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The ecological and evolutionary dynamics of large populations can be addressed theoretically using concepts
and methodologies from statistical mechanics. This approach has been extensively discussed in the literature,
both within the realm of population genetics, which focuses on genes or “genotypes,” and in adaptive dynamics,
which emphasizes traits or “phenotypes.” Following this tradition, here we construct a theoretical framework
allowing us to derive “macroscopic” evolutionary equations from a general “microscopic” stochastic dynamics
representing the fundamental processes of reproduction, mutation, and selection in a large community of indi-
viduals, each one characterized by its phenotypic features. Importantly, in our setup, ecological and evolutionary
timescales are intertwined, which makes it particularly suitable to describe microbial communities, a timely topic
of utmost relevance. The framework leads to a probabilistic description—even in the case of arbitrarily large
populations—of the distribution of individuals in phenotypic space as encoded in what we call the “generalized
Crow-Kimura equation” or “generalized replicator-mutator equation.” We discuss the limits in which such an
equation reduces to the (deterministic) theory of “adaptive dynamics,” i.e., the standard approach to evolutionary
dynamics in phenotypic space. Moreover, we emphasize the aspects of the theory that are beyond the reach of
standard adaptive dynamics. In particular, by developing a simple model of a growing and competing population
as an illustrative example, we demonstrate that the resulting probability distribution can undergo “dynamical
phase transitions.” These transitions may involve shifts from a unimodal distribution to a bimodal distribution,
generated by an evolutionary branching event, or to a multimodal distribution through a cascade of evolutionary
branching events. Furthermore, our formalism allows us to rationalize these cascades using the parsimonious
approach of Landau’s theory of phase transitions. Finally, we extend the theory to account for finite populations
and illustrate the possible consequences of the resulting stochastic or “demographic” effects. Altogether, the
present framework extends and/or complements existing approaches to evolutionary and adaptive dynamics and
paves the way to more systematic studies of microbial communities as well as to future developments including
theoretical analyses of the evolutionary process from the general perspective of nonequilibrium statistical
mechanics.
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I. INTRODUCTION

Darwinian evolution studies how populations evolve over
time, as new forms emerge from existing ones through re-
production, mutation, and selection [1,2]. The theory of
evolutionary dynamics, which seeks to formalize the concepts
of Darwinian evolution from both conceptual and quantitative
perspectives, has evolved into a broad and mature discipline
at the intersection of biology, mathematics, and statistical
physics [3–9]. Evolutionary dynamics is rather generically
formulated building on the mathematical theories of dynam-
ical systems and stochastic processes, but diverse theoretical
approaches, differing in several aspects, have been proposed
to model and rationalize evolutionary phenomena [10–16].
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In spite of the broadness of this territory, some overarching
concepts and principles have been put forward. For instance,
Price, in his seminal paper Mathematical theory of selection,
set the basis for the development of a general and abstract
mathematical theory of selection [17]. The so-called Price
equation quantifies how the abundance of a given gene or
phenotypic trait changes as a function of its covariance with
the associated fitness [17–24] and is, hence, sometimes termed
the “algebra of evolution” [14,19,21]. Later, Page and Nowak
showed that different “macroscopic” formulations of evolu-
tionary dynamics may actually be equivalent to each other
[10,25–27], even if specific details depend on whether the
focus is on genes (genotypic evolution) or on phenotypic traits
(phenotypic evolution). In particular, population genetics—
i.e., the study of genetic variations within a population (or
between different populations) together with the evolutionary
factors causing such a variation—was developed starting from
the classical works of Fisher [28,29], Wright [30], Price [18],
Kimura [11,12], and others, including recent exciting devel-
opments [31–35].
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On the other hand, quantitative approaches to evolution-
ary dynamics focusing on phenotypes or traits (rather than
on “genotypes”) were developed later, in the last decades.
These include evolutionary game theory [15,36–42], which
aims to study possible equilibria of different populations with
discrete and fixed traits (or “strategies”) as well as adaptive
dynamics [43–52], which includes the possibility of muta-
tions, so that phenotypes are not discrete but can change in a
continuum and has become the standard theory of phenotypic
evolution [43–52].

In adaptive dynamics (AD) a population is assumed to be in
a steady state, called “resident type,” and small stochastic vari-
ations of such a type, i.e., “mutants,” are assumed to emerge
at a very slow rate. In the case that the per-capita growth
rate of the mutant within the resident-type population—i.e.,
its “invasion fitness”—is positive, the mutant is assumed to
invade the population and, eventually, become fixated as the
new resident type [53].

Within the standard AD framework, mutations are typically
considered to be (i) rare (which implicitly assumes a large
separation of timescales between ecological and evolutionary
processes), such that the system has time to re-equilibrate
to a new steady state after each mutation; (ii) small (as
a result of which the probability distributions in pheno-
typic space are typically Gaussians); (iii) independent of the
parental traits; and (iv) not subject themselves to evolution
[43,45,48,51,54].

Since its original formulation, AD enjoyed a great success,
as it allowed to unify evolutionary dynamics with realistic
ecological features [51]. For instance, remarkably, AD allows
for the possibility to account for “evolutionary branching”—
i.e., the split of an initially monomorphic population into two
diverse subpopulations—shedding light on how speciation
[44,45,48,50,51,55,56] and diversification in sympatry [54]
may come about. Similarly, phenomena such as the evolu-
tion of dispersal strategies [57], pathogenicity [58], metabolic
preferences [59,60], cancer [61,62], and multicellularity [63],
to name but a few, have been successfully addressed within
the context of AD. Moreover, extensions of AD have been
developed to include ingredients such as finite populations
[47,64], species interactions [27], sexual populations [48],
multidimensional phenotypic spaces [29,65–68], variable en-
vironmental conditions [69], or variability in the evolutionary
outcomes [70]. Nevertheless, given the above-mentioned re-
strictive hypotheses, there remains space to generalize AD in
a number of directions.

As already emphasized, a common assumption in these
theoretical approaches is that mutations occur at a relatively
low pace, resulting in well-separated ecological (fast) and evo-
lutionary (slow) timescales. [71,72]. This assumption which
has been historically retained as a very natural one is not, how-
ever, universally valid, and may fail dramatically, especially
when dealing with populations of micro-organisms (see, e.g.,
Refs. [73–76]).

Microbial communities represent the most abundant and
diverse ones in the biosphere [77]. Understanding their dy-
namics has emerged as a crucial challenge from various
perspectives including, e.g., environmental and health-related
perspectives [78,79]. As a matter of fact, microbial com-
munities have become the ultimate frontier and test bench

of modern evolutionary theory [80]. Microbes often evolve
very rapidly, with frequent mutations and fast selection; for
instance, viruses and bacteria may have astonishingly high
mutation rates [81–84]. Consequently, evolutionary effects
cannot be decoupled from ecological ones, as both can occur
at contemporary timescales [85,86] and microbial communi-
ties often exhibit a very large fine-scale diversity in the form
of multiple co-occurring phenotypes.1 Importantly, such a
diversity is nowadays accessible to experiments owing to tech-
nological advances in determining single-cell traits [31,88,89]
and metabolic functions [90–93]. All this calls for the de-
velopment of novel eco-evolutionary frameworks—extending
existing ones—to analyze complex microbial communities,
with individuals distributed in phenotypic space and evolving
on ecological timescales.

From the perspective of statistical mechanics, it would be
highly desirable to construct a general stochastic individual-
based (“many-body” or “many-particle”) theory for agents
in a community exposed to basic rules of reproduction,
mutation, and selection, such that it could reproduce de-
terministic theories such as AD in some large-system-size
limit. The goal would be to be able to derive macroscopic
probabilistic equations for the evolution of populations and
communities—starting from a “microscopic” description of
stochastic processes acting at the level of interacting indi-
viduals (including ecological and evolutionary processes at
comparable timescales)—by employing the powerful methods
of statistical physics.

Before advancing toward such an ambitious goal, it is im-
portant to note that diverse approaches have already addressed
the preceding challenge, resulting in significant advances in
this direction. In particular, among others, we extensively
draw upon and elaborate on the following works:

(1) Dieckmann and Law were pioneers in deriving the de-
terministic equations of AD using a probabilistic description
of the population in phenotypic space. Their approach allows,
e.g., for the possibility that potentially successful mutants be-
come accidentally extinct owing to demographic fluctuations
before achieving fixation [47].

(2) Champagnat and colleagues built a rather rigorous
mathematical framework, allowing them to derive the macro-
scopic equations of AD starting from microscopic underlying
birth-and-death stochastic processes and generalized AD in
various ways [94–97].

(3) Frey and coauthors developed a formalism to derive a
macroscopic equation from the underlying microscopic birth-
death process in the context of bacterial populations [98,99].

(4) Wakano and Iwasa [64] studied the effects of de-
mographic fluctuations within the context of AD (see also
Refs. [56,97]).

In a similar spirit to these and related approaches, our aim
in what follows is to develop a general framework deeply
rooted in the views and methods of statistical mechanics, able
to generalize AD to eco-evolutionary scenarios. In particular,
we present a probabilistic theory of the evolution of trait
distributions [100] including the effect of selection, arbitrary

1Actually, the concept of quasispecies—rather than that of
species—might be better suited to describe them [87].
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mutations, and fluctuations stemming from finite population
sizes, where ecological and evolutionary processes occur con-
temporarily.2

The present work contributes to the development of an
eco-evolutionary theory for microbial communities, allowing
to shed further light on the empirically observed astonishing
diversity in traits and interactions of microbial communities.
Our hope is that it makes this kind of quantitative ap-
proaches to complex eco-evolutionary communities accessi-
ble to a broader audience, including physicists, biologists, and
ecologists.

The paper is organized as follows: In Sec. II, we in-
troduce our general eco-evolutionary framework. Starting
with a rather general (microscopic) individual-based birth-
death process involving reproduction, selection, and mutation
(Sec. II A), we derive a macroscopic equation describing the
evolution of a general trait distribution in phenotypic space
(Sec. II B). From this, we derive equations for its moments
(Sec. II C) and particularize them to the case of small muta-
tions (Sec. II D). This allows us to recover the standard theory
of AD using a Gaussian approximation for the trait distribu-
tion (Sec. III) as well as to formulate an extended theory “à
la Landau,” including higher moments in the expansion, to go
beyond AD (Sec. IV). The general theory is then applied to
the specific example of an individual-based model including
both a fixed external ecological niche and competition among
individuals, allowing us to illustrate its richness. Finally, we
extend our deterministic theory to account for demographic
stochastic effects for finite populations (Sec. VI). To close,
we discuss the main findings and implications of our work,
as well as its limitations and potential future developments
(Sec. VII).

II. GENERAL FRAMEWORK AND MACROSCOPIC
ECO-EVOLUTIONARY EQUATIONS

For the sake of simplicity and without loss of generality,
we consider—as customarily done in evolutionary dynamics
[101]—a population of fixed size, composed of N individuals.
As in AD, we choose to focus on a phenotypic description
of individuals. Thus, each of them (say the ith one, with i ∈
[1, N]) is characterized by a set of phenotypic traits that, in the
simplest possible case, can be encoded in a single real-valued
variable xi. This represents a coordinate in a one-dimensional
phenotypic space P . Generalizations to higher-dimensional
phenotypic spaces and to populations of variable size can
easily be addressed.

The population as a whole can be represented by a N-
dimensional vector x = (x1, x2, . . . , xi, . . . , xN ), that we call
a phenotypic configuration. The final goal is to describe the
dynamics of the probability P(x, t ) to have a population
with a given phenotypic configuration x as a function of
time t .

2Note that our approach has the same intention and spirit of the
more mathematical framework of Champagnat and collaborators
[94–96], but it is an independent one based on standard approaches
and concepts in physics.

FIG. 1. Sketch of the basic processes characterizing the eco-
evolutionary dynamics at an individual or microscopic level. The
probability density φ(x, t ) describes the fraction of the population
that has phenotypic trait x at a given time t . This can change as a
result of the following stochastic processes: (i) reproduction with
mutation: individual with trait xi (red) generates an offspring with
trait x j relatively close—but not identical—to xi (orange); (ii) death:
an individual with trait x̃ j (green) is randomly selected to die. Math-
ematically, these processes are described by a Markov process that
includes a single jump (solid black line) from the removed individual
at x̃ j to the new offspring x j . For convenience, this can be interpreted
as decomposed into two substeps (as represented by black dashed
arrows): the individual i performs a local jump to the coordinate x j ,
while its initial position xi becomes occupied by the removed indi-
vidual through a nonlocal jump from x̃ j . In any case, these processes
result in an evolving distribution that may eventually converge to a
stationary state.

A. Birth-and-death eco-evolutionary model

The dynamics of P(x, t ) can be mathematically described
as a master equation, encoding the main stochastic processes
occurring at an individual or microscopic level [102]. In par-
ticular, the stochastic dynamics at the individual level relies
on the following three key ingredients of Darwinian evolution
[1,14] (see the sketch in Fig. 1):

(i) Reproduction. Each individual i produces (asexually)
one offspring at some transition rate fi(x) > 0, called “fit-
ness,” that depends on its phenotype as well as on the overall
system’s state x. In what follows, we restrict ourselves to the
case in which the fitness for individuals with trait xi is com-
posed of (i) an intrinsic growth rate K (xi )—that is assumed to
depend only on the individual trait xi—and defines an external
“ecological niche,” specific of the considered environment
and conditions, as well as (ii) an additional term that comes
from pairwise ecological forces (or “interactions”) I (xi, xk ),
which represent competition, cooperation, and/or more com-
plex ecological forces with all other individuals (e.g., the
kth one with trait value xk). Thus, the total fitness function
fi(x) of individual i is given by the intrinsic growth rate plus
the weighted sum of all the pairwise interactions with other
individuals (so that both terms are typically of the same order)

fi(x) = K (xi ) +
N∑

k=1,k �=i

I (xi, xk )

N − 1
, (1)

or, equivalently,

fi(x) =
N∑

k=1,k �=i

f (xi, xk )

N − 1
, (2)
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where

f (xi, xk ) ≡ K (xi ) + I (xi, xk ), (3)

includes up to pairwise interactions. Let us stress that higher-
order interactions, which might be relevant in some cases
[103], could also be straightforwardly implemented by includ-
ing additional terms, depending on more than two individual
traits, in Eq. (1).

(ii) Selection. The fact that individuals with larger fitness
values are more likely to reproduce allows one to imple-
ment natural selection in an indirect way just by imposing
a constant population size N . In particular, as illustrated in
Fig. 1, our model assumes that each time that an individual i
produces an offspring, a second individual j (different from i),
is randomly chosen and removed from the community.3 This
second individual is selected with a certain death probability
d j (x) which, in general, can depend on the full phenotypic
state x and that, for simplicity, we set to be constant across
time and individuals, i.e., d j = 1/(N − 1).

(iii) Heredity and variation. When an individual i is
selected for replication, the offspring j inherits its phe-
notypic trait, with some variation δ, i.e., x j = xi + δ. The
probability of a given mutation from the mother value
xi to the offspring’s one x j is represented by a generic
distribution function, βxi (x j − xi ) = βxi (δ), called “muta-
tion kernel” that, in general, can depend on the origi-
nal trait xi. Similarly, the mean θ (xi ) and second mo-
ment σ 2(xi ) of such a distribution are, in general, state
dependent.

Thus, the master equation defining the general model (see
Fig. 1 for a sketch) can be written as a Markov jump pro-
cess involving two individuals, i and j. In the following,
we indicate xi as the reproducing trait, x̃ j as the trait of the
individual that is removed, and x j as the trait of the new-
born individual, which is a mutated offspring of individual
i. Hence, the stochastic process allows for transitions to the
phenotypic configuration x = (x1, . . . , x j, . . . , xN ) from x̃ j =
(x1, . . . , x̃ j, . . . , xN ), where x̃ j differs from x only in the value
of the trait of the jth individual [102]:

∂t P(x, t ) =
N∑

i=1

N∑
j=1, j �=i

∫
P

dx̃ j

× [Wi(x, x̃ j )P(x̃ j, t ) − Wi(x̃ j, x)P(x, t )], (4)

where

Wi(x, x̃ j ) = fi(x̃ j )βxi (x j − xi )d j (x̃ j )

= fi(x̃ j )βxi (x j − xi )/(N − 1) (5)

represents the rate of transition from an initial state x̃ j to
x by a reproduction of individual i. Reciprocally, Wi(x̃ j, x)
is the transition rate for the reverse process, from x =
(x1, . . . , x j, . . . , xN ) to x̃ j = (x1, . . . , x̃ j, . . . , xN ).

Let us remark that the described stochastic dynamics gen-
erates a neat flux of probability from the phenotypic state of

3In other words, this dynamics is a generalization of the Moran
process [101].

the removed individual (with trait x̃ j) to that of the newly gen-
erated one (with trait x j), which can effectively be visualized
as a direct jump from the former position to the latter (solid
line in Fig. 1). Observe, however, that this process can be
decomposed for convenience in two different jumps (dashed
lines in Fig. 1): a nonlocal one, from x̃ j to xi, and a local one
from the latter to its offspring x j . The first (nonlocal) jump
implements the effect of selection while the second (local) one
describes mutation.

B. Selection-mutation mean-field equation

The above master equation (4) is very general but, clearly,
difficult to handle analytically. Thus, in order to gain more
insight, here we employ some standard approximations—that
will be relaxed later—to reduce it to a simpler deterministic
(mean-field like) equation for the marginal probability to find
any individual in a particular state x, φ(x, t ).

Readers not interested in the formal aspects of the follow-
ing mathematical derivations can go directly to Eq. (12).

As often done in statistical mechanics, we assume that
individuals are, a priori, indistinguishable, i.e., the probability
distribution is symmetric with respect to the exchange of
individual labels [98,104]:

P(x1, x2, .., xN ) = P(x2, x1, .., xN ) = · · ·
= P(x1, xN , .., x2) = · · · . (6)

This equivalence allows one to derive an equation for the
individual (or “one-particle”) probability density distribution
φ(x, t ) from Eq. (4). More specifically: the density of individ-
uals with phenotype x at time t in a given realization of the
stochastic process can be simply expressed as

ρ(x, t ) =
N∑

i=1

δ(x − xi )

N
, (7)

and averaging over many possible realizations of the
stochastic process one can derive the probability density
distribution

φ(x, t ) ≡
〈

N∑
i=1

δ(x − xi )

N

〉

= 1

N

N∑
i=1

∫
PN

dxδ(x − xi )P(x, t ), (8)

where
∫
PN dx = ∫

P dx1
∫
P dx2 · · · ∫P dxN . Using the Dirac’s

delta definition and the fact that individuals are indistinguish-
able [i.e., Eq. (6)], and renaming the integration variables, we
obtain

φ(x, t ) =
∫
PN−1

dx2dx3 · · · dxN P(x, x2, x3, . . . , xN ), (9)

meaning that the probability density distribution is nothing
but the marginal probability of one of the individuals with
phenotype, e.g., x ≡ x1.

By taking the time derivative of Eq. (8) and using
the master equation, Eq. (4), one readily obtains [see the
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Supplemental Material (SM), Sec. I A [105]]:

∂tφ(x, t ) =
∫
PN

dx2dx3 . . . dxN∂t P(x, t )

=
∫
P2

dx̃dy[βx̃(x − x̃) f (x̃, y)P(x̃, y)

− f (x̃, y)P(x, x̃, y)], (10)

where P(x̃, y) and P(x, x̃, y) represent the corresponding
two-particle and three-particle joint probabilities (where
all variables except two or three, respectively, have been
marginalized).

Before proceeding, it is important to note that there are two
main consequences of individual indistinguishability:

(i) The fitness function has been reduced to the pairwise
fitness function, f (x, y); i.e., it depends just on the traits of the
reproducing individual x and another generic one, y specified
only by its trait, with which it interacts.

(ii) The resulting simplified master equation (10) depends
only on the two- and three-particle joint probability (rather
than the entire N-particle one), making it not a closed equa-
tion for the one-particle density, φ(x, t ). To obtain a closed
equation for φ(x, t ) one needs to make the additional mean-
field approximation consisting, as usual, in assuming that the
joint probability distribution function can be factorized:

P(x, t ) =
N∏

i=1

φ(xi, t ), (11)

which is an exact result in the limit of infinitely large pop-
ulation sizes [98,99,104]. Corrections accounting for finite
population size will be explicitly introduced and discussed in
a forthcoming section (see Sec. VI).

This readily leads to the deterministic (or mean-field) equa-
tion (see SM, Sec. I B [105] for a complete derivation),

∂tφ(x, t ) =
∫
P

dx̃βx̃(x − x̃) f (x̃, t )φ(x̃, t ) − f̄ (t )φ(x, t ),

(12)

where we have defined the “marginal fitness” associated with
state x̃,

f (x̃, t ) ≡
∫
P

dyφ(y, t ) f (x̃, y), (13)

with f (x̃, y) defined by Eq. (3) and where f̄ (t ) is the
population-averaged marginal fitness:

f̄ (t ) =
∫
P

∫
P

dx̃dyφ(x̃, t )φ(y, t ) f (x̃, y)

=
∫
P

dx̃φ(x̃, t ) f (x̃, t ). (14)

Importantly, Eq. (13) encodes the idea that the marginal fitness
of an individual with a given trait x̃ is frequency-dependent,
i.e., the fitness associated with a given trait depends crucially
on the system’s state, i.e., on the distribution of individuals in
phenotypic space.

Even if the derivation of Eq. (12) might look cumbersome,
it can be interpreted in a rather straightforward and intuitive
way (see the sketch in Fig. 1):

(1) The first term on the right-hand side is a positive prob-
ability flow into the x state stemming from the probability that
an individual with any arbitrary trait x̃ is chosen for reproduc-
tion and produces a mutated offspring with, precisely, trait x.

(2) The second term describes the fact that, owing
to normalization, reproduction events leading to an in-
crease in probability density for any given trait x′ �= x
(which occurs with an average rate f̄ ) reduce the rel-
ative probability of finding individuals in state x, i.e.,
diminish φ(x, t ).

C. Moment equations

Equation (12) rules the dynamics of the probability density
φ(x) and from it one can determine the mean trait

x(t ) =
∫
P

dxxφ(x, t ), (15)

and central moments

μi(t ) = (x − x̄)i =
∫
P

dx(x − x̄)iφ(x, t ), (16)

with i = 1, 2 . . ., where, in particular, μ1 = 0, μ2(t ) ≡ 	 is
the variance, etc. More in general, the mean, population-
averaged value of any possible function A(x) of the trait x is

A(t ) ≡
∫
P

dxA(x)φ(x, t ). (17)

In particular, the mean marginal fitness is f (t ). Similarly, the
(standard) covariance 	 between any two quantities A(x, t )
and B(x, t ) at time t is expressed as

	[A, B](t ) ≡ A · B − A · B, (18)

which reduces to the standard variance for A = B.
From Eq. (12) and the previous definitions, the mean value

of an arbitrary function A(x) evolves as

dt A(t ) =
∫
P2

dxdx̃A(x)βx̃(x − x̃) f (x̃, t )φ(x̃, t ) − A(t ) f (t ),

(19)

which, if one defines the covariance 	β between two
quantities [here A(x) and f (x, t )] across two consecutive gen-
erations:

	β[A, f ](t ) ≡
∫
P2

dxdx̃A(x)βx̃(x − x̃) f (x̃, t )φ(x̃, t )

− A(t ) f (t ), (20)

can be expressed in a very compact form:

dt A(t ) = 	β[A, f ](t ), (21)

which is nothing but the Price equation [17–19,23]. Observe,
in particular, that—while 	[A, f ] quantifies the standard co-
variance between the quantity A and the fitness f at a given
time—	β[A, f ] is the covariance between the fitness of the
“mother individual” with some trait x̃ and A(x) evaluated for
the offspring with trait x (and the mutation function from x̃
to x is included). Thus, 	β[x, f ] stands for the covariance
between phenotype and fitness across a generation. Note
that, in particular, in the absence of variation, i.e., if the
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mutation amplitude vanishes, both covariances coincide, i.e.,
βx̃(x − x̃) = δ(x − x̃), 	β[A, f ] = 	[A, f ].

In summary, Eq. (21), known as the Price equation, states
that if a given function is positively correlated with the fitness
function across a generation, its mean value increases.

D. Diffusive or small-mutation approximation

Further analytical progress can be made by assuming (as
usually done in AD) that the amplitude of mutations is small,
which allows one to perform a series (Kramers-Moyal) expan-
sion of Eq. (12) in powers of δ ≡ x − x̃ (see the SM, Sec. II
[105] and Ref. [102]):

∂tφ(x, t ) = [ f (x, t ) − f̄ (t )]φ(x, t ) − ∂x[θ (x) f (x, t )φ(x, t )]

+ 1
2∂2

x [σ 2(x) f (x, t )φ(x, t )], (22)

where θ (x) and σ 2(x) are the first two moments of the muta-
tion kernel,

θ (x) =
∫

dδβx(δ)δ, (23)

σ 2(x) =
∫

dδβx(δ)δ2, (24)

where the first one is referred to as mutation bias, the second
in the mutation amplitude.

Observe that Eq. (22) is a linear superposition of
the (upper row) replicator dynamics [106], representing
selection, and the (lower row) Fokker-Planck type of
equation describing mutations as a reaction-diffusion
dynamics in phenotypic space. More precisely, the second part
is a sort nonlinear Fokker-Planck equation or McKean-Vlasov
equation [107,108], as the diffusion function itself depends
on the probability distribution φ(x, t ) through the marginal
fitness function (13) so that it needs to be solved in a
self-consistent way.

As a matter of fact, Eq. (22) is actually a version of the
celebrated Crow-Kimura (CK) equation in population genet-
ics [11,12] (also called replicator-mutator equation in some
contexts [109–112]). Thus, we call Eq. (22) the generalized
Crow-Kimura equation (GCK) because it extends the standard
CK equation to phenotypic evolution and includes at least two
important additional features:

(1) The fitness function appears in Eq. (22) within the
partial derivatives, thus coupling reproduction and mutation.

(2) Equation (22) includes generic mutation functions
θ (x) and σ 2(x) that, in general, can be trait-dependent rather
than having constant mutation coefficients.

Let us stress that, within the present small-mutation
approximation, given that one can truncate the expan-
sion of the function βx(δ) in power series of δ, it is
straightforward to recover from Eq. (21), after some sim-
ple algebra, the more standard form of the Price equation
for A(x) = x, i.e.,

dt x̄(t ) = 	[x, f ](t ) + θ f (t ). (25)

Note also that the contributions of selection and mutation
become decoupled in this approximation. In particular, the
first term in Eq. (25) encodes selection on the mean trait value;
i.e., it increases when it correlates positively with fitness

increments, while the second term represents the action of
biased mutations (so that, in particular, it vanishes if variations
are symmetric around x).4 We could write similar general
equations analogous to Eq. (25) for higher moments of the
distributions. For simplicity, let us do so just for the case of
constant (trait-independent) mutation rates, for which Eq. (25)
becomes

dt x̄(t ) = 	[x, f ](t ) + θ f̄ (t ), (26)

and, similarly, for the trait variance 	(t ) ≡ (x − x̄)2 one has

dt	(t ) = 	[x2, f ](t ) − 2(x̄t − θ )	[x, f ](t ) + σ 2 f̄ (t ),

(27)

where for simplicity in the notation we have omitted time
dependencies.

In general, the equations for higher-order moments form
a hierarchy of coupled differential equations. Finding a valid
criterion to close such a hierarchy is an open general (closure)
problem [113]. In what follows, for the sake of completeness
and to establish the notation and formalism, we first discuss
a Gaussian approximation to the closure problem (leading
to AD). Subsequently, in forthcoming sections, we introduce
extensions that account for higher-order moments, which give
rise to a much richer phenomenology.

III. GAUSSIAN THEORY: RECOVERING
ADAPTIVE DYNAMICS

In the classical terms of AD, individuals at the mean phe-
notype x̄ are called “residents” and variations of them are
called mutants. As already mentioned, within such a theory,
mutations are usually assumed to be small, unbiased, and
trait-independent, which greatly simplifies the problem. Un-
der these assumptions, it may suffice to study the dynamics of
the mean value x̄, which coincides with the peak of the under-
lying distribution, as well as perturbations around it.5 In other
words, to recover the results of AD, we consider a Gaussian
approximation to describe probabilities in phenotypic space.
In this approximation, one only needs to determine the first
two moments, the mean x̄(t ) and the variance 	(t ), while
neglecting the higher-order moments.

More specifically, assuming a general fitness function of
the form of Eqs. (2) and (3), one can expand f (x, y) in both
of its arguments around the mean value at time t, x̄t (where we
represent the mean trait time dependence with a subscript to

4Let us remark that the zero-covariance condition defines a de-
terministic evolutionary stable state (ESS) in the framework of
evolutionary game theory, where strategies are fixed, i.e., there is no
mutation.

5In AD one considers a single mutant trait y invading the resident
x. The evolutionary outcome of such a potential invasion can be
predicted by studying the invasion fitness. Typically, this is done
by using the so-called mutual invasibility plot; however, when one
extends the theory to include trait probability distributions rather than
monomorphic populations, a variety of mutants are simultaneously
present, making invasibility plots an insufficient tool.
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simplify the notation when it appears as a function variable):

f (x, y) ≈ f0(x̄t ) + f x
1 (x̄t )(x − x̄t ) + f y

1 (x̄t )(y − x̄t )

+ f x
2 (x̄t )

2
(x − x̄t )

2 + f y
2 (x̄t )

2
(y − x̄t )

2

+ f xy
11 (x̄t )(x − x̄t )(y − x̄t ) + · · · , (28)

where the coefficient subindices indicate the number of
derivatives, and the superindices the variables with respect to
which the derivatives are taken:

f xy
i j (x̄t ) ≡ ∂ i

x∂
j

y f (x, y)|x=y=x̄t , (29)

with i, j = 1, 2, . . ., e.g., f0(x̄t ) = f (x̄t , x̄t ), f x
1 (x̄t ) =

∂x f (x, y)|x=y=x̄t . Note that the coefficients are functions
of x̄(t ) given that both arguments are evaluated at such a point
and, hence, implicitly they are time dependent. Averaging
over the second variable, one obtains the marginal fitness,
Eq. (13):

f (x, t ) =
∫
P

dy f (x, y)φ(y, t )

= f0(x̄t ) + f x
1 (x̄t )(x − x̄t ) + f x

2 (x̄t )
(x − x̄t )2

2

+ f y
2 (x̄t )

	(t )

2
, (30)

where, again, both x̄(t ) and 	(t ) are in general time-
dependent functions. In the following, we drop the time
dependency of the variables when not necessary, for the sake
of notation.

By defining f2(x̄t ) ≡ f x
2 (x̄t ) + f y

2 (x̄t ), the average fitness,
Eq. (14), can be finally be written as

f̄ (t ) = f0(x̄t ) + f2(x̄t )

2
	(t ). (31)

Let us caution that f2(x̄t ) �= ∂x̄t f1(x̄t ) because it also includes
the term f y

2 (x̄t ); this distinction will be important in what
follows.

The previous expressions for f (x, t ) and f̄ (t ), respectively,
can be plugged into the Price equation (26) to obtain

dt x̄t = f x
1 (x̄t )	(t ) + f2(x̄t )

2
μ3(t ) (32)

for the case of vanishing bias, θ = 0. Moreover, as the pheno-
typic distribution φ(x, t ) has been assumed to be a Gaussian,
the third central moment vanishes, i.e., μ3 = 0, and, hence,

dt x̄t = f x
1 (x̄t )	(t ). (33)

This last equation is known as the “canonical equation” in AD
and determines the fate of the mean population trait; f x

1 (x̄t ) is
called the “selection gradient” and determines the direction
of the flow in the in phenotypic space, while the variance of
the trait distribution controls the “speed” of the evolutionary
process [47].

Observe that the possible fixed points x̄∗ of the previous
equation need to be extreme points of the fitness function,
i.e., f x

1 (x̄∗) = 0. Furthermore, by performing a standard linear
perturbation analysis, the condition for the stability of the
fixed point x̄∗ is given by the derivative of the fitness gradient

with respect to the mean trait value being negative (see the
SM, Sec. III A [105]):

∂x̄ f x
1 (x̄)|x̄=x̄∗ < 0. (34)

This last condition is called “convergence stability” in AD.
Let us stress that this condition is different from f x

2 (x̄) < 0, a
condition for “evolutionary stability” that we derive in what
follows.

Similarly, from Eq. (27), within the present Gaussian ap-
proximation, the variance obeys

dt	(t ) = f x
2 (x̄t )	

2(t ) + σ 2 f0(x̄t ) + σ 2

2
f2(x̄t )	(t ), (35)

closing the set of two equations for the first two central mo-
ments of the trait distribution. In particular, the associated
steady-state variance is (see the SM, Sec. III A [105]):

	∗ =
√

−σ 2 f̄ / f x
2 (x̄∗)

= − σ 2

4 f x
2 (x̄∗)

(√
f 2
2 (x̄∗) − 16 f0(x̄∗) f x

2 (x̄∗)σ−2 + f2(x̄∗)
)
.

(36)

Note that (the upper row of) Eq. (36) implies that higher
fitness (i.e., larger values of f̄ ) lead to larger steady-state vari-
ance. Indeed, larger fitness values means faster reproduction
and thus a greater source of mutations and variability. Observe
also that the solution of Eq. (36) is real only if the second
derivative f x

2 (x̄∗) is negative, given that f̄ > 0 by definition.
Furthermore, in Sec. III A of the SM [105], we show that,
if the solution 	∗ is real, it is also automatically (linearly)
stable, so that it is an attractor of the dynamics. Therefore,
f x
2 (x̄∗) determines whether the variance of the distribution

also converges to a steady-state value, and thus whether the
extreme point x̄∗ is an evolutionary stable state with respect to
the introduction of mutants. In other words, an evolutionary
stable point needs to be local fitness maximum [see Fig. 2(a)].
In Fig. 2, we graphically represent the dynamics of the pheno-
typic distribution (blue) and the fitness landscape (red). The
black arrows represent the direction of selection, which tends
to climb the fitness gradient, while the green arrows represent
the overall diffusion-like tendency of possible jumps which,
in general is not symmetric.

On the other hand, if f x
2 (x̄∗) > 0, i.e., if it is a minimum,

there is no stationary stable solution for the variance and,
within the present Gaussian approximation, it just grows un-
boundedly and x̄∗ is an attractor for the mean but it is not
evolutionarily stable. In this case—recalling that the fitness
function is, in general, a dynamic quantity, that changes to-
gether with the distribution so that the fitness landscape itself
changes during the evolutionary process—the distribution is
repelled from the fitness minimum [as illustrated in Fig. 2(b)].
In this latter case, the evolutionary process (with fixed mean
and ever-growing variance) implies that the distribution splits
into a bimodal one, with the two peaks progressively diverging
from each other, giving rise to the phenomenon of evolution-
ary branching [54,114,115].

Thus, summing up, under the simplifying assumptions of
the Gaussian approximation, it is possible to explicitly cal-
culate the conditions for the emergence of either evolutionary
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(a)

(b)

FIG. 2. Sketch of typical evolutionary trajectories in adaptive
dynamics in the case of (top) a stable monomorphic population and
(bottom) evolutionary branching. The distribution of phenotypes is
represented at successive times of the dynamics (from left to right),
together with the fitness function/landscape (red curves), which
changes over time along with the probability distribution. Green ar-
rows mark the intensity and direction of possible jumps and the black
ones stand for the overall selection gradient. (a) Evolutionary stable
case: the population climbs the fitness landscape and is attracted
to a fitness maximum. (b) Evolutionary branching: the population
is first attracted to a fitness minimum (evolutionarily unstable) and
is then repelled from it. Let us remark that the standard theory
of AD is equivalent to considering a Gaussian approximation for
small, unbiased, and trait-independent mutations in our generalized
framework. However, this approximation breaks down after events
such as evolutionary branching, when the population can no longer
be described as a single unimodal distribution.

stable solutions or evolutionary branching, recovering the typ-
ical results of AD. In particular, an extreme point of the fitness
x∗ is an attractor for the mean trait and—if it is convergent
stable, i.e., obeys Eq. (34)—it can lead the population toward
two alternative fates:

(i) An evolutionary stable state emerges when x∗ is a fit-
ness maximum, so that it is evolutionary stable:

f x
1 (x̄∗) = 0, ∂x̄ f x

1 (x̄)|x̄=x̄∗ < 0, f x
2 (x̄∗) < 0. (37)

(ii) An evolutionary branching event occurs when x̄∗ is a
fitness minimum, so that there is an evolutionary instability:

f x
1 (x̄∗) = 0, ∂x̄ f x

1 (x̄)|x̄=x̄∗ < 0, f x
2 (x̄∗) > 0. (38)

Nevertheless, it is important to emphasize that in order
to unveil how the dynamics proceeds beyond a branching
point and, more generally, to explore alternative evolution-
ary phases and patterns in phenotypic space [116–118], it
becomes necessary to extend the theory beyond the Gaussian
approximation. This includes considering higher-order terms
in the fitness expansion, which may allow, for instance, the
description of bimodal or multimodal distributions.

IV. EXTENDED LANDAU-LIKE THEORY: BEYOND
ADAPTIVE DYNAMICS

To extend the previous Gaussian theory (i.e., AD) to allow
for a description of the evolutionary dynamics even after a
branching event—when the variance diverges suggesting that
the distribution in phenotypic space can no longer be de-
scribed as a Gaussian—we now introduce a theory à la Landau
[119,120] by incorporating higher-order terms in the fitness
expansion Eq. (28) (see Ref. [50]).

Let us recall that the Landau theory of phase transitions
uses a parsimony principle combined with symmetry consid-
erations to write down a general functional—a free-energy
functional—including only the most important terms in a per-
turbative expansion of the relevant field needed to describe
key aspects of a given phase transition. For instance, in the
classical example of an Ising-like phase transition, describing
the spontaneous breaking of an up-down symmetry, one needs
to include only even terms and only up to quartic order in
a perturbative expansion of the free-energy in powers of the
order parameter to derive a theory that quantitatively explains
the main features of such a transition [119].

Evolutionary dynamics is driven by selection, quantified
by the fitness differences ( f − f̄ ), and it pushes the popula-
tion to climb the fitness landscape, similarly to what happens
in physics with a (free) energy potential. Nevertheless, to
forecast the results of selection the “full” fitness function is
not needed. Instead, we consider the “relative fitness” F (x),
defined as the marginal fitness f (x) minus its x-independent
part:

F (x, t ) ≡ f (x, t ) − f̃ (t ), (39)

which is the counterpart of the usual free-energy function.
Importantly, note that, thanks to the definition of Eq. (39), the
relative fitness of the mean trait is zero, i.e., F (x̄, t ) = 0. This
is true because f̃ (t ) collects f0(x̄) together with all the remain-
ing x-independent terms that do not contribute to ( f − f̄ ) (see
below).

Before proceeding, let us remark that this relative fitness
determines the fitness differences but, importantly,—much as
in statistical mechanics—mutations (which play a role analo-
gous to thermal fluctuations, i.e., temperature) are also crucial
in order to determine the shape of the steady-state probability
distribution associated with the GCK dynamics, Eq. (22).

Expanding F (x) in a power series around its mean value x̄t

[as in Eq. (28)], one obtains (see SM Sec. III B [105]):

F (x, t ) =
(

f x
1 (x̄t ) + f xy

12 (x̄t )

2
	(t ) + f xy

13 (x̄t )

3!
μ3(t )

)
(x − x̄t )

+
(

f x
2 (x̄t )

2
+ f xy

22 (x̄t )

4
	(t )

)
(x − x̄t )

2

+ f x
3 (x̄t )

3!
(x − x̄t )

3 + f x
4 (x̄t )

4!
(x − x̄t )

4 + · · · ,

(40)

where terms above the 4th order have been neglected for
now (we refer the reader to the SM, Sec. III B [105], for a
complete derivation and identification of the various terms,
including f̃ ).
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To keep the presentation as simple as possible, let us con-
sider (for now) some simplifying assumptions to F (x, t ), as
usually done in the Landau approach. For example, one can
consider the interaction term of the fitness function to be sym-
metric in its two indices, implying that all the cross-derivative
terms of odd order vanish; e.g., f xy

12 (x̄t ) = 0. One can also
impose the trait distribution φ(x, t ) to be symmetric around
its mean (at lest in the steady state), which guarantees that all
odd central moments, in particular μ3, vanish at stationarity
(note, however, that during the dynamical process the trait dis-
tribution might not be symmetric even if the fitness function
is, owing to asymmetries in the initial condition).

Under these conditions, the linear term is not changed with
respect to the Gaussian theory at stationarity, which implies
that dt x̄ = f x

1 (x̄∗)	∗ = 0, as in the Gaussian approximation;
therefore the stationary value x̄∗ is an extreme point of F (x),
i.e., f x

1 (x̄∗) = 0. Finally, setting for convenience the stationary
mean value to zero, x̄∗ = 0, and omitting the dependency on
it in the fitness derivatives, the stationary relative fitness is

F (x) = 1

2

(
f x
2 + f xy

22

2
	∗

)
x2 + f x

4

4!
x4

= g2

2
x2 + g4

4!
x4, (41)

where the functions g2 and g4 have been defined in the last
line to group the terms proportional to x2 and x4, respectively.
Let us underscore, once again, the analogy with the Landau
theory for the ferromagnetic (Ising) transitions, which has the
same formal expansion [119].

The points of vanishing derivative, corresponding either to
relative fitness maxima or minima, are the trivial solution,
x∗

0 = 0, together with and a couple of additional symmetric
extreme points x∗

1,2 = ±x∗, satisfying

x∗2
1,2 = −6g2

g4
= − 6

f x
4

(
f x
2 + f xy

22

2
	∗

)
, (42)

which are real only if g2 < 0. Observe that the location of
these two additional fixed points depends on the steady-state
variance 	∗, something that does not happen in the Gaussian
theory.

To close the moment hierarchy one needs to determine the
steady-state variance using some approximation. For exam-
ple, one can first assume a bimodal-Gaussian ansatz for the
steady-state distribution. However, in spite of the simplifica-
tion, this is still quite cumbersome to handle analytically, see
SM Sec. III C [105]. Thus, we additionally consider the limit
of very small mutation amplitudes in which case the bimodal
Gaussian becomes the sum of two δ functions,

φ∗(x) = δ(x − x∗)

2
+ δ(x + x∗)

2
. (43)

The variance of this distribution is 	∗ = x∗2
so that plugging

this into Eq. (42) gives

x∗
1,2 = ±x∗ = ±

√
−6

f x
2

f x
4 + 3 f xy

22

. (44)

The conditions for these two nontrivial solutions to ex-
ist are f x

2 > 0—so that the origin is a fitness minimum
(otherwise the Gaussian theory suffices to describe the

dynamics)—and ( f x
4 + 6 f xy

22 ) < 0, so that there is a positive
sign under the square-root and the solutions are real. In
SM Sec. III B [105] we show that x∗

1,2 are fitness maxima
if f x

4 > 3 f xy
22 /2, a condition that is expected to always be

satisfied when the two points exist and the distribution is
bimodal.

Observe that, as already stressed, the sign of f x
2 does not

fully determine the convexity of F (x) at the origin (i.e., the
overall sign of the coefficient g2 multiplying x2 in Eq. (41),
due to the presence of the additional term f xy

22 	(t ), which
stems from the interaction kernel as f xy

22 = ∂2
x ∂2

y I|x=y=x̄ and
has the same sign as the interaction: positive for cooperation,
negative for competition.

The latter dependence may play a nontrivial role during
the course of an evolutionary branching because it will be
explicitly illustrated in the next section. In particular, observe
that, if the population reaches a fitness minimum and starts
branching, the mean-trait value remains fixed at x̄∗ = 0 while
the variance increases until it possibly reaches a stationary
value. This increase in the variance may lead to a progressive
change in the coefficient of the quadratic term in Eq. (41), g2,
and hence of the convexity at the origin of the relative fitness
function.

To be more specific, one can write down the time derivative
of the coefficient g2

dt g2(t ) = f xy
22 (x̄∗)dt	(t )/2, (45)

which implies that, e.g., if the variance grows after a branch-
ing event, then the fitness barrier separating both of the new
attractors can change dynamically, either

(1) becoming more pronounced if f xy
22 > 0 (e.g., for coop-

erative or mutualistic dominant interactions) so that the two
peaks are well separated, or

(2) becoming flatter if f xy
22 < 0 (e.g., for competitive inter-

actions), so that if barrier becomes very flat it may generate a
sort of “neutral bridge” in between the two coexisting peaks,
so that phenotypes with intermediate traits, near x = 0 can
exist in the steady state even after a branching event [121,122].

Moreover, a simple calculation including higher
nonlinearities—such as those appearing in expansions up
to the 6th, 8th, 10th—shows that further corrections to the
dynamics of g2 do appear. Consequently, the evolutionary
dynamics can become much more complex. In particular,
it can be easily shown that g2 can reverse its sign, i.e., the
convexity at the origin of the fitness landscape can be inverted
after a branching. In this case, a new ecological niche is
generated at the origin so that it can possibly be repopulated,
as explicitly illustrated by means of a specific example in the
next section. For instance, after a first branching event, it may
happen that each of the two resulting branches converges to
a relative fitness minimum, thus leading to a second round
of evolutionary branchings and therefore to a total of four
coexisting subpopulations. If the concavity at the origin has
been reverted in the course of the evolutionary process, then
the two central branches might eventually converge to the
origin colliding and repopulating the empty central niche,
resulting in “evolutionary convergence” and a final stationary
distribution with three coexisting subpopulations (see next
section).
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Let us remark that a detailed analytical description of the
previously described phenomenology is quite intricate as—in
order to allow for the possibility of a series of two branching
events—it requires keeping terms up to order x8 or x10 in the
perturbative expansion of F (x) and the calculation becomes
quite cumbersome [123] (see SM Sec. III D [105] for more
details). Thus, in what follows we just move on to present the
explicit numerical solution of a specific example where the
discussed nontrivial effects such as neutral bridges, cascades
of branching events, and evolutionary convergence—all of
them beyond the reach of the standard approach of AD—are
vividly illustrated and the need of an extended Landau theory
also becomes manifest.

V. GROWTH-COMPETITION MODEL

A. Model definition

To illuminate the previous theoretical derivations, here
we study a simple model that combines characteristics of
other models previously introduced in the study of species
clustering in phenotypic space [116–118] and in AD [114],
respectively. In particular, we consider a one-dimensional
phenotypic space so that individuals are characterized by a
single scalar trait x.

Let us first specify the fitness function, the key to define
the problem. The trait value x influences the growth rate
of individuals, through a growth function K (x), that can be
chosen to be a Gaussian centered at x = 0. This determines
a sort of ecological niche, so that phenotypes close to x = 0
are more likely to grow. In addition, individuals with traits x
and y compete with each other with a strength that depends on
their trait similarity, i.e., on their distance in phenotypic space,
|x − y|, as specified by certain kernel function α(x − y), that
can also be taken to be a Gaussian. Hence, the total fitness
of an individual with trait x, conditioned to the existence of
another individual with trait y, is specified by

f (x, y) = K (x) − α(x − y)

= k + exp

(
− x2

2σ 2
K

)
− exp

(
− (x − y)2

2σ 2
α

)
, (46)

where k > 0 is the basal growth rate (warranting the non-
negativity of the overall fitness) and the two Gaussian
functions have standard deviations σK and σα , respectively.
The model definition is completed by assuming also a Gaus-
sian mutation kernel with zero mean (θ = 0) and σ 2 variance.

B. Adaptive dynamics and beyond

The marginal fitness associated with trait x [as defined by
Eq. (14), i.e., by integrating the effects of all other possible
individuals, y, weighted over the trait distribution] reads

f (x, t ) = K (x) −
∫
P

dyφ(y, t )α(x − y). (47)

Observe that K (x) fosters the concentration of the population
around the origin and can be seen as an “attracting force” of
range σK , while the competition kernel fosters a kind of repul-
sion between individuals with range σα . The combined effect
of these two forces is illustrated in the two upper-leftmost

panels of Fig. 3 obtained from numerical integration of the
GCK equation for some specific values of the variances and
some initial distribution of the population. In particular, the
black curves represent the external fitness K (x), with a maxi-
mum at the origin; the green curves stand for the competitive
fitness and exhibit a maximum at the point where the popula-
tion density peaks. Subtracting this second fitness component
from the first one, leads to the total fitness function (red
curves) which can have a nonsymmetric shape. The two up-
per rows of Fig. 3 illustrate two possible outcomes of the
evolutionary dynamics for a monomodal initial distribution,
for diverse parameter values. Before delving into scrutinizing
them, let us develop the analytical approach to make predic-
tions that can be compared with numerical results.

To analyze the dynamics and the possible evolutionary
phases, one needs to consider the first derivative of the
marginal fitness (evaluated at the mean value),

f x
1 (x̄t ) = − x̄t

σ 2
K

exp

(
− x̄2

t

2σ 2
K

)
, (48)

which allows one to determine the direction of the selection
gradient as well as to identify the location of its maxima
and minima. In particular, x̄∗ = 0 is always an extreme point,
so that the mean value of the distribution converges to zero
along the evolutionary dynamics, as predicted by the canoni-
cal equation (33). It is also convergent stable because

∂x̄ f1(x̄)|x̄=0 = − 1

σ 2
K

< 0. (49)

To go beyond standard AD while keeping the calculation as
parsimonious as possible, let us expand the relative fitness,
F (x) = f (x) − f̄ , around x = 0, including terms up to the 4th
order [as in Eq. (41), above]:

F (x) ≈ 2 f x
2 + f xy

22 	(t )

4
x2 + f x

4

4!
x4, (50)

where now we can specify these coefficients:

f x
2 = 1

σ 2
α

− 1

σ 2
K

, f y
2 = 1

σ 2
α

, (51)

f xy
22 = − 3

σ 4
α

, f x
4 = 3

(
1

σ 4
K

− 1

σ 4
α

)
, (52)

so that f x
2 and f x

4 have always opposite signs, while the cross-
derivative term, f xy

22 , is always negative. Moreover, f xy
22 appears

in Eq. (50) multiplied by the variance, so that the full term can
be neglected for small mutations. Therefore, from Eq. (51)
one readily sees that—at least in an approximate way—the
relative fitness has a maximum at the origin ( f x

2 < 0) if σα �
σK , while the origin is a fitness minimum ( f x

2 > 0) for σα <

σK . Let us discuss these cases separately:
(i) No branching. If σα � σK , i.e., the competition kernel

has a larger reach than the external fitness, then there is
convergence to an evolutionary stable fixed point, i.e., the
attractor of the dynamics is a fitness maximum. This is illus-
trated in Fig. 3(a) (obtained from numerical integration of the
GCK equation): the leftmost panel shows that when the com-
petition kernel (green curve) is wider than the external-fitness
(black curve), the resulting total fitness (red curve) is such that
the population climbs the (changing) fitness landscape until
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(a)

(b)

(c)

FIG. 3. Dynamics of the phenotypic distribution (blue) and fitness landscape (red) for different times as obtained from a numerical
integration of the full generalized Crow-Kimura (GCK) equation, Eq. (22) in different cases: (a) with no branching, (b) with one branching
event, and (c) a series of two consecutive branching and a coalescence event. In the first case (a), the competition kernel (green) is wider than
the growth one (black), i.e., σα > σK , producing a fitness landscape with a single maximum (red). The initially peaked distribution moves to
the right, in the direction of increasing gradient, thus trying to climb the fitness landscape towards the maximum at x = 0, as predicted by
theory (dashed vertical line). Observe that the width of the distribution changes across time. In the second case (b), the competition kernel
(black) is wider than the growth one, producing a fitness landscape with two maxima. The population tries to climb the landscape but is trapped
in the minimum. To escape and further increase fitness an evolutionary branching happens and the two subpopulations finally reach the two
maxima, as predicted by the theory (dashed lines). Finally, if the competition kernel is much smaller than the growth kernel (c), after the first
evolutionary branching the two resulting subpopulations converge to fitness minima and each one branches again, further creating transiently a
population with four peaks, that then converges to a three-peak one once the two central ones coalesce around x = 0. Parameter values: k = 1,
σK = 1, and σ = 10−3 in all cases. (a) σα = 1.2, (b) σα = 0.8, and (c) σα = 0.6. The initial distribution is localized (delta Dirac function) at
x0, with (a) x0 = −0.8 and (b), (c) 0.4, respectively.

the moment in which it stabilizes around the fitness maximum
at the origin.

(ii) Evolutionary branching. If, on the other hand,
σα < σK , the competition kernel has a reach smaller than the
external niche; in this case, the attractor is a fitness minimum
and the fixed point is evolutionary unstable. This scenario
is illustrated in the B series of panels of Fig. 3: after an
initial transient the population reaches a fitness minimum,
thus leading to a branching event as predicted also by AD.
After the branching, the two peaks correspond to extreme
points of the overall fitness function. Note that the concavity
of the fitness at the origin changes dynamically along the

evolutionary process. In particular, after the branching, its
becomes flatter and flatter, as qualitatively indicated by our
theory [see Eq. (45)] as f xy

22 < 0, leading to a neutral bridge.
(iii) Multiple branchings. Finally, by further decreasing

σα—as explicitly illustrated in the bottom row of Fig. 3—the
two peaks shown in the first panel (that may have emerged
before in an evolutionary branching event) happen to converge
to fitness minima (second panel), so that each of them expe-
riences a second generation of branching events which—at
least, transiently lead to a distribution with four peaks (third
panel); the last (fourth) panel shows that the two central peaks
(out of the total of four transient ones) eventually coalesce
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FIG. 4. Phase diagram for growth-competition model as a func-
tion of the two control parameters σα and σK . Different colors
represent the possible phases: unimodal with no branching (blue),
while the “diversified phase” below the diagonal line (with colors
running from green to reddish and white) corresponds to multimodal
distributions (colors codify the number of peaks). The points marked
by letters A, B and C identify typical working points for the anal-
yses shown in Fig. 3, with none, one, or two branching events,
respectively. The diagram is obtained by integrating numerically the
generalized Crow-Kimura equation (22). The initial condition, as
illustrated in Fig. (3), is a delta-Dirac function at x = 0.1 in all cases.
Other parameter values: k = 0.1, σ = 10−3.

together at the origin—repopulating the new niche created
after the first branching, as discussed above—and generating
a three-peak steady-state distribution.

By progressively increasing the value of σK or dimin-
ishing σα one can find a cascade of further branching and
coalescence events leading to steady-state distributions with
a progressively larger number of peaks. Even if results are
not shown here, we have performed numerical integration of
the GCK and identified steady states with up to eight peaks
(see Fig. 4). This observation can be easily rationalized: σK

determines the overall width of the available niche space,
so the larger σK the larger number of diverse phenotypes
that can exist. On the other hand σα determines the reach of
competition, the smaller it is, the closer two consecutive peaks
can be, allowing for a more compact packing of “species.”
Let us remark that the exact location of the transition lines
could in principle be shifted in the case in which f xy

22 and/or
the mutation amplitude, that contribute to g2 in Eq. (50) are
not small.

To summarize the previous results, Fig. 4 shows the result-
ing phase diagram as a function of the two free parameters
(σα and σK ) controlling the fitness function. In particular, a
diversification cascade, consisting in a series of branching
events and possible coalescence at the origin may generate
steady states with 3, 4, 5, 6, 7, or 8 peaks—as we have
computationally verified—though arbitrarily large number of
peaks are expected to emerge for sufficiently small values of
σα and sufficiently large values of σK .

Finally, it is also noteworthy that, by analyzing the time-
dependent behavior of the population distribution in situations
in which many peaks are expected to occur in the steady

state, we observe that, in order to reach a final steady state
with n peaks—starting from a unimodal distribution at the
origin—the probability distribution goes through all the m <

n possible intermediate phases by a series of evolution-
ary branching events—i.e., a cascade of dynamical phase
transitions—with some coalescence events in between.

C. Trait distributions beyond Gaussian theory

As already discussed, when the σK � σα the population
converges to a Gaussian distribution with mean x = 0,—
coinciding with the fitness maximum—and a nonvanishing
variance that can be approximated as [see Eq. (36)]:

	∗ = σ
2σ 2

K − σ 2
α

σ 2
K − σ 2

α

⎛
⎝

√
σ 2

4
+ 2k

σ 2
Kσ 2

α

(
σ 2

α − σ 2
K

) − σ

2

⎞
⎠. (53)

However, at the transition point, σα = σK , this formula ceases
to be valid, as the denominator converges to zero, so that the
variance explodes and higher-order terms needs to be consid-
ered to estimate the steady-state variance (see the SM [105]).

On the other hand, when σK > σα , the population—as
already discussed—experiences (at least) one evolutionary
branching. To study this phase, it is mandatory to go beyond
the quadratic or Gaussian approximation of AD. In particular,
as shown above, including up to the 4th order in the fitness
expansion one can explicitly work out the limit of vanish-
ing mutation amplitudes by considering a double δ-function
ansatz as specified by Eq. (43). Within such an approximation,
the location of the two peaks [as given by Eq. (44)] are

x∗
1,2 = ±

√
2
σ 2

Kσ 2
α

(
σ 2

K − σ 2
α

)
4σ 2

K − σ 2
α

, (54)

which are real solutions (as σK > σα) and correspond to fit-
ness maxima (see the SM [105]).

To increase the precision of the theoretical prediction one
could keep terms up to 8th order in the expansion together
with a bimodal Gaussian approximation (i.e., the addition
of two symmetric Gaussian distributions) for the stationary
distribution. Even if no closed analytical formula is derivable,
one can solve numerically equations for the stationary state
(see dashed vertical lines in Fig. 3) and compute in particular
the mean x̄∗ and variance 	∗; they match very well the results
of integration of the GCK equation for diverse parameter
values (see SM Sec. III C [105] for more details).

Figure 5 summarizes the previous analytical derivations
by comparing the stationary variance obtained by numerical
integration of the GCK equation (color points) with the the-
oretical approximations (black line) for different parameter
values. Observe that—as illustrated in Fig. 5—by rescaling
both the stationary variance 	∗ and σα by σK all plots collapse
to almost the same curve, similarly to what happens for order
parameters in a second-order phase transition [119]. The the-
oretical prediction compares well with numerics for σα/σK >

0.75 while, below such a limit, further higher-order terms are
necessary to have a more accurate prediction. In particular, as
already discussed, for smaller values of σα more peaks appear
in the distribution and the bimodal approximation fails and
higher-order terms in the Landau expansion are needed.
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FIG. 5. Variance of the steady-state distribution as a function of
σα (both axes rescaled by σK ), illustrating the analogy with a phase
transition. The points represent results from numerical integration
of the GCK equation for different values of σK (as color-coded in
the legend; parameters values as in Fig. 4). Each color represents a
fixed value of σK , while σα takes values {0.5σK , 0.75σK , σK , 1.5σK }.
Observe that, thanks to the rescaling by σK , all different cases ap-
proximately collapse onto a single curve. The condition σK = σα

determines the transition from monomorphic populations to evolu-
tionary branching with good accuracy (for the considered mutation
variance σ = 10−3). The black line represents the theoretical pre-
dictions obtained from our theory [for σα < σK we used Eq. (54),
corrected with higher terms up to 8th order for σα � 0.8σK , while for
σα � σK we used Eq. (53) corrected by including 6th-order terms ex-
actly at the transition point σK = σα]. The theoretical approximation
works relatively well for σα > 0.75σK but deviations are evident for
smaller values of σα , suggesting that higher-order terms are needed
in the fitness expansion.

Similarly, we can also estimate the transition lines to the
multiple branching phase using numerical evidence. For ex-
ample, by combining numerical results and the analytical
expansion in Fig. 5, one can see that, by further decreasing
σα , the variance reaches a maximum at σα = 0.6σK , below
which it continues to decrease. It can be noticed that the
maximum coincides with the appearance of the third peak in
the stationary distribution, such that the later decrease is due to
the emergence of further peaks in between the existing ones,
and so with a smaller overall variance.

Summing up, one can conclude both computationally and
analytically that, when the width of the growth kernel K (x)
is broader than the competing one, i.e., when σK > σα , an
evolutionary branching or a series of them emerge in a robust
way. Each branching bears strong similarities with a continu-
ous phase transition in statistical physics, with the stationary
variance playing a role akin to the order parameter.

VI. STOCHASTIC FINITE SIZE FLUCTUATIONS

Demographic effects—stemming from finite-size popula-
tions and also known as “genetic drift” in the context of
population genetics—are well known to have a pivotal role in
determining the fate of ecological and evolutionary communi-
ties. If the population size is relatively small, there might not
be variability enough for selection to act upon thus altering the
course of evolution (“population bottleneck” [124,125]). As a
matter of fact, the consequences of demographic fluctuations
have been extensively studied in the context of population

genetics [13,83], evolutionary game theory [126–130], and
AD [56,64,97,131]. In addition to introducing fluctuations
around deterministic behavior, demographic fluctuations have
been shown to give rise to unexpected phenomenology such
as, e.g., evolutionary tunneling, population bottlenecks, and
inversion of the direction of selection, to name but a few
examples [128,132,133].

To account for demographic effects in our framework, one
needs to move away from the infinite-population-size limit (as
developed in Sec. II B). In particular, the GCK is exact in the
infinite-size limit, so that it needs to be complemented with
additional higher-order terms in a 1/N expansion.

A. Computational evidence of demographic effects

Before tackling this problem, let us first explicitly illustrate
the difference between the predictions of the previously de-
rived deterministic theory and the actual stochastic outcome
of evolutionary dynamics for finite populations.

For this, we performed computer simulations of the previ-
ously defined model master equation, Eq. (4), characterizing
the dynamics of the individual-based growth-competition
model, by employing an exact Gillespie algorithm
(see Appendix).

Figure 6 illustrates the results for the evolution of a pop-
ulation of size N = 103 and a moderate mutation amplitude,
σ = 10−3, both in the case (A) [Fig. 6(a)] in which a station-
ary monomorphic population is predicted at the deterministic
level (σα > σK ) and in the case (B) [Fig. 6(b)] in which evo-
lutionary branching is deterministically expected to emerge
(σα < σK ), as previously summarized in Fig. 4. The left panels
show that the qualitative behavior agrees with the determinis-
tic predictions; however, there is variability across time, i.e.,
the trajectories are blurred. More specifically, as illustrated
in the right panels, the mean value and the variance exhibit
stochastic fluctuations around their corresponding steady-
state averaged values, which coincide to a good approximation
with the deterministic expectations (red dashed lines) in all
but one of the plots. In the discordant case [i.e., variance in
case (A) of Fig. 6(a)], there are large asymmetric excursions
around certain mean value (blue dashed line) that differs from
the deterministic prediction (red dashed line). Moreover, ob-
serve that the mean value in case (B) of Fig. 6(b) exhibits
fluctuations whose amplitude increases significantly after the
population branches out. We shed light on this in the next
section.

Similarly, Fig. 7 illustrates the system’s evolution for
relatively small population sizes (N = 200 and N = 1000,
respectively) and different mutation amplitude σ (σ = 10−3,
σ = 2 × 10−3, and σ = 5 × 10−3), in the case in which one
(upper panels of Fig. 7) or more (lower panels of Fig. 7)
evolutionary branchings are predicted at a deterministic level
(i.e., for σα = 0.8 and σα = 0.6, respectively, with σK = 1).

The top panels of Fig. 7 (N = 200) reveal that, for small
mutations, σ = 10−3, there is no stable branching, which
implies that the population remains trapped in a fitness mini-
mum. Fluctuations hinder the expected deterministic branch-
ing. By increasing σ to 2 × 10−3 a tentative but “frustrated”
branching appears; i.e., one of the branches becomes extinct
and the remaining one moves back to the origin. Finally, for
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FIG. 6. Results of simulations of the individual-based growth-
competition model in finite populations. Typical realization of the
model dynamics as a function of time for parameter values in the
monomorphic, no-branching phase (upper panels, A) and in the
phase with one branching event (two peaks) (lower panels, B). Each
dot in the left panels corresponds to an individual, thus illustrating the
behavior of the population. Instead, the panels to the right show the
evolution of the mean population trait (top) and its variance (bottom).
The red dashed lines represent the theoretical predictions using Gaus-
sian or Landau theory while the blue one (depicted only for the case
in which the Gaussian approximation clearly fails), includes also
next-to-leading order stochastic correction, as specified by Eq. (56).
Note that, in case (a), the variance shows the typical large and
asymmetric fluctuations characteristic of multiplicative processes
[134,135]. On the other hand, the fluctuations of the mean in case
(b) increase significantly after the branching event as suggested by
Eqs. (56). The model has been simulated using the individual-based
Gillespie algorithm described in detail the Appendix. Parameter
values: N = 103, k = 1, σ = 10−3, σK = 1, and (a) σα = 1.2, (b)
σα = 0.8.

5 × 10−3, the population is able to generate two branches in
a stable way and the two branches seem to keep a constant
distance. Thus, as expected, the larger the system size the
better the predictions of the deterministic theory are fulfilled.

Similarly, the bottom panels of Fig. 7 show results for a
larger population (N = 103) in a case (σα = 0.6 and σK =
1) for which three peaks are deterministically expected to
emerge. For small mutation amplitudes (σ = 10−3), much
as in the previous case, fluctuations frustrate the emergence
of three subpopulations (i.e., the second series of branch-
ings is frustrated) and the system remains in a state with
just two subpopulations (each of them trapped in a fitness
minimum). For larger mutation amplitudes (σ = 2 × 10−3) a
final state with three subpopulations is reached but—on the
contrary of the deterministic predictions [cf. Fig. 3(c)]—the
second branching event branching occurs in an asymmetric
way (only in the leftmost part in this specific realization).
Finally, for even larger amplitudes (σ = 5 × 10−3), a complex
multibranching dynamics appears, where the subpopulations
branch asymmetrically and wander in phenotypic space,

FIG. 7. Typical stochastic trajectories for the individual-based
growth-competition model illustrating finite-population and noise
effects. The evolutionary trajectories of single individuals are plotted
(dots) both for the two-peak phase (σK = 1, σα = 0.8; upper panels,
obtained for N = 200) and the three-peak phase (σα = 0.6; lower
panels, for N = 1000). In the first case, evolutionary branching is not
observed (left) for small mutation amplitudes (σ = 10−3). Branching
becomes stochastic, reversible, or frustrated (in the sense that one
of the branches may become extinct and remaining return to the
central position); this occurs for intermediate values of σ = 2 × 10−3

(upper-central panel) or, alternatively, by slightly increasing N (not
shown). Finally, branching occurs in a stable and reproducible way
(upper-right panel) for larger values of the mutation amplitude σ =
5 × 10−3 (or larger system sizes). A similar phenomenology can be
observed (lower panels) in the three-peak phase (population size
N = 103): for small mutations (lower-left panel) the two branches
are trapped in their corresponding fitness minima and when addi-
tional branchings occur they are frustrated by fluctuations. A stable
state with three subpopulations occurs for intermediate values of σ

(lower-central panel) or larger values of N (not shown) while, finally,
a fluctuating three-peak state appears for larger noise amplitudes.

eventually coalescing or going extinct, but keeping three well-
separated subpopulations, most of the time.

Summing up, demographic fluctuations have a profound
impact on the actual adaptive dynamics that can diverge sig-
nificantly from the expectations of the deterministic theory.
In particular, branching becomes a stochastic phenomenon
dependent on the population size and the mutation amplitude
and can be frustrated if the population is small and/or the
mutations are tiny.

B. Stochastic theory for finite populations

To account for the previously reported deviations from
deterministic behavior, in what follows we present a gener-
alization of our theoretical framework including corrections
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stemming from finite population sizes. These are derived per-
forming a population-size expansion, i.e., a rather standard
procedure in the theory of stochastic processes [102] (see SM
Sec. IV A [105]).

For simplicity, here we present results just for the case
of small, unbiased, and trait-independent mutations (more
general cases are discussed in SM Sec. IV B [105]). Under
these restrictions, as shown in detail in the SM [105], one can
derive the following equation for the density in phenotypic
space ρ(x, t ) [Eq. (7)], that we call stochastic GCK equation:

ρ̇(x, t ) = [ f (x) − f̄ ]ρ(x) + σ 2

2
∂2

x f (x)ρ(x)

+ 1√
N

√
[ f (x) + f̄ ]ρ(x)+σ 2/2∂2

x f (x)ρ(x)ξ (x, t ),

(55)

where ξ is a delta-correlated, zero-mean, unit-variance Gaus-
sian noise (to simplify the notation on the right-hand side
of the equation we have not written the time dependen-
cies of ρ and f ). Note that, in the limit of N → ∞,
ρ(x, t ) → φ(x, t ) and the original GCK equation is recov-
ered. Note that, the square-root functional for in the noise
term is the usual one describing demographic noise in birth-
death processes and stems from the central limit theorem
[102]. Observe also that the stochastic term consists of two
contributions:

(1) The first term [ f (x) + f̄ ]ρ(x) quantifies fluctuations
in reproduction and selection (i.e., is associated with the
replicator-equation part of the GCK equation).

(2) The second term σ 2/2∂2
x f (x)ρ(x) describes fluctua-

tions in mutation events (i.e., is associated with the diffusive
part of the GCK equation).

From Eq. (55), it is possible to derive a couple of Langevin
equations for the evolution of the mean trait value and its
variance, which are the finite-population counterparts of the
deterministic equations Eqs. (33) and (35), respectively:

dt x̄(t ) = f x
1 (x̄)	 + 1√

N

√
f0(x̄)(2	 + σ 2)ηx̄(t ), (56)

dt	(t ) = f x
2 (x̄)	2 + σ 2 f0(x̄) + σ 2 f2(x̄)

2
	

+ 1√
N

√
6 f0(x̄)(	2 + σ 2	)η	 (t ), (57)

where ηx̄ and η	 are zero-mean Gaussian white noises with
correlation proportional to the fitness gradient 〈ηx̄(t )η	 (t ′)〉 ∼
δ(t − t ′) f x

1 (x̄)
√

	 (note that, on the right-hand side of the
equations, we have not written the time-dependencies of
the moments; see SM, Sec. IV B [105] for the detailed
derivation).

Observe that, importantly, the additional noise term in the
equation for the mean-trait value, Eq. (56), grows with the
trait variance 	, explaining why—as illustrated in Fig. 6(b)—
fluctuations increase significantly after a branching event
happens.

On the other hand, the noise in the equation for the vari-
ance, Eq. (57), is proportional to the variance itself, i.e., it
is a multiplicative-noise process [134–136]. This gives rise
to a number of remarkable features. First of all, it explains

the characteristic asymmetric excursions of the trait variance
around its averaged values, observed in Fig. 6(a) (second
panel in the right column). Second, this multiplicative noise
implies that there is an “absorbing state,” meaning that the
variance might become “trapped” in values very close to zero,
from which it is not likely to escape [102,134–137]. Indeed,
as discussed in what follows, this latter effect explains the
existence of “frustrated branching” as observed in the left
panels of Fig. 7.

1. Interpretation in terms of evolutionary potentials

Let us assume that the mean of the trait distribution has
already converged to a given stationary value x̄∗, which allows
one to have a close Langevin equation for the variance, i.e.,
Eq. (57), with x̄t = x̄∗. From such a Langevin equation one
can readily write its equivalent Fokker-Planck equation and,
from it, derive the steady-state probability distribution (see
SM Sec. IV C [105] and Ref. [102]):

P∗(	) ∼ e−NVN (	), (58)

where the effective potential VN (	) is

VN = − 2 f x
2

f0
	 +

(
f x
2 σ 2

f0
+ 1

N
+ 2

)
ln(	 + σ 2)

− 2
N − 1

N
ln( f0	). (59)

The crucial point is that, for finite values of N , the potential
VN (	) exhibits a logarithmic singularity at the origin. In par-
ticular, in the limit of small mutations, σ → 0, the potential
becomes

VN = −2 f x
2

f0
	 + 2

N
ln 	, (60)

revealing the presence of a negative singularity at small 	

(see Fig. 8). The negative singularity at the origin only ex-
ists for σ = 0, while for small values of σ and/or N , there
is a potential well near the origin. As σ and N grow, the
relative weight of the effective potential well near the origin
diminishes and eventually, for sufficiently large sizes and/or
mutation amplitudes, it disappears (see Fig. 8). This implies
that the evolutionary dynamics can become trapped in the
potential well around 	 = 0, which induces possible effects
absent in the deterministic limit. All this stems from the mul-
tiplicative nature of the noise term.

2. The case of deterministic branching

Figure 8(a) shows the potential VN (	) for the growth-
competition model in the case of a relatively small pop-
ulation size N = 200 and for different values of the
mutation amplitude σ (as color coded) for the case in
which evolutionary branching is deterministically expected to
emerge.

The figure clearly shows that the effective potential can
exhibit different shapes (that are better discriminated in loga-
rithmic plots) depending of the noise amplitude σ .

To quantify these possible behaviors, a simple calculation
allows one to determine the number of extreme points of the
potential as well as their location (see SM Sec. IV C [105]).
In particular, one finds that, for large values of N and σ , the
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(a)

(b)

FIG. 8. Effective potential, VN (	) for finite-size populations
(N = 200) and diverse mutation amplitudes. The upper panels (a)
stand for a case in which branching is expected at a deterministic
level (i.e., for large populations), while the lower ones (b) stand for a
case in which a monomorphic population is expected in such a limit.
The left panels show potentials in linear scale while the right ones
show the same potentials in semilogarithmic scale. As the mutation
amplitude σ decreases (as color coded), the potential changes from
a monotonically decreasing shape (where the variance is pushed to
infinity; blue curve) to another shape where a metastable minimum
arises (as can be better appreciated in the semilogarithmic plot; yel-
low curve), and branching may occur in a stochastic way if the barrier
is overcome. Finally, when σ is small, the potential develops a deep
well or absorbing state (orange curve), causing the variance to remain
very small, and the population remains trapped in a fitness minimum.
Similarly, in panel (b), a transition is observed between a potential
with a local minimum, characterizing a monomorphic population
for relatively large values of σ (or N), and a fluctuation-dominated
one. In the latter, the minimum moves progressively closer to zero,
and the potential becomes flatter around it, describing populations
with a small variance and large fluctuations around it. Parameter
values: k = 1.0, σK = 1.0, (a) σα = 0.8 and (b) σα = 1.2. Mutation
amplitudes σ as color coded.

potential is monotonically decreasing and that an intermediate
local maximum emerges approximately at

N∗ ≈ f0(x̄∗)

σ f x
2 (x̄∗)

, (61)

or, in words, when N is smaller than a certain (σ -dependent)
threshold value, N∗, a new “nondeterministic” minimum,
together with a local maximum (barrier), appear in the effec-
tive potential, describing the dynamics of the variance.

Thus, we can categorize the possible potential shapes as
follows:

(1) Deterministic branching. For N > N∗, the potential in
Fig. 8(a) shows a monotonically decreasing curve leading the
system to a diverging variance, much as in the deterministic,
N → ∞ limit. In particular, for large values of 	, the poten-
tial is well approximated by the linear term in Eq. (60), which
is proportional to − f x

2 , leading to a divergence in variance
values (as in the case of deterministic branching, f x

2 > 0).
Thus, this phase is dominated by selection, and demographic
fluctuations are relatively small. At N = N∗ the potential de-
velops a saddle point [light blue curve in Fig. 8(a)].

(2) Stochastic branching. Below the bifurcation point, i.e.,
for N � N∗, the potential exhibits a relative minimum at some
value 	∗

1 (N ) together with a local maximum at 	∗
2 (N ) [yellow

curve in Fig. 8(a)]. Therefore, a “drift barrier” arises between
the low-variance minimum 	∗

1 (N ) and the large-variance
regime (that asymptotically leads to divergence and evolution-
ary branching). Thus, if the variance at the branching point
happens to be small, e.g., if the mutation amplitude is small,
the population remains trapped in the new minimum. How-
ever, fluctuations may drive the population to jump the barrier,
inducing evolutionary branching stochastically. In this regime,
finite-size fluctuations, selection, and mutation act on similar
scales.

(3) Frustrated branching. Finally, if N ≪ N∗, the mini-
mum 	∗

1 (N ) converges to zero.6 In this limit, the potential
converges to Eq. (60), showing a singularity at the origin
and a infinitely high drift barrier between the minimum and
the maximum [see orange curves in Fig. 8(a)]. Thus, in this
regime, there is a trapping point for small variances, similar
to an absorbing state, so that, for small sizes and mutation
amplitudes σ , the probability of stochastically branching be-
comes arbitrarily close to zero. This regime is thus dominated
by drift, and the population cannot diversify.

These three regimes or “phases” are summarized in the
phase diagram depicted in Fig. 9 as a function of σ and
N (note the logarithmic scale). The deterministic-branching
(light blue) and stochastic-branching (yellow) phases are
separated by the critical line N∗(σ ) [continuous line for
computational results and dashed line for the approximated
estimation, Eq. (61)], while the “evolutionary absorbing state”
or “frustrated branching regime,” emerging for σ ≈ 0, is
represented as an orange strip to the rightmost part of the
diagram.

Observe that these different phases match rather well the
computationally observed regimes for the individual-based
simulations reported in Fig. 7(a) (N = 200). In particular, in
the first plot N ≪ N∗ ≈ 2 × 103 and, hence, the population
is trapped in the absorbing state; in the second one
N < N∗ ≈ 103 and the population tries to stochastically
branch but it is ultimately frustrated. Finally, in the rightmost
plot, N � N∗ ≈ 350, the population branches out in a
seemingly stable way, even if with fluctuations.

6This can be seen analytically by Taylor expanding the minimum
value around σ = 0, leading to 	1(N ) ≈ Nσ 2 ≪ 1/N , where in the
inequality we have used σ ≪ f0(x̄∗)/N .
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FIG. 9. Regimes of branching. Phase diagram of the growth-
competition model for arbitrary population sizes N and mutation
amplitude σ . The transition lines separate the different regimes of
branching: deterministic branching (blue), stochastic branching (yel-
low), and frustrated branching or absorbing state (orange). The color
code is as in Fig. 8. The blue region corresponds to determinis-
tic branching; the blue continuous line stands for the critical line
N∗(σ ) at which a (saddle-node) bifurcation occurs (as numerically
determined in simulations); the blue-dashed line represents the ap-
proximation to N∗ given by Eq. (61). By crossing the blue line, the
system enters in the stochastic branching regime, with a metastable
low-variance state. The probability of reaching the branched state
depends on the size of mutations and the height of the barrier.

Before concluding, let us emphasize that the fact the demo-
graphic effects can hinder population diversification is already
known in the context of AD [49,56,64]. However, to the best
of our knowledge, the phenomenon has not been analyzed in
this general mathematical detail nor related to the emergence
of absorbing states and new attractors of the evolutionary
dynamics [134,135,137,138].

3. The case without deterministic branching: Can branching
be induced by fluctuations?

Similarly, in the case in which no branching is expected
at a deterministic level (i.e., f x

2 < 0), one can see [Fig. 8(b)]
that there is always a single minimum [corresponding to the
only solution 	∗

1 (N ) of Eq. (56)], but its associated variance
depends on N and σ . More specifically, for large values of Nσ

the system behaves almost as in the deterministic case but, as
this product decreases, the potential well becomes wider and
wider, allowing for larger variability in allowed values of the
variance (with progressively smaller mean value, though), i.e.,
the population develops large intrinsic diversity and temporal
variability [see Fig. 8(b)]. In particular, this justifies the find-
ings reported in Fig. 7(b) for the individual-based model, for
which the variance was observed to exhibit anomalous large
and asymmetric fluctuations. As a final comment, let us stress
that finite-size fluctuations cannot alter the behavior of the
effective potential for large values of 	, so the answer to the
question Can branching be induced by fluctuations?” is “no,”
except, maybe, in a transient and reversible way, as illustrated
in Fig. 7(a).

VII. CONCLUSIONS AND DISCUSSION

Historically, microbial evolution has been studied us-
ing population genetics. This has been possible owing to

the design of high-precision and long-term evolutionary
experiments providing access to genetic information and
global-fitness measurements of whole (bacterial) popula-
tions [73,139]. Recent studies allowed to generalize classic
population-genetics models to rapid or “contemporary” evolu-
tion [35], as observed in actual microbial populations. On the
other hand, microbial phenotypic eco-evolution—which was
traditionally left aside owing to the difficulties in measuring
single-cell traits [140,141]—has received reinvigorated atten-
tion in recent years [60,142–146] owing to the development of
technological advances allowing one to empirically measure
traits at an individual-cell level [31,88,89] as well as metabolic
functions [90–93].

These novel quantitative empirical descriptions of micro-
bial phenotypic diversity are crucial for the rapidly developing
field of microbial ecology [103,147–150] and call for the
design of comprehensive eco-evolutionary theoretical frame-
works.

This is precisely the problem we aimed to tackle in the
present work. Our goal was to analyze populations, initially
comprising just one species, as a first case study, that can
possibly diversify phenotypically into many different “eco-
types” following an eco-evolutionary dynamics. Extensions to
more complex systems, including more than one species and
interactions between them, are left for future work.

To make progress we develop a framework that heavily
relays on existing ideas in the context of adaptive dynamics
(AD). We also elaborate upon existing theoretical approaches
allowing one to derive macroscopic dynamical equations—as
those described by, e.g., AD—from more microscopic dy-
namical models defined at the level of single individuals and
describing the interactions between them, much as done in
statistical mechanics (some such previous studies are enumer-
ated and briefly discussed in the introduction).

First of all, we defined a microscopic individual-based
model implementing the fundamental processes of death, re-
production, selection, and mutation. By applying a standard
expansion in system (community) size, we first derived a
mean-field or deterministic approach that works in an exact
way for infinitely large populations. The resulting dynamics
allow us to recover the standard theory of AD by imposing
some additional and standard simplifying assumptions (such
as, e.g., small mutation amplitudes). However, our description
is more general because it allows us to describe not just the
evolution of the “mean trait” but the evolutionary dynam-
ics of a whole population in trait space. This dynamics is
encapsulated in a general generalized Crow-Kimura (GCK)
equation (also called the “generalized replicator-mutator”
equation) which remains valid even beyond the previously
mentioned approximations. In particular, it extends standard
similar equations—previously reported in the literature—in
a number of ways as (i) mutations are not necessarily small
(ii) or symmetric and (iii) can be phenotypic-state dependent.
Moreover, the coefficients of the GCK depend on the fitness
function because both selection and mutation are coupled with
reproduction.

To illustrate the generality of our framework, as a first
application, in a recent work [151], our group has tack-
led the problem of the evolution of lag times in bacterial
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populations exposed periodically to antibiotic stress. For this,
we employed a version of the general framework presented
here in which the characteristic trait of individuals was the
time to wake up from a dormant state (i.e., the “lag time”).
Our analyses allowed us to conclude that state-dependent
mutations (where the larger the lag, the larger the variability
of offspring lags) was a necessary ingredient to account for
empirical results [151]. The main message from this is that
unconventional forms of the mutation kernel can have pro-
found eco-evolutionary consequences in the final distribution
of phenotypes, which in turn can have important ecological
implications [151].

Similarly, in order to gain further intuition and to put at
work the developed formalism, here we have also worked
out an explicit example: the “growth-competition model.” It
consists of a simple individual-based model in which single
cells attempt to occupy an externally imposed niche while also
competing among themselves. A detailed study of this model
through the lenses of our theoretical approach allowed us to
uncover different eco-evolutionary phases in which the pop-
ulation diversifies in different ways. In particular, the system
can either give rise to monomorphic populations (no branch-
ing), bimodal populations (on branching event), and, more in
general, phases with an arbitrary number of peaks or ecotypes
(multiple branching events).

In passing, we illustrated that not all the previous results
can be simply explained using the standard (Gaussian) ap-
proximation of AD. For instance, to fully describe the bimodal
case, one needs to consider corrections up to fourth order
in an expansion of the fitness function around its peak. This
resembles what happens in the theory of critical phenom-
ena and phase transitions, where quartic and higher-order
nonlinearities (in a free-energy expansion) need to be pro-
gressively considered to account for more complex (ordered)
phases [119].

Last but not least, we have also developed an extension of
the framework to account for finite populations and derived
an analytical theory that allowed us to describe phenom-
ena such as “stochastic branching,” “frustrated branching,”
“evolutionary absorbing states,” etc.—observed, e.g., in sim-
ulations of specific model—in a mathematically precise way.
This generalized stochastic framework can allow us to study
other fluctuation-driven evolutionary phenomena such as, e.g.,
evolutionary tunneling.

Many exciting possibilities open up as follow-ups of the
present work that, as already stated, is just a first one of a
series.

First, we believe that it is important to use our the-
ory to analyze biologically more structured models, such as
consumer-resource models [59,142,152] where different eco-
logical interactions such as competition, cross-feeding, and
environmental fluctuations may be simultaneously at work. In
particular, environmental fluctuations seem to be the dominant
force shaping the statistics of natural microbial communi-
ties [103,148,153], and little is known about their influence
on evolution [154]. To formulate an eco-evolutionary theory
able to predict the evolution of metabolic functions in such
complex ecological scenarios is a long-term ambitious goal.
Similarly, also the influence of spatial effects is emerging as
extremely important and will need to be studied [155–158].

Second, related to the previous point, we would like to
extend the formalism presented here to systematically account
for environmental fluctuations, that can continuously shift
the “external niche” to which individuals and communities
are exposed and whether population can adapt and possibly
diversify following such a change (see Ref. [159] for related
approaches in AD). In particular, it would be important to an-
alyze the interplay between demographic and environmental
fluctuations on the outcome of eco-evolutionary processes.

Third, to further explore the similarities between evolution-
ary theory and statistical physics we would like to scrutinize
whether more complex fitness landscapes, such as rugged
ones [5–7,160], may lead to chaos [29,161] and/or replica-
symmetry-breaking states [162].

Last but not least, we are currently developing a study
of the nonequilibrium properties of evolution, such as en-
tropy production, within our framework. This enables us to
quantify “evolutionary irreversibility” at both microscopic
and macroscopic levels, complementing recent and exciting
results [163–166].

Of course, many other items could be added to the previous
list of future directions, but we believe it suffices to illustrate
the idea that the present work contributes toward the devel-
opment of a well-grounded and fertile theoretical framework
to describe phenotypic evolution and complex diversification
phenomena, with many potential applications in microbial
ecology.
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APPENDIX: SIMULATION ALGORITHM

To simulate exactly and efficiently the microscopic master
equation (4) for the growth-competition model, we imple-
mented the exact Gillespie algorithm as follows: Consider N
individuals at time t0:

(1) The fitness function of all individuals is calculated as
the weighted sum over the interaction with all the population

fi(x) =
N∑

j=1, j �=i

f (xi, x j )

N − 1
(A1)

for all i. The reproduction probabilities for the different indi-
viduals are calculated as qi = fi(x)/[

∑N
i=1 fi(x)].
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(2) A random uniform distributed number χ ∈ [0, 1] is
generated to calculate the time interval for the next event:

δt = − log χ

/
N∑

i=1

fi(x) . (A2)

(3) A random uniform distributed number η ∈ [0, 1] is
generated and using a standard search algorithm the value
of i such that qi < η � qi+1 is found and the corresponding
individual i is chosen for reproduction.

(4) Another individual, say j, is randomly chosen with
homogeneous probability and is removed from the population.

Hence, individual j is replaced by the offspring of individual
i. Its new trait x̃ j is the mother’s trait xi plus a random mutation
δ j sampled from a given distribution βxi (δ), i.e.,

x̃ j = xi + δ j . (A3)

(5) Time is updated to t0 = t + δt . The fitness function of
all individuals is updated.

(6) The process is iterated until a steady-state distribution
of traits in phenotypic space is reached and the stationary
distribution and its moments are measured.
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