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Abstract
From any poset isomorphic to the poset of gaps of a numerical semigroup S with the
order induced by S, one can recover S. As an application, we prove that two different
numerical semigroups cannot have isomorphic posets (with respect to set inclusion)
of ideals whose minimum is zero. We also show that given two numerical semigroups
S and T , if their ideal class monoids are isomorphic, then S must be equal to T .

Keywords Poset numerical semigroup · Poset gapset numerical semigroup · Ideal of
numerical semigroup · Ideal class monoid

1 Introduction

A numerical semigroup S is a submonoid of (N,+) such that N\S has finitely many
elements, where N denotes the set of non-negative integers. A set of integers I is said
to be a relative ideal of S if I + S ⊆ I and I has a minimum (see for instance [1,
Chapter 3] for some basic background on ideals of numerical semigroups). Relative
ideals of S contained in S are known as integral ideals. In this manuscript, we use
the term ideal to refer to a relative ideal of S. On the set of ideals of S, we define
the following relation: I ∼ J if there exists an integer z such that I = z + J . The
set of ideals modulo this equivalence relation is known as the ideal class monoid of
S, denoted C �(S). Addition of two classes [I ] and [J ] is defined in the natural way:
[I ] + [J ] = [I + J ].

The ideal class monoid of a numerical semigroup was introduced in [2] inspired by
the definition of ideal class group of a Dedekind domain. In [5], we proved that from
some combinatorial properties of the ideal class monoid of a numerical semigroup
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we can recover relevant information of the numerical semigroup like, for instance, its
genus, multiplicity, type, and number of unitary extensions.

We say that an ideal I of S is normalized if min(I ) = 0; we denote by I0(S) the
set of normalized ideals I of S. The map C �(S) → I0(S), [I ] �→ −min(I ) + I
is bijective. Moreover, for I , J ∈ I0(S), the ideal I + J is also in I0(S). Thus, the
mapping [I ] �→ −min(I ) + I is a monoid isomorphism.

In [5, Section 4.3], we studied some of the properties of the poset (I0(S),⊆). It is
natural to wonder if (I0(S),⊆) completely determines S in the following sense: if T
is a numerical semigroup and (I0(S),⊆) is isomorphic to (I0(T ),⊆), then S = T ?
Recall that two posets (P,≤P ) and (Q,≤Q) are isomorphic if there exists an order
isomorphism f from P to Q, that is, f is bijective and for every a, b ∈ P , a ≤P b
if and only if f (a) ≤Q f (b). We translate this problem of poset isomorphism of
normalized ideals of a numerical semigroup to an isomorphism problem of posets of
gaps with respect to the order induced by the semigroup.

For a numerical semigroup S, the order induced by S on the set of integers, denoted
≤S , is defined as a ≤S b if b − a ∈ S. The poset (Z,≤S) (with Z the set of integers)
has been studied for several families of numerical semigroups, and more particularly
the Möbius function associated to ≤S (see [7] or [6] for a generalization to affine
semigroups).

The set G(S) = N\S is the gap set of S; its elements are called gaps of S. It was
already shown in [2, Proposition 2.6] that the set C �(S) is in one-to-one correspon-
dence with the set of antichains of gaps with respect to ≤S (these antichains are called
S-leans in [10]). For every gap g of S, the set {0, g} + S is an ideal of S, and so G(S)

is embedded naturally in I0(S). Moreover, if g′ is another gap of S, then g ≤S g′ if
and only if {0, g′} + S ⊆ {0, g} + S (Lemma 8). If we are able to characterize the
ideals of the form {0, g} + S from their properties in the poset (I0(S),⊆), then we
can extract a poset isomorphic to (G(S),≤S) and thus recover S. This is actually the
strategy we use to prove that if the posets (I0(S),⊆) and (I0(T ),⊆) are isomorphic,
then S and T must be equal.

The ideal class monoid of a numerical semigroup is a monoid. Thus, it is natural to
ask if two different numerical semigroups will have isomorphic ideal class monoids
[5, Question 6.1]. The answer is no. Theorem 18 states that if S and T are numerical
semigroups, and their ideal class monoids are isomorphic, then S and T must be equal.

It order to solve the isomorphism problem for ideal class monoids of numerical
semigroups, we study what are the consequences of having an isomorphism between
(I0(S),+) and
(I0(T ),+), with S and T numerical semigroups. In particular, we show that oversemi-
groups of S are in correspondence with oversemigroups of T , and their corresponding
ideal class monoids must be isomorphic.

Most of the computations in the examples presented in this manuscript where
performed using the GAP [12] package numericalsgps [8]. The code used for
these calculations can be found at https://github.com/numerical-semigroups/ideal-
class-monoid.

The package numericalsgps was also used to draw Hasse diagrams of the
posets mentioned above for several numerical semigroups, providing in this way clues
on what where the results needed to proof our main theorems.
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2 Determining a numerical semigroup from the order induced in its
gap set

Suppose that we are given a numerical semigroup S as a sequence {s0, s1, . . . , sn, . . . }
of which the only data we know is whether si ≤S s j for i, j ∈ N. The ν sequence
νi = |{ j ∈ N : s j ≤S si }| completely determines S (see [4]; here |X | denotes the
cardinality of the set X ). Thus, if S and T are numerical semigroups whose respective
posets (S,≤S) and (T ,≤T ) are isomorphic, then S = T .

Now, suppose that what we have is an enumeration H = {h1, . . . , hg} of the gap
set of S, G(S), and how these elements are arranged with respect to ≤S . We want to
recover S from this information.

Recall that the multiplicity of S is the least positive integer in S. From [2,
Lemma 2.5(1)], we know that multiplicity of S is the cardinality of Minimals≤S (H)

plus one. The argument used in the proof of that lemma also shows that the maximal
number of elements in an antichain (with respect to ≤S) is precisely the multiplicity
of the semigroup minus one.

For h ∈ H , and inspired by the ν sequence described above, define

DH (h) = {h′ ∈ H : h′ ≤S h},

and set ndH (h) = |DH (h)|. In particular,

Minimals≤S (H) = {h ∈ H : ndH (h) = 1}. (1)

As a consequence of the following result, the map ndH is non-decreasing.

Lemma 1 Let h ∈ H. Then,

DH (h) = {h − s : s ∈ S ∩ [0, h]}.

In particular, ndH (h) = |S ∩ [0, h]|, and if h′ ∈ H, with h < h′, then

|S ∩ [h, h′]| = ndH (h′) − ndH (h).

Proof Take h′ ∈ H . Then, h′ ≤S h if and only if h − h′ = s for some s ∈ S. Clearly,
s ∈ S ∩ [0, h] and h′ = h − s.

Now, take t ∈ S ∩ [0, h]. Then, h − t /∈ S, since otherwise h would be in S. So
h − t ∈ DH (h).

The second assertion follows from the first. 
�
Let S be a numerical semigroup. A (finite) run of elements in S is an interval

{s, s + 1, . . . , s + k} of elements of S such that s − 1 /∈ S and s + k + 1 /∈ S.
Analogously, a run of gaps of S, or desert, is an interval {h, h + 1, . . . , h + l} of gaps
of S such that h − 1 ∈ S and k + l + 1 ∈ S. Let C(S) be the conductor of S, that is,
the least integer c such that c + N ⊆ S. The numerical semigroup S can be expressed
as S = S0 ∪ S1 ∪ · · · ∪ Sr ∪ C(S) + N, such that Si is a run of elements of S and

123



368 P. A. García-Sánchez

max(Si )+1 < min(Si+1) for all i , that is, all the elements in Si are smaller than those
in Si+1 (and so, there is at least a gap of S between these two sets). If S = N, then
S0 = {0}.
Theorem 2 Let S be a numerical semigroup, S = N.

(1) If R is a run of gaps and h ∈ R, then

R = {h′ ∈ H : ndH (h) = ndH (h′)}.

(2) If R is a run of elements of S, with R = {0}, then

R = {ndH (h) + d, ndH (h) + d + 1, . . . , ndH (h′) + d − 1},

with h = min(R) − 1, h′ = max(R) + 1 and d = |{g ∈ G(S) : ndH (g) ≤
ndH (h)}|.

Proof Set H = N\S, and let R be a run of gaps. By Lemma 1, the map ndH is non-
decreasing and it is constant when restricted to a desert. Moreover, two gaps h and h′
are in the same desert if and only if ndH (h) = ndH (h′). Therefore, the first assertion
follows.

Now, let R be a run of elements of S with h and h′ as in the hypothesis of the second
assertion. Let r = min(R), and so h = r−1. From the previous paragraph, we deduce
that d = |H ∩ [0, h]|. Let t = |S ∩ [0, h]|. Clearly, h + 1 = d + t , and thus r = d + t .
By Lemma 1, t = |S ∩ [0, h]| = ndH (h). Finally, by using again Lemma 1, we have
that |R| = |S ∩ [h, h′]| = ndH (h′) − ndH (h), and this completes the proof by taking
into account that R is an interval of elements in S. 
�
Remark 3 Notice that Theorem 2 is telling us that if we know n : {1, . . . , g} → N,
n(i) = ndH (hi ), with H = {h1, . . . , hg} the set of gaps of a numerical semigroup
S, then we can fully reconstruct S. Observe also that ndH is fully determined by the
poset (H ,≤S).

As the referee suggests, if we are able to count all possible n : {1, . . . , g} → N

that correspond with some ndH , with H the set of gaps of a numerical semigroup with
genus g, then we would know the number of numerical semigroups with genus g.
The map n is non-decreasing, and it only increases when we move between different
runs of gaps by Lemma 1. The problem resides in determining when a given non-
decreasing map n : {1, . . . , g} → N corresponds to some ndH with H the set of gaps
of a numerical semigroup. Probably, a deeper understanding of the maps ndH could
provide bounds for the number of numerical semigroup with a given genus (as it was
done in [3] with the use of Dyck paths) and shed some light on the different conjectures
associated to the number of numerical semigroups with a given genus (see [14] and
the references therein).

Example 4 Assume that H = {g1, . . . , g8} with ndH (g1) = · · · = ndH (g4) = 1;
ndH (g5) = 2; ndH (g6) = ndH (g7) = 3; and ndH (g8) = 6.

By [2, Lemma 2.5(1)] and (1), from ndH (g1) = · · · = ndH (g4) = 1, we know that
the multiplicity of S is five. In light of Theorem 2, S1 = {5} = {1+4, . . . , 2+4−1},
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S2 = {7} = {2 + 5, . . . , 3 + 5 − 1}, S3 = {10, 11, 12} = {3 + 7, . . . , 6 + 7 − 1},
and the last desert is {13}, since there is only one gap having ndH (h) = 6. Thus,
S = {0, 5, 7, 10, 11, 12} ∪ (14 + N).

Corollary 5 Let S and T be numerical semigroups. If the posets (G(S),≤S) and
(G(T ),≤T ) are isomorphic, then S = T .

Let PF(S) = Maximals≤S (Z\S), which is known as the set of pseudo-Frobenius
numbers of S. The cardinality of PF(S) is the type of S, denoted t(S). The Frobenius
number of S, defined as F(S) = max(Z\S), is always a pseudo-Frobenius number, and
so the type of a numerical semigroup is a positive integer. Clearly, C(S) = F(S) + 1.

Notice that if we consider the Hasse diagram of (G(S),≤S) as an undirected graph,
then this graph has at most t(S) connected components.

Example 6 Let H = {1, 2, 3, 4, 5, 9, 10}, which is the set of gaps of S = {0, 6, 7, 8}∪
(11 + N). Then the Hasse diagram of H with respect to ≤S looks like this:

1 2 3 4

59 10

The type of S is three and the undirected graph has two connected components.

Recall that an affine semigroup is a finitely generated submonoid of (Nn,+) for
some positive integer n. The poset of the set of gaps does not uniquely determine an
affine semigroup as the following example shows.

Example 7 The affine semigroupsN
2\{(1, 0), (0, 1)} andN

2\{(0, 1), (0, 2)} have iso-
morphic posets of gaps, but the first is minimally generated by seven elements, while
the second is by six, and thus they cannot be isomorphic.

3 The poset of normalized ideals of a numerical semigroup under
inclusion

Let S be a numerical semigroup. Recall that the set of normalized ideals of S is

I0(S) = {I ⊆ N : I + S ⊆ I ,min(I ) = 0}.

For I ∈ I0(S), set I ∗ = I\{0}; in particular, S∗ = S\{0}.
Lemma 8 Let S be a numerical semigroup and let g and g′ be gaps of S. Then, g ≤S g′
if and only if {0, g′} + S ⊆ {0, g} + S.

Proof Notice that {0, g′}+S ⊆ {0, g}+S if and only if g′ ∈ {0, g}+S, or equivalently,
g′ = g + s for some s ∈ S, and this means that g ≤S g′. 
�
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Define

P0(S) = {{0, g} + S : g ∈ H} .

In light of Lemma 8, the poset (P0(S),⊇) is isomorphic to (H ,≤S). Thus, if we find
a way to recover the set P0(S) from (I0(S),⊆), we will be able to recover S from
(I0(S),⊆) by using Remark 3.

Observe that for I ∈ I0(S), we have that I = Minimals≤S (I ) + S, and that
every X ⊆ N , for which I = X + S holds, contains Minimals≤S (I ). Thus,
Minimals≤S (I ) is a minimal generating system of I and it is included in G(S) ∪ {0}.
Also, Minimals≤S (I ) = I\(I + S∗). The elements of Minimals≤S (I ) are called the
minimal generators of I .

Lemma 9 Let S be a numerical semigroup and let I ∈ I0(S). For x ∈ I ∗, the set
I\{x} ∈ I0(S) if and only if x is a minimal generator of I .

Proof If x /∈ Minimals≤S (I ), then x = g + s, with g ∈ Minimals≤S (I ) and s ∈ S∗.
Hence, x = g + s /∈ I\{x}, and consequently I\{x} is not an ideal of S.

If I\{x}, with x ∈ Minimals≤S (I ), is not an ideal (notice that 0 = min(I\{x})),
then there exists y ∈ I\{x} and s ∈ S, such that y + s /∈ I\{x}. But y ∈ I , and thus
y + s ∈ I , which forces y = y + s = x , contradicting that x is minimal in I with
respect to ≤S . 
�

Given two ideals I and J in I0(S) we say that I covers J if J � I and there is no
other K ∈ I0(S) such that J � K � I .

Lemma 10 Let S be a numerical semigroup and let I , J ∈ I0(S), with J � I . Then,
I covers J if and only if |I\J | = 1.

Proof Suppose that there is K ∈ I0(S) such that J � K � I . Take x ∈ I\K and
y ∈ K\J . Then, x = y and x, y ∈ I\J , which forces |I\J | ≥ 2.

For the converse, suppose that |I\J | ≥ 2.Letm = max(I\J ). Then, J � J∪{m} �

I . Let x ∈ J ∪ {m} and s ∈ S. If x ∈ J , then x + s ∈ J ⊂ J ∪ {m}; if x = m and
s = 0, then x + s = m ∈ J ∪ {m}; if x = m and s ∈ S∗, then m < x + s ∈ I , which
implies that x + s ∈ J ⊂ J ∪ {m}. Thus, J ∪ {m} ∈ I0(S) and consequently I does
not cover J . 
�
Lemma 11 Let S be a numerical semigroup and let I ∈ I0(S). Then, the number of
ideals in I0(S) covered by I equals the number of non-zero minimal generators of I .

Proof The proof easily follows from Lemmas 9 and 10. 
�
Theorem 12 Let S and T be numerical semigroups. If (I0(S),⊆) and (I0(T ),⊆) are
isomorphic, then S = T .

Proof Notice that by Lemma 11, P0(S) is precisely the set of ideals in I0(S) that
cover exactly one ideal in I0(S). Hence, the isomorphism between (I0(S),⊆) and
(I0(T ),⊆) restricted to (P0(S),⊆) and (P0(T ),⊆), yields, by Lemma 8, an isomor-
phism between (G(S),≤S) and (G(T ),≤T ). By Corollary 5, we conclude that S = T .


�
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4 Isomorphic ideal class monoids

In this section, we prove that if S and T are numerical semigroups, then the existence
of an isomorphism between (I0(S),+) and (I0(T ),+) forces S and T to be equal.

We start by proving that some notable elements of the ideal class monoid of a
numerical semigroup are preserved under isomorphisms. To this end, we recall some
definitions given in [5, Section 5]; for the definitions on a general monoid, please refer
to [13].

Given I , J ∈ I0(S), we write I � J if there exists K ∈ I0(S) such that I +K = J .
We use the notation I ≺ J when I � J and I = J (in general this is not the usual
definition, though in [5, Section 5] it is shown that in our setting the usual definition
is equivalent to this one).

We say that I ∈ I0(S) is irreducible if I = J + K for all J , K ∈ I0(S)\{S}
such that J ≺ I and K ≺ I . By [5, Lemma 5.4], I is irreducible if and only if
I = J + K for all J , K ∈ I0(S)\{I }. Irreducible elements are important since they
generate (I0(S),+) as a monoid [5, Proposition 5.5]. Clearly, if f : I0(S) → I0(T )

is a monoid isomorphism, then it sends irreducible elements to irreducible elements.
An ideal I ∈ I0(S) is a quark if there is no ideal J ∈ I0(S)\{S} such that J ≺ I ,

that is, there is no J ∈ I0(S)\{I , S} and K ∈ I0(S) such that I = J + K . Every
quark is irreducible but the converse does not hold in general (see for instance [5,
Example 5.3]). Again, quarks go to quarks under monoid isomorphisms of ideal class
monoids.

The concepts of oversemigroup and irreducible numerical semigroup are crucial in
the proof of the main result of this section. So, next we spend some time recalling the
basic facts associated to these notions.

Let S and T be numerical semigroups. We say that T is an oversemigroup of S if
S ⊆ T . By [5, Proposition 5.14], T is an idempotent of I0(S) if and only if T is an
oversemigroup of S. Denote byO(S) the set of oversemigroups of S. Then, (O(S),+)

is a submonoid of (I0(S),+).
If T is an oversemigroup of S with |T \S| = 1, then we say that T is a unitary

extension of S. In this setting, T = S ∪ {x}, and x must be a special gap of S, that
is x ∈ PF(S) and 2x, 3x ∈ S. The set of special gaps of S is denoted by SG(S) and
its cardinality coincides with the set of unitary extensions of S (see for instance [11,
Section 3.3]).

A numerical semigroup S is irreducible if S cannot be expressed as the intersec-
tion of two numerical semigroups properly containing S. Every irreducible numerical
semigroup is either symmetric or pseudo-symmetric. A numerical semigroup S is sym-
metric if for every z ∈ Z\S, the integer F(S) − z is in S. And it is pseudo-symmetric
if F(S) is even and for every z ∈ Z\(S ∪ {F(S)/2}), we have that F(S) − z ∈ S. If
S is not irreducible, then it can be expressed as the intersection of finitely many irre-
ducible oversemigroups of S (for basic characterizations of irreducibility, symmetry
and pseudo-symmetry, see [1, Chapter 2] or [11, Chapter 3]).

It is well known that S is irreducible if and only if the cardinality of SG(S) is at
most one [11, Corollary 4.38]. If S = N, then F(S) ∈ SG(S). Thus, for S = N, if S is
irreducible, then S ∪ {F(S)} is the only unitary-extension of S, and thus every proper
oversemigroup of S contains S ∪ {F(S)}.
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Quarks are relevant since they can be used to decide if the semigroup is symmet-
ric or pseudo-symmetric, and thus to determine if the semigroup is irreducible; see
Propositions 5.17 and 5.19, and Theorem5.20 in [5]. Unitary extensions of a numerical
semigroup S are precisely the idempotent quarks of I0(S) [5, Propostion 5.13].

For every idempotent E ∈ I0(S), define

CE = {I ∈ I0(S) : I + E = I }.

This definition is inspired by [9, Section 2].

Proposition 13 Let S be a numerical semigroup, and let T be an oversemigroup of S.
Then,

CT = I0(T ).

Proof Let I ∈ CT . Then, min(I ) = 0 and I + T = I , whence I ∈ I0(T ). Now, let
I ∈ I0(T ). Then, min(I ) = 0 and I + T ⊆ I . Hence, I + S ⊆ I + T ⊆ I , and thus
I ∈ I0(S). As I ⊆ I + T ⊆ I , we get I + T = I , which yields I ∈ CT . 
�

Let S be a numerical semigroup. Observe that if f is an isomorphism between
(I0(S),+) and (I0(T ),+), then from Proposition 13 (and its proof), we obtain the
following consequences.

(1) The restriction of f toO(S) is an isomorphism between (O(S),+) andO(T ),+).
(2) Also, forO andO ′ oversemigroups of S,O ⊆ O ′ if and only ifO+O ′ = O ′. Thus,

we also obtain an isomorphism between the posets (O(S),⊆) and (O(T ),⊆).
(3) If O is an oversemigroup of S, then f (CO) = C f (O). To prove this, take I ∈

f (CO). Then, there exists J ∈ CO such that I = f (J ). As J + O = J , we
deduce that I + f (O) = f (J ) + f (O) = f (J + O) = f (J ) = I , and thus
I ∈ C f (O). For the other inclusion, let J ∈ C f (O). Then, as f is surjective, there
exists I ∈ I0(S) such that f (I ) = J . Since J + f (O) = J , we have f (I + O) =
f (I ) + f (O) = J + f (O) = J = f (I ), and as f is injective, I + O = I , which
means that I ∈ CO and so J = f (I ) ∈ f (CO). Therefore, the restriction of f to
I0(O) is an isomorphism between (I0(O),+) and (I0( f (O)),+).

Unfortunately, from the poset (O(S),⊆) it is not possible to recover S as the next
example shows. As usual, for a set A of non-negative integers, we denote by

〈A〉 = {n1a1 + · · · + nkak : k ∈ N, n1, . . . , nk ∈ N, a1, . . . , ak ∈ A},

which is a submonoidof (N,+), and it is a numerical semigroup if andonly if gcd(A) =
1 (see for instance [11, Lemma 2.1]).

Example 14 The numerical semigroups 〈3, 5, 7〉 and 〈2, 7〉 have isomorphic posets of
over-semigroups with respect to set inclusion.

Notice that if E is an idempotent of I0(S), then (CE ,+) is a monoid, but it is not
a submonoid of (I0(S),+) unless E = S. There is a dual construction that allows
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The isomorphism problem for ideal class monoids of… 373

us to construct submonoids of (I0(S),+) associated to its idempotents. Let T be an
oversemigroup of S. Then, T ∈ I0(S) and T is idempotent. Define

T↓ = {I ∈ I0(S) : I ⊆ T }.

Proposition 15 Let S be a numerical semigroup, and let T be an oversemigroup of S.
For every I ∈ I0(S), I ∈ T↓ if and only if I + T = T . In particular, (T↓,+) is a
submonoid of (I0(S),+).

Proof Let I ∈ I0(S). If I + T = T , as I ⊆ I + T , we obtain that I ⊆ T . Now, let
I ∈ I0(S) with I ⊆ T . Then, T ⊆ I + T ⊆ T + T = T (recall that T is idempotent),
and so I + T = T .

Finally, take I , J ∈ T↓. Then (I + J ) + T = I + (J + T ) = I + T = T , and so
I + J ∈ T↓. The identity element of (T↓,+) is S. 
�

Take T and T ′ two oversemigroups of S (equivalently, two idempotents of I0(S))
with T ⊆ T ′ (equivalently, T + T ′ = T ′). Then, (T ′↓ ∩ CT ,+) is a monoid with
identity element T . Neither (T↓,+) nor (T ′↓ ∩ CT ,+) need to be isomorphic to the
ideal class monoid of a numerical semigroup as the next example shows.

Example 16 Let S = 〈4, 6, 9〉 and T = 〈4, 5, 6, 7〉 = {0, 5, 7} + S. Then, S ⊆ T and

T↓ = {S, {0, 11} + S, {0, 7} + S, {0, 5} + S, T }.

Its Hasse diagram with respect to � has height four (the maximal strictly ascending
chain with respect to � has length four). If (T↓,+) is isomorphic to (I0(R),+), with
R a numerical semigroup, then by [5, Remark 5,1], R must have genus three. Among
the numerical semigroups with genus three, the only one whose ideal class monoid
has cardinality five is R = 〈3, 4〉. However, as the referee kindly pointed out, all the
elements in T↓ are idempotents while {0, 1}+ R is not an idempotent. This proves that
there is no numerical semigroup R such that (T↓,+) is isomorphic to (I0(R),+).

Let I1 = {0, 7} + S and I2 = {0, 2, 3, 5} + S. Both I1 and I2 are idempotents, and
thus they are oversemigroups of S; moreover, I1 ⊆ I2. The monoid (I2↓ ∩ CI1 ,+)

has eight elements, and its Hasse diagram with respect to � has height four. Again,
according to [5, Remark 5,1], if (I2↓ ∩ CI1 ,+) is isomorphic to I0(T ) for some
semigroup T , then the genus of T should be three. Among the semigroups of genus
three, the only one whose ideal class monoid has cardinality eight is T = 〈4, 5, 6, 7〉.
However, I0(T ) has only three irreducible elements while (I2↓ ∩ CI1 ,+) has four
irreducible elements. Thus, (I2↓ ∩CI1 ,+) is not isomorphic to the ideal class monoid
of a numerical semigroup.

We are now ready to prove that if (I0(S),+) is isomorphic to (I0(T ),+), with S
and T numerical semigroups, then S = T . To this end, we proceed by induction on
the genus of S (which must be the same as the genus of T by [5, Corollary 5.2]). Once
we know (I0(S),+) all the unitary extensions of S will be uniquely determined by
the induction hypothesis.
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Lemma 17 Let S be a numerical semigroup, S = N. If S is irreducible, then the
intersection of all its unitary extensions is S∪{F(S)}. Otherwise, this intersection is S.
Proof Recall that as S = N, we have that F(S) ∈ SG(S). Notice that S is irreducible
if and only if |SG(S)| = 1 [11, Corollary 4.38]. Also, every unitary extension of S is
of the form S ∪ {h} with h ∈ SG(S). Hence, if S is irreducible, then the intersection
of all its unitary extensions (it has only one), is S ∪ {F(S)}. If S is not irreducible,
then take h ∈ SG(S)\{F(S)}. Clearly, S = (S ∪ {F(S)}) ∩ (S ∪ {h}), and thus S =⋂

g∈SG(S)(S ∪ {g}). 
�
Theorem 18 Let S and T be numerical semigroups. If (I0(S),+) is isomorphic to
(I0(T ),+), then S = T .

Proof Denote by ϕ the isomorphism between I0(S) and I0(T ).
Notice that S = N if and only if I0(S) is trivial. Thus, we may assume that S and

T are different from N. Notice also that the number of quarks of I0(S) and I0(T )

must be the same. Thus, S is irreducible if and only if T is irreducible. Also, by [5,
Corollary 5.2], g(S) = g(T ).

We proceed by induction on the genus of S (which is the same as the genus of T ).
For g(S) = 0 there is nothing to prove, since in this case S = T = N. So, suppose that
the assertion is true for all semigroups having genus g and let us prove it for genus
g + 1.

Unitary extensions of S correspond to idempotent quarks in I0(S) [5, Proposi-
tion 5.13]. Thus, for every unitary extension O of S, ϕ(O) is also unitary extension of
T , and by Proposition 13, I0(O) = CO is isomorphic to Cϕ(O) = I0(ϕ(O)). Unitary
extensions of S have genus g (the same holds for T ). Thus, by induction hypothesis
S and T have the same unitary extensions.

If S is not irreducible, then T cannot be irreducible by the arguments given above.
As S and T are not irreducible, they are the intersection of all their unitary extensions,
and consequently S = T (Lemma 17).

If S is irreducible and symmetric, then so is T , since in this setting both have a single
quark [5, Proposition 5.18]. In this case, by Lemma 17, the intersection of the unitary
extensions of S is S ∪ {F(S)}, which must be equal to T ∪ {F(T )}. We also know that
g(S) = g(T ), and as S and T are symmetric, by [1, Corollary 6], F(S) = 2 g(S)−1 =
2 g(T ) − 1 = F(T ). Thus, S = (S ∪ {F(S)})\{F(S)} = (T ∪ {F(T )})\{F(T )} = T .

The remaining case is when S and T are both irreducible and pseudo-symmetric (S
is pseudo-symmetric if and only if I0(S) has two quarks; see [5, Proposition 5.19]). In
this setting, by using again [1, Corollary 6], F(S) = 2 g(S)−2 = 2 g(T )−2 = F(T ),
and arguing as in the preceding paragraph, we conclude that S = T . 
�

5 The poset of the ideal class monoid induced by addition

We solved [5, Question 6.1], but we still do not know how to recover a numerical
semigroup by looking at a poset isomorphic to (I0(S),�) [5, Question 6.2]. There are
several options to tackle this problem. The first could be to recover ⊆ from �, while
the second could pass through identifying idempotent quarks in the Hasse diagram of
(I0(S),�).
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Fig. 1 The Hasse diagram of
(I0(〈4, 6, 9〉, �); the nodes are
labeled with the minimal
generating sets of the ideals.
Dashed edges are those edges
missing from the Hasse diagram
of (I0(〈4, 6, 9〉),⊆).
Idempotents are displayed in
gray

{0,1,2,3}

{0,1,2} {0,1,3} {0,2,3,5}

{0,1} {0,2,5,7} {0,3,5}

{0,5,7}

{0,2,3}

{0,2,5} {0,2,7}

{0,5} {0,2}

{0,11}

{0,3}

{0,7}

{0}

Fig. 2 The Hasse diagram of
(I0(〈3, 4, 5〉, �); nodes labeled
with the minimal generating sets
of the ideals. Idempotents are
displayed in gray

{0,1,2}

{0,1} {0,2}

{0}

Clearly, if I � J , then I ⊆ J . But the converse does not hold. Actually, J covers
I with respect to set inclusion if and only if |J\I | = 1 (Lemma 10). However, it may
happen that J covers I with respect to � and |J\I | > 1.

Example 19 Take S = 〈5, 9, 17, 21〉, I = {0, 3} + S and J = {0, 12} + S. Then,
I �-covers J and |I\J | = 3. This example was obtained by looking at the Hasse
diagram of (I0(S),�).

Figure1 shows the Hasse diagram of (I0(〈4, 6, 9〉),�). The edges displayed as a
dashed line are not part of the diagram, and correspond to the coverings with respect
to set inclusion that are not coverings with respect to �. A possible approach would
be “repair” those missing edges.

As for the other approach. Quarks are easy to distinguish in the poset (I0,�),
since they are the ones with “height” one. However, even in simple examples, it is not
possible to discern from the poset which ones are idempotent. The Hasse diagram of
I0(〈3, 4, 5〉) is shown in Fig. 2. It is not possible from the poset with respect to � to
distinguish between {0, 1} + S and {0, 2} + S; the latter being idempotent, while the
first is not. Notice that in this case the genus is two, and there are only two numerical
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semigroups with this genus. The posets of the corresponding set of normalized ideals
are different.
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