ensemble
methodology design for the classification of imbalanced Big
Data problems.

Smart Data Driven Decision Trees Ensemble
Methodology for Imbalanced Big Data

In this section, we describe in detail the proposed ensemble
methodology for imbalanced Big Data classification based
on achieving diversity and quality data through data pre-
processing methods together with decision trees to create
the ensemble, SD_DeTE methodology. It has been designed
under the distributed computing paradigm MapReduce and

Cognitive Computation

has been implemented for the Big Data framework Apache
Spark [38], which is an extension of such paradigm, making
it able to tackle Big Data problems efficiently. SD_DeTE
methodology is available publicly as a Spark package in
Spark’s third-party repository Spark Packages.!

In “SD_DeTE Methodology: Smart Data” section, we
explain the details of the Smart Data generation pro-
cess of SD_DeTE methodology. “SD_DeTE Methodology:
Ensemble” section details the ensemble learning process.
“Spark Primitives” section describes the Spark primitives
used for the implementation of the proposal. Finally, “SD_
DeTE Methodology Implementation Details” depicts the
implementation details of the methodology.

SD_DeTE Methodology: Smart Data

This ensemble classifier for imbalanced Big Data problems
is based on the creation of smart datasets for improving the
performance of the models learned from the different base
classifiers. Diversity is key when working with ensembles.
Diversity can be introduced through small changes in input
data or small changes in the parameters of the classifier. With
diversity in the base classifiers, ensembles will be more robust
tonoise and outliers and will achieve better performance [19].
SD_DeTE methodology achieves a Smart Data version of
the dataset with the appropriate level of diversity by using
the following two modules:

RD-PCA Module SD_DeTE methodology achieves the req-
uired diversity by the use of several randomized data prepro-
cessing methods, such as RD and PCA. RD method [44]
discretizes the data in cuts intervals by randomly select-
ing cuts — 1 instances. Those selected values are sorted and
used as thresholds for the discretization of each feature. This
mechanism enables RD to produce diversity efficiently each
time it is performed on such data. On the other hand, PCA
selects a number of variables in a dataset, while retaining
as much of the variation present in the dataset as possible.
This selection is achieved by finding the combinations of
the original features to produce principal components, which
are uncorrelated. PCA always produces the same result for
a fixed number of principal components. In order to achieve
the required level of diversity, a random number of selected
components is used. The number of components must be in
the interval [1, T — 1], T being the total number of features
of the input data.

Both RD and PCA methods are applied to the input data.
Then, the resulting datasets of RD and PCA are joined
together feature-wise. This data is a more informative ver-

1 https://spark-packages.org/package/djgarcia/Imbalanced-
Classification-Ensemble.

sion of the dataset with the appropriate level of diversity, as
demonstrated in [19]. Such dataset needs to be balanced in
order to correctly identify the minority and majority classes.

C-ROS Module A novel combination of hierarchical cluster-
ing and oversampling is proposed. Bisecting k-Means is a
hierarchical clustering method that uses a divisive (or “top-
down”) approach [45]. The algorithm starts from a single
cluster that contains all points. Iteratively, it finds divisible
clusters on the bottom level and bisects each of them into
two clusters using k-Means, until there are k leaf clusters in
total or no leaf clusters are divisible. It has been chosen tak-
ing into account that it can often be much faster than regular
k-Means. Bisecting k-Means has a linear time complexity.
In case of a large number of clusters, Bisecting k-Means is
even more efficient than k-Means since there is no need to
compare every point to each cluster centroid. It just needs
to consider the points in the cluster and their distances to
two centroids.

Bisecting k-Means is applied to the resulting data from
the join of RD and PCA for finding a random number of
neighborhoods with a specified maximum of desired clus-
ters. Found clusters are individually balanced using the ROS
technique until an IR of 1 is reached. The result of this pro-
cess is a balanced and smart dataset with the required level
of diversity, which will improve the later learning process
by enabling the ensemble to produce efficient distributed
algorithms.

In Fig. 1, we can see a graphic representation of the Smart
Data generation workflow of SD_DeTE methodology.

SD_DeTE Methodology: Ensemble

The two previous modules produce a smart version of the
dataset with the appropriate level of diversity. As stated ear-
lier, ensembles are the most popular solution for tackling
imbalanced problems. SD_DeTE methodology uses the pre-
viously generated Smart Data for learning different quality
base detectors that will produce a better ensemble method.

Learning Module Using the previously acquired balanced
and smart dataset, a decision tree is learned. This decision
tree performs a recursive binary partitioning of the input fea-
ture space. The tree predicts the same label for each leaf
partition. These partitions are chosen in a greedy manner,
selecting the best split from the set of possible splits, maxi-
mizing the information gain at the tree node [46].

SD_DeTE methodology preprocessing and learning pro-
cessisrepeatediter times. In Fig. 2, we can see a graphic rep-
resentation of the learning workflow of SD_DeTE
methodology.

@ Springer

https://spark-packages.org/package/djgarcia/Imbalanced-Classification-Ensemble
https://spark-packages.org/package/djgarcia/Imbalanced-Classification-Ensemble

Cognitive Computation

Imbalanced
Data

RD-PCA Module

A
RD + PCA

Bisecting
k-Means

Y
ROS; ROS,| ..

L J

clusters = k

C-ROS Module

SmartData

Fig.1 SD_DeTE methodology Smart Data generation flowchart

All previous steps constitute the learning phase of the
ensemble. This phase is composed of iter sub-models, each
of them containing the thresholds for RD and the weight
matrices for PCA. For the prediction phase of the ensem-
ble, for each data point, the same data preprocessing must be
applied. First, data is discretized using the same cut points
from RD calculated previously. Then, for selecting the same
components as the learning phase, the same weight matrix
obtained earlier for PCA at a given iteration is applied to the
data. Next, the score of each class is predicted according to
the decision tree. This score is calculated by the division of
the instances at a leaf node, by the total number of instances.
This process is repeated iter times, adding those scores for
each instance and iteration. Once this process is finished, for
each instance, the class with the largest score is selected as
the decision of the ensemble.

Spark Primitives
For the implementation of the ensemble, some basic Spark

primitives have been used. Here, we outline those more rel-
evant for the ensemble?:

2 For a complete description of Spark’s operations, please refer to
Spark’s API: http://spark.apache.org/docs/latest/api/scala/index.html.

@ Springer

e Map: applies a transformation to each element of an
RDD. Once that transformation has been applied, it
returns a new RDD.

e Union: merges two RDDs instance-wise and returns a
new RDD.

e Zip: zips two RDDs together.

e Filter: selects all the instances in an RDD that satisfy a
condition as a new RDD.

These Spark primitives from Spark API are used in the
following section, where the implementation of SD_DeTE
methodology is described.

SD_DeTE Methodology Implementation Details

This section describes all the implementation details of
SD_DeTE methodology. Both learning and prediction phases
are implemented under Apache Spark, following the MapRe-
duce paradigm.

Ensemble Learning Phase

Algorithm 1 explains the ensemble learning phase of SD_
DeTE methodology. This process is divided into five steps:
RD and PCA calculation in order to introduce diversity to the
dataset, cluster search for the discovery of neighborhoods,
cluster balancing, and classifier learning.

Step 1 As stated earlier, SD_DeTE methodology starts by
discretizing the training data using the RD method (lines 8-
14). This is performed through the random selection of cuzs —
1 instances (line 8). Those thresholds are used to discretize
the training data using a map function (lines 10-14). For
every instance, we assign the corresponding discretized value
to each instance’s attribute (lines 11-13).

Step 2 Once RD has been applied to the training data, PCA
is performed to select randomly the best principal compo-
nents (lines 16-19). First, a random number of components
is selected in the interval [1, T — 1] (T being the total num-
ber of features of the training data) (line 16). Then, PCA is
calculated on the training data, and the best components are
selected (lines 17-18). Finally, the resulting data from RD
and PCA are joined together feature-wise using a distributed
zip function (line 19).

Step 3 With the desired level of diversity added to the
dataset, the next step is the hierarchical clustering search
(lines 21-23). We have used Spark’s MLIib distributed imple-
mentation of Bisecting k-Means. First, we select a random
number of clusters, with a maximum of max Clust (line 21).
Then, clusters are calculated using the previously RD and
PCA zipped data (line 22). Once that process is finished, the

http://spark.apache.org/docs/latest/api/scala/index.html

Cognitive Computation

Fig.2 SD_DeTE methodology
learning flowchart

RD-PCA Module

Bisecting Bisecting
k-Means : k-Means

C-ROS Module v y v | v
[Rosl ROS, [ROSk § ROS; ROS,

Learning Module

SmartData,

SmartDatay,

~+

DecisionTree; DecisionTree,

same zipped data is predicted in order to assign a cluster to
each data point (line 23). The prediction is done level-by-
level from the root node to a leaf node, and at each node
among its children, the closest to the input point is selected.

Step 4 Data balancing is applied to each individual cluster
found. We apply the ROS technique to the minority class of
each cluster until both minority and majority classes are equal
(lines 25-29). First, an empty set is created for the allocation
of the future new dataset (line 25). For each cluster, ROS is
applied with an IR of 1 (line 27). That balanced and smart
data is added to the empty set (line 28).

Step 5 Finally, a decision tree is learned using this smart and
balanced dataset (line 31). This data preprocessing and learn-
ing process is repeated it er times, keeping each iteration, the
computed thresholds for RD, the PCA weight matrices, and
the learned tree model. Once all trees have been learned, the
model is created and returned.

The following input parameters are required: the dataset
(data), the number of iterations of the ensemble (iter), the
number of intervals for the discretization (cuts), and the max-
imum number of clusters (maxClust).

Ensemble Prediction Phase

The ensemble prediction phase is depicted in Algorithm 2.
This process is faster than learning, since clustering and data
balancing are not required for prediction. Only the appli-
cation of RD and PCA is required, both using the same
models obtained in the ensemble learning phase. This phase
is divided in five steps:

Step 1 First, the data point is discretized using the same cut
points from the learning phase (lines 10-13).

Step 2 Next, the principal components are calculated using
the learning phase weight matrix for that particular iteration
(line 15).

Step 3 The next step is to join both RD and PCA results
feature-wise using a distributed zip function (line 17). The
result is an expanded dataset with the features of both RD
and PCA.

Step 4 Prediction is made for the data point using the deci-

sion tree learned in that particular iteration of the ensemble
(line 19). The scores of each of the izer predictors are added.

@ Springer

Cognitive Computation

Algorithm 1 SD_DeTE methodology learning algorithm

Algorithm 2 DeTE_model prediction algorithm

1: Input: data an RDD of type LabeledPoint (features, label).
2: Input: iter the number of iterations of the ensemble.

3: Input: cuts the number of intervals for the discretization.

4: Input: maxClust the maximum number of clusters.

5: Output: The model created, an object of class DeTE_model.
6: for i =0...iter do

7 Random Discretization

8 thresholds(i) < compute_RD_thresholds(data, cuts)
9: rdData <

10: map inst € data

11: for j =0...length(inst) — 1 do

12: inst < discretize(inst(j), thresholds(i)(j))
13: end for

14: end map

15: PCA

16: components < random(1, length(data) — 1)

17: pcaModels(i) < PCA(data,components)

18: pcaData < transform(data, pcaModels(i))
19: joinedData < zip(rd Data, pcaData)

20: Clustering

21: k< random(1, maxClust)

22: clustModel < hierarchicalClustering(joined Data, k)
23: clustData < predict(joinedData, clustModel)
24: Data Balancing

25: smartData =)

26: for! =0...k do

27: rosData < ROS(filter(clustData, "cluster" =1),1.0)
28: smartData = union(ros Data, smart Data)

29: end for

30: Classifier Learning

31: trees(i) < decisionTree(smartData)

32: end for

33: return(DeT E_model(iter, thresholds, pcaModels, trees))

Step 5 Once the instance has all izer scores, the class with
the largest weight is selected as the decision of the ensemble
and returned (lines 22-23).

Experimental Results

In this section, we describe the experimental study carried
out to compare the performance of different approaches to
deal with imbalanced Big Data problems against our ensem-
ble methodology proposal. In “Experimental Setup” section,
we show a description of all datasets employed in the com-
parison, followed by the performance metrics and parameters
of the algorithms used. All hardware and software resources
used to carry out the experimental study are also detailed.
We detail the results of the performance metrics and analyze
them using statistical tests in “Results and Analysis” sec-
tion. “Computing Times and Complexity” section is devoted
to the computing times of SD_DeTE methodology. Finally,
we have conducted an additional experiment for showing
the performance improvement achieved by our proposed
clustering-based ROS technique in “Clustering-Based ROS
vs ROS” section.

@ Springer

1: Input: ifer the number of iterations of the ensemble.

2: Input: cuts the cut points for the discretization.

3: Input: pcaModels the models for performing PCA.

4: Input: trees the models of the learned trees.

5: Output: The label of the test data point.

6: function PREDICT(test : Labeled Point)

7. scorePredictions <

8: fori=0...iter do

9: Random Discretization

10: rdData < |

11: for j = 0...length(test) — 1 do

12: rdData(c) < discretize(test(j), cuts(i)(j))

13: end for

14: PCA

15: pcaData < transform(test, pcaModels(i))

16: Data Join

17: joinedData < zip(rdData, pcaData)

18: Prediction

19: scorePredictions <« scorePredictions +
predict(joinedData, trees(i))

20: end for

21: Scoring

22: label < indexOf Max(scorePredictions)
23: return(label)
24: end function

Experimental Setup

We have selected a wide spectrum of Big Datasets for
assessing the performance of SD_DeTE methodology. These
datasets have very different properties among them that will
allow us to measure the performance and balancing capa-
bilities of our proposal. Specifically, we have selected the
Poker Hand dataset, the Record Linkage Comparison Pat-
terns (RLCP), SUperSYmmetric particles (SUSY) and Higgs
bosons (HIGGS) datasets [47], and the KDD Cup 1999
dataset, a dataset used for the Third International Knowledge
Discovery and Data Mining Tools Competition. These binary
adapted datasets have been extracted from the UCI Machine
Learning Repository [48] and have been chosen attending
to their size, making them suitable for Big Data scenarios
and, therefore, unsuitable for iterative processing. We have
also selected a real-world imbalanced dataset, the ECBDL14
dataset [49]. ECBDL14 dataset was used as a reference at the
ML competition of the Evolutionary Computation for Big
Data and Big Learning, under the international conference
GECCO-2014. It is a highly imbalanced binary classifica-
tion dataset, composed of 98% of negative instances. For
this problem, we have used two subsets with the same IR
and the best 90 features found in the competition [49].
Since some of the selected datasets have more than two
classes, we have sampled binary datasets from them to
address each case separately. In particular, we have selected
new datasets using the majority classes against the minority
classes. Table 2 shows all the details of the datasets, includ-

Cognitive Computation

Table 2 Datasets used in the analysis

Dataset #Inst. #Atts. %Class (maj; min) IR
pokerO_vs_2 450,022 10 (91.32; 8.68) 10.52
poker0O_vs_3 428,464 10 (95.99;4.01) 23.94
pokerO_vs_4 414,032 10 (99.23;0.77) 128.06
poker0O_vs_5 412,600 10 (99.60; 0.40) 250.59
poker0O_vs_6 411,990 10 (99.70; 0.30) 337.81
pokerl_vs_2 385,842 10 (89.89; 10.11) 8.89
pokerl_vs_3 363,932 10 (95.24;4.76) 20.03
pokerl_vs_4 349,891 10 (99.11;0.89) 110.82
pokerl_vs_5 347,695 10 (99.55;0.45) 221.17
pokerl_vs_6 347,867 10 (99.68; 0.32) 308.77
rlcp 4,599,153 2 (99.63; 0.37) 271.12
susy_ir4 2,712,173 18 (80.00; 20.00) 4.00
susy_ir8 2,440,956 18 (88.89; 11.11) 7.99
susy_irl6 2,305,347 18 (94.12; 5.88) 15.99
higgs_ir4 5,829,12328 (80.00; 20.00) 3.99
higgs_ir8 5,246,21128 (88.89; 11.11) 8.00
higgs_ir16 4,954,75228 (94.12; 5.88) 15.99
ecbdl14-1.2mill-90 960,000 90 (98.01; 1.99) 49.29
ecbdl14-10mill-90 9,600,00090 (98.00; 2.00) 48.94
kddcup_normal_vs_DOS 1,942,81641 (79.96; 20.04) 3.99
kddcup_DOS_vs_R2L 3,107,70941 (99.97; 0.03) 3475.18

ing the number of instances (#Inst.), number of attributes
(#Atts.), class distribution, and IR.

All datasets have been partitioned using a fivefold cross-
validation scheme. This means that all datasets have been
partitioned in fivefolds, with 80% of instances devoted to
training, and the rest 20% for testing. The results provided
are the average of running the algorithms with the fivefolds
per dataset.

We have carried out a comparison of SD_DeTE method-
ology against three classification methods: Spark’s MLIib
distributed implementation of decision trees, random for-
est, and PCARDE algorithm, a data preprocessing-based
ensemble present in Spark’s community repository Spark
Packages [19]. For balancing the data when those classifiers
are used, we have employed the most popular and widely used

data balancing methods: RUS, ROS, and SMOTE. SMOTE
is the state-of-the-art in performance, while ROS combined
with random forest constitutes the current state-of-the-art in
imbalanced Big Data scenario [10, 14].

For SMOTE algorithm, an implementation available in the
Spark Packages repository has been used: SMOTE_BD [11].
The parameters used for the data preprocessing algorithms
and the different classifiers are described in Table 3. Since
ensembles correct errors across many base classifiers, we
have chosen to increase the depth of the decision tree in
SD_DeTE methodology for a better discrimination between
both minority and majority classes. ROS and SMOTE_BD
have been configured to balance the datasettoan /R = 1.

As stated earlier, when dealing with imbalanced data, it
is crucial to choose the right performance metric. Accuracy
is not useful in imbalanced datasets, because we can achieve
great accuracy by just classifying correctly the majority class,
while the minority class is ignored. For this reason, we have
selected the two most widely used metrics for imbalanced
classification: GM and AUC.

The experimentation has been carried out in a cluster com-
posed of 11 computing nodes and one master node. The
computing nodes have the following hardware characteris-
tics: 2 x Intel Core 17-4930K,, 6 cores per processor, 3.40 GHz,
12 MB cache, 4 TB HDD, 64 GB RAM. Regarding software,
we have used the following configuration: Apache Hadoop
2.9.1, Apache Spark 2.2.0, 198 cores (18 cores/node), 638
GB RAM (58 GB/node).

Results and Analysis

In this section, we present the results and an analysis of the
performance metrics obtained by the selected methods. We
denote with Baseline the application of the classifiers without
using any imbalanced data treatment technique.

In Table 4 we can see the average results for the GM
measure using the three classifiers combined with the three
data preprocessing strategies, compared with SD_DeTE
methodology. As can be observed, the Baseline with no data
imbalanced handling often results in a GM value of 0. That
value represents that one of the classes (the minority in par-
ticular) is being misclassified completely. All classifiers are

Table 3 Parameter settings for

. Algorithm Parameters
the data preprocessing and
classification algorithms ROS BD ir=1
SMOTE_BD k =5, distance = “euclidean,” ir = 1

Decision tree
Random forest
PCARDE
SD_DeTE

impurity = “gini,” maxDepth = 5, maxBins = 32

nTrees = 200, impurity = “gini,” maxDepth = 4 maxBins = 32
nTrees = 10, bins =5

bins = 5, trees = 10, maxClust = 10, treeDepth = 10

@ Springer

Cognitive Computation

Table 4 Heatmap with the average results for the imbalanced Big Data cases of study using the GM measure. Higher GM values per dataset are

represented in blue

Dataset Baseline RUS ROS SMOTE_BD SD_DeTE
DT RF PCARDE DT RF PCARDE DT RF PCARDE DT RF PCARDE

poker0O_vs_2 0.1986 0.0000 0.0000 0.5847 - 0.5859 0.5272 0.5455 0.5813 0.5249 0.4846 0.6604 _
pokerO_vs_3 0.1261 0.0000 0.0000 0.5248 0.6954 0.6574 0.6890 0.7003 0.6423 0.5728 0.5728 0.6983 _
pokerO_vs_4 0.2383 0.0000 0.0000 0.8427 0.8407 0.8438 0.8468 0.8481 0.9029 0.7773 0.7757 - _
poker0O_vs_5 0.0000 0.0000 0.7002 0.8745 0.8530 - 0.8745 0.8743 - 0.4840 0.4582 - _
poker0O_vs_6 0.0000 0.0000 0.0000 0.6197 0.6615 - 0.5935 - 0.5860 0.6209 0.5729 - _
pokerl_vs_2 0.0367 0.0000 0.0000 - 0.5437 0.4893 0.5600 0.5539 0.5328 0.4136 0.3452 0.5380 _
pokerl_vs_3 0.0776 0.0000 0.0402 - - 0.5193 - - 0.5347 0.5073 0.4543 0.5720 _
pokerl_vs_4 0.0000 0.0000 0.0000 0.7675 0.7506 - 0.7678 0.7424 - 0.6571 0.7050 - _
pokerl_vs_5 0.0000 0.0000 0.7002 0.5423 - - 0.5833 0.6073 - 0.4649 0.4574 - _
pokerl_vs_6 0.0000 0.0000 0.0000 0.6190 0.5673 0.6105 - 0.6269 0.5129 - 0.5611 0.6060 _
rlcp 0.0874 0.0927 0.0927 - 0.9302 0.9301 0.9299 0.9305 - 0.9306 0.9297 0.9302 _
susy_ir4 0.6870 0.6187 0.6615 0.7679 0.7651 - 0.7679 0.7647 - 0.7622 0.7654 - _
susy_ir8 0.5713 0.5482 0.5690 0.7671 0.7660 - 0.7678 0.7655 - 0.7623 0.7661 - _
susy_irl6 0.5162 0.5205 0.4531 0.7667 0.7651 - 0.7661 0.7647 - 0.7627 0.7654 - _
higgs_ir4 0.3498 0.0541 0.2712 0.6584 0.6695 - 0.6613 0.6702 - 0.6446 0.6622 - _
higgs_ir8 0.2398 0.0000 0.1774 0.6612 0.6698 - 0.6630 0.6688 0.6841 0.6479 0.6511 0.6827 _
higgs_irl6 0.1368 0.0000 0.0000 0.6575 0.6679 - 0.6600 0.6691 - 0.6512 0.6506 0.6812 _
ecbdl14-1,2mill-90 0.0143 0.0000 0.0000 0.7006 0.7056 0.7067 | 0.7001 0.7032 - 0.6662 0.6920 0.6920 _
ecbdl14-10mill-90 0.0000 0.0000 0.0000 0.6979 0.7047 0.7073 0.6976 0.7039 0.7082 0.6736 0.6850 0.6885 _
kddcup_normal_vs_DOS 0.9998 0.9998 0.9998 0.9996 0.9996 0.9998 0.9996 0.9996 0.9998 0.9997 0.9996 0.9998 _
kddcup_DOS_vs_R2L 0.9756 0.9934 0.9912 0.9976 - - 0.9934 - 0.9978 0.0000 - 0.9976 0.9978

Average 0.2502 0.1823 0.2694 0.7226 0.7451 0.7596 | 0.7285 0.7362 0.7553 @ 0.6265 0.6645 - _

benefiting from the data balancing done by RUS and ROS.
All three classifiers achieve very similar results when using
either RUS or ROS. This can be explained by the high data
redundancy present in Big Data datasets. SMOTE_BD is able
to achieve an improvement in the GM measure when using
PCARDE algorithm as a classifier. SD_DeTE methodology
is the best-performing method for almost every tested dataset.
On average, SD_DeTE methodology achieves an improve-
ment of nearly 0.5 points in the GM measure. This shows the
good performance of the clustering-based data oversampling
of SD_DeTE methodology.

The AUC average results are depicted in Table 5. Again,
the Baseline with no preprocessing achieves low values of
AUC. The first difference when comparing AUC with the GM
measure is that AUC shows a value of 0.5 when a full class is
completely misclassified. RUS and ROS methods are produc-
ing very similar results in terms of AUC measure. Regarding
SMOTE_BD, as observed with the GM measure, only the
PCARDE algorithm is able to achieve an AUC improve-
ment with respect to RUS and ROS. The same improvement
seen with the GM measure can be seen with the AUC mea-
sure for SD_DeTE methodology. It is the best-performing

@ Springer

data preprocessing and ensemble method among the differ-
ent strategies tested.

If we attend to the relation between the IR and the
performance of SD_DeTE methodology, we observe that
SD_DeTE methodology is not affected by the different IR’s
presence in the tested datasets. SD_DeTE methodology is
a very stable ensemble method, achieving almost the same
performance for an increasing IR for the same dataset. This
behavior can be seen in Susy and Higgs datasets, which
have an IR ranging from 4 up to 16, and both the GM and
AUC measures are unaffected by the increasing IR. More-
over, some of the tested datasets have an extremely high IR,
such as pokerO_vs_6 and poker1_vs_6 datasets, with an IR of
337.81 and 308.77 respectively. For such datasets, SD_DeTE
methodology is the best-performing method, with a differ-
ence of more than 5% better performance.

Results presented have shown the excellent performance
of our proposed methodology. In other machine learning
branches, such as natural language processing, it is common
to use a separate dataset in order to improve the performance
of one particular problem [50]. SD_DeTE methodology
extrapolates this idea, performing data fusion from two dif-

Cognitive Computation

Table 5 Heatmap with the average results for the imbalanced Big Data cases of study using the AUC measure. Higher AUC values per dataset are

represented in blue

Dataset Baseline RUS ROS SMOTE_BD SD_DeTE
DT RF PCARDE DT RF PCARDE DT RF PCARDE DT RF PCARDE

pokerO_vs_2 0.5197 0.5000 0.5000 0.5456 0.6045 0.6152 0.6148 - 0.6145 0.5997 0.5919 0.6653 _
pokerO_vs_3 0.5080 0.5000 0.5000 0.6946 0.7191 0.6651 0.5733 0.7151 0.6648 0.6174 0.6174 0.7030 _
pokerO_vs_4 0.5284 0.5000 0.5000 0.8477 0.8500 - 0.8431 0.8440 0.8440 0.7787 0.7785 - _
pokerO_vs_5 0.5000 0.5000 0.7451 0.8824 0.8822 - 0.8824 0.8638 - 0.5028 0.5177 - _
pokerO_vs_6 0.5000 0.5000 0.5000 0.5935 0.7015 0.6408 0.6920 0.7160 0.7284 0.6928 0.6543 - _
pokerl_vs_2 0.5007 0.5000 0.5000 - 0.5887 0.5521 - 0.5872 0.5513 0.5016 0.4937 0.5453 _
pokerl_vs_3 0.5030 0.5000 0.5008 - - 0.5763 - - 0.5701 0.5596 0.5386 0.5734 _
pokerl_vs_4 0.5000 0.5000 0.5000 0.7751 0.7551 - 0.7678 0.7607 - 0.6647 0.7173 - _
pokerl_vs_5 0.5000 0.5000 0.7452 0.5833 0.6073 - 0.5516 - - 0.4979 0.5226 - _
pokerl_vs_6 0.5000 0.5000 0.5000 0.6455 0.6269 0.5960 0.6383 0.6047 0.6200 0.6440 0.5912 0.6380 _
rlep 0.5038 0.5043 0.5043 0.9318 0.9322 - 0.9322 0.9319 0.9320 - 0.9315 0.9320 _
susy_ir4 0.7260 0.6856 0.7115 0.7687 0.7665 - 0.7689 0.7668 - 0.7642 0.7656 - _
susy_ir8 0.6603 0.6477 0.6592 0.7688 0.7670 - 0.7679 0.7678 - 0.7645 0.7664 - _
susy_irl6 0.6315 0.6333 0.6020 0.7667 0.7662 - 0.7671 0.7664 - 0.7677 0.7656 - _
higgs_ir4 0.5535 0.5014 0.5344 0.6638 0.6703 - 0.6636 0.6695 - 0.6542 0.6640 - _
higgs_ir8 0.5270 0.5000 0.5153 0.6640 0.6689 0.6841 0.6633 0.6699 - 0.6484 0.6542 0.6829

higgs_irl6 0.5091 0.5000 0.5000 0.6640 0.6692 - 0.6638 0.6680 - 0.6519 0.6541 0.6814

ecbdl14-1,2mill-90
ecbdl14-10mill-90
kddcup_normal_vs_DOS
kddcup_DOS_vs_R2L

Average

0.5001 0.5000 0.5000
0.5000 0.5000 0.5000
0.9998 0.9998 0.9998
0.9759 0.9934 0.9912
0.5784 0.5698 0.5957

0.7006 0.7034 07714177 0.7029 0.7056 0.7068 0.6700 0.6939 0.6943
0.6977 0.7039 0.7083 | 0.6979 0.7047 0.7073 0.6799 0.6885 0.6901
0.9996 0.9996 0.9998 0.9996 0.9996 0.9998 0.9997 0.9996 0.9998

0.9934 [HO000 0.9978 0.9976 09997 DI9II 0.5000 [HO0OO 0.9976

0.7337 0.7435 07679 0.7338 0.7567 0.7679 0.6711 0.6955 0.7764

Nel
O
~
o0

ferent methods, such as RD and PCA, in order to increase the
available data, and to allow the decision tree to select better
variables to split, showing better results than the rest of the
methods analyzed.

For a deeper analysis of the results, we have performed a
Bayesian Sign Test in order to analyze if SD_DeTE method-
ology is statistically better than the rest of the methods [21].
Bayesian Sign Tests obtain a distribution of the differences
between two algorithms and make a decision when 95% of

DT (L) vs SD_DeTE (R)

RF (L) vs SD_DeTE (R)

the distribution is in one of the three regions: left, rope (region
of practical equivalence), or right [51].

The Bayesian Sign Test is applied to the mean GM
and AUC measures of each dataset. We have selected
the best-performing scenario for each classification method
depending on the measure employed. In Fig. 3, we can see a
comparison of SD_DeTE methodology against the decision
tree with ROS, random forest with RUS, and PCARDE algo-
rithm with SMOTE_BD, all using the GM measure. On the

rope rope
° PIOO ° p'IOO
% \8o % \80
B, 2/ "'\60
) AN &
2/ 2/ e
2./ 2./ R0
L & 9 L' s &8s SR

PCARDE (L) vs SD_DeTE
(R)

Fig.3 Bayesian Sign Test heatmap of DT, RF, and PCARDE best results, against SD_DeTE methodology for GM measure

@ Springer

Cognitive Computation

Z
% /

I_
2|
<0

DT (L) vs SD_DeTE (R)

RF (L) vs SD_DeTE (R)

< /\
o) X
Y
e/ [/’
9, o, \%0

Z
KT SAANA
v & & &R

—

¥

PCARDE (L) vs SD_DeTE
(R)

Fig.4 Bayesian Sign Test heatmap of DT, RF, and PCARDE best results, against SD_DeTE methodology for AUC measure

other hand, for the AUC measure (shown in Fig.4), the deci-
sion tree is combined with RUS, random forest with ROS, and
PCARDE algorithm with SMOTE_BD. As we can observe,
both GM and AUC Bayesian Sign Tests are showing very
similar results. The probability of the difference being to the
left is minimal for SD_DeTE methodology. This means that
the Bayesian Sign Test indicates a zero probability for these
classification methods to perform better than our proposal.

These results have shown the importance of choosing the
correct imbalanced data treatment. SD_DeTE methodology
stands as the best choice for dealing with imbalanced Big
Datasets, being able to create an ensemble with efficient dis-
tributed algorithms by using Smart Data. SD_DeTE method-
ology has achieved statistically the best performance in both
GM and AUC for almost every tested dataset, proving its
efficiency when dealing with Big Data imbalanced datasets.

Table 6 Average prediction times (in seconds) for the imbalanced Big Data cases of study

Dataset Baseline RUS ROS SMOTE_BD SD_DeTE
DT RF PCARDE DT RF PCARDE DT RF PCARDE DT RF PCARDE

pokerO_vs_2 0.07 1.96 3.38 0.03 198 2.32 003 191 274 0.03 1.85 2.58 3.60
poker0O_vs_3 0.07 1.92 3.28 0.03 1.68 223 0.03 1.65 2.61 0.03 1.84 2.51 3.19
pokerO_vs_4 0.08 1.72 3.19 0.03 1.72 2.12 0.04 1.80 2.61 0.03 1.63 2.18 3.07
poker_0_vs_5 0.59 1.59 3.10 0.03 1.67 241 0.03 1.50 253 0.03 1.59 2.12 2.38
pokerO_vs_6 0.08 1.82 3.09 0.03 1.88 245 003 1.72 255 0.03 1.66 2.16 2.75
pokerl_vs_2 0.08 1.71 2.95 0.02 1.66 1.98 0.03 1.57 229 0.03 1.59 2.00 3.62
pokerl_vs_3 0.08 1.82 3.13 0.03 1.67 221 0.03 1.70 2.19 0.02 1.77 2.02 3.16
pokerl_vs_4 0.08 1.67 2.75 0.03 1.59 2.18 0.03 1.54 2.19 0.03 1.59 1.84 2.34
pokerl_vs_5 0.61 1.47 297 0.03 145 1.85 0.03 143 231 0.03 1.48 1.95 2.50
pokerl_vs_6 0.08 1.54 2.89 0.03 141 2.09 0.04 1.36 226 0.03 1.34 1.95 2.44
rlep 0.14 230 13.28 0.04 2.28 12.29 0.04 230 12.37 0.04 2.26 12.64 15.35
susy_ir4 0.08 1.37 9.05 0.04 140 8.31 0.04 148 8.14 0.04 1.54 8.18 11.34
susy_ir8 0.10 1.07 8.18 0.04 1.17 8.30 0.05 1.09 7.79 0.04 1.11 7.96 10.77
susy_irl6 0.10 1.14 7.62 0.04 125 722 0.04 120 7.22 0.04 1.23 7.61 9.94
higgs_ir4 0.23 297 17.31 0.06 2.65 16.76 0.06 2.89 16.81 0.06 2.87 16.39 22.86
higgs_ir8 0.12 2.28 16.59 0.09 2.35 15.21 0.07 221 15.01 0.06 2.29 15.00 21.73
higgs_irl6 0.24 245 14.71 0.26 243 13.80 0.06 243 14.19 0.06 2.54 13.57 18.96
ecbdl14-1.2mill-90 0.19 0.62 5.15 0.04 0.67 4.72 0.04 0.65 4.64 0.04 0.87 4.30 6.66
ecbdl14-10mill-90 0.21 5.24 30.81 0.05 5.56 3142 0.06 5.57 31.17 0.06 5.66 30.87 44.36
kddcup_normal_vs_DOS 0.21 0.99 6.44 0.04 0.86 5.99 0.04 095 5.99 0.04 094 6.15 9.01
kddcup_DOS_vs_R2L 0.12 248 9.67 0.03 2.09 894 0.04 2.02 9.04 0.04 2.19 8.99 9.83
Average 0.10 222 6.52 0.03 2.04 5.63 0.03 196 5.89 0.03 2.02 5.78 6.72

@ Springer

Cognitive Computation

Fig.5 Average results for the
imbalanced Big Data cases of
study using the GM measure

poker0_vs_2
poker0_vs_3
pokerO_vs_4
poker0_vs 5
poker0_vs_6

pokerl vs 2

pokerl vs 3
pokerl_vs_4

pokerl vs 5

pokerl vs_6

ricp

susy_ird

susy_ir8

susy_irlé
higgs_ird

higgs_ir8
higgs_irl6
ecbdl14-1,2mill-90
ecbdl14-10mill-90
kddcup_normal_vs_DOS
kddcup_DOS_vs_R2L

Average

Computing Times and Complexity

In order to assess the performance in Big Data scenarios, we
shall analyze the computing times for SD_DeTE method-
ology and the rest of the methods. In classification tasks,
prediction times are more important than learning times,
since models are only learned once but used multiple times in
prediction. Such times can be seen in Table 6. As expected,
the decision tree is the fastest in prediction, since it only
requires to predict a simple tree. Random forest also achieves
good prediction times, since neither the decision tree nor
random forest uses any data preprocessing techniques when
predicting. In spite of this, SD_DeTE methodology is very

0,6 0,65 0,7

m SD_DeTE

e —
R ——=,
3
e
==

F

-
]
|
_—

0,75 0,8

o
00
a
o
©
o
©
v
=

m SD_DeTE w/o C-ROS

competitive in prediction, being less than one second slower
than PCARDE. SD_DeTE is able to predict Big imbalanced
Datasets in a short amount of time.

The computational complexity of SD_DeTE is reduced to
the PCA time complexity. PCA computational complexity is
known to be O (p2n + p3), being n the number of data points,
and p the number of features. O(p2n) is for the computa-
tion of the covariance matrix, and O(p?) of the eigen-value
decomposition. On the other hand, k-Means (and its vari-
ant Bisecting k-Means), despite belonging to the family of
hierarchical clustering methods, which have quadratic time
complexity O(n?), has a linear computational complexity
of O(n). Random discretization also has linear computa-

@ Springer

Cognitive Computation

Fig.6 Average results for the
imbalanced Big Data cases of
study using the AUC measure

poker0_vs_2
poker0_vs_3
pokerO_vs_4
poker0O_vs_5
poker0_vs_6
pokerl_vs_2

pokerl vs 3
pokerl_vs_4

pokerl vs 5

pokerl vs 6

ricp

susy_ird

susy_ir8

susy_irlé
higgs_ird

higgs_ir8
higgs_irl6
ecbdl14-1,2mill-90
ecbdl14-10mill-90
kddcup_normal_vs_DOS
kddcup_DOS_vs_R2L

Average

tional complexity. The decision tree has a computational
complexity of O(nlog(n)). For the ensemble, we repeat this
process ifer times, so the final computational complexity is
O(iter(p*n + p* + n + nlog(n))).

Clustering-Based ROS vs ROS

Basic data over- and undersampling methods replicate
and remove instances randomly. Replicating problematic
instances, such as borderline instances, will lead to the clas-
sifier performing poorly. This problem is aggravated in Big
Data environments, where the partitioning of the data will
lead to smaller subsets of the dataset with a few instances. In
SD_DeTE, with the incorporation of the clustering step, we

@ Springer

0,6 0,65 0,7

m SD_DeTE

e ——
...,
e
-
———

—

_—
T —
NN S ..
—

0,75 0,8

o
00
&
o
)
o
&)
]
-

m SD_DeTE w/o C-ROS

divide the majority and minority classes by similarity, ensur-
ing that we replicate instances in the proper regions in order
to maintain spatial coherency among instances [42].

We have conducted an additional experiment for analyz-
ing the performance of our proposed clustering-based ROS.
Figures 5 and 6 show the results of SD_DeTE methodology
against SD_DeTE methodology without using the clustering-
based ROS (only performing ROS), using both GM and AUC
measures. The full results can be found in Appendix Tables 7
and 8.

SD_DeTE methodology, using the proposed clustering-
based ROS, achieves the best results overall. On average, it is
improving the performance in both GM and AUC measures
by 1 full point. There are datasets where this difference is

Cognitive Computation

even more noticeable, such as pokerO_vs_2, in which the
difference increases to more than 8 points. This shows the
excellent performance of the proposed clustering-based ROS
in the SD_DeTE methodology.

Conclusions

In this paper, we have proposed a novel Smart Data driven
Decision Trees Ensemble methodology for addressing the
imbalanced classification problem in Big Data domains,
namely SD_DeTE methodology. SD_DeTE methodology
makes use of the combination of different data preprocess-
ing methods for improving the quality of the data used in the
learning of the ensemble. This quality data is able to produce
an ensemble composed of efficient distributed algorithms.
SD_DeTE methodology uses RD and PCA for achieving
diversity in the Smart Data sets for the ensemble process,
plus anovel combination of clustering and oversampling with
ROS for achieving a balanced and smart dataset while adding
another level of diversity.
In view of the results, we can conclude the following:

e The combination of RD and PCA for adding diversity to
the ensemble algorithm achieves excellent performance
in imbalanced big datasets.

e The proposed addition of hierarchical clustering and ROS
for balancing the data has proven to be able to effectively
produce balanced datasets, while adding another level of
diversity to the ensemble.

e SD_DeTE methodology has proven to be able to achieve
efficient distributed algorithms using Smart Data, pro-
ducing an ensemble capable of tackling Big Data imbal-
anced problems efficiently and effectively.

In summary, addressing imbalanced classification is an
ongoing and vital research endeavor. Future research should
strive to create more adaptive, interpretable, and fair mod-
els, while also considering the practical challenges posed by
real-world applications in various domains. The urgency of
making rapid decisions in these applications demands not
only high predictive accuracy but also low-latency process-
ing, adding an additional layer of complexity. Addressing
imbalanced classification in real time is fundamental for
timely and accurate responses to evolving situations, ensur-
ing the effectiveness of machine learning solutions in appli-
cations where immediate action is key [52, 53]. By pursuing
these research directions, we can make significant strides
towards improving the reliability and effectiveness of imbal-
anced classification solutions.

Appendix

Table 7 Average results for the imbalanced Big Data cases of study
using the GM measure. The highest GM value per dataset is stressed in
bold

Dataset SD_DeTE w/o C-ROS SD_DeTE
poker0_vs_2 0.7438 0.8274
poker0O_vs_3 0.8185 0.8324
pokerO_vs_4 0.9808 0.9880
poker0_vs_5 0.9977 0.9974
poker0_vs_6 0.7426 0.7998
pokerl_vs_2 0.6138 0.6635
pokerl_vs_3 0.6281 0.6396
pokerl_vs_4 0.9390 0.9361
pokerl_vs_5 1.0000 1.0000
pokerl_vs_6 0.6394 0.6576
rlep 0.9312 0.9313
susy_ir4 0.7815 0.7824
susy_ir8 0.7816 0.7802
susy_irl6 0.7813 0.7815
higgs_ir4 0.7139 0.7141
higgs_ir8 0.7146 0.7174
higgs_irl6 0.7120 0.7121
ecbdl14-1.2mill-90 0.7220 0.7225
ecbdl14-10mill-90 0.7267 0.7272
kddcup_normal_vs_DOS 1.0000 1.0000
kddcup_DOS_vs_R2L 0.9977 0.9978
Average 0.8079 0.8194

Table 8 Average results for the imbalanced Big Data cases of study
using the AUC measure. The highest AUC value per dataset is stressed
in bold

Dataset SD_DeTE w/o C-ROS SD_DeTE
poker0O_vs_2 0.7438 0.8274
poker0O_vs_3 0.8185 0.8326
poker0O_vs_4 0.9809 0.9880
pokerO_vs_5 0.9977 0.9974
poker0O_vs_6 0.7680 0.8167
pokerl_vs_2 0.6195 0.6647
pokerl_vs_3 0.6303 0.6430
pokerl_vs_4 0.9404 0.9372
pokerl_vs_5 1.0000 1.0000
pokerl_vs_6 0.6817 0.6927
rlep 0.9326 0.9327
susy_ir4 0.7846 0.7854
susy_ir8 0.7825 0.7821

@ Springer

Cognitive Computation

Table 8 continued

Dataset SD_DeTE w/o C-ROS SD_DeTE
susy_irl6 0.7824 0.7838
higgs_ir4 0.7140 0.7142
higgs_ir8 0.7156 0.7174
higgs_ir16 0.7111 0.7122
ecbdl14-1.2mill-90 0.7228 0.7236
ecbdl14-10mill-90 0.7267 0.7273
kddcup_normal_vs_DOS 1.0000 1.0000
kddcup_DOS_vs_R2L 0.9977 0.9978
Average 0.8119 0.8227

Funding Funding for open access publishing: Universidad de Granada/
CBUA. This work is supported by the Spanish National Research
Project PID2020-119478GB-100. The research is also supported by the
Swedish Research Council (project number: 2016-05431).

Data Availability The datasets analyzed during the current study are
available in the UCI repository [48] and available from the correspond-
ing author on reasonable request.

Declarations

Ethical Approval This article does not contain any studies with human
participants performed by any of the authors.

Conflict of Interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Bansal M, Chana I, Clarke S. A survey on IoT Big data: Current
status, 13 V’s challenges, and future directions. ACM Comput Surv.
53(6).

2. Kaiser MS, Zenia N, Tabassum F, Mamun SA, Rahman MA,
Islam MS, Mahmud M. 6G access network for intelligent Inter-
net of Healthcare Things: Opportunity, challenges, and research
directions. In: Kaiser MS, Bandyopadhyay A, Mahmud M, Ray
K, editors. Proceedings of International Conference on Trends in
Computational and Cognitive Engineering. Singapore: Springer
Singapore; 2021. pp. 317-28.

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. Ramirez-Gallego S, Fernandez A, Garcia S, Chen M, Herrera F. Big

data: Tutorial and guidelines on information and process fusion for
analytics algorithms with MapReduce. Inf Fusion. 2018;42:51-61.

. Khan N, Naim A, Hussain MR, Naveed QN, Ahmad N, Qamar S.

The 51 v’s of big data: Survey, technologies, characteristics, oppor-
tunities, issues and challenges. In: Proceedings of the International
Conference on Omni-Layer Intelligent Systems, COINS *19. New
York: Association for Computing Machinery; 2019. pp. 19-24.

. Ge M, Bangui H, Buhnova B. Big data for Internet of Things: a

survey. Futur Gener Comput Syst. 2018;87:601-14.

. Shwartz-Ziv R, Armon A. Tabular data: Deep learning is not all you

need. arXiv:2106.03253 [Preprint]. 2021. Available from: http://
arxiv.org/abs/2106.03253.

. Thabtah F, Hammoud S, Kamalov F, Gonsalves A. Data imbal-

ance in classification: Experimental evaluation. Inf Sci. 2020;513:
429-41.

. Ferndndez A, Garcia S, Galar M, Prati RC, Krawczyk B, Herrera

F. Learning from imbalanced data sets. Springer; 2018.

. Luengo J, Garcia-Gil D, Ramirez-Gallego S, Garcia S, Herrera F.

Big data preprocessing - enabling smart data. Springer; 2020.
Fernandez A, del Rio S, Chawla NV, Herrera F. An insight into
imbalanced big data classification: Outcomes and challenges. Com-
plex Intell Syst. 2017;3(2):105-20.

Basgall MJ, Hasperué¢ W, Naiouf M, Fernandez A, Herrera F.
SMOTE-BD: an exact and scalable oversampling method for
imbalanced classification in big data. J Comput Sci Technol.
2018;18(03).

Gutiérrez PD, Lastra M, Benitez JM, Herrera F. SMOTE-GPU:
Big data preprocessing on commodity hardware for imbalanced
classification. Progr Artif Intell. 2017;6(4):347-54.

Leevy JL, Khoshgoftaar TM, Bauder RA, Seliya N. A survey
on addressing high-class imbalance in big data. J Big Data.
2018;5(1):1-30.

Juez-Gil M, Arnaiz-Gonzélez A, Rodriguez JJ, Garcia-Osorio C.
Experimental evaluation of ensemble classifiers for imbalance in
big data. Appl Soft Comput. 2021;108.

Xie X, Zhang Q. An edge-cloud-aided incremental tensor-based
fuzzy c-means approach with big data fusion for exploring smart
data. Inf Fusion. 2021;76:168-74.

Galar M, Fernandez A, Barrenechea E, Bustince H, Herrera F. A
review on ensembles for the class imbalance problem: Bagging-
, boosting-, and hybrid-based approaches. IEEE Trans Syst Man
Cybern C Appl Rev. 2012;42(4):463-84.

Garcia-Gil D, Luengo J, Garcia S, Herrera F. Enabling smart data:
Noise filtering in big data classification. Inf Sci. 2019;479:135-52.
Garcia-Gil D, Luque-Sanchez F, Luengo J, Garcia S, Herrera F.
From big to smart data: Iterative ensemble filter for noise filtering
in big data classification. Int J Intell Syst. 2019;34(12):3260-74.
Garcia-Gil D, Ramirez-Gallego S, Garcia S, Herrera F. Principal
components analysis random discretization ensemble for big data.
Knowl Based Syst. 2018;150:166-74.

Meng X, Bradley J, Yavuz B, Sparks E, Venkataraman S, Liu D,
Freeman J, Tsai D, Amde M, Owen S, Xin D, Xin R, Franklin
M]J, Zadeh R, Zaharia M, Talwalkar A. MLIlib: Machine learning
in Apache Spark. J Mach Learn Res. 2016;17(34):1-7.

Carrasco J, Garcia S, del Mar Rueda M. INPBST: An R package
covering non-parametric and Bayesian statistical tests. In: Martinez
de Pison FJ, Urraca R, Quintian H, Corchado E, editors. Hybrid
artificial intelligent systems. Cham: Springer International Publish-
ing; 2017. p. 281-92.

Wu X, Wen C, Wang Z, Liu W, Yang J. A novel ensemble-learning-
based convolution neural network for handling imbalanced data.
Cogn Comput. 2023;1-14.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2106.03253
http://arxiv.org/abs/2106.03253
http://arxiv.org/abs/2106.03253

Cognitive Computation

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

BiJ, Zhang C. An empirical comparison on state-of-the-art multi-
class imbalance learning algorithms and a new diversified ensemble
learning scheme. Knowl Based Syst. 2018;158:81-93.

Batista GEAPA, Prati RC, Monard MC. A study of the behavior
of several methods for balancing machine learning training data.
SIGKDD Explor Newsl. 2004;6(1):20-9.

Juez-Gil M, Arnaiz-Gonzalez A, Rodriguez JJ, Lopez-Nozal C,
Garcia-Osorio C. Approx-SMOTE: Fast SMOTE for big data on
Apache Spark. Neurocomputing. 2021;464:432-7.

Fernandez A, Garcia S, Herrera F, Chawla NV. SMOTE for learning
from imbalanced data: Progress and challenges, marking the 15-
year anniversary. J Artif Intell Res. 2018;61:863-905.

Ma J, Afolabi DO, Ren J, Zhen A. Predicting seminal quality via
imbalanced learning with evolutionary safe-level synthetic minor-
ity over-sampling technique. Cogn Comput. 2019;1-12.

Nejatian S, Parvin H, Faraji E. Using sub-sampling and ensem-
ble clustering techniques to improve performance of imbalanced
classification. Neurocomputing. 2018;276:55-66.

Le HL, Landa-Silva D, Galar M, Garcia S, Triguero I. EUSC:
a clustering-based surrogate model to accelerate evolutionary
undersampling in imbalanced classification. Appl Soft Comput.
2021;101.

Lin W-C, Tsai C-F, Hu Y-H, Jhang J-S. Clustering-based under-
sampling in class-imbalanced data. Inf Sci. 2017;409:17-26.
Zhang Y-P, Zhang L-N, Wang Y-C. Cluster-based majority under-
sampling approaches for class imbalance learning. In: 2010 2nd
IEEE International Conference on Information and Financial Engi-
neering. IEEE; 2010. pp. 400—4.

Barandela R, Sanchez J, Garcia V, Rangel E. Strategies for learning
in class imbalance problems. Pattern Recogn. 2003;36(3):849-51.
Huang J, Ling CX. Using AUC and accuracy in evaluating learning
algorithms. IEEE Trans Knowl Data Eng. 2005;17(3):299-310.
Yang T, Ying Y. AUC maximization in the era of big data and Al:
a survey. ACM Comput Surv. 2022;55(8):1-37.

Dean J, Ghemawat S. MapReduce: Simplified data processing on
large clusters. In: Proceedings of the 6th Conference on Sympo-
sium on Operating Systems Design & Implementation - Volume 6,
OSDI’04, USENIX Association, USA. 2004. p. 10.

White T. Hadoop: the definitive guide. O’Reilly Media, Inc.; 2012.
Lin J. MapReduce is good enough? If all you have is a hammer,
throw away everything that’s not anail! Big Data. 2013;1(1):28-37.
Hamstra M, Karau H, Zaharia M, Konwinski A, Wendell P. Learn-
ing spark: Lightning-fast big data analytics. O’Reilly Media; 2015.
Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauly M,
Franklin MJ, Shenker S, Stoica 1. Resilient distributed datasets:
a fault-tolerant abstraction for in-memory cluster computing. In:
Proceedings of the 9th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 12). San Jose: USENIX;
2012. pp. 15-28.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

Meng X, Bradley J, Yavuz B, Sparks E, Venkataraman S, Liu D,
Freeman J, Tsai D, Amde M, Owen S, et al. MLIlib: Machine learn-
ing in Apache Spark. J] Mach Learn Res. 2016;17(1):1235-41.
del Rio S, Loépez V, Benitez JM, Herrera E. On the use of
MapReduce for imbalanced big data using random forest. Inf Sci.
2014;285:112-37.

Sleeman WC 1V, Krawczyk B. Multi-class imbalanced big data
classification on spark. Knowl Based Syst. 2021;212:106598.
Zhai J, Zhang S, Wang C. The classification of imbalanced large
data sets based on MapReduce and ensemble of ELM classifiers.
Int J Mach Learn Cybern. 2017;8(3):1009-17.

Ahmad A, Brown G. Random projection random discretization
ensembles-ensembles of linear multivariate decision trees. IEEE
Trans Knowl Data Eng. 2014;26(5):1225-39.

Steinbach M, Karypis G, Kumar V, et al. A comparison of document
clustering techniques. In: KDD Workshop on Text Mining, Vol.
400, Boston. 2000. pp. 525-6.

Rokach L, Maimon O. Data mining with decision trees: Theory
and applications. 2nd ed. USA: World Scientific Publishing Co.
Inc.; 2014.

Baldi P, Sadowski P, Whiteson D. Searching for exotic parti-
cles in high-energy physics with deep learning. Nat Commun.
2014;5:4308.

Dua D, Graff C. UCI machine learning repository. 2017. http://
archive.ics.uci.edu/ml.

Triguero I, del Rio S, Lépez V, Bacardit J, Benitez JM, Herrera
F. ROSEFW-RF: the winner algorithm for the ECBDL’ 14 big
data competition: an extremely imbalanced big data bioinformatics
problem. Knowl Based Syst. 2015;87:69-79.

Adiba FI, Islam T, Kaiser MS, Mahmud M, Rahman MA. Effect of
corpora on classification of fake news using Naive Bayes classifier.
Int J Autom Artif Intell Mach Learn. 2020;1(1):80-92.

Benavoli A, Corani G, Demsar J, Zaffalon M. Time for a change: a
tutorial for comparing multiple classifiers through Bayesian anal-
ysis. J Mach Learn Res. 2017;18(1):2653-88.

Jagadeesan J, Kirupanithi DN, et al., An optimized ensemble sup-
port vector machine-based extreme learning model for real-time
big data analytics and disaster prediction. Cogn Comput. 2023;
1-23.

Rahman MA, Brown DJ, Mahmud M, Harris M, Shopland N, Heym
N, Sumich A, Turabee ZB, Standen B, Downes D, et al. Enhanc-
ing biofeedback-driven self-guided virtual reality exposure therapy
through arousal detection from multimodal data using machine
learning. Brain Inform. 2023;10(1):1-18.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

	Smart Data Driven Decision Trees Ensemble Methodology for Imbalanced Big Data
	Abstract
	Introduction
	Related Work
	Imbalanced Data Classification
	Big Data and MapReduce
	Imbalanced Big Data

	Smart Data Driven Decision Trees Ensemble Methodology for Imbalanced Big Data
	SD_DeTE Methodology: Smart Data
	SD_DeTE Methodology: Ensemble
	Spark Primitives
	SD_DeTE Methodology Implementation Details
	Ensemble Learning Phase
	Ensemble Prediction Phase

	Experimental Results
	Experimental Setup
	Results and Analysis
	Computing Times and Complexity
	Clustering-Based ROS vs ROS

	Conclusions
	Appendix
	References

