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The two-Higgs doublet model (2HDM) is a well understood alternative to the Standard Model of particle
physics. If the new particles included in the 2HDM are at an energy scale much greater than the weak scale,
the theory can be matched to the Standard Model effective field theory (SMEFT). We compute for the first
time the complete one-loop matching at dimension-6. We compare its numerical impact with that of tree-
level matching at dimension-8 by performing a global fit to single Higgs and precision electroweak
measurements, and we emphasize the importance of comparing one-loop SMEFT results with corre-
sponding one-loop results in the full 2HDM model. In the SMEFT, we consider the relative importance of
both one-loop matching and the inclusion of renormalization group evolution. Our results demonstrate the
necessity of studying the impact of various expansions to quantify the uncertainties of the SMEFT
matching.
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I. INTRODUCTION

Since the observation at the LHC of a light Higgs boson
with properties approximately those predicted by the
Standard Model (SM), much of the focus has turned to
searches for new physics at higher energy scales. These
studies follow a two pronged approach: one either searches
directly for heavy new particles that are typically predicted
in extensions of the SM, or uses an effective field theory
(EFT) framework to look for weak scale manifestations of
the new physics. Here we follow the second alternative,
resorting to the Standard Model effective field theory
(SMEFT) (for reviews, see Refs. [1,2]). The SMEFT
contains an infinite tower of higher-dimensional SUð3Þc ×
SUð2ÞL × Uð1ÞY invariant operators,1

LSMEFT ¼ LSM þ
X
i

CiOi

Λ2
þ
X
j

CjOj

Λ4
þ � � � ; ð1Þ

where LSM is the renormalizable SM Lagrangian, Λ is the
scale of some conjectured ultraviolet (UV) complete model
and the Ci are usually known as Wilson coefficients (WCs).
In any given model of UV physics, the WCs can be
calculated in terms of the model parameters.
The goal of the SMEFT program is to experimentally

observe a pattern of nonzero WCs, and thus infer features
of the physics at the high scale. It is then of paramount
importance to investigate how well the WCs can replicate
the UV physics at low energy scales. A usual strategy is to
flip the problem upside down, by starting from a particular
UV model, and by performing the matching between that
model and the SMEFT [3–8]. Although a tree-level
matching with dimension-6 operators is the obvious first
step, it is clear that there are scenarios where this is
insufficient [9–16]. Improvements have been made either
in the direction of increasing the dimension [17–20], or in
the direction of one-loop matching [5,6,21–24]. The com-
plexity of the matching procedure and interpretation of data
increases with each of these improvements. A relevant
question is then: which of these directions is necessary to
quickly approach the UV model using the SMEFT
approach?
We address this question by considering the two-Higgs

doublet model (2HDM) [25] with a softly broken Z2

symmetry. This model is an excellent test case, since the
tree-level matching to the SMEFT up to dimension-8 is
known [18], and the phenomenological consequences of
the full 2HDM model are well studied [26,27]. The
matching procedure of a UV model like the 2HDM to
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1We are assuming lepton and baryon number conservation,
which means we only keep operators of even mass dimension.
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the SMEFT mainly follows two approaches: diagrammatic
and functional methods.2 The diagrammatic approach
involves the computation of amplitudes in the UV and in
the EFT, and solving for WCs in terms of the new physics
couplings. The functional methods proceed with the
computation of effective action formulas, defined by the
covariant derivatives and the new physics interactions. Both
methods involve lengthy and cumbersome mathematics,
where automatization can help immensely. Currently, there
are four packages that facilitate automated SMEFT match-
ing: MATCHINGTOOLS [31], CODEX [32], MATCHMAKEREFT

[33] and MATCHETE [34].
In this work, we perform the complete one-loop match-

ing of the 2HDM to the SMEFT with dimension-6
operators, using the packages MATCHMAKEREFT and
MATCHETE. We create an implementation of the 2HDM
for these software packages, and check that their results
agree. The results of these two codes have been checked to
agree in many other scenarios, including Higgs singlet
model [6], vectorlike lepton extension of the SM [34], type-
III seesaw model [24] and a lepto-quark model [35]. We
also use MATCHETE to calculate the tree-level dimension-8
WCs, by exploiting the capacity of this software to create
and solve effective action terms [36] at arbitrary mass-
dimension, without additional inputs from the users. The
WCs which are generated at tree-level (both dimension-6
and dimension-8) and which are relevant for this study fully
agree with those of Ref. [18].
Here, we are interested in using the 2HDM to test the

quality of SMEFT matchings. Specifically, we compare
the numerical importance of one-loop matching with
dimension-6 operators, on the one hand, and tree-level
matching with dimension-8 operators, on the other. This we
do by examining both precision electroweak and single
Higgs measurements. It is of particular importance to
compare the SMEFT one-loop matched results to predic-
tions for observables in the full 2HDM that are also
computed to one-loop [37,38]. A similar study performed
for a Higgs singlet model found that the effects of the one-
loop dimension-6 matching in that case were small [39].
The paper is organized as follows. In Sec. II, we briefly

summarize the 2HDM in order to set notation, andwe discuss
the constraints on the parameters of the model. Section III is
devoted to thematching between the 2HDMand the SMEFT;
we discuss how decoupling can be used to perform a
consistent expansion, and present details of both the tree-
level matching up to dimension-8 operators and the one-loop
matching. We present our numerical results in Sec. IV,
discussing fits for electroweak precision observables
(EWPOs) first, and to Higgs signal strengths afterward.
We compare numerical results obtained using various
SMEFT and loop expansions. Section V contains some

conclusions along with a discussion of future directions for
study. Some appendices complement the main text:
Appendix A contains formulas in the 2HDM, Appendix B
contains the one-loop matching results relevant for our
analyses, and Appendix C provides details on the fits.
Details of our 2HDM implementation of MATCHMAKEREFT

and MATCHETE can be found in the auxiliary material [40].

II. 2HDM

A. The model

For this review of the 2HDM, we follow Ref. [18]
closely (for more details, cf. Refs. [26,27,41]). The model
contains a second scalar doublet Φ2 along with the SM
scalar doublet Φ1, with real vacuum expectation values
(vevs) v2=

ffiffiffi
2

p
and v1=

ffiffiffi
2

p
, respectively. A softly broken Z2

symmetry is imposed on the potential, under which the
scalar doublets transform as Φ1 → Φ1 and Φ2 → −Φ2. It is
convenient to rotate the fields to the Higgs basis, with
doublets H1 and H2:�

H1

H2

�
¼

�
cβ sβ
−sβ cβ

��Φ1

Φ2

�
; ð2Þ

where we introduced the short notation sx ≡ sin x,
cx ≡ cos x, and tan β ¼ v2=v1. This implies that, in
the Higgs basis, only H1 has a vev, v=

ffiffiffi
2

p
, with v ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v21 þ v22
p

¼ 246 GeV.
We focus on two terms of the Lagrangian, L2HDM ⊃

LY − V (representing the Yukawa terms and the potential,
respectively), and we write them both in the Higgs basis.
The Z2 symmetry is extended to the fermions in order to
avoid flavor changing neutral currents at tree-level. There
are four possibilities for such an extension, leading to four
types of 2HDM: type-I, type-II, type-L and type-F. We
write LY as:

LY ¼ −Yuq̄LH̃1uR − Ydq̄LH1dR − Yel̄LH1eR

−
ηuYu

tan β
q̄LH̃2uR −

ηdYd

tan β
q̄LH2dR

−
ηeYe

tan β
l̄LH2eR þ H:c:; ð3Þ

where H̃i ¼ iσ2H�
i and where we suppress generation

indices on the left-handed SUð2ÞL doublets qL and lL,
and on the right-handed SUð2ÞL singlets uR, dR and eR. The
Yukawa matrices are related to the fermion mass matrices
via Yf ¼ ffiffiffi

2
p

Mf=v, where f represents any type of fer-
mion: up-type (u) and down-type (d) quarks and charged
leptons (e). Here, Mf represents a 3 × 3 matrix in flavor
space, whose singular values are the masses mf of the
fermions of type f. Finally, the parameters ηf specify the
type of 2HDM and are given in Table I.

2In recent studies, the on-shell amplitude methods are also
being developed, see Refs. [28–30].
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As for the potential, we write it as:

V ¼ Y1H
†
1H1 þ Y2H

†
2H2 þ ðY3H

†
1H2 þ H:c:Þ

þ Z1

2
ðH†

1H1Þ2 þ
Z2

2
ðH†

2H2Þ2

þ Z3ðH†
1H1ÞðH†

2H2Þ þ Z4ðH†
1H2ÞðH†

2H1Þ

þ
�
Z5

2
ðH†

1H2Þ2 þ Z6ðH†
1H1ÞðH†

1H2Þ

þ Z7ðH†
2H2ÞðH†

1H2Þ þ H:c:

�
: ð4Þ

The parameters Y3, Z5, Z6, Z7 are in general complex,
whereas the remaining ones are real. In this paper, we
assume the particular case in which Y3, Z5, Z6, Z7 only
take real values.3 This implies CP conservation at the tree-
level in the scalar sector, in which case the doublets can be
written as

H1 ¼
� Gþ

1ffiffi
2

p ðvþ hH1 þ iG0Þ
�

H2 ¼
� Hþ

1ffiffi
2

p ðhH2 þ iAÞ
�
; ð5Þ

where hH1 ; h
H
2 ; G0 and A are real fields and Gþ; Hþ are

complex fields. The mass matrix for hH1 and hH2 can be
diagonalized with a mixing angle α,�

h

H

�
¼

�
sβ−α cβ−α
cβ−α −sβ−α

��
hH1
hH2

�
; ð6Þ

where h and H are the neutral scalar mass states, with h
being the 125 GeV scalar that is observed at the LHC. We

assume 0 ≤ β − α ≤ π, so that sβ−α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2β−α

q
> 0.

Finally, defining the masses of h, H, A and Hþ to be
mh, mH, mA, and mHþ , respectively, we take the following
parameters as independent:

cβ−α; β; v; mf;mh; Y2; mH;mA;mHþ : ð7Þ

Expressions for Y1 and Y3, along with the Zi parameters of
Eq. (4), are given in Appendix A in terms of the parameters
of Eq. (7).

B. Constraints on the parameters

The 2HDM is limited by a number of theoretical
constraints which all push the allowed parameters toward
the alignment limit, cosðβ − αÞ ¼ 0. These constraints do
not involve the fermion couplings (at tree-level) and so
apply to all the types of 2HDMs studied here. The limits
from perturbativity require that the scalar quartic couplings
be less than 4π, while perturbative unitarity of the 2 → 2
scalar scattering processes in the high energy limit requires
that the eigenvectors of the scattering matrix be less than 8π
[43]. Finally, there is the requirement that the potential be
bounded from below [44], which is essentially the require-
ment that the quartic couplings be positive. These con-
straints, taken together, imply that there is very little
allowed parameter space away from the cosðβ − αÞ → 0
limit (as will be seen later explicitly in Fig. 4).
There are significant experimental constraints on the

scalar sector of the 2HDM coming from B meson decays.
For types-I, L and F, the charged Higgs contribution to
b → sγ requires tan β > 1.2, while for type-II it requires
mHþ > 600 GeV for all values of tan β [45]. The type-II
model has the further restriction from B → μþμ− that, for
mHþ ∼ 1 TeV, we must have tan β ≲ 25.

III. MATCHING

In this section, we discuss the matching between the
SMEFT and the 2HDM.4 We start by briefly discussing the
procedure in Sec. III A, focusing on the notion of decou-
pling, and we establish our conventions in Sec. III B. We
then present the matching equations: in Sec. III C for the
tree-level matching, and in Sec. III D (and Appendix B) for
the one-loop matching. Finally, we describe in Sec. III E
relations between quantities in the SMEFT.

A. Matching with decoupling

To obtain the matching (at both tree-level and one-loop),
one starts with the 2HDM before spontaneous symmetry
breaking (SSB). The dimensionful parameter Y2, as defined
in the Higgs basis, is assumed to be very large. The heavy
degrees of freedom are then integrated out, leading to an
effective Lagrangian corresponding to an expansion in
inverse powers of Y2. This parameter is thus identified
with the SMEFT mass scale squared Λ2, and the matching
equations establish a relation between the SMEFT coef-
ficients and the parameters of Eqs. (3) and (4). Note that
this assumes that Y2 is the only large parameter.

TABLE I. Values of the parameter ηf for the different types of
2HDM models and for the different types of charged fermions.

Type-I Type-II Type-L Type-F

ηu 1 1 1 1
ηd 1 − tan2 β 1 − tan2 β
ηe 1 − tan2 β − tan2 β 1

3This assumption is usually understood as defining a model,
known as the real 2HDM. Reference [42] argues that the real
2HDM might not be a fully consistent theory.

4Concerning the matching between an EFT and the 2HDM,
cf. Refs. [4,10,46–54].
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It is then convenient to rewrite the matching equations in
terms of the parameters of Eq. (7). To that end, one needs to
specify how each one of those parameters scale. This can be
done resorting to the notion of the decoupling limit of the
2HDM [27,51,53–57], which takes the mass states H, A
and Hþ to be heavy. This is a reasonable scenario, as the
EFTwill in general not be applicable if at least one of those
states is light [48]. Moreover, it is only when these non-SM
states decouple that the SM can be approximated by an
EFT. As we mentioned, the decoupling limit establishes a
scaling for the parameters of Eq. (7); we follow Ref. [51] to
characterize that limit as:

Y2 ¼ Λ2; m2
H ¼ Λ2 þ Δm2

H;

m2
A ¼ Λ2 þ Δm2

A; m2
Hþ ¼ Λ2 þ Δm2

Hþ ; ð8aÞ

Λ2≫ v2; m2
h∼Oðv2Þ;

Δm2
H;Δm2

A;Δm2
Hþ ∼Oðv2Þ; cβ−α∼Oðv2=Λ2Þ; ð8bÞ

where theΔm2 parameters (Δm2
H,Δm2

A andΔm2
Hþ) are real,

and where the symbol∼ denotes scaling. As in Ref. [51], we
find it convenient to introduce an auxiliary dimensionless
parameter ξ. This is a small quantity that we use to organize
the expansion, such that v2=Λ2 ∼ cβ−α ∼OðξÞ, which we
implement in our codes by the replacements

1

Λ2
→

ξ

Λ2
; cβ−α → ξcβ−α; ð9Þ

with all other parameters being of Oðξ0Þ. Therefore, when
writing the matching relations between the SMEFT coef-
ficients and the parameters of Eq. (7), instead of taking into
account simply the heavy scale Λ, we take into account both
Λ and cβ−α by performing an expansion in powers of ξ. Note
that the expansion is only formally consistent if cβ−α is small
(i.e. close to the alignment limit, cβ−α ¼ 0).

B. Conventions

We write the SMEFT Lagrangian matched to the
2HDM as:

Lmatched
SMEFT ¼ LSM þ L½t�

6 þ L½l�
6 þ L8 þOðΛ−6Þ; ð10Þ

where L½t�
6 , L

½l�
6 and L8 represent the set of terms containing

dimension-6 operators generated via tree-level matching,
the set containing dimension-6 operators generated via one-
loop matching and the set containing dimension-8 oper-
ators generated via tree-level matching, respectively.5 We

follow the Warsaw basis conventions [60] for dimension-6
operators and those of Murphy [13] for dimension-8
operators. We also use the superscripts [t] and [l] for the
SMEFT coefficients of dimension-6 operators of the
Warsaw basis which are generated in both the tree-level
and the one-loop matchings6; if Ox is one such operator,
we have:

Lmatched
SMEFT ⊃

CxOx

Λ2
¼ C½t�

x Ox

Λ2
þ C½l�

x Ox

Λ2
: ð11Þ

In this way, C½t�
x (C½l�

x ) represents the component of the
dimension-6 SMEFT coefficient generated via tree-level

(one-loop) matching and is included inL½t�
6 (L½l�

6 ).We present

L½t�
6 and L8 in Sec. III C, leaving L½l�

6 to Section III D.
Besides the parameters of Eq. (7) [subject to Eq. (8a)],

we take as our input parameters mW , mZ, and GF
(representing the W-boson mass, the Z-boson mass and
the Fermi constant, respectively), and give all results in
terms of these parameters. We define ϕ as the SMEFT
Higgs doublet. In our results, we consider terms up to
Oðξ2Þ. We assume loop factors to be of the same order as
OðξÞ, which means we consistently neglect loop generated
terms which are Oðξ2Þ.
By default, we write the WCs and the fermion operators

in a generation-independent way. Whenever it is relevant to
specify generations, we do it by writing them in a subscript,
separated from any previous subscript by a comma. In the
tree-level matching, we do not write the contributions from
operators with leptons (which are trivially obtained from
those with down-type quarks), and also omit the contri-
butions from 4-fermion operators (which are not relevant
for our analyses). As for the loop matching, the operators

Oð3Þ
ϕl ≡ ðϕ†iD

↔
I
μϕÞðl̄LτIγμlLÞ and Oll ¼ ðl̄LγνlLÞðl̄LγνlLÞ

are generated, and contribute to the relation between GF
and the SMEFT vev.7 We assume flavor universality in the
generations involved; accordingly, we define operators with
bold subscripts such that:

Cð3Þ
ϕl;11ðϕ†iD

↔
I
μϕÞðl̄L;1τIγμlL;1Þ

þ Cð3Þ
ϕl;22ðϕ†iD

↔
I
μϕÞðl̄L;2τIγμlL;2Þ

≡ 2Cð3Þ
ϕl ðϕ†iD

↔
I
μϕÞðl̄LτIγμlLÞ; ð12Þ

5We do not consider dimension-8 operators generated via one-
loop matching [58,59].

6We use superscripts [t] and [l] instead of the conventional (0)
and (1) to prevent any potential confusion with the names of the
SMEFT WCs.

7Oll is also generated via tree-level matching, but it is
neglected there as it multiplies masses of light leptons. This is
not the case in the loop matching, so that we keep the operator in
that case. The τ’s represent Pauli matrices.
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and

Cll;1221ðl̄L;1γνlL;2Þðl̄L;2γνlL;1Þ þ H:c:

¼ Cll;1221ðl̄L;1γνlL;2Þðl̄L;2γνlL;1Þ
þ Cll;2112ðl̄L;2γνlL;1Þðl̄L;1γνlL;2Þ

≡ 2Cllðl̄LγνlLÞðl̄LγνlLÞ; ð13Þ

where in the last equalities we take only a single choice of
generation indices and do not sum over them.

C. Tree-level matching

The tree-level matching relations up to dimension-8
SMEFToperators were obtained in Ref. [18]. However, that

reference considered the case Δm2
H ¼ Δm2

A ¼ Δm2
Hþ ¼ 0.

Here we consider the general case where these parameters

can be nonzero. The dimension-6 Lagrangian, L½t�
6 , of

Eq. (10) is [18]:

L½t�
6 ¼ C½t�

ϕ

Λ2
ðϕ†ϕÞ3 þ

�
C½t�
uϕ

Λ2
ðϕ†ϕÞq̄LuRϕ̃

þ C½t�
dϕ

Λ2
ðϕ†ϕÞq̄LdRϕþ H:c:

�
þ 4F; ð14Þ

where 4F represents 4-fermion operators.8 The matching
equations are

C½t�
ϕ

Λ2
¼ 2G2

Fc
2
β−αΛ2 þ 8G2

Fc
2
β−αðΔm2

H −m2
hÞ; ð15aÞ

C½t�
uϕ

Λ2
¼−

2ffiffiffi
2

p ð
ffiffiffi
2

p
GFÞ3=2

cβ−α
tanβ

ηumu−
cβ−αmuð

ffiffiffi
2

p
GFÞ3=2ffiffiffi

2
p

Λ2

�
cβ−αΛ2þ 2ηu

tanβ
ð2Δm2

H−3m2
hÞ
�
; ð15bÞ

C½t�
dϕ

Λ2
¼−

2ffiffiffi
2

p ð
ffiffiffi
2

p
GFÞ3=2

cβ−α
tanβ

ηdmd−
cβ−αmdð

ffiffiffi
2

p
GFÞ3=2ffiffiffi

2
p

Λ2

�
cβ−αΛ2þ 2ηd

tanβ
ð2Δm2

H−3m2
hÞ
�
: ð15cÞ

where mf represents the mass of fermion of type f (recall
Sec. II A). We see that, besides the 4-fermion operators,
only 2 kinds of dimension-6 operators are generated, Oϕ

andOfϕ. In particular, the dimension-6 SMEFT matched at
tree-level with the 2HDM has no information about the
2HDM interaction between the Higgs and gauge bosons.
As for the Yukawa interactions, the coefficients of Ofϕ are
proportional tomf and depend on the type of 2HDM via the
parameters ηf. We also note that, even though the WCs of
Eq. (15) are generated immediately at Oðξ1Þ, they have
Oðξ2Þ corrections [which can be seen by comparing the

expressions of that equation with Eqs. (8) and (9)]; this
happens in such a way that it is only at Oðξ2Þ that the Δm2

corrections show up. Finally, the WCs of Eq. (15) are
computed at the scale Λ. Renormalization group evolution
(RGE) can be used to evolve the coefficients to the weak
scale [61–63]. As mentioned above, we consistently work
to Oðξ2Þ, and assume that loop factors are equivalent to an
additional factor of OðξÞ. This means that only the RGE of
the Oðξ1Þ terms of Eq. (15) are included (in Fig. 4, we will
demonstrate that this effect is numerically small).
The dimension-8 Lagrangian, L8, of Eq. (10) is [18]:

L8 ¼
Cϕ8

Λ4
ðϕ†ϕÞ4 þ

Cð1Þ
ϕ6

Λ4
ðϕ†ϕÞ2ðDμϕÞ†ðDμϕÞ þ

�
Cquϕ5

Λ4
ðϕ†ϕÞ2q̄LuRϕ̃þ

Cð1Þ
quϕ3D2

Λ4
ðDμϕÞ†ðDμϕÞq̄LuRϕ̃

þ
Cð2Þ
quϕ3D2

Λ4
½ðDμϕÞ†τIðDμϕÞ�½q̄LuRτIϕ̃� þ

Cð5Þ
quϕ3D2

Λ4
½ðDμϕÞ†ϕ�½q̄LuR gDμϕ� þ Cqdϕ5ðϕ†ϕÞ2qLdRϕ

þ
Cð1Þ
qdϕ3D2

Λ4
ðDμϕÞ†ðDμϕÞq̄LdRϕþ

Cð2Þ
qdϕ3D2

Λ4
½ðDμϕÞ†τIðDμϕÞ�½q̄LdRτIϕ�

þ
Cð5Þ
qdϕ3D2

Λ4
ðϕ†DμϕÞðq̄LdRDμϕÞ þ H:c:

�
þ 4F; ð16Þ

8As discussed above, we omit the contributions from operators with leptons in the tree-level matching; they are trivially obtained from
those with down-type quarks.
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with:

Cϕ8

Λ4
¼ 2c2β−αð

ffiffiffi
2

p
GFÞ3ðm2

h − Δm2
HÞ; ð17aÞ

Cð1Þ
ϕ6

Λ4
¼ −c2β−αð

ffiffiffi
2

p
GFÞ2; ð17bÞ

Cquϕ5

Λ4
¼

ffiffiffi
2

p
cβ−αmuð

ffiffiffi
2

p
GFÞ5=2

Λ2

×

�
cβ−αΛ2 þ ηu

tan β
ð2Δm2

H − 3m2
hÞ
�
; ð17cÞ

Cð1Þ
quϕ3D2

Λ4
¼ 3

ffiffiffi
2

p
cβ−αmuð

ffiffiffi
2

p
GFÞ3=2ηu

tan βΛ2
; ð17dÞ

Cð2Þ
quϕ3D2

Λ4
¼ −

ffiffiffi
2

p
cβ−αmuð

ffiffiffi
2

p
GFÞ3=2ηu

tan βΛ2
; ð17eÞ

Cð5Þ
quϕ3D2

Λ4
¼ 2

ffiffiffi
2

p
cβ−αmuð

ffiffiffi
2

p
GFÞ3=2ηu

tan βΛ2
; ð17fÞ

Cqdϕ5

Λ4
¼

ffiffiffi
2

p
cβ−αmdð

ffiffiffi
2

p
GFÞ5=2

Λ2

×

�
cβ−αΛ2 þ ηd

tan β
ð2Δm2

H − 3m2
hÞ
�
; ð17gÞ

Cð1Þ
qdϕ3D2

Λ4
¼ 3

ffiffiffi
2

p
cβ−αmdð

ffiffiffi
2

p
GFÞ3=2ηd

tan βΛ2
; ð17hÞ

Cð2Þ
qdϕ3D2

Λ4
¼

ffiffiffi
2

p
cβ−αmdð

ffiffiffi
2

p
GFÞ3=2ηd

tan βΛ2
; ð17iÞ

Cð5Þ
qdϕ3D2

Λ4
¼ 2

ffiffiffi
2

p
cβ−αmdð

ffiffiffi
2

p
GFÞ3=2ηd

tan βΛ2
: ð17jÞ

Note that the number of dimension-8 operators which are
generated at tree-level andwhich are relevant for our analyses
is not very large. Information about the 2HDM interactions
between theHiggs and gauge bosons appears via the operator

Oð1Þ
ϕ6 . As in the case of dimension-6 operators, the only Δm2

corrections that contribute are those of Δm2
H.

D. One-loop matching

The complete one-loop matching between the 2HDM
and the SMEFT with dimension-6 operators is presented
here for the first time. Partial results were already derived in
Ref. [64]; we checked that our results are consistent with
those of that reference. We use the codes MATCHMAKEREFT

and MATCHETE. Both software packages yield their results
in the Green’s basis of Ref. [33] (up to integration by parts
and Fierz relations), such that the comparison can be easily
done in this basis. We confirm that the results agree.
MATCHMAKEREFT also provides the results in the Warsaw
basis [60] (which is the basis we follow in this paper to
write the operators of dimension-6). The full results (in
both bases) are contained in the auxiliary files [40]. Here,
we show only the operators in the Warsaw basis that
contribute to electroweak precision observables at LO in
the SMEFT [65], as well as to the leading contributions to
Higgs production and decay9:

L½l�
6 ⊃

CϕW

Λ2
ðϕ†ϕÞWI

μνWIμν þ CϕB

Λ2
ðϕ†ϕÞBμνBμν þ CϕWB

Λ2
ðϕ†τIϕÞWI

μνBμν

þ C½l�
ϕ

Λ2
ðϕ†ϕÞ3 þ Cϕ□

Λ2
ðϕ†ϕÞ□ðϕ†ϕÞ þ CϕD

Λ2
ðϕ†DμϕÞ⋆ðϕ†DμϕÞ

þ Cϕu

Λ2
ðϕ†iD

↔

μϕÞðūRγμuRÞ þ
Cϕd

Λ2
ðϕ†iD

↔

μϕÞðd̄RγμdRÞ þ
Cϕe

Λ2
ðϕ†iD

↔

μϕÞðēRγμeRÞ

þ Cð1Þ
ϕq

Λ2
ðϕ†iD

↔

μϕÞðq̄LγμqLÞ þ
Cð3Þ
ϕq

Λ2
ðϕ†iD

↔
I
μϕÞðq̄LτIγμqLÞ

þ Cð1Þ
ϕl

Λ2
ðϕ†iD

↔

μϕÞðl̄LγμlLÞ þ
Cð3Þ
ϕl

Λ2
ðϕ†iD

↔
I
μϕÞðl̄LτIγμlLÞ þ

Cll

Λ2
ðl̄LγμlLÞðl̄LγμlLÞ

þ
�
C½l�
uϕ

Λ2
ðϕ†ϕÞq̄LuRϕ̃þ C½l�

dϕ

Λ2
ðϕ†ϕÞq̄LdRϕþ C½l�

eϕ

Λ2
ðϕ†ϕÞl̄LeRϕþ H:c:

�
: ð18Þ

9As usual, we omit generation indices, and we follow Eq. (11) by including the superscript [l] in those dimension-6 WCs that are also
generated via tree-level matching.
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The one-loop matching contributions to these coefficients
are presented in Appendix B.

E. SMEFT relations

Now that all the terms in Eq. (10) have been specified,
there are only two tasks required to perform calculations
in the SMEFT (more specifically, in the SMEFTmatched to
the 2HDM): to write the relevant dependent parameters in
terms of the independent ones, and to ensure that the fields
are canonically normalized. These two tasks were already
described in detail in Ref. [18], but considering only tree-
level matching. Here we extend that discussion to include
loop-generated SMEFT dimension-6 operators. Note that
we only include the SMEFToperators which are relevant to
our analyses, and which were discussed in Secs. III C
and III D.

The relevant dependent parameters are those occurring in
our calculations, namely ḡ2; vT and Yf. Here, ḡ2 is the
SU(2) gauge coupling occurring in Lmatched

SMEFT , while vT is the
vev contained in the SMEFT Higgs doublet,

ϕ ¼
� Gþ

S̄

1ffiffi
2

p ðvT þ hS̄ þ iG0;S̄Þ
�
; ð19Þ

with hS̄, G0;S̄ and Gþ
S̄ being the SMEFT Higgs field, and

neutral and charged would-be Goldstone bosons, respec-
tively. We determine ḡ2 and vT from muon decay and from
the expression for the mass of the W-boson in Lmatched

SMEFT . We
find [18,66]:

vT ¼ 1

ð ffiffiffi
2

p
GFÞ1=2

þ 2Cð3Þ
ϕl − Cll

2Λ2ð ffiffiffi
2

p
GFÞ3=2

þ 1

8ð ffiffiffi
2

p
GFÞ5=2Λ4

½16ðCð3Þ
ϕl Þ2 − 12Cð3Þ

ϕl Cll þ 3ðCllÞ2 − Cð1Þ
ϕ6 � ð20Þ

and

ḡ2 ¼ 2
mW

vT
¼ 2mWð

ffiffiffi
2

p
GFÞ1=2 þ

mWðCll − 2Cð3Þ
ϕl Þ

Λ2ð ffiffiffi
2

p
GFÞ1=2

þ
mWðCð1Þ

ϕ6 − 8ðCð3Þ
ϕl Þ2 þ 4Cð3Þ

ϕl Cll − ðCllÞ2Þ
4Λ4ð ffiffiffi

2
p

GFÞ3=2
: ð21Þ

Finally, Yf is determined from the fermion mass in Lmatched
SMEFT . For the up-type quarks, we find [18,66]10:

Yu ¼
ffiffiffi
2

p
Muð

ffiffiffi
2

p
GFÞ1=2 þ

1

2Λ2ð ffiffiffi
2

p
GFÞ

½Cuϕ þ
ffiffiffi
2

p
Muð

ffiffiffi
2

p
GFÞ1=2ðCll − 2Cð3Þ

ϕl Þ�

þ 1

8Λ4ð ffiffiffi
2

p
GFÞ2

f2Cquϕ5 þ 8Cð3Þ
ϕl Cuϕ − 4CllCuϕ þ

ffiffiffi
2

p
Muð

ffiffiffi
2

p
GFÞ1=2½Cð1Þ

ϕ6 − 8ðCð3Þ
ϕl Þ2 þ 4Cð3Þ

ϕl Cll − ðCllÞ2�g: ð22Þ

Concerning the second task referred to above, hS̄ does not have a canonically normalized kinetic term. To fix this, we
define the Higgs field h with canonically normalized kinetic term, such that:

hS̄ ¼ h

�
1þ v2T

4Λ2
ð4Cϕ□ − CϕDÞ þ

v4T
32Λ4

½3ðCϕD − 4Cϕ□Þ2 − 4Cð1Þ
ϕ6 �

�
; ð23Þ

which can be rewritten using Eq. (20) as:

hS̄ ¼ h

�
1þ 1

4
ffiffiffi
2

p
GFΛ2

ð4Cϕ□ − CϕDÞ þ
1

64G2
FΛ4

½−4Cð1Þ
ϕ6 þ ð4Cϕ□ − CϕDÞð12Cϕ□ − 3CϕD þ 16Cð3Þ

ϕl − 8CllÞ�
�
: ð24Þ

IV. NUMERICAL RESULTS

In this section, we present our numerical results. We start
by discussing fits to EWPOs in Sec. IVA, after which we
present fits to Higgs observables in Sec. IV B. Our fits are

performed not only in the context of the full 2HDM, but
also in that of the SMEFT matched to the 2HDM. This
allows us to compare both these approaches with the
experimental results. More relevant for our purposes, it
also allows us to compare the two approaches with one
another, and thus investigate the quality with which the
different SMEFT truncations replicate the full 2HDM
results.

10The expressions for Yd and Ye are found trivially from
Eq. (22).
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A. Electroweak precision observables

The observables related to precision electroweak data
that we consider (defined, e.g., in Ref. [67]) are

mW;ΓW;ΓZ; σh; Re; AFB;l; Rb; Rc; AFB;b; AFB;c; Ab; Ac; Ae:

ð25Þ

To study the numerical effects for the SMEFT matched to
the full 2HDM, we start by using the experimental results
and the most accurately available SM predictions for the
observables of Eq. (25) that are given in Table III of
Ref. [68]. We then determine the allowed deviations from
the SM predictions in the SMEFT, using the 2HDM
matched results of Sec. III and calculating observables
to leading order (LO) in the SMEFT.
There are ten dimension-6 operators (defined in

Ref. [60]) contributing to the observables of Eq. (25) at
leading order [65]:

Cll; CϕWB; CϕD; Cϕe; Cϕu; Cϕd; C
ð1Þ
ϕq ; C

ð3Þ
ϕq ; C

ð1Þ
ϕl ; C

ð3Þ
ϕl : ð26Þ

When we consider the particular case of the SMEFT
matched to the 2HDM, we see from Sec. III that none of
the dimension-6 operators generated via tree-level matching
[Eq. (14)] coincide with those of Eq. (26).11 Moreover, one
can also show that none of the dimension-8 operators
generated via tree-level matching [Eq. (16)] contribute to
EWPOs at the leading order. We conclude that there is no
contribution to the EWPOs at leading order if we restrict
ourselves to the operators of the SMEFT generated via tree-
level matching from the 2HDM.
The situation changes when loop matching is considered.

In this case, as can be seen in Eq. (18), all of the dimension-
6 operators in Eq. (26) are generated, so we expect
electroweak precision data to constrain the parameters of
the underlying model. By considering the expressions for
the corresponding WCs (Appendix B), however, an imme-
diate observation is that none of WCs in Eq. (26) depend on
cosðβ − αÞ. While they do depend on tan β, we will see that
the primary dependence is on the Δm2.
To compare the SMEFT matched to the 2HDM fits with

the limits from EWPO obtained in the full 2HDM, it is
sufficient to compute the limits in the full model using the
oblique parameters S, T and U [69]. Figure 1 shows fits to
the EWPOs of Eq. (25) in the full 2HDM and in the
SMEFT matched to the 2HDM (with loop-matching). The
left panel considers the alignment limit, cosðβ − αÞ ¼ 0,
and shows an excellent agreement between the full 2HDM
results and the results for the SMEFT matched to the
2HDM. The right panel shows cosðβ − αÞ on the horizontal

axis. Here, it is again clear that the SMEFT matched to the
2HDM accurately replicates the full 2HDM around the
alignment limit. Away from this limit, however, the full
2HDM result changes considerably, whereas the SMEFT
matched to the 2HDM does not [as it does not depend on
cosðβ − αÞ]. Finally, both panels show that the SMEFT
with one-loop matching provides an excellent description
of the full 2HDM in the regions allowed by the theoretical
constraints, and for cosðβ − αÞ≲ 0.2.
In sum, the EWPOs in the 2HDM constitute an example

where the SMEFT matched with one-loop dimension-6
operators is clearly more able to accurately replicate the
full model than the SMEFT matched with tree-level
dimension-8 operators. In fact, whereas the latter do not
give a contribution to EWPOs, the former do. On the other
hand, this nonzero contribution has no dependence on
cosðβ − αÞ. This implies that it is adequate for small values
of that parameter only, which turn out to be the values
preferred by the theoretical constraints.

B. Higgs observables

We now turn to Higgs observables. We focus on the
Higgs signal strengths measured by ATLAS and CMS. This
includes the combined measurements at

ffiffiffi
s

p ¼ 7 and 8 TeV
[70], as well as the recent ATLAS and CMS combinations
at

ffiffiffi
s

p ¼ 13 TeV [71,72]. Details on the fits can be found in
Appendix C.
We start by recapping the results of Ref. [18]. Ignoring

for now the indirect effects of the Higgs self-coupling, the
only dimension-6 WCs generated via tree-level matching
that are relevant for Higgs observables are Cfϕ (recall
Eq. (14) above). In particular, there is no WC contributing
to the Higgs couplings to gauge bosons. Now, considering
the first term of the rhs of Eqs. (15b) and (15c), as well as
Table I, it is clear that in the type-I 2HDM, all contributions
to Cfϕ at Oðξ1Þ scale as 1= tan β. The dimension-8
operators, however, include information about Higgs-gauge
couplings and Oðξ2Þ corrections to the Cfϕ, both of which
are independent of tan β. Matching up to dimension-8 is
thus necessary in the type-I 2HDM to accurately approxi-
mate the full 2HDM for large values of tan β. In contrast, in
the other types of 2HDM, there is always at least one type
of fermion f for which Cfϕ atOðξ1Þ is not suppressed with
tan β, so that matching with dimension-8 operators can be
neglected in those cases. On the other hand, Ref. [18]
showed that type-F could accommodate, besides a central
region centered around cosðβ − αÞ ¼ 0, also a disjoint
region centered around cosðβ − αÞ ≃ 0.2 and large values
of tan β, usually known as the wrong-sign region.
Inwhat follows,wecompute the 95%confidence level (CL)

limits for Higgs observables, both in the full 2HDM and in
the SMEFT matched to the 2HDM. In the full 2HDM,
we calculate the observables both at LO and at one-loop
(NLO). More specifically, we approximate the NLO

11Recall that we neglect Cll generated via tree-level matching,
since its contribution to EWPOs is suppressed by a small lepton
mass.
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results [37,38,73–76] by considering the case near the align-
ment limit (analytic expressions used to obtain our NLO
curves, reproduced from Ref. [73], are given in Appendix A).
We have not considered uncertainties in the full 2HDM
calculation due to possible resummation of the logarithms
or uncertainties in the SMEFT due to the truncation of the
expansion. In the SMEFTmatched to the 2HDM,we consider
three types of contributions: dtree6 , dtree8 and dloop6 . The first two
consider only the operators generated via tree-level matching,
such that dtree6 (dtree8 ) includes only Oðξ1Þ [Oðξ2Þ] effects,
whiledloop6 considers only the contributions generated via one-
loop matching atOðξ1Þ. Note that atOðξ2Þ we include 1=Λ4

terms arising from the squared amplitude in our calculation of
the signal strengths, which compete with the dimension-8
contributions at the same order.
We now turn to the results of Fig. 2, considering first

type-I (upper left panel). Let us start by discussing the
results without NLO effects, both in the 2HDM (dotted
lines) and in the SMEFT matched to the 2HDM (dashed
lines).12 These results agree with those of Ref. [77]. They
present slight differences when compared to those of
Ref. [18] (due to the inclusion of new LHC data), but
the pattern described above is observed, namely: while the
tree-level matching restricted to dimension-6 operators
(dashed blue) does not replicate the LO type-I 2HDM
(dotted black) for tan β > 1, the inclusion of dimension-8
effects (dashed red) corrects that deficiency.13 The

inclusion of NLO effects in the full 2HDM fits (solid
black) becomes relevant for tan β ≳ 2, allowing a consid-
erably more restricted range of values of cosðβ − αÞ for
larger values of tan β than the LO result. Interestingly, even
if restricted to dimension-6 operators, the SMEFT matched
to the 2HDM at one-loop (solid blue) captures the essence
of that behavior. This effect is discussed in detail below.
Note that adding the dimension-8 tree-level matching to the
loop matching with dimension-6 operators does not sig-
nificantly change the latter.14

As for the three remaining panels of Fig. 2, we again
confirm what was found in Ref. [18]: if the region centered
around cosðβ − αÞ ∼ 0 is considered at LO, the tree-level
matching with dimension-6 operators is enough to replicate
the 2HDM result. In fact, the tree-level matching with
dimension-6 operators (dashed blue) cannot be distin-
guished from the tree-level matching with dimension-8
operators (dashed red), nor from the LO 2HDM curve
(dotted black). The plots show that the inclusion of loop
effects leads to no significant changes either in the full
2HDM results, or in the SMEFT ones.15 Again as in
Ref. [18], type-L is the only type admitting a wrong-sign
region, and only whenOðξ2Þ effects are included. With this
inclusion, and ignoring NLO effects, the SMEFT (dashed
red) reproduces quite well the 2HDM (dotted black). On the

FIG. 1. Comparison of constraints on the 2HDM from electroweak precision observables in the full 2HDM (via a fit to the oblique
parameters S, T and U) and in the SMEFT matched to the 2HDM (with loop matching). The region satisfying the theoretical constraints
outlined in Sec. II B is shaded gray.

12We do not show the theoretically allowed regions in
these plots, but note that unitarity and perturbativity require
that cosðβ − αÞ be close to the alignment limit.

13The curve of the tree-level matched to the dimension-8
operators is essentially on top of the 2HDM LO curve, for the
whole range of tan β displayed.

14NLO effects in the full 2HDM fits introduce a new effect: a
lower bound for tan β ≃ 0.15. We checked that the SMEFT loop
matching also introduces a lower bound, although for lower
values of tan β (not visible in the plot).

15The panels for models other than the type-I case show that
the loop effects in the SMEFT matching (solid blue and red
curves) introduce some kinks not present in the full 2HDM NLO
curves.
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other hand, the wrong-sign region vanishes from both the
2HDM and the SMEFT descriptions if loop effects (solid
lines) are included.16

We now discuss the effects observed in the loop
matching effects of type-I. These can be explained by
the Cfϕ WCs, plotted in the upper half of Fig. 3. In the tree-
level matching of type-I, and as discussed above, they tend

to zero at large values of tan β. However, in the loop
matching and for cosðβ − αÞ ≠ 0, this behavior is reversed,
and the WCs start to grow for tan β ≳ 5.17 Note that, even
though the sign of Cfϕ is the same as that of cosðβ − αÞ for

FIG. 2. Comparison of the constraints from Higgs precision observables on the 2HDM with the constraints set by a fit to the SMEFT
coefficients. The dotted and solid black lines show the constraints in the exact model with the Higgs coupling modifiers evaluated at LO and
NLO, respectively (seeAppendixA fordetails). The red andblue lines show theSMEFTresultwith andwithout the inclusionof thedimension-
eight operators (dtree8 ). The solid red and blue lines include the contributions to the dimension-six operators generated at one-loop in theSMEFT
matching (dloop6 ), while the dashed ones do not. In all four panels, the additional heavy states are assumed to be degenerate and equal to the
matching scale, Λ. Note that the EFT expansion is only formally consistent if cβ−α is small (i.e., close to the alignment limit, cβ−α ¼ 0).

16In Ref. [78], which uses the full one-loop predictions for the
Higgs signal strengths, the wrong sign region is allowed in the
type-L and type-F models (assuming slightly smaller heavy
Higgs masses). We attribute this difference to our use of the
approximate expressions in Eq. (A3).

17This effect can be attributed to the parameters Z2 and Z7 of
the potential. From Eqs. (A2), these are the only ones that
introduce a dependence on tan β. Those parameters are not
generated in the tree-level matching (up to dimension-8), as they
multiply at least three powers of the heavy doublet. This is not the
case in the loop matching, where the parameters do contribute,
and thus introduce dependences on tan β that turn out to be highly
relevant for large values of that parameter.
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tan β ≲ 5, it always becomes positive for tan β ≳ 5. In
Fig. 3, we also show Cϕ, although its contributions to
Higgs observables are not included in Fig. 2. Like Cuϕ and
Cdϕ, it acquires large values (in modulus) for large tan β
with loop matching only.
Given the relevance of type-I for understanding the

accuracy of the SMEFT matching to the 2HDM, we
explore different features of the type-I model in Fig. 4.
We define Δm2 ≡ Δm2

H ¼ Δm2
A ¼ Δm2

H� . In the upper left
panel, we consider just the full 2HDM results (not the
SMEFT), and investigate both regions of parameter space
allowed by theoretical constraints, as well as the depend-
ence on Δm2. It is clear that the allowed regions are
extremely constrained, and forced to be very close to both
cosðβ − αÞ ¼ 0 and tan β ¼ 1.18 On the other hand, the
2HDM curves do not depend significantly on Δm2. The
upper right panel considers again the dependence on Δm2,
but now using SMEFT matching to the 2HDM. With tree-
level matching, larger values of Δm2 push the curves
upward in tan β. With loop matching, there is little differ-
ence between Δm2 ¼ 0 and Δm2 ¼ ð200 GeVÞ2, but a
significant difference for Δm2 ¼ ð500 GeVÞ2. It is clear
that the dimension-6 tree level curves (dotted) cannot
reproduce the full model results, since they do not include

information from the Higgs couplings to vector bosons.
When the loop effects are included (solid), there is a
coupling of the Higgs to vector bosons which grows with
tan β and so the generic shape of the full 2HDM is
recovered by the SMEFT fit. It is important to note that
loop effects in both the full 2HDM and the SMEFT are
necessary for this agreement. In the region allowed by
theoretical constraints in the full model, cosðβ − αÞ ∼ 0,
there is excellent agreement between the full 2HDM and
the SMEFT fit.
Still in Fig. 4, the lower left panel explores both a

dependence on the scale Λ, as well as the inclusion of Cϕ

effects (which allow us to indirectly determine the Higgs
self-interactions from single Higgs production [79,80]).19

As expected, larger values ofΛ push the results closer to the
alignment limit. The inclusion of Cϕ effects restricts the
results even further. Finally, the lower right panel of Fig. 4
investigates the role of renormalization group evolving the
dimension-6 operators between the scales Λ and mZ. The
plot shows that, without loop matching, the RGEs play a
very little role (when compared to the dashed blue curve of
the upper left panel of Fig. 2), and have a very small
dependence on the scale. On the other hand, when loop
matching effects are included, the effects of including the
RGEs are similar to those of changing Λ by a TeV.

FIG. 3. Plots of the WCs CtH , CbH, and Cϕ vs. tan β, that are generated in the type-I 2HDM at tree-level (dashed lines) and one-loop
(solid lines), for various values of the alignment parameter, cosðβ − αÞ.

18For Δm2 ¼ 0, the allowed region is so small that we do not
show it. 19For details on the inclusion of Cϕ effects, see Ref. [18].

RELEVANCE OF ONE-LOOP SMEFT MATCHING IN THE 2HDM PHYS. REV. D 109, 075022 (2024)

075022-11



V. CONCLUSIONS

We have performed for the first time the complete
one-loop matching of the 2HDM to the SMEFT with
dimension-6 operators. This generates numerous operators
not present with the tree-level matching. We derived our
result using the software MATCHMAKEREFT and MATCHETE.
We obtained agreement in our results between them, which
provides a nontrivial check of both software packages.
Auxiliary files accompanying this paper include detailed
results of the matching.

We demonstrated how the notion of decoupling allowed us
to perform a consistent expansion in terms of more physical
parameters. This led us to compare the one-loop matching
with dimension-6 operators to the tree-level matching with
dimension-8 operators derived in Ref. [18]. We did this by
performing fits to both EWPOs and to Higgs observables. In
the case of EWPOs, while none of the dimension-8 operators
generated at tree-level contribute, the dimension-6 loop-
generated operators do, thus clearly showing the need for
the latter type of matching. In the fits to Higgs observables,

FIG. 4. Additional plots showing the constraints from Higgs measurements at the LHC on the fits to the type-I 2HDM. The upper left
panel shows the constraints on the exact model (using the NLO predictions, with the heavy Higgs states separated from the matching
scale by various values of Δm2) and compares these constraints to the theoretically allowed regions described in the text. The LO
prediction for the exact model (which does not depend on the mass splitting) is shown as a dashed black curve for comparison. In the
upper right panel, we show the same curves, now evaluated using the SMEFT matching at dimension-6 at tree-level (dashed) and one-
loop (solid). In the lower left panel, we show the effects of including indirect information from single Higgs production on the Higgs self
coupling (Cϕ) for different values of the matching scale. The lower right panel illustrates the effects of including RGE of the WCs
generated at tree-level in the 2HDM, and compares these to the effects of the full contributions generated at one-loop. Note that the EFT
expansion is only formally consistent if cβ−α is small (i.e., close to the alignment limit, cβ−α ¼ 0).
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we studied the four types of 2HDM and showed that, for
type-II, type-L, and type-F, the inclusion of higher order
effects is not significant, as both the full model 2HDM
description and the SMEFT matching to the 2HDM are
barely affected by it.
In type-I, by contrast, the 2HDM results for larger tan β

evaluated at NLO are quite different from those evaluated at
LO. We showed that the SMEFT matched with loop-
generated dimension-6 operators captures most of the
physics, and so provides an overall adequate replication
of the full model results. We identified the Warsaw basis
operators Cuϕ and Cdϕ as mainly responsible for this
phenomenon, as their values at large tan β become quite
large with one-loop matching only. We investigated how
the results depend on the heavy scale Λ, on the difference
between the heavy masses and Λ, and on the RGE effects.
In all cases, we found significant effects in the region of
larger tan β.
We note that the difference in the full model between LO

and NLO results shows that, in the SMEFT approach, the
results obtained with one-loop matching and dimension-6
operators should not be directly compared to those obtained
with tree-level matching and dimension-8 operators.
Current LHC experimental fits to the 2HDM are performed
using tree level predictions, and should be updated to
include the NLO 2HDM results. Our analysis also shows
that, when one requires a separation of scales that allows an
EFT description, the 2HDM has a very small region of
parameter space allowed by theoretical constraints. In
particular, the regions where the nontrivial SMEFT trun-
cations (both at tree-level with dimension-8 operators and
at one-loop with dimension-6 operators) become relevant
are excluded. On the other hand, matching at one-loop level
has been performed in a singlet extension of the SM, only
to conclude that it is not relevant in such a simple extension.
Both conclusions lead us to suggest an investigation of loop
matching in richer UV models, where such matching can
play a more decisive role, would be of interest.
Furthermore, although we presented the complete one-

loop matching between the 2HDM and the SMEFT with
dimension-6 operators, our work represents only a first step
toward a complete NLO analysis. Indeed, our analysis
includes only approximate expressions of the full NLO
2HDM, and does not contain one-loop correction to the
observables computed in the SMEFT. These shortcomings
motivate future studies that might ascertain the importance
of those corrections.

The auxiliary files for this project can be accessed
at Ref. [81].
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helping with the SMEFT matching results computation

and cross-verification. S. D. B. and D. F. are grateful to
the Mainz Institute for Theoretical Physics (MITP) of the
Cluster of Excellence PRISMA+ (Project ID 39083149)
for its hospitality and support. S. D. B is supported by
State Research Agency (SRA) (Spain) under Grant
No. PID2019–106087 GB-C21 (10.13039/501100011033)
and No. PID2021-128396NB-100/AEI/10.13039/
501100011033; by the Junta de Andalucía (Spain) under
Grants No. FQM-101 and P21_00199. S. D. and D. F. are
supported by the U.S. Department of Energy under Grant
Contract No.DE-SC0012704. S. H. is supported by theDOE
Grant No. DE-SC0013607.

APPENDIX A: MORE DETAILS ON THE 2HDM

From the minimization of the potential,

Y1 ¼ −
Z1

2
v2; Y3 ¼ −

Z6

2
v2: ðA1Þ

Expressing the Zi parameters of Eq. (4) in terms of the
parameters of Eq. (7),

Z1 ¼
s2β−αm

2
h þ c2β−αm

2
H

v2
;

Z2 ¼
1

2v2t3β
½c2β−αtβð3t4β − 8t2β þ 3Þðm2

h −m2
HÞ

þ sβ−αcβ−αðt6β − 7t4β þ 7t2β − 1Þðm2
h −m2

HÞ;
−m2

hðt5β − 4t3β þ tβÞ þ 2tβðt2β − 1Þ2ðm2
H − Y2Þ�;

Z3 ¼
2

v2
ðm2

Hþ − Y2Þ;

Z4 ¼
c2β−αðm2

h −m2
HÞ þm2

A þm2
H − 2m2

Hþ

v2
;

Z5 ¼
c2β−αðm2

h −m2
HÞ −m2

A þm2
H

v2
;

Z6 ¼
cβ−αsβ−αðm2

h −m2
HÞ

v2
;

Z7 ¼
1

2v2t2β
½−3c2β−αtβðt2β − 1Þðm2

h −m2
HÞ

− sβ−αcβ−αðt4β − 4t2β þ 1Þðm2
h −m2

HÞ;
þ tβðt2β − 1Þðm2

h − 2m2
H þ 2Y2Þ�: ðA2Þ

The effects of the 2HDM on measurements of the 125 GeV
Higgs boson production and decay processes can be con-
veniently parameterized by the so-called “κ-framework”,
where the Higgs couplings to other SM particles are rescaled
by Higgs coupling modifiers, κf, κV (V ¼ W, Z), such that
the SM prediction is recovered when κ ¼ 1.
The one-loop (NLO) corrections to the scaling of theHiggs

couplings in the 2HDM can be approximated by including
contributions which grow with mt and the heavy scalar
masses. Working near the decoupling limit, we have [73]
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κV ¼ sβ−α −
1

6

1

16π2

�
m2

H

v2

�
1 −

M2

m2
H

�
þ 2

m2
Hþ

v2

�
1 −

M2

m2
Hþ

�
þm2

A

v2

�
1 −

M2

m2
A

��
;

κt ¼ κV þ ηucβ−α
tan β

−
1

3tan2β
1

16π2

�
η2um2

t

v2

�
m2

t

m2
H
þ m2

t

m2
Hþ

þ m2
t

m2
A

�
þ η2d

m2
bm

2
t

v2m2
Hþ

�
;

κb ¼ κV þ ηdcβ−α
tan β

−
ηuηd
tan2β

1

16π2
4m2

t

v2

�
1 −

M2

m2
Hþ

þ m2
t

m2
Hþ

�
1þ log

m2
t

m2
Hþ

��
−
1

3

η2dm
2
b

v2tan2β
1

16π2

�
m2

b

m2
H
þ m2

b

m2
Hþ

þ m2
b

m2
A

�
;

κτ ¼ κV þ ηecβ−α
tan β

; ðA3Þ

where

M2 ¼ Y2 − Y1 − 2Y3 tan 2β; ðA4Þ

is the scale that describes the soft-breaking of the Z2

symmetry. We emphasize again that these are not the
complete expressions for the loop corrections to the Higgs
couplings, only the leading terms in an expansion in
x≡ π=2 − ðβ − αÞ ≪ 1. In particular, we keep only the
x-independent one-loop corrections. See Ref. [73] for more
details.

APPENDIX B: ONE-LOOP MATCHING RESULTS

In this appendix, we present the matching expressions
for the SMEFT coefficients of Eq. (18). As discussed in
Sec. III A, because these coefficients are loop generated, we
expand them only to Oðξ1Þ. We recall [Eq. (11)] that, for
operators that are not generated at tree-level, we write the
coefficients as Ci (without superscript [l]). For operators
that are generated at tree-level, Cϕ and Cfϕ, we give the

one-loop contributions, C½l�
ϕ and C½l�

fϕ, here, which must be

added to the dimension-6 tree-level contributions,C½t�
ϕ and

C½t�
fϕ, of Eq. (15) to obtain the full results. As always, the

generation indices are suppressed.

The results are:

CϕW

Λ2
¼ m2

WG
2
F

96π2Λ2
ðΔm2

A þ Δm2
H þ 2Δm2

HþÞ; ðB1aÞ

CϕB

Λ2
¼ G2

F

96π2Λ2
ðm2

Z −m2
WÞðΔm2

A þ Δm2
H þ 2Δm2

HþÞ; ðB1bÞ

CϕWB

Λ2
¼ G2

FmWmZ

48π2Λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
W

m2
Z

s
ðΔm2

A þ Δm2
H − 2Δm2

HþÞ; ðB1cÞ

C½l�
ϕ

Λ2
¼ −

ð ffiffiffi
2

p
GFÞ3cot3β

480π2Λ2

�
−
45

2
c3β−αΛ6ðcosð2βÞ þ cosð6βÞÞsec6β þ 2ð10ðΔm6

A þ Δm6
H þ 2Δm6

HþÞ

− 5½Δm4
A þ Δm4

H − 2ðΔm2
A þ Δm2

HÞΔm2
Hþ þ 2Δm4

Hþ�m2
h þ 2m2

hm
4
WÞtan3β

þ 15c2β−αΛ4 tan β½m2
hð−5þ 2 cosð4βÞÞsec4β þ 6Δm2

Hð−1þ sec2β þ sec4βÞ − 2ðΔm2
A þ 2Δm2

HþÞtan2β�

− 90cβ−αΛ2ð−2Δm2
H þm2

hÞ2tan2βðtan2ðβÞ − 1Þ
�
; ðB1dÞ

Cϕ□

Λ2
¼ −

G2
F

480π2Λ2
½−5ðΔm2

A − Δm2
HÞ2 þ 20ðΔm2

A þ Δm2
HÞΔm2

Hþ þ 2ð45c2β−αΛ4 þ 4m4
W − 2m2

Wm
2
Z þm4

ZÞ�; ðB1eÞ

DAS BAKSHI, DAWSON, FONTES, and HOMILLER PHYS. REV. D 109, 075022 (2024)

075022-14



CϕD

Λ2
¼ −

G2
F

60π2Λ2
½−5Δm2

HΔm2
Hþ þ 5Δm4

Hþ þ 5Δm2
AðΔm2

H − Δm2
HþÞ þm4

W − 2m2
Wm

2
Z þm4

Z�; ðB1fÞ

C½l�
uϕ

Λ2
¼muð

ffiffiffi
2

p
GFÞ5=2ffiffiffi

2
p

480π2Λ2

�
10½Δm4

Aþð1− 36ηuÞΔm4
H − 2Δm2

AΔm2
Hþ þ 2Δm4

Hþ − 9ηum4
h − ð30þ 63ηuÞc2β−αΛ4

− 2Δm2
HðΔm2

Hþ − 18ηum2
hÞ�− 30cβ−α cotβΛ2ð2ηuΔm2

A − 6ð1þ ηuÞΔm2
H þ 4ηuΔm2

Hþ −m2
dð3ηdþ 4ηuÞ

þ 3m2
hþ 13ηum2

uÞ− 4m4
W þ 10cot2β

�
6

�
6ηuΔm4

H þ 3

2
ð1þ 7ηuÞc2β−αΛ4þ ηdð4ηu − ηdÞΔm2

Hþm2
d− ηdðηdþ 4ηuÞm4

d

�
þ 9ð−4ηuΔm2

H þ ηuηdm2
dÞm2

hþ 9ηum4
h − 2η2uð−3Δm2

Aþ 9Δm2
H þ 3Δm2

HþÞm2
u −2ð6ηdηuþ 3η2u− η2dÞm2

dm
2
u− 6η2um4

u

�
þ 15ηucβ−αΛ2ð−7η2dm2

dþ 3η2um2
uÞcot3β− 90ηuc2β−αΛ4cot4β

þ 90cβ−αΛ2 tanðβÞ½−2Δm2
H þm2

hþð1þ ηuÞcβ−αΛ2 tanðβÞ�
�
; ðB1gÞ

C½l�
dϕ

Λ2
¼ mdð

ffiffiffi
2

p
GFÞ5=2ffiffiffi

2
p

480π2Λ2

n
10½Δm4

A þ ð1 − 36ηdÞΔm4
H − 2Δm2

AΔm2
Hþ þ 2Δm4

Hþ − ð30þ 63ηdÞc2β−αΛ4 − 9ηdm4
h

− 2Δm2
HðΔm2

Hþ − 18ηdm2
hÞ� − 4m4

W − 30cβ−αΛ2 cot βð2ηdΔm2
A − 6ð1þ ηdÞΔm2

H þ 4ηdΔm2
Hþ þ 13ηdm2

d þ 3m2
h

− ð4ηd þ 3ηuÞm2
uÞ þ 10cot2β½36ηdΔm4

H þ 9ð1þ 7ηdÞc2β−αΛ4 þ 9ηdm4
h − 6η2dm

2
dð−Δm2

A þ Δm2
Hþ þm2

dÞ
− 18ηdΔm2

Hðm2
dηd þ 2m2

hÞ − 6ðη2u þ 4ηdηuÞm4
u þ ð6ηuð4ηd − ηuÞΔm2

Hþ þ 2ðη2u − 6ηuηd − 3η2dÞm2
d þ 9ηdηum2

hÞm2
u�

þ 15ηdcβ−αΛ2ð3η2dm2
d − 7η2um2

uÞcot3β − 90ηdc2β−αΛ4cot4β

þ 90cβ−αΛ2 tan βð−2Δm2
H þm2

h þ ð1þ ηdÞcβ−αΛ2 tanðβÞÞ
o
; ðB1hÞ

C½l�
eϕ

Λ2
¼ með

ffiffiffi
2

p
GFÞ5=2ffiffiffi

2
p

240π2Λ2
f5Δm4

A − 10Δm2
AΔm2

Hþ þ 10Δm4
Hþ − 2m4

W − 15cβ−αΛ2 cot βð6Δm2
Hð−1þ tan2β − ηeÞ

− 3m2
hð−1þ tan2βÞ þ 2ηeðΔm2

A þ 2Δm2
HþÞÞ − 10Δm2

HðΔm2
Hþ − 18m2

hð−1þ tan2βÞηecot2βÞ
þ 15c2β−αΛ4ð−3ηecot4β þ 3tan2βð1þ ηeÞ þ 3ð1þ 7ηeÞcot2β − ð10þ 21ηeÞÞ
þ 45m4

hηecot
2β − 45m4

hηe þ 5Δm4
Hðð1 − 36ηeÞ þ 36ηecot2βÞg; ðB1iÞ

Cϕu

Λ2
¼ G2

F

1080π2Λ2
½−12ðm2

W −m2
ZÞ2 þ f5η2um2

uð−63m2
u þ 10m2

W − 10m2
ZÞ − 45m2

um2
dðη2d − 6ηdηu − 6η2uÞgcot2β�; ðB1jÞ

Cϕd

Λ2
¼ G2

F

1080π2Λ2
½6ðm2

W −m2
ZÞ2 þ f5η2dm2

dð63m2
d þ 22m2

W − 22m2
ZÞ þ 45m2

dm
2
uð−6η2d − 6ηuηd þ η2uÞgcot2β�; ðB1kÞ

Cϕe

Λ2
¼ G2

F

360π2Λ2
ð6ðm2

W −m2
ZÞ2 þ 35η2em2

eð3m2
e − 2m2

W þ 2m2
ZÞcot2βÞ; ðB1lÞ

Cð1Þ
ϕq

Λ2
¼ −

G2
F

1080π2Λ2
f3ðm2

W −m2
ZÞ2 þ 5cot2β½63η2dm4

d − 7η2um2
uð9m2

u þ 5m2
W − 5m2

ZÞ þ 19η2dm
2
dðm2

W −m2
ZÞ�g; ðB1mÞ

Cð3Þ
ϕq

Λ2
¼ G2

F

360π2Λ2
ð5 cot2β½−3ðη2dm4

d − 6ηdηum2
dm

2
u þ η2um4

uÞ þ ðη2dm2
d þ η2um2

uÞm2
W � − 3m4

WÞ; ðB1nÞ

Cð1Þ
ϕl

Λ2
¼ G2

F

360π2Λ2
½3ðm2

W −m2
ZÞ2 − 5m2

eη
2
eð21m2

e þ 17ðm2
W −m2

ZÞÞcot2β�; ðB1oÞ
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Cð3Þ
ϕl

Λ2
¼−

G2
F

360π2Λ2
½3m4

Wþ5m2
eη

2
eð3m2

e−m2
WÞcot2β�; ðB1pÞ

Cll

Λ2
¼ −

m4
WG

2
F

120π2Λ2
: ðB1qÞ

APPENDIX C: HIGGS OBSERVABLES TO Oðξ2Þ
Here we summarize the dependence of the Higgs signal

strengths on the various WCs generated in the 2HDM. We
include the dependence on coefficients up to Oðξ2Þ,
generated at tree-level, as well as those generated at one-
loop at Oðξ1Þ. We emphasize that these expressions do not
include the most general dependence on the SMEFT
coefficients, regardless of flavor ansatz, as we omit any
operators that are not generated in the 2HDM, which are
irrelevant for our analysis.
We consider the signal strengths for Higgs production in

gluon-gluon fusion (ggF), vector boson-fusion (VBF),
associated production with a W or Z boson (Wh and
Zh), and tt̄h production. We neglect any SMEFT deviations
in the single-top (th) production mode, which is often
measured together with tt̄h production, and assume that the
tt̄h contribution is dominant. The signal strengths for Higgs
production are defined as μprod ¼ σSMEFT

prod =σSMprod, where σ
SM
prod

is the SM value. When multiple production channels are
combined into a single measurement, we take the signal
strength to be the average of the two channels, weighted by
their relative SM predictions from Ref. [82]. We indicate

8 TeVor 13 TeV for the signal strengths that depend on the
collider energy.
The signal strengths of the decays shown are the same

ratio with the partial widths evaluated in the SMEFT and in
the SM. We consider Higgs decays to bb̄, WW�ð→lνlνÞ,
gg, τþτ−, ZZ�ð→4lÞ, γγ, Zγ and μþμ−. For all the decays
involving either on- or off-shell Z and W’s, we neglect any
effective operators appearing in the Z;W → ff̄ vertex, so
that, e.g., μh→4l ¼ μh→lþl−νν̄ ¼ μh→lþl−qq̄ ≡ μh→ZZ� . The
signal strengths for the individual decay modes can be
combined with the known, SM branching ratios (BRs) for
the Higgs to get the signal strength for the total width,

μΓh;tot
¼

X
X

μh→X × BRðh → XÞSM; ðC1Þ

which can then be used to predict the individual BRs in the
SMEFT. We take the predictions for the SM branching
ratios from Ref. [82].
In computing the coefficients below, we use

GF¼1.1663787×10−5GeV−2, mZ¼91.1876GeV, mW ¼
80.379 GeV, mh ¼ 125.0 GeV, mt ¼ 173 GeV, mb ¼
4.18 GeV and mτ ¼ 1.776 GeV. We keep only the masses
of the third generation fermions, and set the first and second
generation masses to zero. The WCs are given in units of
TeV−2 for the dimension-six operators, and TeV−4 for
those at dimension-eight. The signal strengths for h → 4l
are taken from Ref. [83] to account for the effects of
experimental efficiencies, while the others are computed
analytically at leading order.

1. Production

μggF ¼ 1þ 0.249Cdϕ;33 þ 0.121Cϕ□ − 0.129Cuϕ;33 − 0.0606Cð3Þ
ϕl;11 − 0.0606Cð3Þ

ϕl;22 þ 0.0606Cll − 0.0303CϕD

þ 0.0540ðCdϕ;33Þ2 − 0.0182Cdϕ;33Cuϕ;33 þ 0.00421ðCuϕ;33Þ2 þ 0.0151Cqdϕ5;33 − 0.00784Cquϕ5;33; ðC2aÞ

μ8 TeV
VBF ¼ 1 − 0.370Cð3Þ

ϕq;11 − 0.344Cð3Þ
ϕl þ 0.113Cϕ□ þ 0.0825Cll − 0.0533CϕW þ 0.0238CϕWB − 0.0148Cϕu;11

þ 0.0112Cð1Þ
ϕq;11 − 0.0106CϕD þ 0.00353Cϕd;11 − 0.00304CϕB þ 0.000392Cð1Þ

ϕ6 ; ðC2bÞ

μ13 TeV
VBF ¼ 1 − 0.423Cð3Þ

ϕq;11 − 0.347Cð3Þ
ϕq;11 þ 0.1005Cϕ□ þ 0.0826Cll − 0.0670CϕW − 0.02955Cϕu;11 − 0.0150CϕD

þ 0.0126CϕWB − 0.0107CϕB þ 0.00893Cð1Þ
ϕq;11 þ 0.00313Cϕd;11 þ 0.000490Cð1Þ

ϕ6 ; ðC2cÞ

μ8 TeV
Wh ¼ 1þ 1.819Cð3Þ

ϕq;11 þ 0.8775CϕW þ 0.1214Cϕ□ þ 0.0602Cll − 0.0309CϕD − 7.916 × 10−6Cð1Þ
ϕ6 ; ðC2dÞ

μ13 TeV
Wh ¼ 1þ 1.950Cð3Þ

ϕq;11 þ 0.887CϕW þ 0.1217Cϕ□ þ 0.0606Cll − 0.0303CϕD − 4.326 × 10−6Cð1Þ
ϕ6 ; ðC2eÞ

μ8 TeV
Zh ¼ 1þ 1.716Cð3Þ

ϕq;11 þ 0.721CϕW þ 0.426Cϕu;11 þ 0.314CϕWB − 0.173Cð1Þ
ϕq;11 − 0.142Cϕd;11 þ 0.121Cϕ□

þ 0.0865CϕB þ 0.06045Cll þ 0.0375CϕD − 3.515 × 10−6Cð1Þ
ϕ6 ; ðC2fÞ
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μ13 TeV
Zh ¼ 1þ 1.716Cð3Þ

ϕq;11 þ 0.721CϕW þ 0.426Cϕu;11 − 0.173Cð1Þ
ϕq;11 − 0.142Cϕd;11 þ 0.121Cϕ□ þ 0.0865CϕB

þ 0.0375CϕD þ 0.314CϕWB þ 0.06045Cll − 3.515 × 10−6Cð1Þ
ϕ6 ; ðC2gÞ

μtt̄h ¼ 1þ 0.121Cϕ□ − 0.122Cuϕ;33 − 0.0606Cð3Þ
ϕl;11 − 0.0606Cð3Þ

ϕl;22 þ 0.0606Cll − 0.0303CϕD − 0.00740Cquϕ5;33

þ 0.00372ðCuϕ;33Þ2: ðC2hÞ

2. Decays

μh→bb̄ ¼ 1 − 5.050Cdϕ;33 þ 0.121Cϕ□ − 0.121Cð3Þ
ϕl − 0.0303CϕD þ 0.0606Cll;þ6.376ðCdϕ;33Þ2 − 0.306Cqdϕ5;33; ðC3aÞ

μh→WW� ¼ 1þ 0.1202Cϕ□ þ 0.0935Cll − 0.0895CϕW − 0.0297CϕD þ 0.000507Cð1Þ
ϕ6 ; ðC3bÞ

μh→gg ¼ 1þ 0.249Cdϕ;33 − 0.129Cuϕ;33 þ 0.1225Cϕ□ þ 0.0613Cll − 0.0306CϕD þ 0.054ðCdϕ;33Þ2 − 0.0182Cdϕ;33Cuϕ;33

þ 0.0042C2
uϕ;33 − 0.0078Cquϕ5;33 þ 0.0151Cqdϕ5;33; ðC3cÞ

μh→τþτ− ¼ 1 − 11.88Ceϕ;33 þ 0.121Cϕ□ − 0.121Cð3Þ
ϕl þ 0.0606Cll − 0.0303CϕD þ 35.29ðCeϕ;33Þ2 − 0.720Ceϕ5;33; ðC3dÞ

μh→ZZ� ¼ 1þ 0.296CϕWB − 0.296CϕW − 0.234Cð3Þ
ϕl − 0.197CϕB þ 0.181Cll þ 0.119Cϕ□ þ 0.126Cð1Þ

ϕl;11 − 0.101Cϕl;11

þ 0.005CϕD; ðC3eÞ

μh→γγ ¼ 1 − 40.15CϕB þ 22.30CϕWB − 13.08CϕW − 0.364Cð3Þ
ϕl;11 − 0.242CϕD þ 0.182Cll þ 0.121Cϕ□

þ 0.0345Cuϕ;33; ðC3fÞ

μh→Zγ ¼ 1 − 15.47CϕB þ 14.58CϕW − 11.04CϕWB − 0.182Cð3Þ
ϕl þ 0.1215Cϕ□ − 0.121CϕD þ 0.0177Cð1Þ
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