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Abstract
Background Concurrent training (CT) is a common method used in health-oriented training programs. However, its design 
needs to be explored in order to inform practitioners about the most effective methods to improve different health-related 
markers (e.g., maximal fat oxidation [MFO]). Thus, this study aims to determine the order effect of an 8 week CT on the 
MFO of recreationally trained young adults.
Methods Twenty participants were allocated in two different groups to perform the CT differing only in the exercise 
sequence. The endurance training (ET) consisted of 4 to 6 repetitions of 30 s all-out running sprints with 4 min of active 
recovery. The resistance training (RT) consisted of 4 to 6 sets at 60 to 80% of the one-repetition maximum with 5 to 1 repeti-
tion in reserve of back squat and bench press exercises. 15 min of rest were established between exercise modes. Previous 
and after the CT program, participants performed a graded exercise test where MFO was determined.
Results There was a significant time effect on MFO (p = 0.044). A moderate increase was observed in both ET + RT (Mean 
change: 0.11 [− 0.02 to 0.25] g/min; Effect size: 0.61 [− 0.12 to 1.35]) and RT + ET (Mean change: 0.07 [− 0.01 to 0.16] g/
min; Effect size: 0.62 [− 0.12 to 1.36]) groups. No significant interaction was observed (p = 0.658).
Conclusions The 8 week CT program improved the muscle oxidative capacity of recreationally trained young adults regard-
less of the exercise sequence.

Keywords Resistance training · Sprint interval training · Physical fitness · Fat oxidation

Introduction

The capacity to oxidize fat (i.e., fat oxidation [FO]) during 
exercise has been a used in clinical settings as an impairment 
in its maximum rate (i.e., maximal fat oxidation [MFO]) 

is associated with the development of metabolic syndrome 
[1]. FO is regulated through different steps. It begins with 
the adipose tissue lipolysis, followed by the transport of 
free fatty acids to muscle and across the cell membrane, 
and ends through the beta-oxidation process carried out by 
the enzymes that regulate the Krebs cycle and the electron 
transport chain [2]. Thus, health training programs should 
consider those exercises that maximize the protein expres-
sion of those elements involved in FO.

Traditionally, moderate-intensity continuous training 
(MICT) has been used for improving FO. However, it has 
been established that high-intensity interval training (HIIT) 
or sprint interval training (SIT) can be as effective as MICT in 
almost half of the training time [3]. The mechanism by which 
SIT improves FO relies on the activation of the signaling 
pathways of mitochondrial biogenesis [4, 5]. The glycolytic 
metabolism required during the high-intensity bouts involves 
the accumulation of free radicals, ions and metabolites (i.e., 
lactate, creatine, AMP,  H+), resulting in the phosphorylation 
of the AMP-activated protein kinase (AMPK) and, thus, the 
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expression of the peroxisome proliferator-activated receptor 
coactivator-1α (PGC-1α), the main transcriptional cofactor 
that mediates mitochondrial biogenesis [4]. Of note, it seems 
that the AMPK activation is also bound to the on–off pattern 
of interval training [6].

Albeit in a lesser degree, it has been shown that resistance 
training (RT) can also have an impact on FO through the phos-
phorylation of the AMPK [7, 8]. As it occurs during endurance 
training (ET), the AMPK is activated through markers of low 
cellular energy and, thus, the load and the volume established 
on RT can modulate the signaling of the biogenesis pathways. 
Porter et al. [7] observed an improvement in mitochondrial res-
piration after 12 weeks of whole-body RT conducted 3 times 
per week at an intensity of 60–80% of the one-repetition maxi-
mum (1RM), with multiple sets performed to failure. Thus, it 
seems that in order to stimulate mitochondrial biogenesis, RT 
should be focused on inducing a high metabolic stress [9].

A high metabolic stress could be also induced by combining 
ET and RT within the same training program (i.e., concurrent 
training [CT]). However, the synergistic effect of both exercise 
modes is determined by the exercise principles employed. The 
exercise sequence has been postulated as one of the potential 
factors that mediates mitochondrial biogenesis. Wang et al. 
[10] observed an enhanced expression of marker genes related 
to mitochondrial biogenesis (i.e., PGC-1α) and substrate regu-
lation (i.e., PDK4) when ET (i.e., one hour cycling at 65% of 
the maximum oxygen uptake  [VO2max]) was followed by RT 
(i.e., six sets of leg press at 70–80% 1RM up to 15 repetitions) 
compared to ET alone in recreationally active adults. Likewise, 
Coffey et al. [11] observed that PGC-1α raised after CT (ET: 
30 min of cycling at 70% of  VO2max; RT: eight sets of leg 
extension at 80% 1RM), being slightly higher when ET was 
followed by RT in regular training adults.

The acute molecular signaling is the first adaptive 
response to training. However, the exercise-training-induced 
adaptions are the result of the summed effects of repeated 
training sessions that require to be analyzed in the long 
term in order to determine the efficacy of a training pro-
gram on improving the muscle oxidative capacity. Likewise, 
the adaptive response to CT requires the analysis of further 
combinations of exercise modes, intensities, and volumes, as 
well as the population recruited [12]. Therefore, this study 
aims to determine the order effect of an 8 week CT program 
composed of SIT and lower- and upper-body resistance exer-
cises on the MFO of recreationally trained young adults.

Materials and methods

Experimental design

A longitudinal pre-post design was used to compare the 
effect of altering the exercise sequence of a CT program 

(i.e., ET followed by RT [ET + RT] vs. RT followed by ET 
[RT + ET]) on MFO. Before starting the training program, 
participants attended to the pre-tests where body composi-
tion, back squat and bench press 1RM, MFO, and  VO2max 
were determined. Standardized groups were created con-
sidering  VO2max. Then, participants began with an 8 week 
CT program composed of three sessions per week of 60 to 
90 min duration with all-out running SIT, back squat, and 
bench press resistance exercises. After checking their com-
pliance with the training program, participants followed the 
post-test sessions. All testing and training sessions were 
conducted in a research center with at least 48–72 h of 
rest, at a consistent time of day for each subject (± 1 h) and 
under similar environmental conditions (~ 20 °C and ~ 60% 
humidity).

Participants

A group of 20 recreationally trained healthy young adults 
were initially enrolled. All participants were required to 
meet the following inclusion criteria: (i) being between 18 
and 30 years old, (ii) free from any injuries within the six 
months before data collection, and (iii) being physically 
active according to the guidelines of the American College 
of Sports Medicine (ACSM) [13]. After assessing for eligi-
bility and determining the baseline level of fitness of par-
ticipants, they were allocated in two groups differing only in 
the exercise sequence: ET + RT (n = 10) or RT + ET (n = 10) 
to conduct an 8 week CT program. However, 3 participants 
dropped out from the training intervention for reasons unre-
lated to the study and 3 participants were discarded due to 
the lack of compliance with training. Thus, 7 participants (3 
males and 4 females) in the ET + RT group (age: 21.0 [2.0] 
years; height: 170 [5.9] cm; body mass: 64.1 [8.0] kg; fat 
mass: 10.9 [3.2] kg; fat-free mass [FFM]: 53.2 [9.9] kg; back 
squat one-repetition maximum [1-RM]: 1.40 ± 0.31 kg/kgBM; 
bench press 1-RM: 0.90 ± 0.30 kg/kgBM; training experience: 
5 ≥ years; training frequency: 2 ≥ sessions per week) and 7 
participants (5 males and 2 females) in the RT + ET group 
(age: 21 [1.5] years; height: 178 [11] cm; body mass: 77.5 
[10.9] kg; fat mass: 15.5 [6.9] kg; FFM: 62.2 [10.7] kg; 
back squat 1-RM: 1.50 ± 0.25 kg/kgBM; bench press 1-RM: 
0.75 ± 0.20 kg/kgBM; training experience: 5 ≥ years; train-
ing frequency: 2 ≥ sessions per week) completed the entire 
intervention process (Table 1). A post hoc analysis of the 
achieved power for this sample size was conducted using 
G*power (version 3.1), given α = 0.05, ES = 0.60, total sam-
ple size = 14, statistical tests = means: difference between 
dependent means. This analysis revealed a power of 0.55 
for the time effect. All participants were informed about the 
research purpose and procedures of the study prior to sign-
ing a written informed consent form. The study protocol 
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adhered to the tenets of the declaration of Helsinki and was 
approved by the institutional review board (ref. 2546/CEIH).

Body composition

The anthropometric characteristics of the participants (body 
mass [kg], fat mass [kg] and FFM [kg]) were obtained using 
the bioimpedanciometer Inbody 230 (Inbody, Seoul, Korea), 
which has been previously validated by a dual-energy X-ray 
system [14]. Participants were encouraged to follow the rec-
ommendations of the American Society of Exercise Physi-
ologists before the test [15].

MFO, fatmax,  VO2max

The graded exercise test (GXT) was conducted on a tread-
mill (WOODWAY Pro XL, Woodway, Inc., Waukesha, 
WI, USA). Participants warmed up for 5 minutes at a self-
selected speed with the premise of not exceeding an intensity 
at which they could not talk. Then, participants were fit-
ted with the validated portable metabolic analyzer (PNOE, 
ENDO Medical, Palo Alto, CA) [16], which was previously 
calibrated according to the manufacturer’s instructions. 
The GXT was customized to determine MFO and  VO2max 
in the same session and according to the experience and 
level of the participants. From a starting velocity of 5 km/h, 
the velocity was increased by 1 km/h every 3 min until the 

respiratory gas exchange rate reached 1.0. After that, the 
velocity remained constant, and the incline was increased 
by 2% every minute until volitional exhaustion.

The breath-by-breath data of each record were exported 
into an Excel spreadsheet. To exclude errant breaths, values 
outside the 95% confidence interval of the local mean were 
removed. Then, breath-by-breath data were linearly inter-
polated to give 1 s values. Average values of oxygen uptake 
 (O2; L/min) and dioxide production  (CO2; L/min) for the 
last 60 s in each 3 min step were used to determine FO (gr/
min) through the Frayn equation [17] with the assumption 
that the urinary nitrogen excretion rate (n) was negligible:

FO = 1.67*O2 − 1.67*CO2 − 1.92*n.
For each subject, the calculated values for FO in each step 

were depicted graphically as a function of exercise intensity 
(%VO2max) and a 2nd polynomial curve with an intersection 
in (0,0) was constructed to determine MFO (g/min) and the 
intensity that elicits the MFO (Fatmax) (%  VO2max).  VO2max 
was determined as the highest 30 s rolling mean value.

CT program

Both groups completed an 8 week CT program composed 
of three sessions of 60 to 90 min per week with running 
SIT, as well as back squat and bench press resistance exer-
cises, differing only in their exercise sequences (ET + RT vs. 
RT + ET) (Table 2). Relative loads were applied according to 
the 1RM pre-test (Table 1). Back squat and bench press 1RM 
were estimated from the individual and exercise-specific 
load-velocity profile [18]. The training program progressed 
every 2 weeks in volume and load for running SIT (i.e., 
4–6 intervals) and resistance exercises (i.e., 60–80% 1RM), 
respectively. Since sessions were created with a time-effi-
cient purpose, only 15 min of rest was established between 
exercise modes. To minimize the potential effect of fatigue 
on the subsequent exercise to be performed, the ET + RT 
group conducted the bench press exercise first after the run-
ning SIT, and the RT + ET group began with the back squat 
before the bench press exercise and the running SIT. An 

Table 1  Baseline characteristics of training groups

Values are mean ± SD; ET endurance training; RT resistance train-
ing; MFO maximal fat oxidation; MFOrel MFO relativized to fat-
free mass; Fatmax MFO relative intensity; VO2max maximum oxygen 
uptake; FFM fat-free mass

ET + RT RT + ET p-value

MFO (g/min) 0.60 (0.15) 0.68 (0.12) 0.579
MFOrel (g/kg FFM/min) 0.011 (0.003) 0.011 (0.002) 0.793
Fatmax (% of  VO2max) 53.9 (7.5) 55.7 (5.5) 0.620
VO2max (ml/kg/min) 52.1 (5.1) 49.6 (5.0) 0.367

Table 2  8 week concurrent 
training program

SIT sprint interval training; RT resistance training; 1RM one-repetition maximum; RIR repetitions in 
reserve

3 days/week SIT RT

Week 1 4 × 30″ all out 4´active rest 4–5 × 60% 1RM, RIR 5–6, rest 2´
Week 2 4 × 30″ all out 4´active rest 4–5 × 60% 1RM, RIR 5–6, rest 2´
Week 3 5 × 30″ all out 4´active rest 5–6 × 70% 1RM, RIR 3–4, rest 2´
Week 4 5 × 30″ all out 4´active rest 5–6 × 70% 1RM, RIR 3–4, rest 2´
Week 5 6 × 30″ all out 4´active rest 5–6 × 80% 1RM, RIR 2–3, rest 2´
Week 6 6 × 30″ all out 4´active rest 5–6 × 80% 1RM, RIR 2–3, rest 2´
Week 7 6 × 30″ all out 4´active rest 6 × 80% 1RM, RIR 1–2, rest 2´
Week 8 6 × 30″ all out 4´active rest 6 × 80% 1RM, RIR 1–2, rest 2´
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instructor assisted and encouraged the participants in each 
session of the training program. Sessions were conducted 
with at least 48 h of recovery in between. Participants were 
encouraged to follow their habitual dietary patterns over the 
entire training program.

Statistical analysis

Data are presented as mean (SD) or (95% confidence inter-
val). The normal distribution and homogeneity of variance 
were confirmed through the Shapiro–Wilk test and Levene’s 
tests, respectively. The baseline characteristics of each train-
ing group were compared through an independent sample 
student’s t test. A one-way mixed model (group x time) anal-
ysis of variance (ANOVA) was used to determine the effect 
of altering the exercise sequence (i.e., ET + RT or RT + ET) 
on the MFO, MFO relativized to FFM  (MFOrel), Fatmax, 
and  VO2max. The normality of the residuals was confirmed 
through the inspection of Q–Q plots. The homogeneity 
of variances was also confirmed through the Levene test. 
Pairwise effect size (ES) was determined as (mean change/
SD change) [19], and interpreted as follows: trivial (< 0.2), 
small (0.2–0.59), moderate (0.60–1.19), large (1.20–2.0), 
and extremely large (> 2.0) [20]. Statistical analyses were 

performed using the software package SPSS (IBM SPSS, 
version 25.0; IBM, Chicago, IL). Alpha was set at 0.05.

Results

Training groups presented similar baseline characteristics 
regarding MFO (ET + RT: 0.60 [0.15] g/min; RT + ET: 0.68 
[0.12] g/min; p = 0.579),  MFOrel (ET + RT: 0.011 [0.003] 
g/min/kg FFM; RT + SIT: 0.011 [0.002] g/min/kg FFM; 
p = 0.793), Fatmax (ET + RT: 53.9 [7.5] %  VO2max; RT + ET: 
55.7 (5.5) %  VO2max; p = 0.620), and  VO2max (ET + RT: 52.1 
[5.1] ml/kg/min; RT + ET: 49.6 [5.0] ml/kg/min; p = 0.367) 
(Table 1).

There was a significant time effect on MFO (F(1,12) = 5.07; 
p = 0.044) (Fig. 1). A moderate increase was observed in 
both ET + RT (p = 0.08; mean change: 0.11 [− 0.02 to 0.25] 
g/min; ES: 0.61 [− 0.12 to 1.35]) and RT + ET (p = 0.227; 
mean change: 0.07 [[− 0.01 to 0.16] g/min; ES: 0.62 [− 0.12 
to 1.36]) groups.  MFOrel did not reach a significant time 
effect (F(1,12) = 3.79; p = 0.075) although a small increase 
was observed in both ET + RT (p = 0.107; mean change: 
0.002 [− 0.001 to 0.004] g/min/kg FFM; ES: 0.54 [ − 0.20 
to 1.28]) and RT + ET (p = 0.333; mean change: 0.001 [0.000 

Fig. 1  Effect of the exercise sequence of the concurrent training pro-
gram. Values are mean ± SD; ET endurance training; RT resistance 
training; MFO maximal fat oxidation; MFOrel MFO relativized to fat-

free mass; Fatmax MFO relative intensity; VO2max maximum oxy-
gen uptake; FFM Fat-free mass
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to 0.002] g/min/kg FFM; ES: 0.53 [− 0.21 to 1.27]) groups. 
A non-significant time effect was also obtained on Fatmax 
(F(1,12) = 2.38; p = 0.148), although a small increase was 
observed in both ET + RT (p = 0.145; mean change: 2.86 
[− 1.41 to 7.12] % of  VO2max; ES: 0.50 [− 0.24 to 1.24]) and 
RT + ET (p = 0.544; mean change: 1.14 [− 1.61 to 3.89] % 
of  VO2max; ES: 0.31 [− 0.43 to 1.05]) groups. There was a 
significant time effect on  VO2max (F(1,12) = 11.04; p = 0.006). 
A large increase was observed in ET + RT group (p = 0.012; 
mean change: 5.69 [2.46 to 8.92] ml/kg/min; ES: 1.30 [0.56 
to 2.04]) and a small increase in RT + ET group (p = 0.107; 
mean change: 3.35 [− 0.89 to 7.59] ml/kg/min; ES: 0.58 
[− 0.15 to 1.32]). Non-significant interactions were observed 
in the aforementioned variables (F(1,12) < 0.740; p > 0.406).

Discussion

This study aimed to determine the order effect of an 8 week 
CT program composed of SIT and low and upper-body 
resistance exercises on the MFO of recreationally trained 
young adults. The results revealed that the CT program 
improved the MFO in both training groups in a similar 
manner, and thus, no interferences were observed regarding 
the exercise sequences on improving the muscle oxidative 
capacity.

Both training groups improved MFO in a similar magni-
tude (ET + RT: 0.11 [− 0.02 to 0.25] g/min; RT + ET: 0.07 
[− 0.01 to 0.16] g/min). While training-induced increases 
of 1-MET have been considered of clinical relevance [21], 
there are no consolidated thresholds for interpreting MFO 
changes. In this regard, Atakan et al. [3] have recently pro-
posed that any increases greater than 0.07 g/min would be 
meaningful, being such changes observed in HIIT and SIT 
interventions of 4 to 12 weeks (0.05 to 0.13 g/min). These 
MFO changes are derived from the molecular signaling that 
the high-intensity exercise induces, activating the AMPK 
and, thus, the expression of PGC1-α, the main mediator of 
mitochondrial biogenesis [4]. Using the same SIT protocol 
of 30 s all-out, Gibala et al. [22] observed an acute twofold 
increase in PGC1-α mRNA above resting values. However, 
the AMPK phosphorylation can be also achieved through 
RT as long as it involves an overload stimulus [23]. There-
fore, several studies support that the molecular signaling of 
mitochondrial biogenesis is enhanced with CT compared to 
each exercise mode alone [10, 24–26]. This is of particular 
interest for practitioners since it has been observed that CT 
(RT: 4 × 8 leg extension at 70% 1RM; ET: 20 min cycling 
at 55% of peak aerobic power output) can elicit a similar 
response to the double ET time (40 min cycling at 55% of 
peak aerobic power output) [25], which could give variety to 
the sessions of a training program with the same aim.

Given the effectiveness of CT compared to isolated 
exercises, it is necessary to determine if such benefits are 
due to the effect of an additional exercise or due to a syn-
ergistic effect. In line with the results of the present study, 
Coffey et al. [11] determined the acute molecular response 
to a CT (RT: 8 × 5 leg extension at 80% 1RM; ET: 30 min 
cycling at 70% of  VO2max), observing a significant time 
effect for PGC-1α, but not an interaction between both 
sequences. However, when the CT was composed of the 
same RT and a cycling SIT (10 × 6 s), there was a moder-
ate exercise order effect in favor of RT followed by SIT 
[27].

The potential benefits derived from CT or a particular 
exercise sequence appear to reside in the metabolic envi-
ronment that the previous exercise leaves in the other. It 
has been shown that a low carbohydrate availability aug-
ments the early signaling responses that mediate mito-
chondrial biogenesis [28, 29]. This enhanced response is 
well-established in ET [29]. However, this has been also 
observed in RT [30], which in conjunction with its glyco-
gen depletion effects [31], reinforces its role in enhancing 
the muscle oxidative capacity and its synergistic effect 
with ET.

Conclusion

The results obtained revealed that the 8 week CT program 
composed of SIT and lower- and upper-body resistance exer-
cises improved the muscle oxidative capacity of recreation-
ally trained young adults regardless of the exercise sequence.
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