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Abstract. In this paper we present the notion of arithmetic variety for
numerical semigroups. We study various aspects related to these vari-
eties such as the smallest arithmetic that contains a set of numerical
semigroups and we exhibit the rooted tree associated with an arithmetic
variety. This tree is not locally finite; however, if the Frobenius number
is fixed, the tree has finitely many nodes and algorithms can be devel-
oped. All algorithms provided in this article include their (non-debugged)
implementation in GAP.
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1. Introduction

Let Z be the set of integer numbers and let N be the set of non-negative integer
numbers. A submonoid of (N,+) is a subset of N containing 0 that is closed
under addition. A numerical semigroup is a submonoid S of (N,+) such that
#(N\S) < ∞, that is, N\S has finite cardinality.

If S is a numerical semigroup, then m(S) = min(S\{0}),F(S) = max(Z\S)
and g(S) = #(N\S) are relevant invariants of S called multiplicity, Frobenius
number and genus of S, respectively.

If A is a non-empty subset of N, then we write 〈A〉 for the submonoid of
(N,+) generated by A, that is,

〈A〉 = {u1a1 + · · · + unan | n ∈ N \ {0}, {a1, . . . , an} ⊆ A and {u1, . . . , un} ⊂ N} .
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In [18, Lemma 2.1] it is shown that 〈A〉 is a numerical semigroup if and only
if gcd(A) = 1.

If M is a submonoid of (N,+) and M = 〈A〉 for some non-empty subset A
of N, then we say that A is a system of generators of M . Moreover, if M �= 〈B〉
for every B � A, then we say that A is a minimal system of generators of M .
In [18, Corollary 2.8] it is shown that every submonoid of (N,+) has a unique
minimal system of generators which, moreover, is finite. We write msg(M)
for the minimal system of generators of M . The cardinality of msg(M) is the
embedding dimension of M and is the denoted by e(M).

The Frobenius problem for numerical semigroups (see [1]) is to find for-
mulas for the Frobenius number and the genus of a numerical semigroup in
terms of its minimal system of generators. Nowadays this problem is widely
open for numerical semigroups of embedding dimension greater than or equal
to three.

Let S and T be numerical semigroups. Following the notation introduced
in [11], we say that T is an arithmetic extension of S if there exist positive
integers d1, . . . , dn such that

T = {x ∈ N | {d1x, d2x, . . . , dnx} ⊂ S} .
Notice that, in this case, we have that S ⊆ T .

Definition 1. An arithmetic variety is a non-empty family A of numerical
semigroups such that
(a) if {S, T} ⊆ A , then S ∩ T ∈ A ;
(b) if S ∈ A and T is an arithmetic extension of S, then T ∈ A .

In this case, we say that A is a finite arithmetic variety when A has finite
cardinality.

Notice that

L := {S ⊆ N | S is a numerical semigroup}
is an arithmetic variety and F ⊆ L for every family F of numerical semi-
groups.

In the second section we prove that the intersection of arithmetic vari-
eties is an arithmetic variety (Proposition 3). Moreover, we emphasize that the
intersection of all arithmetic varieties containing a given family F of numer-
ical semigroups is an arithmetic variety, too (Proposition 4). This arithmetic
variety is denoted by A (F ). We prove that A (F) is finite if and only if F
has finite cardinality (Corollary 11). Also, in this case, we give an algorithm
(Algorithm 12) to calculate all the elements of A (F).

In the third section we introduce the notion of A −monoids and the min-
imal A −system of generators of a A −monoid, where A is an arithmetic vari-
ety. Also, given e ∈ N \ {0}, we write ED(e) for the set of numeric semigroups
of the embedding dimension e. The results of the third section, combined with
those of [4], allow us to determine whether a numeric semigroup belongs to
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A (ED(2)). We propose the generalization to A (ED(e)) for e ≥ 3 as an open
problem.

If S is a numerical semigroup then S
2 := {x ∈ N | 2x ∈ S} is a numerical

semigroup (see [18, Proposition 5.1]); in particular, it is an arithmetic extension
of S. We write D2(S) for set of numerical semigroups T such that S = T

2 . By
[16, Corollary 3], this set is infinite and contains infinitely many symmetric
numerical semigroups (see also [19, Theorem 5]). In the fourth section, we
show that the elements in an arithmetic variety A can be arranged in the
form of a tree GA with root N and such that the set of all the children of S
in the tree GA is equal to D2(S) ∩ A (Theorem 22). Furthermore, we outline
the description of D2(S) given in [12] (Theorem 26), because of its usefulness
in the following sections.

If A is an arithmetic variety and F is a positive integer, we define

AF := {S ∈ A | F(S) ≤ F}.
In the fifth section, we will see that AF is a finite arithmetic variety (Propo-
sition 28); moreover, we give an algorithm (Algorithm 35) to compute {T ∈
D2(S) | F(T ) ≤ F}.

The depth of a numerical semigroup S, denoted depth(S), is equal to⌈
F(S)+1
m(S)

⌉
, where �q is the ceiling function (the smallest integer greater than

q). The depth of a numerical semigroup was recently introduced in [8] where
evidences are given that support the Bras-Amorós conjecture ( [2]). Also, it
is proved that numerical semigroups of depth less than or equal to three are
Wilf (see [6] for further details on Wilf’s conjecture). Moreover, following [9,
Corollary 21] and the terminology introduced therein, one can see that the
complexity of a numerical semigroup is equal to its depth.

If q ∈ N, then we write Cq for the set of numerical semigroups with depth
less than or equal to q. In the sixth section, we prove that Cq is an arithmetic
variety (Theorem 39). Furthermore, taking advantage of the results of the third
Section, we formulate an algorithm (Algorithm 40) to compute the subset of
Cq consisting of numerical semigroups with Frobenius number F .

2. The Smallest Arithmetic Variety Containing a Family of
Numerical Semigroups

Let S be a numerical semigroup and d ∈ N\{0}. As mentioned in the intro-
duction, we write S

d for the set {x ∈ N | d x ∈ S} . In [18, Proposition 5.1] it is
shown that S

d is a numerical semigroup. This semigroup is called the quotient
of S by d.

Notice that S
d = N if and only if d ∈ S. Also, by definition, T is an

arithmetic extension of S if and only if there exists {d1, . . . , dn} ⊂ N\{0} such
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that T = S
d1

∩ · · · ∩ S
dn

. With these remarks, the proof of the following result
is straightforward.

Proposition 2. Let A be a non-empty family of numerical semigroups. Then
A is an arithmetic variety if and only if the following hold:
(a) if {S, T} ⊂ A , then S ∩ T ∈ A ;
(b) if S ∈ A and d ∈ N\{0}, then S

d ∈ A .

Since all arithmetic varieties contains {N}, we have that the intersection
of arithmetic varieties is a non-empty set of numerical semigroups.

Proposition 3. The intersection of arithmetic varieties is an arithmetic vari-
ety.

Proof. Let {Ai}i∈I be an arbitrary family of arithmetic varieties. From the
previous observation, it follows that N ∈ ∩i∈IAi. Thus, the set ∩i∈IAi is
non-empty; let us see that it is an arithmetic variety. On the one hand, if
{S, T} ⊆ ∩i∈IAi, then {S, T} ⊆ Ai for every i ∈ I, therefore S ∩ T ∈ Ai

for every i ∈ I and, consequently, S ∩ T ∈ ∩i∈IAi. On the other hand, if
S ∈ ∩i∈IAi and d ∈ N\{0}, then, by Proposition 2, we have that S

d ∈ Ai

for every i ∈ I; hence S
d ∈ ∩i∈IAi. So, applying Proposition 2 again, we are

done. �

Recall that, if F is a family of numerical semigroups, then we write A (F)
to denote the intersection of all arithmetic varieties containing F . Therefore,
by Proposition 3, we have the following.

Proposition 4. If F is a family of numerical semigroups, then A (F) is the
smallest arithmetic variety containing F .

The following result is technical and its proof is carried out by direct
verification.

Lemma 5. If S, T are numerical semigroups and a, b are positive integers, then
S
a

b
=

S

ab
and

S ∩ T

a
=

S

a
∩ T

a
.

Lemma 6. If S is a numerical semigroup, then

A =

{
n⋂

i=1

S

di
| n ∈ N \ {0} and {d1, . . . , dn} ⊂ N \ S

}
∪ {N}

is an arithmetic variety containing {S}.
Proof. Clearly, the intersection of any two elements in A belongs to A and,
by Lemma 5, we have that S

d ∈ A for every S ∈ A and d ∈ N\{0}. Thus, by
Proposition 2, A is an arithmetic variety. Moreover, since S = S

1 , we conclude
that {S} ⊆ A . �
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Proposition 7. If S is a numerical semigroup, then

A ({S}) =

{
n⋂

i=1

S

di
| n ∈ N \ {0} and {d1, . . . , dn} ⊂ N \ S

}
∪ {N}. (1)

Proof. Let A be the right hand side of (1) and let A ′ be an arithmetic variety
containing {S}. From Proposition 2 it follows that A ⊆ A ′. Therefore, by
Lemma 6, we have that A is the smallest arithmetic variety containing {S}.
Now, by Proposition 4, we conclude that A = A ({S}). �

The following result is an immediate consequence of Propositions 2 and
7 (see also [11, Proposition 1]).

Corollary 8. If S is a numerical semigroup, then

A ({S}) = {T ∈ L | T is an arithmetic extension of S}.
Proposition 9. If S is a numerical semigroup, then A ({S}) is a finite arith-
metic variety.

Proof. By Proposition 4, we have that A ({S}) is an arithmetic variety and,
by Proposition 7, we have that A ({S}) ⊆ F := {T ∈ L | S ⊆ T}. Now, since
N\S has finite cardinality, because S is a numerical semigroup, we conclude
that F is a finite set and our claim follows. �

Notice that, by Proposition 7, we can use Algorithm 23 in [11] to compute
A ({S}) from S.

Theorem 10. If F is a non-empty family of numerical semigroups, then

A (F) =

{
n⋂

i=1

Ti | n ∈ N \ {0} and Ti ∈ A ({Si}) for some Si ∈ F , i = 1, . . . , n

}
.

(2)

Proof. Let A be the right hand side of (2). Clearly, we have that F ⊆ A ⊆ A ′,
for every arithmetic variety A ′ containing F . Thus, by Proposition 4, to see
that A (F) = A it suffices to prove that A is an arithmetic variety. Of course,
if {S, T} ⊆ A , then S ∩ T ∈ A and, by Lemma 5, it is easy to check that
S
d ∈ A , for every S ∈ A and d ∈ N\{0}. Therefore, by Proposition 2, we
conclude that A is an arithmetic variety. �
Corollary 11. Let F be a family of numerical semigroups. Then A (F) is a
finite arithmetic variety if and only if F has finite cardinality.

Now, by combining [11, Algorithm 23] and Theorem 10, we obtain an
algorithm to compute A (F), provided that F is a finite family of numerical
semigroups.

Algorithm 12. Computation of A (F).
Input: A finite set F = {S1, . . . , Sn} of numerical semigroups.
Output: A (F).
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(1) Set A (F) = {N}.
(2) For each i ∈ {1, . . . , n}, set Ai = A ({Si}).
(3) For each (T1, . . . , Tn) ∈ A1 × · · · × An, do

A (F) = A (F) ∪ {T1 ∩ · · · ∩ Tn}.
(4) Return A (F).

Example 13. Let F = {〈2, 5〉, 〈3, 5, 7〉}. By [11, Algorithm 23], we have that

A ({〈2, 5〉} = {N, 〈2, 3〉, 〈2, 5〉}
and that

A ({〈3, 5, 7〉} = {N, 〈2, 3〉, 〈3, 4, 5〉, 〈3, 5, 7〉}.
Therefore, by Algorithm 12, we conclude that

A (F) = {N, 〈2, 3〉, 〈2, 5〉, 〈3, 4, 5〉, 〈3, 5, 7〉, 〈4, 5, 6, 7〉, 〈5, 6, 7, 8, 9〉}.
The function ArithmeticExtensions, given by the second and third au-

thors in [11, pp. 3714–3715], uses the package NumericalSpgs ( [7]) of GAP
( [20]) to calculate A ({S}) with S being a numerical semigroup. Therefore,
by Algorithm 12, we can compute A (F), with F being a family of numerical
semigroup, by the following code:

SmallestArithmeticVariety:=function(F)

local AF,A,S;

AF:=[NumericalSemigroup(1)];

A:=[];

for S in F do

Append(A,[ArithmeticExtensions(S)]);

od;

Append(AF,List(Cartesian(A),i->Intersection(i)));

return Set(AF);

end;

For example, if F = {〈2, 5〉, 〈3, 5, 7〉} we write
F:=[[2,5],[3,5,7]];

F:=List(F,i->NumericalSemigroup(i));

SmallestArithmeticVariety(F);

provided that the package NumericalSgps and the function Arithmetic
Extensions have already been loaded into GAP.

3. A -System of Generators

Throughout this section, A denotes an arithmetic variety. By Proposition 2,
the intersection of finitely many elements in A is an element of A . This
does not occur at the intersection of infinitely many elements, as the following
example evidences.
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Example 14. The set A = {{0, n, n + 1, . . .} | n ∈ N\{0}} is an arithmetic va-
riety; however,

⋂
n∈N\{0}{0, n, n + 1, . . .} = {0} �∈ A .

Despite the previous example, the arbitrary intersection of elements in
A is always a submonoid of (N,+). This fact gives meaning to the following
definition.

Definition 15. Given an arithmetic variety A . An A −monoid is a submonoid
of (N,+) that can be written as an intersection of elements of A .

Thus, given X ⊆ N, we have that the intersection of all elements in
A containing X is the smallest A −monoid containing X that we denote by
A [X]. Now, if M is an A −monoid such that M = A [X], then we say that X
is a A −system of generators of M . Moreover, if M �= A[Y ], for every Y � X,
then we say that X is a minimal A −system of generators of M .

Let us see that there are A −monoids having non-unique minimal A –
systems of generators, for a given arithmetic variety A ; but let us first recall
the notion of fundamental gap and a result from [11].

Definition 16. Let S be a numerical semigroup. An element x ∈ N\{S} is a
fundamental gap of S if {k x | k ∈ N\{1}} ⊆ S. We write FG(S) for the set of
fundamental gaps of S.

By Corollary 8, the following result is nothing more than a reformulation
of [11, Proposition 6], we include it here for complete exposition and ease of
reading.

Proposition 17. If S �= N is a numerical semigroup, then the following hold:
(a) max⊆(A ({S})) = N,
(b) min⊆(A ({S})) = S,
(c) max⊆(A ({S}) \ {N}) = 〈2, 3〉,
(d) min⊆(A ({S}) \ {S}) = S ∪ FG(S).

Corollary 18. Let S �= N be a numerical semigroup. Then A ({S})[{x}] =
S ∪ FG(S), for every x ∈ FG(S).

Proof. If x ∈ FG(S), then x �∈ S. So, by Proposition 17, the smallest element
of A ({S}) that contains {x} is S ∪ FG(S). �

Example 19. Let S = 〈5, 7, 9〉. By direct computation, one can check that
FG(S) = {6, 8, 11, 13}. Therefore, by Corollary 18, we have that {6}, {8}, {11}
and {13} are minimal A ({S})−systems of generators of S ∪ FG(S) = 〈5, 6, 7,
8, 9〉.

Despite the previous example, there are arithmetic varieties, A, in which
all A−monoids have unique minimal A−system of generators. To show one
of them, we first recall several notions and results on proportionally modular
numerical semigroups and their generalizations.
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Let a, b and c be positive integers. If ax mod b denotes the remainder of
the Euclidean division of ax by b, the set

{x ∈ N | ax mod b ≤ cx}
is a numerical semigroup called proportionally modular numerical semigroup
(see [13,14] for more details).

Recall that ED(e) = {S ∈ L | e(S) = e} is the set of numerical semi-
groups of embedding dimension e. The following results follow from [4, Propo-
sition 41] and [4, Theorem 12], respectively.

Proposition 20. The arithmetic variety A (ED(2)) is equal to the set of inter-
sections of finitely many proportionally modular numerical semigroups.

Corollary 21. Every A (ED(2))−monoid has a unique minimal A (ED(2))–
system of generators.

We finish this section by recalling and proposing some open problems.

Some Open Problems

In [15, Theorem 5], it is proved that a numerical semigroup is proportionally
modular if and only if it is the quotient of a numerical semigroup of embedding
dimension 2 by a positive integer. So, [17, Theorem 31] provides an algorithm
to decide whether a numerical semigroup belongs to

{
S
d | S ∈ ED(2) and d

∈ N\{0}
}

.
In [5], the problem of finding a numerical semigroup that cannot be writ-

ten as the quotient of a element of ED(3) by a positive integer is proposed.
In [10], it is proved its existence; however no example is given. Recently, in
[3], some examples are exhibited. Have an algorithm to decide whether a nu-
merical semigroup belongs to

{
S
d | S ∈ ED(3) and d ∈ N\{0}}

is still an open
problem.

By Proposition 20 and the results in [4], one can deduce an algorithm to
decide whether a numerical semigroup belongs to A (ED(2)). We propose as
an open problem to formulate the corresponding algorithm for A (ED(3)) and,
being optimistic, for A (ED(e)), e ≥ 4.

4. The Tree Associated with an Arithmetic Variety

If A is an arithmetic variety, then we define the directed graph GA , whose
vertex set is A , having an edge from T ∈ A to S ∈ A \{N} if and only if
T = S

2 ; equivalently, such that the set of children of S ∈ A \{N} is D2(S)∩A ,
where D2(S) = {T ∈ L | S = T

2 }.

Theorem 22. If A is an arithmetic variety, then GA is a directed rooted tree
with root N.
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Proof. Recall that a directed rooted tree is a directed graph such that for each
vertex there is a unique directed path from or towards a single vertex called
root.

First, we notice that GA has no loops. Indeed, if S �= N, then F(S) ∈ S
2

which implies S �
S
2 . Now, given S ∈ A \{N}, consider the sequence {Sn}n∈N

such that S0 = S and Sn+1 = Sn

2 , for every n ∈ N. Since, by Lemma 5,
Sn = S

2n , we have that Sn ∈ A, for every n ∈ N, by Proposition 2. Moreover,
since Sn � Sn+1, whenever Sn �= N and N\S has finite cardinality, we conclude
that there exists k ∈ N such that Sk = N and Sk−1 � Sk. This proves the
existence of a directed path in GA from N to S ∈ A, the uniqueness follows
by the own definition of GA . �

In [16], it is shown that D2(S) is an infinite set for every S ∈ L \ {N}
which implies that GA is not locally finite. Therefore, it is not possible to give
a general algorithm for the computation of the tree GA starting from the root
nor from any other parent.

Nevertheless, according to [12, Theorem 7], one can describe what the
elements of D2(S) are like in terms of the so-called upper m−-sets of S. Let
us remember this construction, which will be useful in the next sections.

First of all, we notice that

D2(N) = {〈2, 2n + 1〉 | n ∈ N} .
So, we only need to describe D2(S) for S �= N.

Definition 23. Let S � N be a numerical semigroup and let m be an odd
element of S. An upper m−set of S is a subset H of N\S such that
(C1) {h + m | h ∈ H} ⊆ S;
(C2) {h1 + h2 + m | h1, h2 ∈ H} ⊆ S;
(C3) h ∈ H =⇒ {x ∈ N \ S | x − h ∈ S} ⊆ H.

Given a triplet (S,m,H), where S �= N is a numerical semigroup, m is
an odd element of S and H ⊆ N\S, the following the GAP function decides
whether H is an upper m−set of S.

IsUppermSetOfNumericalSemigroup:=function(S,m,H)

local C1,C2,C3,h;

C1:=Intersection(H+m,Gaps(S));

if IsEmpty(C1) = false then return(false); fi;

C2:=Intersection(Set(Cartesian(H,H),i->Sum(i)+m),Gaps(S));

if IsEmpty(C2) = false then return(false); fi;

for h in H do

C3:=Filtered(Gaps(S),i->BelongsToNumericalSemigroup(i-h,S));

if not(Intersection(C3,H)=C3) then return(false); fi;

od;

return(true);

end;
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Example 24. Using the script above one can check, as described below, that
the set of upper 5−sets of S = 〈4, 5, 11〉 are

{{3, 7}, {3, 6, 7}, {6}, {7}, {6, 7}}.
LoadPackage("NumericalSgps");

S:=NumericalSemigroup(4,5,11);

pow:=Combinations(Gaps(S));

pow:=Difference(pow,[[]]);

Filtered(pow,H->IsUppermSetOfNumericalSemigroup(S,5,H));

Notation 25. If H is a upper m−set of a numerical semigroup S and m ∈ S
is odd, we write S(m,H) for

{2s | s ∈ S} ∪ {2s + m | s ∈ S} ∪ {2h + m | h ∈ H}.
Thus, if msg(S) = {a1, . . . , ae}, then S(m,H) is generated by {2a1, . . . , 2ae}∪
{m} ∪ {2h + m | h ∈ H}.

The following result is [12, Theorem 7].
Theorem 26. If S � N is a numerical semigroup, then

D2(S) = {S(m,H) | m is an odd element of S and H is an upper m − set of S}.
Example 27. If S = 〈2, 3〉, then the only upper m−set of S is H = {1} for
every odd integer number m greater than one. Therefore, by Theorem 26,

D2(S) = {〈4, 6, 4 + 2n + 1, 6 + 2n + 1, 2 + 2n + 1〉 | n ∈ N \ {0}}
= {〈4, 6, 2n + 3, 2n + 5〉 | n ∈ N \ {0}} .

We finish this section by recalling [12, Corollary 8] which states that
S(m1,H1) = S(m2,H2) if and only if m1 = m2 and H1 = H2, giving rise
to a new proof of the infinite cardinality of D2(S) (for more details see [12,
Corollary 14]).

5. The Elements of an Arithmetic Variety with Bounded
Frobenius Number

If A is an arithmetic variety and F is a positive integer, we define

AF := {S ∈ A | F(S) ≤ F}.
Proposition 28. If A is an arithmetic variety and F is a positive integer, then
AF is a finite arithmetic variety.

Proof. Since F(N) = −1, we have that N ∈ AF ; then, AF �= ∅. Moreover,
if S ∈ AF , then {0, F + 1, F + 2, . . .} ⊆ S and, consequently, AF is a finite
set. Now, let us use Proposition 2 to show that AF is an arithmetic variety.
On the one hand, if {S, T} ⊆ AF , then S ∩ T ∈ A and, since F(S ∩ T ) =
max{F(S),F(T )}, we conclude that S∩T ∈ AF . On the other hand, if S ∈ AF

and d ∈ N\{0}, then S
d ∈ AF ; thus, F

(
S
d

) ≤ F(S) ≤ F and, consequently,
S
d ∈ AF . �
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Notice that GAF
is now finite, because it has finitely many nodes. In

particular the set, D2(S) ∩ AF , of children of S ∈ AF in GAF
is now finite.

Furthermore, we have the following.

Proposition 29. Let A be an arithmetic variety and let F be a positive integer.
If S ∈ AF , then D2(S) ∩ AF = {T ∈ D2(S) | F(T ) ≤ F} ∩ A .

Proof. If T ∈ D2(S)∩AF , then T ∈ D2(S),F(T ) ≤ F and T ∈ A . Conversely,
if T ∈ D2(S),F(T ) ≤ F and T ∈ A , then T ∈ D2(S) ∩ AF . �

In view of the previous result, an algorithm is obtained for the compu-
tation of GAF

provided that we can compute {T ∈ D2(S) | F(T ) ≤ F} for a
given S ∈ AF . The rest of the section is devoted to this purpose.

The following result follows from [12, Proposition 9].

Proposition 30. Let S �= N be a numerical semigroup. If m is an odd element
of S and H is an upper m−set of S, then

F(S(m,H)) =
{

max(2F(S),m − 2) if H = N \ S;
max(2F(S), 2max(N \ S ∪ H) + m)) if H �= N \ S

Lemma 31. Let S �= N be a numerical semigroup and let m be an odd integer
greater that F(S). If H ⊆ N\S satisfies condition (C3) in Definition 23, then
H is an upper m−set of S.

Proof. It suffices to observe that if m ≥ F(S), then {h + m | h ∈ H} ⊆ S and
{h1 + h2 + m | h1, h2 ∈ H} ⊆ S. �
Proposition 32. Let S �= N be a numerical semigroup and let m be an odd
element of S. Then N \ S is an upper m−set of S if and only if m > F(S).

Proof. If N\S is an upper m−set of S, then {g+m | g ∈ N\S} ⊆ S. Now, since
{1, . . . ,m(S)−1} ⊆ N\S, then {m,m+1, . . . ,m+m(S) −1,m+m(S), . . .} ⊆ S
and, therefore m > F(S). Conversely, if m > F(S), then N\S satisfies condition
(C3) in Definition 23. Thus, by Lemma 31, we conclude that N \S is an upper
m−set of S. �

Combining Theorem 26 and Proposition 30, we obtain the following im-
mediate result.

Lemma 33. Let S be a numerical semigroup and let F be a positive number.
If 2F(S) > F , then {T ∈ D2(S) | F(T ) ≤ F} = ∅.

Theorem 34. Let S be a numerical semigroup and let F be a positive number.
If 2F(S) ≤ F , then {T ∈ D2(S) | F(T ) ≤ F} is equal to the union of

{S(m,N \ S) | m is an odd element of {F(S) + 1, . . . , F + 2}}
and ⎧⎨

⎩S(m,H)

∣∣∣∣∣∣
m is an odd element of S and
H �= N \ S is an upper m − set
with 2max(N \ S ∪ H) + m ≤ F

⎫⎬
⎭ .
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Proof. If T ∈ D2(S) and F(T ) ≤ F , then, by Theorem 26, we have that
T = S(m,H) for some odd integer m ∈ S and some upper m−set, H, of S.
We distinguish two cases, depending on which H is chosen:

• If H = N \ S, then, by Proposition 32, we have that m > F(S) and, by
Proposition 30, that m − 2 ≤ F . Therefore, we conclude that m must
belong to {F(S) + 1, . . . , F + 2}.

• If H �= N\S, then, by Proposition 30, we have that 2max(N\S∪H)+m ≤
F .

This completes the proof. �

Now we can formulate the algorithm to compute {T ∈ D2(S) | F(T ) ≤ F}
for given S ∈ L and F ∈ N\{0}.

Algorithm 35. Computation of {T ∈ D2(S) | F(T ) ≤ F}.
Input: A numerical semigroup S and a positive integer F .
Output: {T ∈ D2(S) | F(T ) ≤ F}.

(1) If 2 F(S) > F , then return ∅.
(2) Set A = {m ∈ N | m is odd and F(S) + 1 ≤ m ≤ F + 2}.
(3) Set B = {m ∈ S | m is odd and m ≤ F − 2}.
(4) For each m ∈ B define

H(m) =
{
H

∣∣∣∣H �= N \ S is an upper m − set
such that max(N \ S ∪ H) ≤ F−m

2

}
.

(5) Return {S(m,N \ S) | m ∈ A} ∪ {S(m,H) | m ∈ B and H ∈ H(m)}.

The following GAP function implements Algorithm 35. It requires both
the package NumericalSgps and the function IsUppermSetOfNumerical
Semigroup declared in the previous section.

Algorithm35:=function(S,F)

local out,FS,gaps,A,B,pow,Hm,Aux,m;

out:=[];

FS:=FrobeniusNumber(S);

if 2*FS > F then return(out); fi;

gaps:=Gaps(S);

A:=Filtered([(FS+1)..(F+2)],m->IsOddInt(m));

out:=List(A,m->[m,gaps]);

B:=Filtered([1..(F-2)],m->IsOddInt(m));

B:=Filtered(B,m->BelongsToNumericalSemigroup(m,S));

pow:=Combinations(gaps);

pow:=Difference(pow,[gaps]);

Hm:=[];

for m in B do

Aux:=Filtered(pow,H->IsUppermSetOfNumericalSemigroup(S,m,H));

Hm:=Filtered(Aux,H->Maximum(Difference(gaps,H))<=(F-m)/2);

Append(out,List(Hm,H->[m,H]));

od;
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return(out);

end;

Example 36. Let S = 〈4, 5, 11〉 and F = 15. Using the GAP function above,
we can verify, as follows, that {T ∈ D2(S) | F(T ) ≤ 15} is equal to

{S(9, {1, 2, 3, 6, 7}), S(11, {1, 2, 3, 6, 7}), S(13, {1, 2, 3, 6, 7}), S(15, {1, 2, 3, 6, 7}),
S(17, {1, 2, 3, 6, 7}), S(5, {3, 6, 7}), S(5, {6, 7}), S(9, {1, 2, 6, 7}), S(9, {1, 3, 6, 7}),

S(9, {1, 6, 7}), S(9, {2, 3, 6, 7}), S(9, {2, 6, 7}), S(9, {3, 6, 7}), S(9, {6, 7}),
S(11, {1, 3, 6, 7}), S(11, {2, 3, 6, 7}), S(11, {3, 6, 7}), S(13, {2, 3, 6, 7})}.

Now, by recalling Notation 25 and using the following GAP function

UpperMSetToNumericalSemigroup:=function(S,m,H)

local msg,T;

msg:= MinimalGeneratingSystem(S);

T:=NumericalSemigroup(Union(2*msg,[m],2*H+m));

return(T);

end;

we obtain that the above set is equal to

{〈8, 9, 10, 11, 13, 15〉, 〈8, 10, 11, 13, 15, 17〉, 〈8, 10, 13, 15, 17, 19, 22〉,
〈8, 10, 15, 17, 19, 21, 22〉, 〈8, 10, 17, 19, 21, 22, 23〉, 〈5, 8, 11, 17〉, 〈5, 8, 17, 19〉,

〈8, 9, 10, 11, 13〉, 〈8, 9, 10, 11, 15〉, 〈8, 9, 10, 11, 23〉, 〈8, 9, 10, 13, 15〉,
〈8, 9, 10, 13〉, 〈8, 9, 10, 15, 21, 22〉, 〈8, 9, 10, 21, 22, 23〉, 〈8, 10, 11, 13, 17〉,

〈8, 10, 11, 15, 17〉, 〈8, 10, 11, 17, 23〉, 〈8, 10, 13, 17, 19, 22〉}.

6. Numerical Semigroups with Given Depth

Definition 37. Let S be a numerical semigroup. The depth of S, denoted
depth(S), is the integer number q such that F(S) + 1 = qm(S) − r for some
integer 0 ≤ r < m(S).

Observe that

depth(S) =
⌈

F(S) + 1
m(S)

⌉
=

⌊
F(S)
m(S)

⌋
+ 1.

Note that the depth of S matches the so-called complexity of S (see [9, Corol-
lary 21]).

Given q ∈ N, we write Cq for the set of numerical semigroups having
depth less than or equal to q, that is,

Cq = {S ∈ L | depth(S) ≤ q}.
Notice that C0 = {N} and that C1 = {{0, F + 1, F + 2, . . . , } | F ∈ N}. Clearly,
both C0 and C1 are arithmetic varieties. Let us prove that this is true for every
Cq, q ∈ N.
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Lemma 38. If S and T are numerical semigroups and d ∈ N\{0}, then

depth
(
S

d

)
≤ depth(S).

Proof. If d ∈ S, then S
d = N and, thus, depth(N) = 0 ≤ depth(S). If d �∈ S,

then we have that m
(
S
d

) ≥ m(S) and that F
(
S
d

) ≤ F(S). Therefore,

depth
(
S

d

)
=

⌊
F

(
S
d

)
m

(
S
d

)
⌋

+ 1 ≤
⌊

F(S)
d

m(S)
d

⌋
+ 1 = depth(S)

and we are done. �

Theorem 39. The set Cq is an arithmetic variety for every q ∈ N.

Proof. Since depth(N) = 0, we have that N ∈ Cq for every q ∈ N; in particular,
Cq �= ∅ for every q ∈ N.

Let q ∈ N. On the one hand, if {S, T} ⊆ Cq, then we may suppose that
F(S) ≤ F(T ). So, F(S ∩ T ) = max(F(S),F(T )) = F(T ) and, since m(S ∩ T ) ≥
max(m(S),m(T ))), by Lemma 38, we have that

depth(S ∩ T ) =
⌊

F(S ∩ T )
m(S ∩ T )

⌋
+ 1 =

⌊
F(T )

m(S ∩ T )

⌋
+ 1 ≤

⌊
F(T )
m(T )

⌋
+ 1

= depth(T ) ≤ q

and, consequently, that S∩T ∈ Cq. On the other hand, if S ∈ Cq, by Lemma 38,
we have that depth

(
S
d

) ≤ depth(S) ≤ q, that is, S
d ∈ Cq. Now, by Proposi-

tion 2, we conclude that Cq is an arithmetic variety. �

As an immediate consequence of Theorem 22 and Proposition 28, we have
that G(Cq)F

is a finite rooted tree with root N such that the set of children of
S ∈ (Cq)F is equal to

{T ∈ D2(S) | F(T ) ≤ F and depth(T ) ≤ q}.
Therefore, we can formulate an algorithm for the computation of (Cq)F .

Algorithm 40. Computation of (Cq)F .
Input: Two positive integers F and q.
Output: The arithmetic variety (Cq)F .

(1) Set A = B = {N}.
(2) While B �= ∅ do

(2.1) For S ∈ B do
(2.1.1) Compute BS = {T ∈ D2(S) | F(T ) ≤ F} \ {S}.
(2.2.2) Compute CS = {T ∈ B(S) | depth(T ) ≤ q}.

(2.2) Set B = ∪S∈BCS .
(2.3) Set A = A ∪ B.

(3) Return A.
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Example 41. We can easily check that (C2)5 is equal to

{N, 〈2, 3〉, 〈2, 5〉, 〈3, 4, 5〉, 〈3, 4〉, 〈3, 5, 7〉, 〈3, 7, 8〉,
〈4, 5, 6, 7〉, 〈4, 6, 7, 9〉, 〈5, 6, 7, 8, 9〉, 〈6, 7, 8, 9, 10, 11〉}

using the following GAP function based in Algorithm 40.

NumericalSemigroupsWithFrobeniusNumberAndDepth:=function(F,q)

local A,B,C,depth,S,BS,rat,CS;

A:=[NumericalSemigroup(1)];

B:=A;

while not(IsEmpty(B)) do

C:=[];

for S in B do

BS := Algorithm35(S,F);

BS := Set(BS,i->UpperMSetToNumericalSemigroup(S,i[1],i[2]));

BS := Difference(BS,[NumericalSemigroup(1)]);

rat:=function(i)

return (FrobeniusNumber(i)+1)/MultiplicityOfNumerical

Semigroup(i);

end;

CS := Filtered(BS,i->CeilingOfRational(rat(i)) <= q);

C:=Union(C,CS);

od;

B:=C;

A:=Union(A,B);

od;

return(A);

end;
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[1] Alfonśın, J.L.R.: The Diophantine Frobenius problem. Oxford Lecture Ser.
Math. Appl., 30. Oxford University Press, Oxford (2005)

[2] Amorós, M.B.: Fibonacci-like behavior of the number of numerical semigroups
of a given genus. Semigroup Forum 76(2), 379–384 (2008)

[3] Bogart, T., O’Neill, C., Woods, K.: When is a numerical semigroup a quotient.
Bull. Aust. Math. Soc. (2024). https://doi.org/10.1017/S0004972723000035

[4] Delgado, M., Sánchez, P.A.G., Rosales, J.C., Blanco, J.M.U.: Systems of pro-
portionally modular Diophantine inequalities. Semigroup Forum 76(3), 469–488
(2008)

[5] Delgado, M., Sánchez, P.A.G., Rosales, J.C.: Numerical semigroups problem list.
CIM Bull. 33, 15–26 (2013)

[6] Delgado, M.: Conjecture of Wilf: A Survey. In: Semigroups, Numerical (ed.)
Springer INdAM Series, vol. 40, pp. 39–62. Cham, Springer (2020)

[7] Delgado, M., Sánchez, P.A.G., Morais, J.: NumericalSgps, A package for numer-
ical semigroups, Version 1.3.1 (2022). Available at https://gap-packages.github.
io/numericalsgps

[8] Eliahou, S., Fromentin, J.: Gapsets and numerical semigroups. J. Combin. The-
ory Ser. A 169, 105129 (2020)
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