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Alejandro Joaquín Armendariz, Javier Galindo-Ángel, Hanne Frederiksen, Josefa León, Pilar Requena,
and Juan Pedro Arrebola*

Cite This: Environ. Sci. Technol. 2024, 58, 7719−7730 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: The relationship between phthalates, a group of chemical
pollutants classified as endocrine disruptors, and oxidative stress is not fully
understood. The aim of the present hospital-based study was to explore the
associations between circulating levels of 10 phthalate metabolites and 8
biomarkers of oxidative stress in adipose tissue. The study population (n = 143)
was recruited in two hospitals in the province of Granada (Spain). Phthalate
metabolite concentrations were analyzed by isotope diluted online-TurboFlow-
LC−MS/MS in serum samples, while oxidative stress markers were measured
by commercially available kits in adipose tissue collected during routine surgery.
Statistical analyses were performed by MM estimators’ robust linear regression
and weighted quantile sum regression. Mainly, positive associations were
observed of monomethyl phthalate (MMP), monoiso-butyl phthalate (MiBP),
and mono-n-butyl phthalate (MnBP) (all low molecular weight phthalates)
with glutathione peroxidase (GPx) and thiobarbituric acid reactive substances
(TBARS), while an inverse association was found between monoiso-nonyl phthalate (MiNP) (high molecular weight phthalate) and
the same biomarkers. WQS analyses showed significant effects of the phthalate mixture on GSH (β = −30.089; p-value = 0.025) and
GSSG levels (β = −19.591; p-value = 0.030). Despite the limitations inherent to the cross-sectional design, our novel study
underlines the potential influence of phthalate exposure on redox homeostasis, which warrants confirmation in further research.
KEYWORDS: phthalates, oxidative stress, cohort, serum, adipose tissue

1. INTRODUCTION
Phthalates are widely used as additives in plastic manufacturing
of different products such as toys, cosmetics, or food
packaging.1−3 Phthalates are frequently divided into two
main groups: high molecular weight phthalates (HMWP)
and low molecular weight phthalates (LMWP). The former are
mainly used as plasticizers in various plastic products, while the
latter are commonly used as additives in cosmetics or
medicines among others.4 Despite various restrictive policies5

and some voluntary changes in the market,6 phthalate
production remains high. In 2018, 5.5 million tonnes were
produced.7 In addition, despite their short half-life (about 24−
48 h),8−10 the population is constantly exposed to phthalates
due to their ubiquity in daily use products.6 Moreover,
phthalates are moderately lipophilic and can diffuse into the
lipid bilayer of cells and spread to different tissues via the
cardiovascular system.11,12 Therefore, this sustained and spread
exposure explains the associations found in previous studies
between phthalates and/or their metabolites and different

health conditions, including metabolic syndrome, diabetes,
dyslipidemia, or cancer.13−19

Oxidative stress is known as an imbalance in the production
and detoxification of reactive oxygen species (ROS)20 and
reactive nitrogen species (RNS).21−23 Several physiological
processes such as activation of various transcriptional factors,
apoptosis, immunity, protein phosphorylation, and differ-
entiation depend on the proper production and presence of
these radicals inside cells since ROS are capable of causing
damage at the cellular level22,24 through reaction with
susceptible compounds such as lipids, proteins and/or
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DNA.22,24,25 There are different molecular mechanisms to
prevent this damage, including the redox cycle, in which the
superoxide anion radical (O2−), considered a primary ROS, is
eventually neutralized and transformed into water and
oxygen.26 However, in cases of system dysfunction, the Fenton
reaction may be induced, resulting in the transformation of the
intermediate hydrogen peroxide (H2O2) into the hydroxyl
radical (HO−). This transformation leads to tissue damage at
macromolecular levels, e.g., lipid oxidation or DNA alter-
ations.22,26

The main endogenous source of ROS is the mitochondrion
along the electron transport chain. Exogenous ROS sources
include lifestyle patterns, e.g., lack or excess of physical
exercise, consumption of certain foods, especially those high in
fats and sugars, stress, cigarette smoke, and some drugs such as
anesthetics and chemotherapeutics.26−30 In addition, inadver-
tent long-term exposure to certain chemical environmental
pollutants (e.g., bisphenols, parabens, or chromium) is
acknowledged to contribute to the oxidative unbalance.31−33

Moreover, there have been recent concerns about the potential
contribution of phthalate exposure to redox-related chronic
diseases, e.g., cancer or diabetes.3,34,35 However, the relation-
ship between phthalate exposure and oxidative stress remains
unclear.
Several human and animal studies have underlined the

relevance of adipose tissue disruption in the onset of a number
of noncommunicable chronic diseases (e.g., cardiovascular
disease or diabetes). Particularly, in situ redox unbalance might
have systemic implications and, therefore, promote the
development of these prevalent conditions.1,36−41

The present study aims to shed light on the potential effect
of phthalate metabolites on metabolic health by investigating
the associations of serum phthalate metabolite concentrations
and oxidative stress biomarkers in adipose tissue from a
Spanish adult cohort.

2. MATERIALS AND METHODS
2.1. Study Population: GraMo Cohort. The present

study is based in a subsample of the GraMo cohort, previously
characterized elsewhere.42−45 In brief, participants were
recruited between July 2003 and June 2004 among surgery

patients who underwent a routine intervention unrelated to an
oncological process in order to obtain an adipose tissue
sample. The recruitment took place in two public hospitals:
Hospital Clıńico San Cecilio in Granada (inland, urban area)
and Hospital Santa Ana in Motril (coastal semirural area).
Out of 409 individuals meeting the selection criteria who

were contacted, 405 donated 12 h fasting blood samples.
Phthalate metabolites were measured in serum samples from
230 individuals, and oxidative stress biomarkers were assessed
in adipose tissue samples of 308 participants. A total of 143
individuals had measures of both biomarkers (Figure 1). There
were no statistically significant differences between the
characteristics of participants in the subsample and those in
the full cohort (data not shown).
Data on sociodemographic characteristics, lifestyle, and

health status were gathered in face-to-face interviews
conducted by trained personnel at the time of recruitment
during hospitalization. Body mass index (BMI) was expressed
as weight/height squared (kg/m2) and a participant was
categorized as obese with a BMI > 30. A participant was
considered a smoker or alcohol consumer with any level of
daily tobacco (≥1 cigarette/day) or weekly alcohol (≥1 drink/
week). An individual was considered to have type 2 diabetes if
he/she had ever been diagnosed with diabetes by a clinician.
Additionally, medical records were reviewed, whenever a
participant showing a fasting glucose level ≥ 126 mg/dL in the
routine analyses prior to the surgery, he/she was registered as
diabetic. No discrepancies were found between the self-
reported prevalence of diabetes and the data reported in the
clinical records. For hypertension (systolic blood pressure >
140 mmHg and/or diastolic blood pressure > 90 mmHg), a
participant was considered hypertensive if he/she had a
previous diagnosis in clinical records.
All participants signed their informed consent to participate

in the study, which was approved by the Ethics Committee of
each hospital in 2002 for the recruitment of patients and
analysis of pollutants and by the Ethics Committee of Granada
(Comite ́ de Ética de Investigacioń Clnica de Granada, 8/2016)
for the analysis of stress biomarkers.

2.2. Laboratory Analysis. 2.2.1. Phthalate Metabolite
Assessment. The concentration of a total of 32 phthalate

Figure 1. Selection criteria for GraMo cohort participants and flowchart of participants selected for the study subsample.
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Table 1. Baseline Main Characteristics of the Subsample Adults from the GraMo Cohort According to Phthalate Metabolite
Sum Levels in Tertiles (n = 143)

characteristics

phthalate metabolite sum

first tertile (lowest levels) second tertile third tertile (highest levels) p- value

n [n (%)] 55 (38.46) 50 (34.97) 38 (26.57)
age 0.44
median (IQR) 54 (35.5−63.0) 48.00 (35.0−58.0) 53.5 (38.0−62.3)
missing [n (%)] 8 (14.6) 1 (2.0) 2 (5.3)
BMI 0.57
median (IQR) 26.3 (23.6−30.0) 28.1 (24.3−30.1) 27.4 (25.7−29.6)
missing [n (%)] 8 (14.6) 0 (0.0) 2 (5.3)
sex [n (%)]
women 22 (40.0) 24 (48.0) 17 (44.7)
men 25 (45.5) 26 (52.0) 19 (50.0)
missing 8 (14.5) 0 (0.0) 2 (5.3)
hospital [n (%)] <0.0001
Granada 37 (67.3) 11 (22.0) 5 (13.2)
Motril 10 (18.2) 39 (78.0) 31 (81.6)
missing 8 (14.5) 0 (0.0) 2 (5.3)
education [n (%)]
primary education 11 (20.0) 13 (26.0) 15 (39.5)
secondary education or higher 36 (65.5) 37 (74.0) 20 (52.6)
missing 8 (14.5) 0 (0.0) 3 (7.9)
occupation [n (%)] 0.35
nonmanual worker 11 (20.0) 9 (18.0) 7 (18.4)
manual worker 30 (54.5) 39 (78.0) 28 (73.7)
retired 6 (10.9) 2 (4.0) 1 (2.6)
missing 8 (14.5) 0 (0.0) 2 (5.3)
surgery [n (%)] 0.003
hernia 21 (38.2) 22 (44.0) 19 (50.0)
gallbladder 18 (32.7) 7 (14.0) 2 (5.3)
varicose veins 2 (3.6) 3 (6.0) 3 (7.9)
others 6 (10.9) 18 (36.0) 12 (31.6)
missing 8 (14.5) 0 (0.0) 2 (5.3)
alcohol [n (%)] 0.28
no consumption 24 (43.6) 22 (44.0) 12 (31.6)
consumption 22 (40.0) 27 (54.0) 23 (60.5)
missing 9 (16.4) 1 (2.0) 3 (7.9)
smoke [n (%)] 0.93
nonsmoker 18 (32.7) 20 (40.0) 16 (42.1)
fomer smoker 10 (18.2) 12 (24.0) 9 (23.7)
current smoker 19 (34.5) 18 (36.0) 11 (28.9)
missing 8 (14.5) 0 (0.0) 2 (5.3)
legumes [n (%)] 0.99
never 1 (1.8) 2 (4.0) 2 (5.3)
<1 per week 2 (3.6) 2 (4.0) 1 (2.6)
1 per week 7 (12.7) 9 (18.0) 5 (13.2)
twice per week 19 (34.5) 16 (32.0) 12 (31.6)
>2 per week 18 (32.7) 20 (40.0) 15 (39.5)
missing 8 (14.5) 1 (2.0) 3 (7.9)
cooked vegetables [n (%)] 0.48
1 or < 1 per week 16 (29.1) 14 (28.0) 8 (21.1)
twice per week 14 (25.5) 12 (24.0) 7 (18.4)
>2 per week 17 (30.9) 23 (46.0) 20 (52.6)
missing 8 (14.5) 1 (2.0) 3 (7.9)
raw vegetables [n (%)] 0.33
never 0 (0.0) 2 (4.0) 0 (0.0)
<1 per week 1 (1.8) 0 (0.0) 1 (2.6)
1 per week 4 (7.3) 2 (4.0) 1 (2.6)
twice per week 8 (14.5) 3 (6.0) 5 (13.2)
>2 per week 34 (61.8) 42 (84.0) 28 (73.7)
missing 8 (14.5) 1 (2.0) 3 (7.9)
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metabolites from 15 different phthalate diesters was measured
by isotope diluted online-TurboFlow-LC−MS/MS with
preceding enzymatic deconjugation. Samples were analyzed
randomly. They were divided into 5 blinded batches, each
including around 45 samples plus calibration standards, three
blanks, three serum pool controls, and three serum pool
controls spiked with phthalate metabolite standards at low or
high known concentrations. The interday variation analyzed as
the relative standard deviation between batches was < 21% for
all analytes spiked in serum at a low level and < 11% for all
analytes spiked in serum at a high level. The method used for
sample preparation, calibration, and control quality control
materials, as well as instrumental analysis and method
validation has been described in detail previously. The method
was used without any modifications.46

Phthalate metabolites with a detection range < 20% were
excluded (Supplementary Table S1). Thus, of the 32 phthalate
metabolites initially screened, only 10 were included in the
present study, namely, monomethyl phthalate (MMP),
monoethyl phthalate (MEP), monoiso-butyl phthalate
(MiBP), mono-n-butyl phthalate (MnBP), mono-(2-ethyl-
hexyl) phthalate (MEHP), mono-(2-ethyl-5-carboxypentyl)
phthalate (MECPP), mono-(2-carboxymethyl-hexyl) phthalate
(MCMHP), monoiso-nonyl phthalate (MiNP), monobenzyl
phthalate (MBzP), and monoisodecyl phthalate (MiDP). In
the regression models, all metabolite concentrations were
treated as continuous variables, and values below the limit of
detection (LOD) were replaced by random numbers between
0 and their respective LOD.47 The exceptions were MBzP
(23.1% < LOD) and MiDP (46.2% < LOD), which were
dichotomized (>LOD/<LOD).
2.2.2. Oxidative Stress Biomarker Assessment. Oxidative

stress biomarkers were measured in adipose tissue using
commercially available kits (Enzo Life Sciences, Inc., Farm-
ingdale, NY, USA) in an automated microplate reader (TRIAD
MRX II series, Dynex Technologies Inc., Chantilly, Virginia,
USA).

The adipose tissue samples were slowly thawed on ice and
washed repeatedly with cold PBS to remove blood clots and
other remnants. They were then homogenized in the
appropriate buffer at the ratio specified by each kit using a
pestle and mortar. The following biomarkers were assessed:
glutathione peroxidase (GPx), glutathione reductase (GRd),
total glutathione (GST), reduced glutathione (GSH), oxidized
glutathione (GSSG), hemeoxygenase-1 (HO-1), superoxide
dismutase (SOD) activity, thiobarbituric acid reactive sub-
stances (TBARS), in which malondialdehyde reacts with
thiobarbituric acid, and 8-hydroxy-deoxyguanosine (8OHdG).
For the latter, the number of participants was restricted to

112 based on adequate biological sample availability for the
analyses.
The GSH value was determined by subtracting the GSSG

levels from the GST levels. The GSSG/GSH ratio was
obtained by dividing the GSSG levels by the GSH levels in the
same sample. Detailed methodological information of these
analyses is provided elsewhere.26,48

2.3. Statistical Analysis. The descriptive analysis included
the calculation of medians and interquartile ranges for
continuous variables and frequencies and percentages for the
categorical variables. Three groups were defined according to
the tertiles of the sum of the orders of phthalate levels. In the
bivariate analyses, variables were compared using the Mann−
Whitney U-test and Fisher’s exact test as appropriate.
Pairwise correlations between metabolites and oxidative

stress biomarkers were analyzed using the Spearman rank
correlation test. Then, concentrations of each phthalate were
natural log-transformed for the regression models, which
relaxes the linearity assumption.
The shape of the associations between phthalate metabolite

concentrations and biomarkers of oxidative stress were further
explored using generalized additive models. Considering the
highly skewed distribution of redox markers and contaminants,
the magnitude of the associations was analyzed by means of
robust regression based on the MM-estimator.49 The
covariates included were initially selected from among those

Table 1. continued

characteristics

phthalate metabolite sum

first tertile (lowest levels) second tertile third tertile (highest levels) p- value

fruits [n (%)] 0.76
never 2 (3.6) 1 (2.0) 0 (0.0)
<1 per week 1 (1.8) 2 (4.0) 1 (2.6)
1 per week 3 (5.5) 0 (0.0) 1 (2.6)
twice per week 3 (5.5) 2 (4.0) 2 (5.3)
>2 per week 38 (69.1) 44 (88.0) 31 (81.6)
missing 8 (14.5) 1 (2.0) 3 (7.9)
hypertension [n (%)] 0.92
low 43 (78.2) 45 (90.0) 32 (84.2)
high 3 (5.5) 5 (10.0) 3 (7.9)
missing 9 (16.4) 0 (0.0) 3 (7.9)
obesity [n (%)] 0.57
normal weight 15 (27.3) 17 (34.0) 7 (18.4)
overweight 20 (36.4) 20 (40.0) 20 (52.6)
obesity 12 (21.8) 13 (26.0) 9 (23.7)
missing 8 (14.5) 0 (0.0) 2 (5.3)
diabetes [n (%)] 0.44
no diabetic 46 (83.6) 48 (96.0) 32(84.2)
diabetic 1 (1.8) 2 (4.0) 3 (7.9)
missing 8 (14.5) 0 (0.0) 3 (7.9)
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most commonly used in the available literature.19,50,51 Final
covariate selection in the multivariable models was performed
by using a combination of forward and backward stepwise
methods. The model 1 was adjusted for age, sex, BMI
(continuous), place of residence (urban/semirural), educa-
tional level (no studies/primary or higher), smoking (never,
former, current), and alcohol consumption (regular consumer/
nonconsumer) and type of work (nonmanual worker, manual
worker, retired), while model 2 was adjusted by these
covariates but also by the consumption of vegetable foods.
The potential mixture effect of different phthalate

metabolites on oxidative stress markers was assessed by
weighted-quantile-sum regression (WQS). WQS estimates a
weighted index based on the combination of several exposures,
considering their individual associations with the outcome.
The WQS analyses of the combined effect of phthalate
concentrations on oxidative stress marker levels were assessed
by entering the WQS index as an independent variable in the
multivariable regression with the levels of each oxidative stress
marker as the dependent variable and adjusting for the same
covariates as the individual associations in model 2.
Considering that the WQS regression requires an a priori
expected direction of the association, we estimated two mixed-
effect models (positive and negative) for each outcome. All
WQS analyses were performed with natural log-transformed
pollutant concentrations, using a training set defined as a 30%
random sample of the data set, the remaining 70% being used
for model validation. The final weights were calculated by
using a total of 1000 bootstrap steps.
Data were stored and processed using RStudio version

4.3.1.52 The following packages were used: vioplot53 for the
creation of violin plots describing graphically the concentration
of phthalate metabolites and oxidative stress biomarkers,
mgcv54 for the creation of GAM plots and robustbase55 for
robust regression with MM estimators. WQS analysis was
performed by using gWQS.56

3. RESULTS
The characteristics of the study population are listed in Table 1
and are shown in Figure 2.

3.1. Phthalates Metabolites and Oxidative Stress
Biomarkers. In the present subcohort, MEP was the
metabolite that was found in the highest concentrations
(median, IQR), followed by MMP (Figure 3), while GST was
the redox biomarker found at the highest concentrations in
adipose tissue samples, followed by SOD, OH-1 and GSH
(Figure 4).
The description of the levels of phthalate metabolites and

oxidative stress biomarkers according to the sum of orders of
phthalate metabolite levels divided in tertiles is listed in
Supporting Information Table S2.

3.2. Association of Phthalate Metabolites with
Oxidative Stress Biomarkers. The results from multi-
variable robust regression models are summarized in Figure 5
and are listed in Supporting Information Table S3.
There was a positive association between several LMWP

metabolites (i.e., MMP, MiBP, and MnBP) and the oxidative
stress markers GPx and TBARS (Figure 5A). However, these
stress markers were negatively associated with MiNP, an
HMWP metabolite (Figure 5B).
Besides the mentioned pattern, MMP showed a positive

association with GRd and MiDP with GSSG. In addition,
MMP (inversely) and MECPP (positively) were also
associated with the GSSG/GSH ratio. Regarding 8OHdG, an
inverse association was observed with MiBP. However, no
significant association was found between MBzP, MEP,
MEHP, and MCMHP or the sum of orders of phthalate
metabolites and oxidative stress markers.
To account for the potential mixture effect of phthalate

metabolites on stress biomarker levels, we calculated a WQS
index as a measure of the combined effect (Supplementary
Table 4). The WQS index was negatively and significantly
associated with GSH levels (β = −30.089; p-value = 0.025,). In
addition, the WQS index was negatively and significantly
associated with GSSG levels (β = −19.591; p-value 0.030). As
shown in Figure 6, in the negative mixture model of GSH, the

Figure 2. Violin plot of the distribution of participants’ BMI in kg/m2 and age in years, showing the median (black point) and the interquartile
range (white box).
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major components were MEHP (25%) and MECPP (21%).
For the negative mixture model of GSSG, the major
components were MiBP (27%) and MnBP (18%).

4. DISCUSSION
In the present study, we evidenced novel associations between
phthalate metabolites and in situ adipose tissue redox
biomarkers. Overall, GPx and TBARS were positively
associated with LMWP metabolites, while their association
with the HMWP metabolite MiNP was negative.
The biological plausibility of our findings is supported by

results from different types of studies.
Exposure of placental cells to MEHP has been shown to

increase ROS production, DNA damage, apoptosis, and altered

expression of redox-sensitive genes.57 Moreover, another study
conducted on mice follicle cells found that DEHP (the parent
compound of MEHP, MECPP, and MCMHP) increased free
radical levels compared to control cells. Furthermore, these
levels returned to normal after the application of n-
acetylcysteine. However, although a decrease in SOD1 was
observed, no significant changes were observed in GPx and
catalase.58 In the same direction, the in vitro study of Cho et
al., 2015, found that SOD in human endometrial stromal cells
was inhibited by DEHP (HMWP).59

Previous in vivo research in Eisenia fetida found enhanced
SOD activity by DEP and inhibited by DBP (both LMWPs),
DEHP and DOP (HMWPs).60 In addition, an association
between the two DBP isomers; DiBP and DnBP (the parent

Figure 3. Serum concentrations of phthalate metabolites in the study population. Concentrations (ng/mL) are plotted as a violin plot, showing the
median (black point) and the interquartile range (white box). MMP, monomethyl phthalate; MEP, monoethyl phthalate; MiBP, monoiso-butyl
phthalate; MnBP, mono-n-butyl phthalate; MBzP, monobenzyl phthalate; MEHP, mono-(2-ethyl-hexyl) phthalate; MECPP, mono-(2-ethyl-5-
carboxypentyl) phthalate; MCMHP mono-(2-carboxymethyl-hexyl) phthalate; MiNP, monoiso-nonyl phthalate; and MiDP, monoisodecyl
phthalate.
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compounds of MiBP and MnBP), and increased lipid
peroxidation and other redox biomarkers were found in an
in vivo model on adult zebrafish.61 Furthermore, in a mouse
model to determine any adverse effects of DBP on allergic
asthma, it was found that DBP significantly decreased GSH
levels and increased 8OHdG levels.62 These results would be
in contrast to our findings since, in our case, high levels of
MiBP, a metabolite of DiBP, would be negatively related to
levels of 8OHdG.
Finally, a recent in vivo study investigating the effects of a

mixture of various phthalates (DEP, DEHP, DBP, DiBP,
DiNP, and BzBP) on adipose tissue from female mice observed
that the phthalate mixture increased GPx levels (but not SOD
levels as well as our study). This association was independent
of the type of adipose tissue (white or brown).63

In line with our findings, previous epidemiological studies
also reported associations between phthalate exposure and
increased oxidative stress.24,64−68 The systematic review by
Sweeney et al., 201969 concluded that MiBP and MEP may be
associated with some biomarkers of oxidative stress although
there are some discrepancies between different works.
However, to the best of our knowledge, our patterns with
HMWP and LMWP metabolites have not been previously
described in an epidemiological setting.
The study by Duan et al., 2017 in diabetic patients found

only positive associations between phthalate metabolites and
lipid peroxidation.67 These associations were not only
observed with MMP, MiBP, and MnBP but also with other
LMWP and HMWP metabolites analyzed in our cohort, except
for MiNP and MiDP. The difference in results could be related
to dissimilarities in the study populations, particularly
considering the GraMo included both diabetics and non-
diabetics. It is noteworthy that diabetes has been shown to be
associated with tissue damage due to increased oxidative
stress.70

Furthermore, our results are consistent with evidence
previously found in the GraMo cohort of positive associations
between phthalates and inflammatory markers such as PAI-1,
MCP-1, IL-18, and leptin. It is known that when reactive
oxygen species and free radicals overcome the body’s
antioxidant potential, this can result in inflammation and,
thus, tissue damage and/or death.71 It is worth mentioning that
our study is one of the very first investigations focusing on
redox reactions in adipose tissue, and therefore our outcome
variables might have singular biological meanings. While
general oxidative stress is commonly measured in serum
and/or urine, in our study, we are measuring oxidative stress in
a specific tissue. Thus, a low but chronic increase in adipose
tissue oxidative stress may lead to an increase in the activity of
the antioxidant system and, thus, to a decrease in DNA
damage. This could be a potential explanation for our inverse
associations with 8OHdG, a marker of oxidative DNA damage,
as previous epidemiological investigations have reported
positive correlations.24,64−66 Furthermore, the age range of
the participants might also be a source of variability since other
cohorts were predominantly composed of children and
adolescents, while the GraMo cohort exclusively consisted of
adults. This could suggest that phthalate exposure is associated
with early onset of cellular DNA damage, which may not be so
evident in an adult cohort, or even that exposure to phthalates
modifies redox homeostasis but not enough to induce DNA
damage.
When we ran the WQS regression analyses to study the

mixed effect of phthalates on oxidative stress biomarkers, the
associations we found in the individual analysis disappeared.
However, we found other statistically and negatively significant
associations between the mixture of phthalates and GSH and
GSSG whose principal components are MEHP and MECPP;
and MiBP and MnBP respectively.

Figure 4. Adipose tissue concentrations of oxidative stress biomarkers in the study population. Concentrations are plotted as violin plots, showing
the median (black point) and interquartile range (white box). GPx, glutathione peroxidase (nmol/min mg proteins); GRd, glutathione reductase
(nmol/min mg proteins); GST, total glutathione (nmol/min mg proteins); GSH, reduced glutathione (nmol/min mg proteins); GSSG, oxidized
glutathione (nmol/min mg proteins); GSSG/GSH, oxidized glutathione/reduced glutathione ratio (nmol/min mg proteins); HO-1,
hemeoxygenase-1 (ng/mL) (falta las unidades en la que esta ́ la concentracioń); SOD, superoxide dismutase; TBARS, thiobarbituric acid reactive
substances (μM/mg protein); 8OHdG, 8-hydroxy-deoxyguanosine (ng/mL).
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To the best of our knowledge, this is the first study to
investigate associations between selected oxidative stress
biomarkers in adipose tissue and the mixture of blood
phthalate metabolites. Other studies have found associations
between other biomarkers of oxidative stress related to fertility,
such as 8-iso-prostaglandin-F2alpha and its metabolites and
urinary phthalate metabolites mixture. In these cases, the
phthalate mixture was associated with increased levels of
biomarkers of oxidative stress.68,72

Phthalates have been suggested to increase oxidative stress
in adipose tissue through activation of proliferator-activated
receptors γ (PPARγ).73,74 These are nuclear receptors
expressed in the liver that are involved in fatty acid oxidation,
body fat accumulation,75,76 as well as in adipogenesis.74 In fact,
phthalates are considered to be obesogenic molecules, i.e., they
have the ability to increase the amount of lipids that
accumulate in adipose tissue not only at critical stages of
development but also later in life.77 This is an important point
to consider, as GraMo is an adult cohort and, although
exposure might be more relevant at key developmental stages
such as pregnancy and infancy,1,78 long-term adult exposure to
low doses of environmental pollutants should also be
considered.
Increased adipogenesis is also relevant to the effects of

oxidative stress. Both human and animal studies have shown

that this tissue in obese individuals may represent a major
source of ROS that plays an important role in the pathogenesis
of obesity-associated metabolic syndrome.36,37 Furthermore,
these ROS are released into the peripheral blood and affect the
activities of other organs36 and can lead to cardiovascular
diseases, diabetes, or cancer, among other health disor-
ders.1,38−41

Our study has certain limitations. The cross-sectional design
hampers the assumption of causal effects, as reverse causality is
possible (although it is not likely biologically plausible).
Furthermore, the hospital-based population limits the external
validity, although there is no strong reason to consider that our
observations are not reproducible at the general population
level. Our sample size is also relatively limited, although
sufficient to yield several robust and suggestive associations
that warrant further confirmation in future studies. In addition,
although we used the covariates most commonly used in the
literature for fitting models, we did not account for the
potential confounding effect of using cosmetics or consuming
packaged food, ultraprocesed food, or physical activity because
these data were not collected in the original surveys. Another
limitation is the use of point samples for estimating phthalate
exposure and oxidative stress levels, both of them with
potentially high variability due to the instability of the
biomarkers. In this cross-sectional study, we posit that serum

Figure 5. (A, B) Associations between phthalate metabolites and oxidative stress biomarkers. Adjusted regression coefficients (95% confidence
intervals) for changes in natural log-transformed phthalate metabolite concentrations in relation to oxidative stress biomarkers. Adjusted for age,
sex, BMI, place of residence, educational level, smoking habit, alcohol consumption, and type of work. MMP, monomethyl phthalate; MiBP,
monoiso-butyl phthalate; MnBP, mono-n-butyl phthalate; MECPP, mono-(2-ethyl-5-carboxypentyl) phthalate; MiNP, monoiso-nonyl phthalate;
MiDP, monoisodecyl phthalate. GPx, glutathione peroxidase; GRd, glutathione reductase; GSSG, oxidized glutathione; GSSG/GSH, oxidized
glutathione/reduced glutathione ratio; SOD, superoxide dismutase; TBARS, thiobarbituric acid reactive substances; 8OHdG, 8-hydroxy-
deoxyguanosine.
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represents one of the biological matrices most closely aligned
with the target matrix, which is adipose tissue. Furthermore, we
assume that lifestyle patterns remain relatively constant at the
population level. However, we cannot ignore the potential for
nondifferential bias arising from variability in serum concen-
trations.79,80

Although there are no significant differences between the
main cohort and the subsample analyzed, potential errors in
the measurement of the effects of interest must also be
considered. In addition, oxidative stress biomarkers were
measured years after sample collection; however, it has been
shown that proper storage can provide feasible results in
relation to the measurement of antioxidant markers in other
biological matrices.81,82 It is also possible that certain oxidative
stress markers not measured in this study and of relevance are
related to phthalates, and further studies in this field would be
interesting.
Our study also has several strengths. First, we analyzed a

large number of phthalate metabolites measured in blood
serum, both as individual and combined exposures. Measure-
ment of phthalate metabolites is commonly performed in urine
samples as it has some advantages over blood analyses, i.e.,
higher concentrations of metabolites and lower risk of
contamination by the parent compounds.83 However, studies
in the general population have shown moderate to strong
correlations between phthalate metabolite concentrations in
urine and serum.84,85 Second, despite urine phthalate
concentrations and detection rates are frequently higher than
those in serum, the latter is closer to the effective dose and site
of action so that we are closer to the effective dose.85,86 Lastly,
biomarkers of oxidative stress were measured in adipose tissue,
a highly novel biological matrix in regards to redox assessment,
and whose homeostasis is closely linked to obesity-related
chronic diseases, such as diabetes and cancer.36,37

Thus, our study provides novel insights into the relationship
between phthalate exposure redox (un)balance and opens the

door to future research to confirm the associations found as
well as their long-term health implication.
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