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1 Introduction

The Standard Model Effective Field Theory (SMEFT) framework provides a systematic
approach to parameterize new physics (NP) effects at high energy by using low energy degrees
of freedom. As a non-renormalizable theory, SMEFT Lagrangian contains many operators
with higher mass dimension written as

L = LSM +
∞∑

n=5

1
Λ(n−4)

∑
i

C
(n)
i O(n) , (1.1)

where C(n) and O(n) are Wilson Coefficients (WCs) and effective operators respectively of
mass dimension n. These effective operators are written based on the standard model field
building blocks, following the Lorentz and gauge symmetries [1–3]. They are enumerated
order by order via the canonical mass dimension and form the complete and independent
basis up to dimension 8 and higher in refs. [4–11], with generalization to any mass dimension
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in refs. [12, 13]. The WCs parameterize ultraviolet (UV) information from NP theory. In
the top-down approach, once the heavy states of a UV theory are integrated out, effective
operators at the low energy scale can be obtained, called the matching procedure. Since the
WCs comprise the information from UV theory, if the experimental data shows deviation
from Standard Model (SM) prediction, the WCs can be determined.

Given the null signal of NP, the WCs can only be restricted by current data or bounded
theoretically. Using various processes, it is possible to restrict the WCs by experimental data
via global fits [14–22]. On the other hand, positivity bound was proposed [23–28] to constrain
WCs based on the unitarity, analyticity, locality properties of quantum field theory. There
are many works to discuss positivity restriction of SMEFT operator coefficients. The earliest
work of the positivity bound can be traced back to ref. [23], which established a positivity
bound in the forward scattering limit of 2-to-2 elastic scattering (see also [24–28] for earlier
discussions and applications in strong dynamics). The main idea of the elastic positivity
bound is using unitary and analyticity characters to point out that 2-to-2 elastic forward
scattering amplitude is non-negative. Recent literatures use the mathematical concept Arc to
give positivity bound as a semi-positive Hankel matrix filled by the WCs linked to involving
effective operators at different mass dimensions [29, 30]. The partial wave analysis and
unitary are also used to restrict the dim-6 operators’ WCs [31] and various motivation for
going beyond dim-6 have been discussed in the refs. [32–38].

Since WCs contain UV information, it’s possible to enumerate possible NP particles based
on effective operators, which is called the inverse problem [39, 40]. The top-down approach is
a well-studied and systematized procedure via matching and running [41–50]. The bottom-up
inverse problem, however, has been rarely discussed in literature. The main difficulty is that
each effective operator can be mapped to infinitely many UV theories. This case is referred to
as “degeneracy”. Some articles propose to search for the possible UV states based on group
representation decomposition [23, 51–58]. The positivity can also be used to find possible
UV states in the bottom-up way by combining theoretical bounds in the SMEFT and its UV
states. The theoretical framework of positivity is that from a geometric perspective, the s2
contribution of SMEFT amplitude exists in a salient cone formed by the extremal rays linked
to the corresponding UV completion with different quantum numbers [52, 59–61]. Thus, the
whole procedure only relies on principles of quantum field theory: i.e. unitarity and UV’s
locality, thus the positivity framework is quite universal.

In this work, a local UV quantum field theory (QFT) is assumed in order to link the
s2-order contribution of the scattering amplitude to the convex geometry, and thus the
positivity bound is linked to the cone space shaped by the UV particles, as discussed in
refs. [52, 59, 60, 62–64]. Starting with the analyticity behavior of the forward scattering
amplitude Mij→kl(s) and the generalized optical theorem, the dispersion relation can be
derived as

M ijkl =
∫ ∞

(ϵΛ)2

dµDiscMij→kl(µ)

2iπ
(
µ− 1

2M
2
)3 + (j ↔ l) + c.c.

=
′∑

X

∫ ∞

(ϵΛ)2

∑
K=R,I

dµmX,ij
K mX,kl

K

π
(
µ− 1

2M
2
)3 + (j ↔ l) .

(1.2)
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Here i, j, k, l means the color and polarization of 4 outer legs while X stands for the heavy
states, M is the mass of the external particles. By applying the convex hull theory, one
shows that the salient cone which contains s2 contribution of amplitude has the form
C = cone

({
mi(jm|k|l) | mij ∈ Rn2

})
which sum over all the possible UV amplitude products

mX,ij
K mX,kl

K (i, j means extremal particles while X means the heavy state, K = R, I means
the real and the imaginary part of the amplitude), while every UV state stands for the
possible extremal ray of the cone which provides geometric perspective on the UV physics
of the SMEFT operators.

From the geometry perspective, it is essential to find a complete list of the UV states
in a systematic way. In previous works [59, 60, 65, 66], the gauge group projectors formed
by Clebsch-Gordan (CG) coefficients is utilized and UV states are enumerated to form the
cone to obtain bounds for scattering processes in the SMEFT. This is called the projection
method. However, this method can not guarantee finding all the possible UV states without a
systematic program on the UV completion searching. In recent work [7, 9, 12, 53, 57, 67, 68],
the Pauli-Lubanski operator W2 and Casimir operator are introduced to decompose contact
scattering amplitude to different eigenstates with specific quantum numbers. By identifying
these eigenstates as the UV particles with corresponding quantum numbers, our work provides
a systematic method to exhaust all the possible UV states for the effective operators in the
SMEFT, which is called the J-Basis method [12, 53, 57].

In this work, both the convex geometry and the J-Basis method are applied in the
dispersion relation to derive the positivity bounds in the SMEFT. After utilizing the J-Basis
method to find the complete UV completion, the previous positivity bound based on the
complete UV states according to the salient cones formed by extremal rays are updated. By
comparing our results with the previous projection method [69], we point out that the previous
method of searching UV states ignores some Lorentz structures in the group decomposition,
so that it exists defects. From the comparison of the results, a more complete UV completion
for the specific 2-to-2 scattering process at the Lagrangian level can be obtained so that
our bounds are more precise than before.

The paper is organized as follows. In section 2, we derive the dispersion relation for
2-to-2 forward scattering amplitude and show how to use the dispersion relation to give a
geometry perspective of amplitudes. In section 3, we introduce relevant the Pauli-Lubanski
operator for the momentum and the Casimir operator for the gauge structure. Then we
show how to build a set of amplitudes representing possible UV states with definite angular
momenta J and gauge quantum number R, that is, the J-Basis method. In section 4, for
some typical scattering processes discussed in previous works, we show our bounds by using
the J-Basis method and the UV selection to search for more complete UV completion at tree
level and compare ours with previous bounds to show the rigour of the J-Basis.

2 Positivity bounds based on extremal rays

2.1 Dispersion relation

Any 2-to-2 forward scattering amplitude Mij→kl(s, t) for the full UV theory can be expanded
in the low-energy EFT to get

Mij→kl(s, t) = c0 + c2s
2 + c2,1s

2t+ . . .+ cn,ms
ntm . (2.1)
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By taking derivatives on the amplitude, applying analyticity of amplitudes and considering
the contour integral as shown in figure 1, the dispersion relation can be obtained (e.g. ref. [70]
by replacing 0, 4m2 in the contour Γ with m2

− and m2
+) by defining m± ≡ m1 ±m2,

c2 =
d2

ds2
Mij→kl(s, t = 0)

∣∣∣∣∣
s=µ2

= 1
2πi

∮
Γ′
dsMij→kl(s, 0)

(s− µ2)3

= 1
2πi

(∫ 0

−∞
+
∫ ∞

m2
+

)
dsDiscMij→kl(s, 0)

(s− µ2)3
.

(2.2)

Here DiscM(s, 0) =M(s+ iϵ, 0)−M(s− iϵ). After setting t = 0 and applying the variable
replacement u = m2

+ − s, we obtain

c2 =
1
2πi

∫ ∞

m2
+

duDiscMij→kl

(
m2

+ − u, 0
)(

m2
+ − u− µ2

)3 + 1
2πi

∫ ∞

m2
+

dsDiscMij→kl(s, 0)
(s− µ2)3

= 1
2πi

∫ ∞

m2
+

ds
[

1
(s− µ2)3

+ 1(
s+ µ2 −m2

+
)3
]
DiscMij→kl(s, 0)

= 1
π

∫ ∞

m2
+

ds
[

1
(s− µ2)3

+ 1(
s+ µ2 −m2

+
)3
]
ImMij→kl(s, 0).

(2.3)

The above discussion is quite general: the second derivative of the low energy scattering
amplitude is related to the imaginary part of the high energy scattering amplitude in the
forward limit. This statement applies to both the elastic and the inelastic scatterings.

For the elastic scattering ij → ij, by further applying the optical theorem, the positivity
dispersion relation eq. (2.4) can be obtained,

ImMij→ij(s, 0) =
∑
X

∫
dΠX |Mij→X(s, 0)|2(2π)4δ4(ij −X)

= [(s− m2
−

) (
s−m2

+

)]1/2
σtot > 0,

(2.4)

where σt is total scattering cross section of process ij → X. Further, taking m± < ϵΛ < Λ
to subtract the SM contribution, the general expression on elastic positivity bound has
the form c2 > 0 [71, 72].

For the inelastic scattering ij → kl, to utilize the more general optic theorem, we need
to do a little more work. By adding conjugate term on Mij→kl(s, t), Mij→kl

(
s = m2

+/2
)

is
defined as the real part of the derivative of the forward amplitude Mij→kl(s, t) for scattering
ij → kl process. By applying M∗

kl→ij(s+ iε) =Mij→kl(s− iε) to connect the time reversal
ij → kl and its conjugate terms, eq. (2.3) becomes

Mij→kl

(
m2

+
2

)
≡ 1

2
d2
ds2Mij→kl

(
s = m2

+/2, 0
)
+ c.c.

=
∫ ∞

m2
+

ds
2iπ

DiscMij→kl(s, 0)(
s− m2

+
2

)3 +
∫ ∞

m2
+

ds
2iπ

DiscMil→kj(s, 0)(
s− m2

+
2

)3 + c.c. ,
(2.5)

From the above equation, we note that in the forward limit, a twice-subtracted dispersion
relation can be derived for Mij→kl(s, t), assuming that a UV completion exists and is consistent
with the fundamental unitary principles of the QFT.
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Figure 1. Diagram of the analytic structure of the forward amplitude in the complex s plane in the
case m1 = m2 = m. The simple poles at s = m2 and 3m2 and the branch cuts starting at s = 4m2

and 0 correspond to resonances and multi-particle thresholds in the s- and u-channels, respectively.

In above eq. (2.5), the contributions of the kinematic poles are subtracted out [73–
76]. Furthermore, by assuming the Λ is the scale of the UV theory, we can compute the
amplitude in the IR to a desired accuracy within the EFT in the energy scale within
−(ϵΛ)2 ≤ s ≤ (ϵΛ)2(ϵ ≤ 1). Then we choose the lower limit of the integral of eq. (2.5) turn
to the value ϵΛ larger than m+, so that we can subtract out the low energy parts of the
dispersion relation integrals corresponding to the EFT theory and keep the denominator of
the integrands positive. Besides, the SM contribution of the eq. (2.6) will be suppressed
by inverse powers of ϵΛ in ref. [77].

The above dispersion relation can be much simplified to

Mij→kl

(
(ϵΛ)2

)
=
∫ ∞

(ϵΛ)2

dµDiscMij→kl(s)

2iπ
(
s− m2

+
2

)3 + (j ↔ l) . (2.6)

This equation can be traced back to the improved positivity bounds discussed in refs. [52, 78],
and can also be regarded as the Arc defined in refs. [29, 30], with a radius (ϵΛ)2. Now by
applying the more general form of the optical theorem,

Mij→kl − M̃∗
kl→ij = i

∑
X

Mij→XM
∗
kl→X , (2.7)

the dispersion relation can be written as

Mij→kl((ϵΛ)2) =
1
2π

∫ ∞

(ϵΛ)2

ds(
s− m2

+
2

)3
∑
X

[Mij→XM
∗
kl→X + (j ↔ l)] . (2.8)

The power of analyticity is that the EFT and UV amplitude can be connected [79].
Considering the s2 contribution corresponding to the dim-8 effective operators O(8)

i , we

– 5 –
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obtain that

EFT: L = CiO(8)
i ,

Mij→kl(ϵΛ) = ∂2sMEFT
ij→kl(ϵΛ) = Ci

∂

∂s
O(8)

i |s=ϵΛ
(2.9)

which means we establish the link between the dispersion relation of the full theory and the
EFT theory to obtain the convex geometry of the EFT.

Several comments are in order. First, if choosing ij = kl, it recovers the elastic bounds.
Second, the sum in the integrand on the r.h.s. is over all the intermediate states, denoted by
X, which might contain infinite states. Thus it provides a geometric perspective that the UV
physical amplitudes ∑X Mij→X→kl exist in a cone C spanned by many rays in which each
ray represents contributions from UV particles X with certain quantum numbers. Taking
the shorthand notation Mij→X → mij , all the UV amplitudes constitute the cone with

Cn4 ≡ cone
({
mijm∗kl +mil̄m∗kj̄

})
. (2.10)

To find the boundary of the cone, it is necessary to find all the possible immediate states
with certain quantum numbers. So the problem becomes how to find all the possible UV
states for a scattering process.

2.2 Cone construction

From above, we notice that the s2 contribution of the 2-to-2 amplitude should stay in the
cone formed by the UV states. Now the problem becomes how to find all possible UV states:
one way is the projection method by using the Irrep’s (irreducible representation) projectors
formed by CG coefficients and another one is the J-Basis method which is discussed in
section 3. Here we focus on introducing the projection method and show its incompleteness
in searching for UV completions.

If we don’t know all possible UV states, naturally, we can use the CG coefficients to
establish projectors that can expand the EFT operators [59, 64, 66, 71, 80], for the dim-n
Irrep X which comes from the direct product of the two basic representation, the projectors
can be written as follow,

PX
ijkl =

n∑
mX,ij

n mX,kl
n + j ↔ l . (2.11)

Here mX,ij
n is the CG coefficient where X represents Irrep with different quantum number, n

represents the dimension of the Irrep X, the indices i, j represent the component of the two
basic representation, and j ↔ l represents that the crossing symmetry [81, 82] is imposed
to the projectors.

Taking the 4H scattering as an example to show concrete steps to search for all projectors,
The H is a complex field with the SU(2)w symmetry, which can be written as H = (H2 +
iH1, H4 − iH3). Thus, by considering the direct product of

HHX : 2⊗ 2 = 1⊕ 3 ,
HH†X : 2⊗ 2̄ = 1⊕ 3 ,
H†HX : 2̄⊗ 2 = 1⊕ 3 ,
H†H†X : 2̄⊗ 2̄ = 1⊕ 3 .

(2.12)
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Particles Irrep(SU(2)w) CG coefficients matrix Projector

HH +H†H† 1 C, Cγ4 Ci(jC|k|l) + (Cγ4)i(j(Cγ4)|k|l)

3 CγI , Cγ4γI (CγI)i(j(CγI)|k|l) + (Cγ4γI)i(j(Cγ4γI)|k|l)

HH† or H†H

1S 1 1i(j1|k|l)

3S γ4γI (γ4γI)i(j(γ4γI)|k|l)

1A γ4 γ
i(j
4 γ

|k|l)
4

3A γI γ
i(j
I γ

|k|l)
I

Table 1. Projectors represent 4H scattering process.

Particle Spin SU(2)w/U(1)y Interaction c⃗(M) c⃗(p)

H1 2 31 gM−1HµνI†
1

(
∂µH

T ϵτ I∂νH
)
+ h.c. (3,−2, 3) (1, 6, 6)

Ξ1 0 31 gMΞI†
1

(
HT ϵτ IH

)
+ h.c. (0, 1, 0) (1, 0, 0)

B1 1 11 gBµ†
1

(
HT ϵi

↔
Dµ H

)
+ h.c. (1, 0,−1) (1, 0, 2)

H0 2 30(S) gM−1HµνI
0

(
∂µH

†τ I∂νH
)

(−7, 3, 8) (−4, 1,−14)

W 1 30(A) gWµI
0

(
H†τ Ii

↔
Dµ H

)
(1, 1,−2) (2,−1, 2)

Ξ0 0 30(S) gMΞI
0

(
H†τ IH

)
(2, 0,−1) (2, 1, 4)

G 2 10(S) gM−1 Gµν
(
∂µH

†∂νH
)

(3, 3,−2) (6, 1, 6)

B0 1 10(A) gBµ
0

(
H†i

↔
Dµ H

)
(−1, 1, 0) (0,−1,−2)

S 0 10(S) gMS
(
H†H

)
(0, 0, 1) (0, 1, 0)

Table 2. Tree level UV completion in 4H scattering process. The (A) and (S) after SU(2)w/Y means
anti-symmetry and symmetry for the amplitude ij → X under the ij exchanges. In this paper, c⃗(M)
is the UV-EFT matching results in the basis defined in ref. [8], while c⃗(p) is the UV-EFT matching
results in the Partial Wave (P-)Basis defined in ref. [7].

Here X is the heavy state while the indices of the Lorentz and the gauge group are omitted
for the simplification of marking. We can obtain the projectors listed in table 1 for expanding
the 4H scattering amplitudes.

However, in ref. [8], there are only six projectors. Once hypercharge is considered in,
HHX and H†H†X’s same dimension Irreps should be merged, so the number of the UV
states standing for HHX and H†H†X is only 2, so the number of projectors reduces to 6.
MX,n

kl→X is the matrix formed by CG coefficients for Irrep X and its component n, k, l, while
i(j|k|l) means that crossing symmetry in QFT is imposed to the projectors. However, by
using the J-Basis method and the UV selection, nine UV states can be found in table 2.
This shows that finding UV states by decomposing the gauge group direct product miss
the spin-2 UV states in that case.

Except the spin-2 states, the rest UV states can be checked in ref. [69]. Similarly, for
4W scattering, we obtain projectors as follow,

P 1
αβγσ = 1

N
δαβδγσ, P

2
αβγσ = 1

2 (δαγδβσ − δασδβγ) ,

– 7 –
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P 3
αβγσ = 1

2 (δαγδβσ + δασδβγ)−
1
N
δαβδγσ . (2.13)

With N = 3, these above projectors represent SU(2) adjoint representation decompo-
sitions, while N = 2 stands for decompositions in SO(2) or spin space. After imposing the
crossing symmetry on these projectors, as what we did in section 2.1. We reach the conclusion
that for tree-level UV completion of 4W scattering, there are 9 possible UV states. However,
in the tree level, we point out that the old framework of searching UV completion may cause
a mistake. By applying the UV selection analysis in the vector boson scattering (VBS) case,
we find that some UV states in the tree level completion corresponding to projectors couldn’t
exist because their Lagrangian is zero or they are eliminated by the equation of motion
(EOM), i.e. UV state corresponding to such projector doesn’t exist.

Besides, the construction of the projectors for 4 fermions scattering amplitudes is a little
more complicated [65]. The crossing symmetry j ↔ l changes to ik ↔ k̄ī into consideration
in this case so that the projectors of the 4 fermion scattering can be written as,

PX
ijkl =

1
2
∑

α

(
mX,ij

α mX,kl
α +mX,il̄

α mX,kj̄
α +mα

X,k̄jmX,̄il
α +mα

X,k̄l̄mX,̄ij̄
α

)
. (2.14)

Easily, the cone for the 4 fermions scattering can be defined as follows,

C=cone
({
mX,ij

α mX,kl
α +mX,il̄

α mX,kj̄
α +mα

X,k̄jmXīl
α +mα

X,k̄l̄mX,̄ij̄
α +(i↔ j,k↔ l) |m∈C2n×2n

})
.

(2.15)

2.3 Cone calculation and obtaining bounds

Now we know how to construct projectors which represents UV states. Then the projectors
can used to expand corresponding EFT amplitudes, and we can calculate positivity bounds.
First, we need to determine the dimension of projectors, then choose a set of basis BY

ijkl to
expand projectors and EFT amplitudes to acquire a group of vectors {cXY } for different
UV states X in the basis space by applying eq. (2.16).

PX
ijkl = cXY B

Y
ijkl . (2.16)

For example, in table 2, the corresponding P-Basis EFT operators On,ijkl is chosen as the
basis BY

ijkl to obtain the {c⃗(p)}.

On,ijkl = cnY B
Y
ijkl . (2.17)

If other BY
ijkl rather than the operators On,ijkl are chosen as basis, these can be linked

according to the basis transformation relationship eq. (2.17).

Mijkl = CnOn,ijkl = CncnY B
Y
ijkl . (2.18)

Then, the amplitude Mijkl is expanded by applying eq. (2.18) to obtain the corresponding
vector CncnY .

Nm
Y · (CncnY ) ≥ 0 , (2.19)

– 8 –
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where CncnY is the c⃗ while Nm
Y is the n⃗ that we need to search for. Finally we obtain the

cone spanned by a set of vectors {cXY } representing UV states in the BY
ijkl space while the

EFT amplitude represented by the vector CncnY exists in the inner of the cone. According
to the character of the cone mathematically, for any vectors c⃗ in the cone, the dot between c⃗

and every normal vectors n⃗ corresponding to the faces of the cone is larger than 0.
Since vectors representing UV states form the cone, naturally, we can search for faces

(dim n− 1) of the cone to describe the cone. The unique feature of a face is its normal vector.
In fact, if we choose the inward direction as the positive direction for normal vectors, the
dot product of every normal vector and any vectors in the cone is always positive. This is
essentially the positivity bound which we search for. For a simple linear cone, once we acquire
c⃗, it’s easy to obtain all normal vectors of the cone by using the specialized mathematical
calculation program like polymake [83].

In conclusion, we know every facet of the cone can be characterized by its normal
vectors. For specific 2–2 forward scattering with determined particle types, by using group
decomposition to search all projectors forming the cone which contains EFT amplitudes, then
we can find all subsets Ai(c⃗) satisfy Length (Ai(c⃗)) = n− 1 and Rank (Ai(c⃗)) = n− 1. The
collection of Ai(c⃗) must contain all faces of the cone, equally, we can calculate the normal
vector ni(c⃗) for every Ai(c⃗) to select ni(c⃗) satisfied eq. (2.19) to obtain positivity bound.

In the section 4.1, we give detail calculation for the bounds of the operators involved
in the 4H scattering by the steps introduced above. In some more complicated cases, for
the 2-to-2 scattering involving W and B in section 4, intermediate states coupling with
different extremal particles may have a degeneracy relationship measured by a parameter x
like WWX + xBBX where X is UV state, the Lorentz and the gauge indices are omitted
for the convenience of marking. It means the cone has curved surfaces parameterized by
x. Similarly, the normal vectors corresponding to the surfaces are also parameterized by x.
Finally, by solving positive value conditions for these multivariate quadratic polynomials,
the positivity bounds with roots can be obtained.

3 J-Basis theory framework

3.1 Poincare Casimir and partial wave basis

For the Lorentz structures, we briefly introduce the Poincare Casimir operator which has
been elaborated in refs. [12, 53, 57, 67, 68]. When the Poincare Casimir operator W2 acts on
an eigenstate of spin J and momentum P , we obtain the following equation,

W2|P, J, σ⟩ = −P 2J(J + 1)|P, J, σ⟩, (3.1)

where Wµ is the Pauli-Lubanski operator.
Our framework was established in spinor notation. The specific W2 form is introduced

in ref. [53],

W2 = 1
8P

2
(
Tr
[
M2

]
+Tr

[
M̃2

])
− 1

4 Tr
[
P TMPM̃

]
. (3.2)

Here P = Pµσ
µ
αα̇, P

T = Pµσ̄
µα̇α and M, M̃ are chiral components of the Lorentz generator

Mµνσ
µ
αα̇σ

ν
ββ̇

= ϵαβM̃α̇β̇ + ϵ̃α̇β̇Mαβ. More specifically,
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Mαβ = i
N∑

i=1

(
λiα

∂

∂λβ
i

+λiβ
∂

∂λα
i

)
, M̃α̇β̇ = i

N∑
i=1

(
λ̃iα̇

∂

∂λ̃β̇
i

+λ̃iβ̇

∂

∂λ̃α̇
i

)
,

(
M2)β

α
≡Mγ

αM
β
γ =−

∑
i

(
3λiα

∂

∂λiβ
+δβ

αλ
γ
i

∂

∂λγ
i

)

−
∑
i,j

(
λiαλjγ

∂

∂λiγ

∂

∂λjβ
−⟨ij⟩ ∂

∂λα
i

∂

∂λjβ
−λiαλ

β
j

∂

∂λiγ

∂

∂λγ
j

+λγ
i λ

β
j

∂

∂λα
i

∂

∂λγ
j

)
,

(
M̃2

)α̇

β̇
≡ M̃ α̇

γ̇ M̃
γ̇

β̇
=−

∑
i

(
3λ̃iα̇ ∂

∂λ̃iβ̇
+δα̇

β̇
λ̃iγ̇

∂

∂λ̃iγ̇

)

−
∑
i,j

λ̃α̇
i λ̃

γ̇
j

∂

∂λ̃γ̇
i

∂

∂λ̃β̇
j

−[ij] ∂

∂λ̃iα̇

∂

∂λ̃β̇
j

−λ̃α̇
i λ̃jβ̇

∂

∂λ̃γ̇
i

∂

∂λ̃jγ̇

+λ̃iγ̇ λ̃jβ̇

∂

∂λ̃iα̇

∂

∂λ̃jγ̇

 .
(3.3)

Now we consider how the W2 acts on the scattering amplitude. When the W2
I acts

on a process I → I ′, we obtain

W2
IM≡

∑
J

MJ
ab (sI)

[
W2CJ

a (I)
]
· CJ

b

(
I ′
)

=
∑

J

MJ
ab (sI)

[
−sIJ(J + 1)CJ

a (I)
]
· CJ

b

(
I ′
)

= −
∑

J

J(J + 1)× sIMJ
ab (sI)B

J
ab

(
I | I ′

)
,

(3.4)

where CJ
N is the C-G coefficient corresponding to the intermediate state of N particles with

total angular J , and sI = (∑i∈I pi)2 is the Mandelstam variable in the scattering channel.

3.2 Gauge eigen-basis and SU(N) Casimir

In the previous subsection, we introduced how to construct the partial wave basis by using
Poincare Casimir operators. Moreover, the decomposition of the gauge structure need to
be considered in.

In fact, the projection framework [66] enumerate possible UV states by CGC. They wrote
projectors PI→I′ to expand amplitudes WI→I′ . It equals to search all Invariant Subspaces
of the direct product of gauge groups. Despite having a similar principle, we introduce
a more systematic tool: the SU(N) Casimirs from [7, 9, 12, 53]. First we introduce the
SU(2) and SU(3) Casmirs as

C2 = TaTa, for both SU(2) and SU(3),
C3 = dabcTaTbTc, for SU(3) only.

(3.5)

In positivity, we consider the multi-states for the extremal particles, accordingly, we
should write T for the direct product representations as

TA
⊗{ri} =

N∑
i=1

Er1 × Er2 × · · · × TA
ri
× . . . ErN , (3.6)
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with T⊗{ri} and Eri being the generator and identity matrix for different Irreps. The acting
of T on a state ΘI1I2...IN

can be written as

Θ′
I1I2...IN

= Ta
⊗{ri} ◦ΘI1I2...IN

≡
N∑

i=1

(
T a

ri

)Z

Ii

ΘI1...Ii−1ZIi+1IN
. (3.7)

Let’s take the scattering of ππ as an example. Noticing that π with the generator TA
IJ =

iϵAIJ isn’t basic representation of SU(2) group and considering the decomposition of Tm
{12},

firstly, we can find all independent color tensors as

T m
1 = δI1I3δI2I4 , T m

2 = δI1I2δI3I4 , T m
3 = δI1I4δI2I3 . (3.8)

By applying properties of the Levi-Civita symbol εijkε
imn = δj

mδk
n − δj

nδk
mεjmnε

imn =
2δj

i, we obtain(
TATA

)
{12}

δI1I3δI2I4 =
(
TA
)
{12}

(
TA

I1l3δI2I4 + TA
I2I4δL1I3

)
= −4δI1I3δI2I4 + 2δI1I2δI3I4 − 2δL1I4δI2I3 ,(

TATA
)
{12}

δI1I2δI3I4 = TA
I1zδzI2δI2I4 + TA

I2zδI1zδI3I4 = TA
I1I2δI3I4 + TA

I2I1δI3L4 = 0 ,

(
TATA

)
{12}

δI1I4δI2I3 =
(
TA
)
{12}

(
TA

I1I4δI2I3 + δI1I4T
A
I2I3

)
= 2δI1I2δI3I4 − 2δI1I3δI2I4 + 4δI1I4δI2I3 ,

(3.9)

i.e.

C2
{12}
◦ T m

i =
(
CT
2

)
ij
T m

j

{12}

=

 4 −2 2
0 0 0
−2 −2 4


 T

m
1
T m
2
T m
3

 . (3.10)

After diagonalization, three eigenstates in the m-Basis can be obtained as follow,

T (3)I1I2I3I4 = −3T m
1 + 2T m

2 − 3T m
3 = −3δI1I3δI2I4 + 2δI1I2δI3I4 − 3δI1I4δI2I3 ,

T (2)I1I2I3I4 = T m
1 − T m

3 = δI1I3δI2I4 − δI1I4δI2I3 ,

T (1)I1I2I3I4 = T m
2 = δI1I2δI3I4 .

(3.11)

3.3 Lorentz eigen-basis construction

Now we showW2 is appropriate to construct the Lorentz Eigen-Basis with angular momentum
decompositions.

3.3.1 Amplitude operator correspondence

First, according to the spinor notation, we obtain the relationship between the spinor
block [7, 9, 84–86] and the operator block as follows,

Amplitude Blocks λn
i λ̃

n
i λn+1

i λ̃n
i λn

i λ̃
n+1
i λn+2

i λ̃n
i λn

i λ̃
n+2
i

Operator Blocks Dnϕi Dnψi Dnψ†
i DnFLi DnFRi
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Taking amplitude ⟨12⟩[23][24]s14 as an example:

⟨12⟩[23][24]s14 =
(
λ21λ̃1

)αβ

α̇

(
λ2λ̃

2
2

)
αβ̇γ̇

λ̃β̇
3

(
λ4λ̃

2
4

)α̇γ̇

β

amplop−→ (Dψ1)αβ
α̇

(
Dψ†

2

)
αβ̇γ̇

(
ψ†
3

)β̇ (
Dψ†

4

)α̇γ̇

β

∼ (Dµψ1)β
(
Dνψ

†
2

)
β̇

(
ψ†
3

)β̇ (
Dρψ

†
4

)α̇
(σρσ̄µσν)βα̇

=
(
Dµψ1

(
gρµσν − iϵµνρλσλ

)
Dρψ

†
4

) (
Dνψ

†
2ψ

†
3

)
+ EOM.

(3.12)

From the above equation, we find that the spinor notation may not be equal to operator
monomials, and different operator form choices are related by the EOMs. Anyway, we see
the possibility of constructing local operators through polynomials of amplitudes in the
spinor notation.

According to ref. [53], multiplied by the particular Mandelstam variables in the scattering
channel doesn’t alter the angular momentum of the scattering states, so we can get a general
form of operators corresponding to different angular momentum.

BJ,d=N+2k = skBJ ∼ OJ,d . (3.13)

Now let’s take a process ψ†
1, ψ2 → ψ†

3, ψ4 as an example:

BJ=1,d=4+2k ∼ sk−2[12]⟨23⟩2[34] . (3.14)

It corresponds to operator form:

OJ=1,d=4+2k ∼
(
Dk−2

ρ1,...,ρk−2ψ
†
1σ̄µDνψ3

) (
Dk−2,ρ1,...,ρk−2Dµψ2σ

νψ†
4

)
. (3.15)

3.3.2 Poincare Casimir and Lorentz eigen-basis

Now we have introduced the correspondence between amplitudes and operators. Naturally,
for operators of a specific category, finding its complete spinor amplitude basis to construct
eigenstates for W2 is what we discuss in this section.

In refs. [12, 53, 68, 87, 88], a complete basis of local amplitudes and the corresponding
operators are defined as the Young Tableau (Y-)Basis. The name comes from the construction
based on a Young-Tableau of the SU(N) group, where N is the number of particles involved
in the amplitude. For the type of operators we are interested in, we define the relevant
parameters of Young-Tableau as

n = k

2 +
∑

hi<0
hi, ñ = k

2 +
∑

hi>0
hi . (3.16)

Here k is the number of momentum or derivatives in operator type, while hi is the spin
of particle i. The above parameters give such a Young Tableau in figure 2: Next, we just
need to fill labels 1 to N into Young Tableau to acquire the basis represented by a specific
Young Diagram, while the number of each label (particle i) is given by #i = ñ− 2hi for the
particular class of scattering state to satisfy it’s a Semi-Standard Young Tableau (SSYT):
in each row the labels are non-decreasing from left to right; in each column, the labels are
increasing from top to bottom.
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Figure 2. Young Tableau for amplitude-basis corresponding. The number n of rows and the number
ñ of column is defined in the eq. (3.16) related to the number of momentum or derivatives and the
spin of the particles involved in operator type.

For example, once we consider dim-8 4H operators, the Young diagram’s rows and
columns are equal to 2 ∗ 4 with every label i′s number is two. The number of its SSYT is
three. After considering the gauge tensor, we can get a Y-Basis as follows,

M(y)
D4H2H+2,1 = δi

kδ
j
l ⟨34⟩

2[34]2,

M(y)
D4H2H†2,2 = δi

kδ
j
l ⟨24⟩

2[24]2,

M(y)
D4H2H†2,3 = −δ

i
kδ

j
l ⟨24⟩⟨34⟩[24][34],

M(y)
D4H2H†2,4 = δi

lδ
j
k⟨34⟩

2[34]2,

M(y)
D4H2H†2,5 = δi

lδ
j
k⟨24⟩

2[24]2,

M(y)
D4H2H+2,6 = −δ

i
lδ

j
k⟨24⟩⟨34⟩[24][34].

(3.17)

Finally, we claim that all other bases can be transformed into the Y-Basis through the
Schouten identity, the momentum conservation, and the on-shell conditions. In fact, this is a
simplified approach to searching for the amplitude basis in the spinor notation.

3.4 Gauge J-Basis from gauge Casimir

The correspondence of the gauge structures between operators and amplitudes is simple.
The invariant tensors of group factors in the amplitudes exactly correspond to the invariant
tensors that are used to contract the fields in operators to form gauge singlets.

The gauge factors were not considered in the last section, so that the Y-Basis may become
polynomials when it’s acted by Casimir operators. However, a complete and independent
monomial basis called the gauge m-Basis, can always be calculated from these polynomials
by linear transformations. An efficient algorithm to find the gauge m-Basis has been
proposed in [12].

We can achieve it in two steps: first, we need to determine the Young Tableaux of the
particle we consider, then use the Littlewood-Richardson (L-R) rule to find all direct products
expressed by the group structure constants. Finally, we use the gauge Casimir operator to
find its all invariant subspaces, just as we did in section 3.2.
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Figure 3. Flow chart of the J-Basis method to obtain the UV states corresponding to the possible
extremal rays.

4 The updated extremal ray positivity bounds

In this section, we consider the UV completion in the tree level for the extremal ray positivity
bound by J-basis method. Not only the J-basis can obtain the UV states but also any
decompositions of the amplitudes with specific angular momentum J and quantum number.
Hence, the J-basis method can be applied to analyze the positivity bound for the loop-level
scattering amplitudes, which can be decomposed into several angular momentum combinations.

The whole procedure for the J-basis method is described in the following. First we
process the amplitude decomposition for the amplitude basis of the specific process matching
the s2 contribution in the SMEFT to obtain the possible UV states. Then we use the UV
selection based on repeat field, the EOM and other redundancy to obtain the UV states in
the tree level formally. We present a flow chart figure 3 to the whole procedure and compare
this method with the projection method. Then we discuss several typical 2→ 2 scattering
processes following the procedure in flowchart and show differences in the results.

4.1 4 SM Higgs scattering

The 2 Higgs to 2 Higgs scattering is a typical example discussed in ref. [89]. It involves
several dim-8 operators as

Q
(1)
H4 =

(
DµH

†DνH
) (
DνH†DµH

)
,
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channel (Spin,SU(3)c,SU(2)w,U(1)y) P-Basis
{H1, H2} ,

{
H†

3 , H
†
4

}
Oi

(2, 1, 3, 1) −8Of
1 − 48Of

2 − 48Of
3

(0, 1, 3, 1) 8Of
1

(1, 1, 1, 1) 8Of
1 + 16Of

3{
H1, H

†
3

}
,
{
H2, H

†
4

}
Oj

(2, 1, 3, 0) 16Of
1 − 4Of

2 + 56Of
3

(1, 1, 3, 0) 8Of
1 − 4Of

2 + 8Of
3

(0, 1, 3, 0) 8Of
1 + 4Of

2 + 16Of
3

(2, 1, 1, 0) −24Of
1 − 4Of

2 − 24Of
3

(1, 1, 1, 0) −4Of
2 − 8Of

3

Table 3. J-Basis analysis results for the 4H scattering.

Q
(2)
H4 =

(
DµH

†DνH
) (
DµH†DνH

)
,

Q
(3)
H4 =

(
DµH†DµH

) (
DνH†DνH

)
. (4.1)

In the extremal ray method, first in ref. [59], the gauge group SU(2)w CG-coefficients of
the SU(2)w gauge group are used to form projectors in table 1. Projectors in table 1 match
the UV states B1,S,B,W,Ξ0,Ξ1 in table 2. After utilizing the J-Basis method, we find
extra new spin-2 UV states G,H0,H1.

Here we present the details of the J-Basis method applying to the 4H scattering. First,
we list the 6 P-Basis operators for the type D4H4 involved in the 4H scattering,

Of
1 = 1

4Y[
p r ]Y[ s t ]HpiHrj

(
DµDνH

†i

s

) (
DµDνH†j

t

)
,

Of
2 = 1

4Y[
p r ]Y[ s t ]H†i

p Hri (DµDνHjs)
(
DµDνH†j

t

)
,

Of
3 = 1

4Y[
p r ]Y[ s t ]Hpi (DµHrj)

(
DνH

†i

s

) (
DµDνH†j

t

)
,

Of
4 = 1

4Y[
p
r
]Y[ s t ]HpiHrj

(
DµDνH

†i

s

) (
DµDνH†j

t

)
,

Of
5 = 1

4Y[
p
r
]Y[ s

t
]H†i

p Hri (DµDνHjs)
(
DµDνH†j

t

)
,

Of
6 = 1

4Y[
p
r
]Y[ s

t
]Hpi (DµHrj)

(
DνH

†i

s

) (
DµDνH†j

t

)
.

(4.2)

Acting the Poincare Casimir operatorW2 on these P-Basis operators, we obtain the eigenstates
and the eigenvalues of J-Basis in table 3. In detail, we process these steps by using the
program ABC4EFT in ref. [12]. Then we transform the P-Basis to the basis in ref. [8]. By
applying the UV selection, all the possible UV states that match nine eigenstates are written
out. So we can obtain the table 2 in section 2.2 corresponding to table 3. After obtaining
all the UV states, we can apply eq. (2.17), eq. (2.18) and eq. (2.19) to obtain positivity
bounds. More detailed, we choose the EFT operators On,ijkl as basis Bijkl to expand the UV
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Figure 4. The positivity cone for the 4-Higgs operators, with the corresponding generators. The
x-axes represents (C1 +C3)/(2C1 +3C2 +C3), the y axes represents (C1 −C3)/(2C1 +3C2 +C3), the
dashed line presents the cone we obtained before in ref. [59], and the new cone is the solid line.

amplitude. So we just need to search for all the normal vectors of the cone constructed by
all the matching results from the fifth column of table 2 directly.

The number of rank-2 subsets of {c⃗(p)} is C2
9 = 36. Thus we could obtain 36 normal

vectors corresponding to every rank-2 subset which represents the corresponding possible
facet of the cone. To select the correct facets of the cone, we need to select the normal vectors
which satisfy the positivity argument eq. (2.19). However only the following 4 normal vectors
n⃗(p) in these 36 normal vectors which are listed eq. (4.4) satisfying that for every c⃗(p)i,

c⃗(p)i · n⃗(p) ≥ 0 . (4.3)

The normal vectors that satisfies the positivity argument eq. (4.4) are

(1, 1, 1), (1, 1, 12), (5, 9, 1), (1, 3, 2) .
(4.4)

The EFT amplitude (C1, C2, C3) should exist in the cone, so we obtain new positivity bounds,

C1 + C2 + C3 ≥ 0 , C1 + C2 +
1
2C3 ≥ 0 ,

5C1 + 9C2 + C3 ≥ 0 , C1 + 3C2 + C3 ≥ 0 .
(4.5)

Thus extremal rays are changed to H1,H0,B1,B0. In the perspective of the cone’s bottom,
we obtain figure . 4. Based on figure 4, the Monte Carlo Sampling shows that the allowed
area of the WC space is larger than the one obtained by the projection method, and the
cone is a quadrangular pyramid actually.

By applying the J-Basis method in the SM Higgs sector we find that in ref. [59] the pro-
jection to the UV states representing potential extremal ray bounds provides tighter bounds.
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group: (Spin, SU(3)c, SU(2)w,U(1)y)
O(p)

1 =W I
LµνW

Iνρ
L W J

LλρW
Jλµ
L

O(p)
2 =W I

LλρW
I
LµνW

Jλρ
L W Jµν

L

{WL1,WL2} , {WL3,WL4} O(m)
j O(p)

j

(2,1,5, 0) (144,−12, 0,−96, 8, 0, 144,−12, 0) 8(44, 3)
(1,1,5, 0) (48,−12, 24,−32, 8,−16, 48,−12, 24) 0
(0,1,5, 0) (0, 12, 0, 0,−8, 0, 0, 12, 0) 8(4, 3)
(2,1,1, 0) (0, 0, 0, 48,−4, 0, 0, 0, 0) 8(−4,−3)
(1,1,1, 0) (0, 0, 0, 16,−4, 8, 0, 0, 0) 0
(0,1,1, 0) (0, 0, 0, 0, 4, 0, 0, 0, 0) 8(−2, 0)
(2,1,3, 0) (−48, 4, 0, 0, 0, 0, 48,−4, 0) 0
(1,1,3, 0) (−16, 4,−8, 0, 0, 0, 16,−4, 8) 8(4, 1)
(0,1,3, 0) (0,−4, 0, 0, 0, 0, 0, 4, 0) 0

O(p)
1 =W I

LµνW
J
LλρW

Iνρ
R W Jλµ

R

O(p)
2 =W I

LλρW
I
LµνW

Kλµ
R WKνρ

R

{WL1,WL2} , {WR3,WR4} O(m)
j O(p)

j

(0,1,5, 0) (−48, 32,−48) 32(−3, 1)
(0,1,3, 0) (16, 0,−16) 0
(0,1,1, 0) (0,−16, 0) 16(0,−1)

{WL1,WR3} , {WL2,WR4} O(m)
j O(p)

j

(2,1,5, 0) (32,−48,−48) 16(−1,−3)
(2,1,3, 0) (0, 16,−16) 16(−1, 1)
(2,1,1, 0) (−16, 0, 0) 16(−1, 0)

Table 4. J-Basis analysis results for the 4W scattering. Column of O(m)
j represents the m-Basis

results, and the column of O(p)
j represents the P-Basis results. The combination of groups is defined

as (Spin, SU(3)c, SU(2)w, Y ) .

4.2 4W scattering

4.2.1 Amplitude analysis and redundancy

By applying the J-Basis method in 4W scattering, we obtain table 4 listing all the possible
UV states. In table 4, the 6 involved operators in the P-Basis are listed as follows,

O(p)
W 4

L,1
=W I

LµνW
J
LλρW

Iνρ
L W Jλµ

L , O(p)
W 4

L ,2 =W I
LµνW

Jµν
L W I

LλρW
Jλρ
L ,

O(p)
W 2

LW 2
R,1 =W I

LµνW
J
LλρW

Iνρ
R W Jλµ

R , O(p)
W 2

LW 2
R,2 =W I

LµνW
I
LλρW

Jνρ
R W Jλµ

R ,

O(p)
W 4

R,1 =W I
RµνW

J
RλρW

Iνρ
R W Jλµ

R , O(p)
W 4

R,2 =W I
RµνW

Jµν
R W I

RλρW
Jλρ
R .

(4.6)

The WC space of the 4W operators can be defined as

(C(p)
W 4

L,1
, C(p)

W 4
L ,2, C

(p)
W 2

LW 2
R,1, C

(p)
W 2

LW 2
R,2, C

(p)
W 4

R,1, C
(p)
W 4

R,2) ≡ (C1, C2, C3, C4, C5, C6) . (4.7)
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The m-basis for the operator type W 4
L are

O(m)
W 4

L,1 =W I
L1µνW

J
L2λρW

Iνρ
L3 W Jλµ

L4 , O(m)
W 4

L,2 =W I
L1µνW

Jµν
L2 W I

L3λρW
Jλρ
L4 ,

O(m)
W 4

L,3 =W I
L1µνW

J
L2λρW

Iµν
L3 W Jλρ

L4 , O(m)
W 4

L ,4 =W I
L1µνW

I
L2λρW

Jνρ
L3 W Jλµ

L4 ,

O(m)
W 4

L ,5 =W I
L1µνW

Iµν
L2 W J

L3λρW
Jλρ
L4 , O(m)

W 4
L ,6 =W I

L1µνW
I
L2λρW

Jµν
L3 W Jλρ

L4 ,

O(m)
W 4

L ,7 =W I
L1µνW

J
L2λρW

Jνρ
L3 W Iλµ

L4 , O(m)
W 4

L,8 =W I
L1µνW

Jµν
L2 W J

L3λρW
Iλρ
L4 ,

O(m)
W 4

L,9 =W I
L1µνW

J
L2λρW

Jµν
L3 W Iλρ

L4 .

(4.8)

In m-basis the W boson in the operators are marked by the number. It means we don’t
consider identical particle so as to cause the redundance.

Similarly, the WC space of 4W operators in m-basis for the type W 4
L can be defined as

(C(m)
W 4

L,1, C
(m)
W 4

L,2, C
(m)
W 4

L,3, C
(m)
W 4

L,4, C
(m)
W 4

L,5, C
(m)
W 4

L,6, C
(m)
W 4

L,7, C
(m)
W 4

L,8, C
(m)
W 4

L,9) ≡

(C1, C2, C3, C4, C5, C6, C7, C8, C9) .
(4.9)

As for the operator W 2
LW

2
R, the involving m-basis operators are

O(m)
W 2

LW 2
R,1 =W I

L.1µνW
J
L2λρW

Iνρ
R3 W

Jλµ
R4 , O(m)

W 2
LW 2

R,2 =W I
L1µνW

I
L2λρW

Jνρ
R3 W Jλµ

R4 ,

O(m)
W 2

LW 2
R,3 =W I

L1µνW
J
L2λρW

Jνρ
R3 W Iλµ

R4 .
(4.10)

By applying the UV selection to table 4, we can check whether some UV states are
ruled out or not.

1. Let’s us write out such UV Lagrangian WWV where W is the W boson, and V

represents the heavy vector. In the term WWV , the indices of the Lorentz and
the gauge groups has been omitted for simplification of marking. The first leading
contribution would match to D2W4 which corresponds to dim-10. So WWV couplings
can be excluded.

2. Meanwhile, table 3 gives the possibility of existing spin-2 UV couplings as WLWLX.
However, if you calculate the matching of UV state Wµν

I LWI LνρGρµ to the P-Basis,

Wµν
I LWI LνρGρµWαβ

J LWJ LβγGγα =

Wµν
I LWI LνρW

αβ
J LWJ Lβγ ∗

1
M2

S

(
gργgµα + gραgµγ − 2

3g
ρµgγα

)
∝

W I
LµνW

J
LλρW

Iνρ
L W Jλµ

L = O(p)
W 4

L,1
.

(4.11)

Thus, the matching result for this UV state Wµν
I LWI LνρGρµ exists in the ray (1, 0, 0, 0, 0, 0)

of the WC space. The result violates the J-Basis analysis result (−4,−3, 0, 0, 0, 0) for
the UV state (2, 1, 1, 0) in the channel (WL,WL,WL,WL). Besides, ref. [59] provides
another character of the dispersion relation in eq. (2.8) that the amplitude cone is
a salient cone. This means there shouldn’t exist any other UV state in the negative
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direction of the UV state with quantum number (0, 1, 5, 0) for the 4W scattering case.
In table 4, it shows that in the opposite direction of (0, 1, 5, 0), there exists the UV
state with the quantum number (2, 1, 1, 0). The three result from the J-Basis method,
from the UV matching, and from geometry perspective seem incongruous in that case.
However, there is no conflict among the three results because the UV states of tensor
particle with the form WWG can be eliminated by the EOM. For the tensor coupling
W I

LµνW
I
Lρ

νGµρ, the interaction Lagrangian can be rewritten as follow

W Iαβ
L W I γ

Lα Gβγα̇
α̇ = (σµν)αβ(σmn)γ

α(σu1)α̇
β(σv1)γα̇W

Iµν
L W Imn

L Gµ1ν1 . (4.12)

By applying the characters of the σ matrix, eq. (4.12) can be expanded as

W Iαβ
L W I γ

Lα Gβγα̇
α̇ =

(
−2gµµ1σν

tα̇ + 2gνµ1σµ
tα̇ + 2iεµνµ1λσλtα̇

)
εtα∗(

−2gmν1σn
αβ̇

+ 2gnν1σm
αβ̇

+ 2iεmnν1λσλβ̇

)
εα̇β̇W Iµν

L W Imn
L Gµ1ν1 .

(4.13)
There are many kinds of terms in the expansion of eq. (4.13), but all the terms can be
transformed to the form W I

LµνW
I
Lρ

νGµρ by using Tr (σλσ̄ρ) = 2gλρ,

gµµ1σν
tα̇g

mν1σn
αβ̇
W Iµν

L W Imn
L Gµ1ν1 = gµµ1gmν1Tr [σtσ̄n)]W Iµν

L W Imn
L Gµ1ν1

=W I
LµνW

I
Lρ

νGµρ .
(4.14)

Likewise,
εµνν1λεmnνρσλtασρα̇β̇ε

tαεαβ̇ Wµν
L Wmn

L Gµ1ν1

= εµνµ1λεmnνρ Tr (σλσ̄ρ)Wµν
L Wmn

L Gµν1

= −4Wµν
L WLνρGρ

µ .

(4.15)

Finally, eq. (4.16), the transformation relationship can be obtained

W I
LµνW

I
Lρ

νGµρ ∝W Iαβ
L W I γ

Lα Gβγα̇
α̇

=W Iαβ
L W I γ

Lα Gµν

(
−gµνϵβγ − iσµν

βγ

)
.

(4.16)

3. By applying the EOM of the massive spin-2 particles, we can show that the eq. (4.16)
equals zero. The free Lagrangian of the massive spin-2 quantum theory [90, 91] is

SF P

[
h;m2

1

]
≡ SLG[h] + Sm

[
h;m2

1,−m2
1

]
. (4.17)

The expressions SLG (kinetic term) and Sm (mass term) are

SLG[h] =
∫

d4x
[1
2h∂

2h− hµν∂
µ∂νh− 1

2h
µν∂2hµν + hµν∂ν∂

ρhµρ

]
,

Sm

[
h;m2

1,m
2
2

]
= 1

2

∫
d4x

(
m2

1hµνh
µν +m2

2h
2
)
.

(4.18)

By applying the Euler-Lagrange equation, we can obtain the EOMs and find that the
hµν is traceless. (

∂2 −m2
1

)
hµν(x) = 0 ,

∂µhµν(x) = 0 ,
hµ

µ = h(x) = 0 .

(4.19)
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(Spin,SU(3),SU(2),U(1)y) Interaction Lagrangian c⃗(p)

(0,1,5,0)
W I

LµνW
Jµν
L

(
TA
)IJ
SA+

x1W
I
RµνW

Jµν
R

(
TA
)IJ
SA

(4, 3,−12x1, 4x1, 4x21, 3x21)

(0,1,1,0) W I
LµνW

Iµν
L S + x2W

I
RµνW

Iµν
R S (−2, 0, 0,−4x2,−2x22, 0)

(2,1,5,0) W Iµν
L W J

RνρT
IJ
K GKρµ (0, 0,−1,−3, 0, 0)

(2,1,3,0) W Iµν
L W J

Rνρε
IJKGKρµ (0, 0,−1, 1, 0, 0)

(2,1,1,0) W Iµν
L W I

RνρG
ρµ (0, 0,−1, 0, 0, 0)

Table 5. Matching Results for the 4W scattering.

By using the relation Gβγα̇
α̇ = Gµνϵ

α̇β̇σµ
βα̇σ

ν
γβ̇

= Gµν

(
−gµνϵβγ − iσµν

βγ

)
, the contraction

between symmetry tensor Gµν and anti-symmetry tensor σµν
βγ is 0. Then according to

eq. (4.19), the Gµνg
µν is 0. So the couplings with the form WLWLG and WRWRG are

eliminated by the EOMs.

The above discussions show that not all the amplitude decompositions correspond to
the determined UV states in any case. The results of amplitude decomposition require
the UV selection by the EOMs, the repeat field and other identities. Finally, we can
write out all possible UV states for the 4W scattering in table 5.

Now according to eq. (2.17), eq. (2.18) and eq. (2.19), the normal vectors of the 4W
scattering amplitude cone can be calculated to obtain bounds. The cone has three
categories of normal vectors which have the form in the WC space as

(0, 1, 0, 0, 0, 0) ,

(1,−4
3 , 0, 0, 0, 0) ,

(−x2,
4(x1 + x2)

3 , 1, 1,− 1
x2
,
4(x1 + x2)
3x1x2

) (x1 ≤ 0, x2 ≤ 0)) .

(4.20)

The EFT amplitude (C1, C2, C3, C4, C5, C6) should exist in the cone. So the product
between the EFT WCs and the normal vector above should be positive, which represents
the positivity bounds.

Then the positive argument of the vectors in the eq. (4.20) in the WCs space can be
obtained by solving such a system of binary quadratic inequalities:

C2≥ 0 ,

−C1+
4C2
3 ≥ 0 ,(

C5−
4C6
3

)
x1−

4C6x2
3 −(C3+C4)x1x2−

(4
3C2x1−C1x2+

4
3C2x2

)
x1x2≥ 0 (x1,x2≤ 0) .

(4.21)
To solve the third inequality, there are some tricks, i.e. we can regard x1 as a known number
so as to calculate the single quadratic inequality. Then we obtain quadratic inequality of
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x2 from b2 ≥ 4ac. Finally, we obtain the bounds as

C6 ≥ 0 ,
C2 ≥ 0 ,

C1 −
4C2
3 ≤ 0 ,

C5 −
4C6
3 ≤ 0 ,

− C3 − C4 −
8
√
C2C6
3 ≤ 2

√[(
C1 −

4C2
3

)(
C5 −

4C6
3

)]
.

(4.22)

The volume of the allowed WC space is 0.435% by the Monte Carlo Sampling. Despite that
the cone is described by more than 6 WCs, we can still show the structure of the cone in 3D
space as in figure 5 by choosing the specific slicing in the dim-6 WC space. In the scheme
of the slice in figure 5, the UV state (2, 1, 3, 0) is projected to origin while the UV states
(2, 1, 5, 0) and (2, 1, 1, 0) are projected to the y axes. More than that, the circle corresponds
to the UV state (0, 1, 5, 0), and the (0, 1, 1, 0) is degenerated to a linear ray y = 4x. All
of them are in the inner or surface of the slice.

In the previous result in ref. [59], the projectors formed by SO(2) and SU(2)w CG
coefficients were used to represent UV states. the previous work considered the CP-conserving
case and reached the results of the 9 possible extremal rays (UV states) presented by Em,n

where m,n are different Irreps of SU(3)c and SU(2)w. However we reach the conclusion
that there are only 5 possible UV states in the tree level completion. For example, E1,2
means (0, 1, 3, 0) in table 4 whose contribution is zero after the decomposition of the Lorentz
and the gauge group. In conclusion, we find that not all irrep projectors can be realized
with the UV completion.

4.2.2 Comment with the 4 gluon scattering

According to the detailed discussions about the UV completion of the 4W scattering in the
section 4.2.1, we find that the number of UV states in the tree level completion to restrict vector
boson cones is less than previous results obtained by projection in ref. [69]. Hence, the 4 gluon
scattering is similar. More specifically, color group direct product decompositions (projectors)
are listed as follows, while the 1̄0 representations in 8 ⊗ 8 = 1 + 8 + 8̄ + 10 + 1̄0 + 27 from
ref. [66] is eliminated for it doesn’t correspond to the inverted symmetry (ij → ji, kl→ lk).
The projectors corresponding the group decompositions of the direct product of the two
SU(3)c adjoint representations are listed in eq. (4.23). The SO(2) group decompositions
are the same as eq. (2.13). Finally, in ref. [69], it reaches the conclusion that there are 15
possible UV states for the 4 Gluon scattering case,

P ab,cd
1 = δabδcd

N2 − 1 ,

P ab,cd
D = N

N2 − 4d
abedcde,

P ab,cd
F = fabef cde

N
,
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(a) (b)

Figure 5. The WC space of the 4W scattering process. Figure 5(b) is the slice of 4W scattering
cone with different value of C1

C2
and C5

C6
. While the red semiconical represents C1

C2
= 4

3 , C5
C6

= 4
3 point in

figure 5(a); the green semiconical represents curve 9
16 (

C1
C2
− 4

3 )(
C5
C6
− 4

3 ) =
1
4 in figure 5(a); the pink

semiconical represents curve 9
16 (

C1
C2
− 4

3 )(
C5
C6
− 4

3 ) = 1 in figure 5(a).

P ab,cd
T = N2 − 4

4N2

(
δacδbd − δadδbc

)
− 1

2N
(
dacedbde − dadedbce

)
− 1

4
(
dbcefade + dadefbcc

)
,

P ab,cd
X = N + 2

4N
(
δacδbd + δadδbc

)
− N + 2

2N(N + 1)δ
abδcd + 1

4
(
daccedbde + dadedbce

)
− N + 4

4(N + 2)d
abcdcde . (4.23)

However, according to discussions in section 4.2.2, five spin-1 UV states couldn’t exist
for their leading contribution correspond to the dim-10 EFT operators. Besides, the UV
state Gµν

i GjνρfijkS corresponding to the quantum number (Spin = 0, SU(3)c = 1) obviously
equals to zero in Lagrangian. This means that based on the J-Basis method, searching UV
states by applying the UV selection can obtain the more reasonable bounds.

4.3 4 lepton scattering

In this case, the involved P-Basis operators can be divided into four categories based on the
their symmetry of the corresponding Young-Tableau in eq. (4.24).

O(p)
D2L2L†2,1 =

1
4Y[

1 2 , 3 4 ]pδi1
i3
δi2

i4
(Lp1i1Lp2i2)

(
DµL†i3

p3 DµL
†i4
p4

)
,

O(p)
D2L2L†2,2 =

1
4Y[

1 2 , 3 4 ]pδi1
i3
δi2

i4
(Lp1i1σµνLp2i2)

(
DµL†i3

p3 D
νL†i4

p4

)
,

O(p)
D2L2L†2,3 =

1
4Y[

1
2
, 3
4
]pδi1

i3
δi2

i4
(Lp1i1Lp2i2)

(
DµL†i3

p3 DµL
†i4
p4

)
,

O(p)
D2L2L†2 ,4 =

1
4Y[

1
2
, 3
4
]pδi1

i3
δi2

i4
(Lp1i1σµνLp2i2)

(
DµL†i3

p3 D
νL†i4

p4

)
. (4.24)
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State Spin SU(2)w/U(1)y Interaction c⃗(p)

W1 1 31 gp1p2ϵ
i1m

(
τ I
)i2

m
WµI

1

(
Lp1i1i

↔
Dµ Lp2i2

)
+ h.c. (0, 0, 0,−4)

Ξ 0 31 gp1p2ϵ
i1m

(
τ I
)i2

m
ΞI (Lp1i1Lp2i2) + h.c. (−4, 0, 0, 0)

B1 1 11 gp1p2ϵ
i1i2Bµ

1

(
Lp1i1i

↔
Dµ Lp2i2

)
+ h.c. (0,−4, 0, 0)

S 0 11 gp1p2ϵ
i1i2S (Lp1i1Lp2i2) + h.c. (0, 0,−4, 0)

H 2 30 gp1p3

(
τ I
)i1

i3
HµνI

(
Lp1i1iσµ

↔
Dν L

†i3
p3

)
(−5, 9, 15,−3)

W0 1 30 gp1p3

(
τ I
)i1

i3
WµI

0

(
Lp1i1σµL

†i3
p3

)
(−1,−3, 3, 1)

G 2 10 gp1p3δ
i1
i3
Gµν

(
Lp1i1iσµ

↔
Dν L

†i3
p3

)
(−5,−3,−5,−3)

B0 1 10 gp1p3δ
i1
i3
Bµ
0

(
Lp1i1σµL

†i3
p3

)
(−1, 1,−1, 1)

Table 6. UV completion for the 4 lepton scattering. Here the gpigpj means coupling constant of
fermions between different generations pi, pj .

Here pi represents the generation of the particle i. Thus, the corresponding Young-Tableau
gives the corresponding tensor structure of the generation of operators. So the WC space
can be defined as

(C(p)
D2L2L†2,1, C

(p)
D2L2L†2,2, C

(p)
D2L2L†2,3, C

(p)
D2L2L†2,4) . (4.25)

By applying the J-Basis method in amplitude decomposition, we can obtain table 6 as a
possible list of the UV completion.

4.3.1 One generation

In this case, the involved operators become degenerate

O1 = ∂µ

(
l̄γν l

)
∂µ
(
l̄γν l

)
, O2 = ∂µ

(
l̄γντ

I l
)
∂µ
(
l̄γντ I l

)
, (4.26)

because the last two types of operators in eq. (4.24) are eliminated for the Young Diagram’s
anti-symmetry character of O(p)

D2L2L†2,3,O
(p)
D2L2L†2,4. So we can obtain the positivity bounds as

C1 ≤ 0 , 9C1 + 5C2 ≤ 0 . (4.27)

Eq. (4.27) gives a cone marked by purple with extremal rays respectively representing the
UV states H and Ξ1 in figure 6. However in ref. [69], it only obtained UV states B1,B,Ξ1,W .
Hence, the bounds in ref. [69] are C1 ≤ 0, C1 + C2 ≤ 0 which shows a looser bounds marked
by purple in figure 6 than this results in eq. (6).

4.3.2 How to deal with the multi-generation case

We need to expand the generation indices of the operators in eq. (4.25), because when we choose
different generations (p1p2p3p4) in the same type of operators, the coefficients gp1,p2 , g

∗
p3,p4
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Figure 6. The 2-D cone of the 4 Lepton scattering amplitude in one-generation case. Here the green
area is previous result while the purple are is now result.

are different. We use the UV state Bµ
0 as an example to show how to expand generation

indices. For simplification we only consider the lepton coupling with two-generation like

L = g12δ
i1
i3
Bµ
0

(
L1i1σµL

†i3
2

)
+ g21δ

i1
i3
Bµ
0

(
L2i1σµL

†i3
1

)
. (4.28)

Next, we use the combination (pipjpkpl) where the index pi represents the generation of the
particle i in the operator to refer to the operators with different generation combinations.
Then based on the permutation group, combination of generation indices (p1p2p3p4) can take
(1212), (1221), (2112), (2121). For the operator with the type O(p)

D2L2L†2,1 or O(p)
D2L2L†2,2, we

can obtain that (1212) = (1221) = (2121) = (2112). As for the operators with the form
O(p)

D2L2L†2,3 or O(p)
D2L2L†2,4, (1212) = −(1221) = (2121) = −(2112).

Let’s try to write the matching vectors with components of generations tensor (p1, p2, p3, p4)
in the WC space as

(C(p)(1111)
D2L2L†2,1, C

(p)(1111)
D2L2L†2,2, C

(p)(2222)
D2L2L†2,1, C

(p)(2222)
D2L2L†2,2, C

(p)(1122)
D2L2L†2,1, C

(p)(1122)
D2L2L†2,2,

C(p)(2211)
D2L2L†2,1, C

(p)(2211)
D2L2L†2,2, C

(p)(1212)
D2L2L†2,1, C

(p)(1212)
D2L2L†2,2, C

(p)(1212)
D2L2L†2,3, C

(p)(1212)
D2L2L†2,4)

≡ (C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12).

After expanding the generation indices, we could obtain the matching results in table 7.
We can obtain positivity bounds as

C1 +
5C2
9 <= 0 ,

C3 +
5C4
9 <= 0 ,

5C10
9 + 2C5 +

10C7
9 + C9 ≤ 2

√[(
C1 +

5C2
9

)(
C3 +

5C4
9

)]
.

(4.29)

4.3.3 The full flavor case

Considering two-generation of fermion, the UV Lagrangian can be written as the form

L = (g12L1L
†
2 + g21L2L

†
1 + g11L1L

†
1 + g22L2L

†
2)X .
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(Spin,SU(2)w,U(1)y) c⃗(p)
(1,3,1) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(0,3,1) (−1, 0,−y2, 0,−y, 0,−y, 0, 0, 0, 0, 0)
(1,1,1) (0,−1, 0,−y2, 0,−y, 0,−y, 0, 0, 0, 0)
(0,1,1) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(2,3,0) (−1, 1,−y2, y2, 0, 0, 0, 0,−2y, 2y,−2y, 2y)
(1,3,0) (−5,−3,−5y2,−3y2, 0, 0, 0, 0,−10y,−6y,−10y,−6y)
(2,1,0) (−1,−3,−y2,−3y2, 0, 0, 0, 0,−2y,−6y, 6y, 2y)
(1,1,0) (−5, 9,−5y2, 9y2, 0, 0, 0, 0,−10y, 18y, 30y,−6y)

Table 7. Matching results for the form L = (g12L1L
†
2 + g21L2L

†
1)X. Here X is the UV state while

we omit the derivative Dµ and σ matrix for the simplification of marking.

Here X is the UV state while we omit the derivative Dµ, σ matrix and other indices for the
convenience of marking. the WC space with the tensor indexed by generations and types
of Lorentz structure can be defined as follows,

((1111)1, (1111)2, (2222)1, (2222)2, (1112)1, (1112)2, (1122)1,
(1122)2, (1222)1, (1222)2, (1212)1, (1212)2, (1212)3, (1212)4)
≡ (C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14) .

Here p1, p2, p3, p4 in (p1p2p3p4)e represent particles’ generations of the operator while e

represents the serial number in eq. (4.24) which stand for the Lorentz structure and Young-
Tableau form of the operator.

The matching results are shown in table 8. The corresponding cone parametrized by the
ratios of couplings between different generations g22

g11
= x and g12

g11
= y, exists in a 14-D space.

It’s very hard to obtain its analytical solutions. However, some analytical constraints can
be obtained in some cases like the Minimal Flavor Violation (MFV).

4.3.4 The MFV case

MFV is represented that all the flavor violation is generated from Yukawa coupling terms
with the form YijLiL†

j and only EFT operators which are Yukawa singlet can exist [92–94].
It give strong constraints both on the EFT and the UV theory. First considering the UV
lepton sector in table 6, the Yukawa matrix is an identity matrix. So it excludes the first
four coupling terms with the form LiLj so that we need only consider the term of LiL†

i

coupling in table 9. Hence, we need to find all operators whose tensors of generation indices
(p1p2p3p4) are singlet to obtain involved operators. For two-generation cases, singlet tensor
combinations are (1111), (2222), (1212). By defining the WC space as

(C(p)(1111)
D2L2L†2,1, C

(p)(1111)
D2L2L†2,2, C

(p)(2222)
D2L2L†2,1, C

(p)(2222)
D2L2L†2,2, C

(p)(1212)
D2L2L†2,1, C

(p)(1212)
D2L2L†2,2, C

(p)(1212)
D2L2L†2,3, C

(p)(1212)
D2L2L†2,4)

≡ (C1, C2, C3, C4, C5, C6, C7, C8) ,

and the previous UV selection, table 8 can be reduced to table 9.
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(Spin, SU(2)w, U(1)y) c⃗(p)
(1, 3, 1) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−4)
(0, 3, 1) (−1, 0,−y2, 0,−2x, 0,−xy, 0,−2xy, 0,−4x2, 0, 0, 0)
(1, 1, 1) (0,−1, 0,−y2, 0,−2x, 0,−xy, 0,−2xy, 0,−4x2, 0, 0)
(0, 1, 1) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−4, 0)

(2, 3, 0)
(−5, 9,−5y2, 9y2,−10x, 18x,−5x2, 9x2,−10xy, 18xy,
− 5(2x2 + 2y), 9(2x2 + 2y), 15(−2x2 + 2y),−3(−2x2 + 2y))

(1, 3, 0)
(−1,−3,−y2,−3y2,−2x,−6x,−x2,−3x2,−2xy,−6xy,−2
x2 − 2y,−3(2x2 + 2y), 3(−2x2 + 2y),−2x2 + 2y)

(2, 1, 0)
(−5,−3,−5y2,−3y2,−10x,−6x,−5x2,−3x2,−10xy,−6xy,
− 5(2x2 + 2y),−3(2x2 + 2y),−5(−2x2 + 2y),−3(−2x2 + 2y))

(1, 1, 0)
(−1, 1,−y2, y2,−2x, 2x,−x2, x2,−2xy, 2xy,
− 2x2 − 2y, 2x2 + 2y, 2x2 − 2y,−2x2 + 2y)

Table 8. Matching results for the full flavor case of the 4 Lepton scattering involving two generations.

State Spin SU(2)w/U(1)y c⃗(p)
H 2 30 (−5, 9,−5y2, 9y2,−10y, 18y, 30y,−6y)
W0 1 30 (−1,−3,−y2,−3y2,−2y,−6y, 6y, 2y)
G 2 10 (−5,−3,−5y2,−3y2,−10y,−6y,−10y,−6y)
B0 1 10 (−1, 1,−y2, y2,−2y, 2y,−2y, 2y)

Table 9. Matching results for the full flavor case of the 4 Lepton scattering in the MFV case.
Here y = g22

g11
.

According to table 9, the corresponding normal vectors can be simply obtained,

(y21,
5y21
9 , 1, 59 ,−y1,−

5y1
9 , 0, 0) ,

(y21,−
y21
3 , 1,−

1
3 ,−y1,

y1
3 , 0, 0) .

(4.30)

By using eq. (2.17), eq. (2.18), eq. (2.19), we obtain the positivity bounds for the 4 Lepton
scattering with the two-generation under the MFV assumption:

− C3 −
5C4

9 ≥ 0 ,

− C1 −
5C2

9 ≥ 0 ,

− 4
(
−C1 −

5C2

9

)(
−C3 −

5C4

9

)
+
(
C5 +

5C6

9

)2
≤ 0 ,

− C1 +
C2

3 ≥ 0 ,

− C3 +
C4

3 ≥ 0 ,(
C5 −

C6

3

)2
− 4

(
−C1 +

C2

3

)(
−C3 +

C4

3

)
≤ 0 .

(4.31)

The allowed area’s volume of the WC space is 0.974% by Monte Carlo sampling in the
WC space.
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State Spin SU(2)w/U(1)y c⃗(p)

H 2 30
(−5, 9,−5x2, 9x2,−5y2, 9y2,−10x, 18x, 30x,−6x,−10y,
18y, 30y,−6y,−10xy, 18xy, 30xy,−6xy)

W0 1 30
(−1,−3,−x2,−3x2,−y2,−3y2,−2x,−6x, 6x, 2x,−2y,−6y,
6y, 2y,−2xy,−6xy, 6xy, 2xy)

G 2 10
(−5,−3,−5x2,−3x2,−5y2,−3y2,−10x,−6x,−10x,−6x,−10
y,−6y,−10y,−6y,−10xy,−6xy,−10xy,−6xy)

B0 1 10
(−1, 1,−x2, x2,−y2, y2,−2x, 2x,−2x, 2x,−2y, 2y,−2y,
2y,−2xy, 2xy,−2xy, 2xy)

Table 10. Matching results for three generation 4L scattering in the MFV case.

For the three-generation condition, the amplitude cone is an 18-D cone with curved
surfaces parameterized by x = g22

g11
and y = g33

g11
. The matching results are listed in table 10.

Despite it being complicated, numerical solutions can be obtained by applying the particle
data of SM in ref. [95]:

C1 ≥ 0, C2 ≥ 0, 33.634C3 ≥ C15, 33.634C4 ≥ C16, 0.1189C5 ≥ C15,

0.238C6 ≥ C16, 3477.22C7 ≥ C15, 3477.22C9 ≥ C17, C10 ≥ 0.000288C18,

C11 ≥ 0.00484C15, C12 ≥ 0.00484C16, C13 ≥ 0.00484C17, C14 ≥ 0.00484C18 .

(4.32)

4.4 2-to-2 scattering involving W and B in the CP-conservation case

For convenience, we only consider for the CP-conserving case. The operators involved in
this scattering process are listed as follows,

O(p)
W 4

L,1
=W I

LµνW
J
LλρW

Iνρ
L W Jλµ

L , O(p)
W 4

L ,2 =W I
LµνW

Jµν
L W I

LλρW
Jλρ
L ,

O(p)
B4

L,1
= BLµνBLλρB

νρ
L Bλµ

L , O(p)
W 2

LB2
L,1 =W I

LµνW
I
LλρB

Iνρ
L Bλµ

L ,

O(p)
W 2

LB2
L,2 =W I

LµνW
Iµν
L Bρλ

L BLρλ .

(4.33)

Now we need to give the accurate UV completion by the UV selection. According to discussion
in section 4.2.1, for the 2-to-2 scattering involving only B, it only have two UV terms with
(Spin, SU(3)c, SU(2)w, Y ) = (0, 1, 1, 0) and (2, 1, 1, 0). Then for W , (0, 1, 5, 0) and (0, 1, 1, 0)
states are left while only (0, 1, 1, 0) is left for B. So we should only consider degeneracy of
(0, 1, 1, 0) between W and B. Finally, we can consider UV terms with the form WBX where
the Lorentz indices are omitted for simplification of marking. According to section 4.2.1, the
spin-2 term is also eliminated by the EOMs, while the spin-1 term contributes to dim-10
operators in the lead order. The WC space can be defined as

(C(p)
W 4

L,1
, C(p)

W 4
L ,2, C

(p)
B4

L,1
, Cp

W 2
LB2

L,1, C
p
W 2

LB2
L,2) ≡ (C1, C2, C3, C4, C5) .

So we obtain the matching results in table 7. Here the matching result of quantum number
(0, 1, 3, 0) is WIµνBµνWIλρBλρ in the m-Basis. However, it is eliminated by the repeat field
when it’s between the m-Basis and the P-Basis.
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(Spin,SU(3)c,SU(2)w,U(1)y) Interaction Lagrangian c⃗p

(0,1,5,0) W I
LµνW

Jµν
L

(
TA
)IJ
SA (4, 3, 0, 0, 0)

(0,1,1,0) W I
LµνW

Iµν
L S + x1BLµνB

µν
L S (−2, 0,−2x21, 0, 2x1)

(0,1,3,0) W I
LµνB

µν
L SI (0,0,0,0,0)

Table 11. Matching results for the 2-to-2 scattering involving W and B. Here we take the slice of
the cone as x = −C1 + 4

3C2, y = −C3 and z = −C4.

Figure 7. The cone of the 2-to-2 scattering involving W and B boson.

After calculation, we obtain the positivity bounds as

− C1 +
4C2
3 ≥ 0 ,

− C3 ≥ 0 ,

−
√
−C3 ×

(
−C1 +

4C2
3

)
≤ C4 ≤

√
−C3 ×

(
−C1 +

4C2
3

)
.

(4.34)

the slice of the 2D slices of the 3D cone is plotted in figure 7. The last bound in eq. (4.34) is
represented by the circle in figure 7 which corresponds to the UV state (0, 1, 1, 0).

4.5 2-to-2 scattering involving W and Higgs

For simplification, we limit the involved particles to the WL and the H. Considering that
WL and H have been discussed separately, in the step of the UV selection, we only need to
consider the J-Basis decompositions for type D2HH†WLWL. In table 12, we give the possible
UV states corresponding to the amplitudes decompositions. First, considering for coupling
terms like WLWLX + xHH†X where the indices of the Lorentz and the gauge groups are
omitted for the convenience of marking, the x means the coupling constant describing the
degeneracy between WLWLX and BBX in the same quantum number, while X mean the
heavy state. We have already know the WWV term is impossible in tree level in section 4.1.
As a result, we can confirm that the degeneracy coupling only exists in (0, 1, 1, 0). Then
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(Spin,SU(3)c,SU(2)w,U(1)y) Interaction Lagrangian c⃗(p)

(1,1,4,12) εij

(
τ I
)l

i
W I

LµνD
µHkV

ijk
ν (−4I, 8)

(1,1,2,12) τ Ij
i W I

LµνD
µHjV

νi (−2I,−8)

Table 12. The amplitude’s decompositions of the 2-to-2 scattering in the channel WH →WH in
the P-Basis of eq. (4.35).

(Spin,SU(3)c,SU(2)w,U(1)y) c⃗(p)
(0, 1, 5, 0) (4, 3, 0, 0, 0, 0)
(0, 1, 1, 0)

(
−2, 0, 0, 0, x2,−2x

)
(2, 1, 3, 1) (0, 0, 3,−2, 3, 0)
(0, 1, 3, 1) (0, 0, 0, 1, 0, 0)
(1, 1, 1, 1) (0, 0, 1, 0,−1, 0)
(2, 1, 3, 0) (0, 0,−7, 3, 8, 0)
(0, 1, 1, 0) (0, 0, 1, 1,−2, 0)
(0, 1, 3, 0) (0, 0, 2, 0,−1, 0)
(2, 1, 1, 0) (0, 0, 3, 3,−2, 0)
(1, 1, 1, 0) (0, 0,−1, 1, 0, 0)

(1, 1, 4, 12)/(1, 1, 2,
1
2) (0, 0, 0, 0, 0,−1)

Table 13. Matching results for the 2-to-2 scattering involving W and H.

according to ref. [7], operators involved WLH in the P-Basis are

O1
WLH = 1

2Y[
p r ]W Iλν

Lp W IV λ
Lr (DµHi)

(
DµH†i

)
,

O2
WLH = 1

2Y[
p r ]ϵIJKτKi

jW
Iλν
Lp W Jλµ

Lr (DµHi)
(
DνH

†j
)
.

(4.35)

The matching results of the UV terms with the form WLHX are listed in table 12. Despite
that the table 12 give the complex solutions, O2

WLH has no contribution to the matching
results of WLWLX + xHH†X, which means we can exclude C2

WLH from the WC space and
obtain the real matching results in the WC space. So the WC space can be defined as(

C(p)
W 4

L,1
, C(p)

W 4
L,2
, C

(2)
H4 , C

(1)
H4 , C

(3)
H4 , C1WLH

)
≡ (C1, C2, C3, C4, C5, C6) ,

Finally we can obtain full matching results in table 13.
We obtain the six normal vectors of the cone spanned by the matching results in table 13 as

(0, 1, 0, 0, 0, 0) ,
(
−1, 43 , 0, 0, 0, , 0

)
,

(
−x

2

2 ,
2x2
3 , 1, 1, 1, x

)
(x ≤ 0) ,(

−x
2

2 ,
2x2
3 , 1, 3, 1, x

)
(x ≤ 0) ,

(
−x

2

4 ,
x2

3 , 1, 1,
1
2 ,
x

2

)
(x ≤ 0) ,(

−x
2

10 ,
2x2
15 , 1,

9
5 ,

1
5 ,
x

5

)
(x ≤ 0) ,

(4.36)

we can clearly see that the first and the second normal vectors offer the positivity bounds for
the 4WL scattering. When x goes to negative infinity, WL and H would decouple and the
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last four normal vectors offer bounds for the 4H scattering case, similarly in W and quark
scattering case. The total positivity bounds are listed as follows,

C2 ≥ 0,−C1 +
4
3C2 ≥ 0 (only 4WL scattering) ,

C3 + C4 + C5 ≥ 0, C3 + 3C4 + C5 ≥ 0, 2C3 + 2C4 + C5 ≥ 0 (only 4H scattering) ,

5C3 + 9C4 + C5 ≥ 0, |C5| ≤ 2
√
(C3 + C4 + C5)

(
−C1

2 + 2C2
3

)
,

|C5| ≤ 2
√
(C3 + 3C4 + C5)

(
−C1

2 + 2C2
3

)
,

|C5| ≤ 4
√(

C3 + C4 +
C5
2

)(
−C1

4 + C2
3

)
,

|C5| ≤ 2
√
(5C3 + 9C4 + C5)

(
−C1

2 + 2C2
3

)
.

(4.37)
Similarly, the bounds in the first and the second lines can be directly obtained from scattering
process involving the same particle while the other bounds represent the degeneracy between
W and H particles.

4.6 2-to-2 scattering involving W and quark

For convenience, we only consider WL, WR and one generation quark. The involved operators
in the P-Basis are

O(p)
W 4

L,1
=W I

LµνW
J
LλρW

Iνρ
L W Jλµ

L , O(p)
W 4

L,1
=W I

LµνW
Jµν
L W I

LλρW
Jλρ
L ,

O(p)
W 2

LW 2
R,1 =W I

LµνW
J
LλρW

Iνρ
R W Jλµ

R , O(p)
W 2

LW 2
R,2 =W I

LµνW
I
LλρW

Jνρ
R W Jλµ

R ,

O(p)
W 4

R,1 =W I
RµνW

J
RλρW

Iνρ
R W Jλµ

R , O(p)
W 4

R,2 =W I
RµνW

Jµν
R W I

RλρW
Jλρ
R ,

O(p)
Q4

1
=
(
DµQ

†ai
s DνQ

†bj
t

)
(Qpaiσ

µνQrbj) , O(p)
Q4

2
=
(
DµQ

†aj
s DνQ

†bi
t

)
(Qpaiσ

µνQrbj) ,

O(p)
Q4

3
=(QpaiQrbj)

(
DµQ

†ai
s DµQ†bj

t

)
, O(p)

Q4
3
=(QpaiQrbj)

(
DµQ

†aj
s DµQ†bi

t

)
,

O(p)
WLWRQ2,1 = iϵIJKWL

Iµ
ν WR

Jν
λ

(
Qpaiσ

λ
(
τK
)i

j

←→
D µQ

†aj
r

)
,

O(p)
WLWRQ2,2 = iW Iµ

LνWR
Iν

λ

(
Qpaiσ

λ←→D µQ
†ai
r

)
.

(4.38)
So the WC space can be defined as

(C(p)
W 4

L,1
, C(p)

W 4
L,1
, C(p)

W 2
LW 2

R,1, C
(p)
W 2

LW 2
R,2, C

(p)
W 4

R,1, C
(p)
W 4

R,2, C
(p)
Q4

1
, C(p)

Q4
2
, C(p)

Q4
3
, C(p)

Q4
4
, C(p)WLWRQ2,1, C

(p)
WLWRQ2,2)

≡ (C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12) .

The J-Basis analysis for the 4Q scattering is listed in table 14. Given the possible UV
resonances from the J-Basis, we select the UV completion by the following steps. First,
by assuming that UV states are color singlets to exclude coupling terms with the form
QQX where the indices of the Lorentz and gauge groups are omitted for simplification of
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group: (Spin, SU(3)c, SU(2)L,U(1)y){
Q1, Q

†
3

}
,
{
Q2, Q

†
4

}
O(m)

j O(p)
j

(2, 1, 3, 0) (5, 3,−10,−6, 0, 0, 0, 0) (-10, 6, 5, -3)

(1, 1, 3, 0) (−1, 1, 2,−2, 0, 0, 0, 0) (2, 2, -1, -1)

(2.1.1.0) (−5,−3, 0, 0, 0, 0, 0, 0) (0, 0, -5, 3)

(1, 1, 1, 0) (1,−1, 0, 0, 0, 0, 0, 0) (0, 0, 1, 1)

Table 14. J-Basis analysis results for the 4Q scattering. Here the P-Basis O(p)
j are

(O(p)
Q4

1
,O(p)

Q4
2
,O(p)

Q4
3
,O(p)

Q4
4
).

(Spin,SU(3)c,SU(2)w,U(1)y) Matching result in P-Basis
(0,1,5,0) (4, 3,−12x1, 4x1, 4x21, 3x21, 0, 0, 0, 0, 0, 0)
(0,1,1,0) (−2, 0, 0,−4x2,−2x22, 0, 0, 0, 0, 0, 0, 0)
(2,1,5,0) (0, 0, -1, -3, 0, 0, 0, 0, 0, 0, 0, 0)
(2,1,3,0) (0, 0,−1, 1, 0, 0,−10x23, 6x23, 5x23,−3x23,−4x3, 0)
(2,1,1,0) (0, 0,−1, 0, 0, 0, 0, 0,−5x24, 3x24, 0,−4x4)
(1,1,3,0) (0, 0, 0, 0, 0, 0, 2, 2, -1, -1, 0, 0)
(1,1,1,0) (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0)

Table 15. Matching results for the 2-to-2 scattering involving W and Q.

marking. We could only discuss the weak sector. As the UV vector boson coupling term in
the {Q†Q} {WLWL} channel cannot exist because the WWV coupling’s contribution starts
at the dim-10 operators at the tree level which are discussed in section 4.2.1. So we can
obtain the conclusion that the degeneracy of Q̄Q and WW exists in the Irreps with quantum
numbers (2, 1, 3, 0) and (2, 1, 1, 0).

The matching results are listed in table 15, where we consider that for decompositions
with different quantum numbers, the coupling constants xi of degeneracy between WWX

and QQX are different. In the table 15, the matching results show that the corresponding
cone has curved surface parametrized by four parameters x1, x2, x3, x4 which match to the
degeneracy between W and quark. Hence, obtaining the positivity bounds equals solving a
hard quaternion quadratic polynomials problem so only numerical solutions can be obtained.

5 Summary and discussion

Positivity bounds. Positivity bounds for the EFT operators involving 2-to-2 scattering
can be transformed into geometry problems: every UV state contributing the EFT operators
corresponds to the possible extremal ray that form the cone in the WC space of the EFT
operators. It means that the more complete UV states we find, the more accurate shape of
the cone we can acquire so as to obtain the exact bounds for the WCs. Previously, using
the projection method based on the CG coefficients to represent UV or enumerating all
possible UV states either provide redundant UV states or omit some UV states so as to
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obtain a not so strict constraint. Among the results obtained previously, the bounds of the
4W scattering show a significant difference.

the J-Basis method and the UV selection. We introduce the J-Basis method in
section 2. In fact, the J-Basis takes the Lorentz structure into consideration to provide
direct product decompositions of the spin structure and uses the Casimir Operators to give
decompositions of gauge structure. Then according to a quantum number of decompositions,
all possible UV Lagrangian in tree-level can be written. After that, we need to process the
UV selection to check whether its contribution to tree-level matching is eliminated by the
EOMs, the repeat field and other redundancy or not, to give an accurate UV completion.
We apply the J-Basis method and the UV selection to calculate the bounds of some typical
processes, such as the 4H, 4W and 4 lepton scattering, and present the results in section 4.
Despite that the J-Basis can give a systematic scheme to find all the UV states, it’s hard
to obtain the analytical bounds in some cases. Especially for the 4 fermion scattering with
multi-generation we cannot obtain fully analytical solutions due to too many parameters
represents couplings between different generations. However, by imposing limitations such
as the MFV case, the numerical solution can be obtained. In summary, the J-Basis idea
and the UV selection provide a systematic framework to find all the UV states and gives
more rigorous limitations in positivity-bound problems.

Discussion. The positivity bounds based on extremal rays, by itself, is a powerful tool to
determine the exact boundary of the UV-completable EFTs and supersedes bounds from the
elastic scattering, and has a better physical interpretation of the relationship between the UV
and the SMEFT. Many typical 2-to-2 scattering involving the SM particles are calculated in
previous work have been updated in our works by the J-Basis method and the UV selection.
However, obtaining the full set of bounds for all the SMEFT operators seems impossible
because the degeneracy of two states with the same quantum number turns to obtain bounds
to solve corresponding complex multivariate quadratic inequalities. So we should be able
to obtain numerical bounds for all the SMEFT operators.
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A Matching results

In fact, the J-Basis method only provides the possibility of UV particles’ existence and
the further UV selection step give all the UV completion. For cross-checking, we need to
calculate the UV-EFT matching results to process crosscheck. In this appendix, we list
all calculations of tree-level matching for the UV states involved in the 4H, the 4W , and
the 4 lepton scattering processes in the P-Basis. The transformation matrices between the
different basis can be acquired in refs. [7, 9, 53].

Here we introduce some notations that would be used later in this appendix. The Proca
Lagrangian for massive spin-1 particle:

L = −1
2AµGµνAν , (A.1)

where

Gµν = −(□+M2)gµν + ∂µ∂ν . (A.2)

A.1 SM Higgs

The channel: {H1, H2}, {H†
3 , H

†
4}. All the possible UV resonances and the matching results

to the SMEFT operators with the form H2H†2D4 are listed as follows,

The UV states (Spin, SU(2)w, U(1)y) = (2, 3, 1) :

The UV amplitude

= i
g2

M4

(
δi

kδ
j
l + δi

lδ
j
k

)(
s213 + s214 −

2
3s

2
12

)
+ · · · (A.3)

= i
8g2
3M4

(
3 −2 3

)
M(1)

D4H2H†2

M(2)
D4H2H†2

M(3)
D4H2H†2

+ · · · . (A.4)

The UV states (Spin, SU(2)w, U(1)y) = (1, 3, 1):

Lint = gWµI
1 (HT ϵτ Ii

↔
Dµ H) + h.c. . (A.5)

The UV amplitude

= i
2g2
M4

(
ejm

(
τ I
)i

m

(
τ I
)n

k
ϵnl

(
s213 − s214

)
+ ϵjm

(
τ I
)i

m

(
τ I
)n

l
ϵnk

(
s214 − s213

))
+ · · · (A.6)

= 0 . (A.7)

The UV states (Spin, SU(2)w, U(1)y) = (0, 3, 1):

Lint = gMΞI†
1 (HT ϵτ IH) + h.c..

Considering that,(
Hjϵ

jk
(
τ I
)i

k
Hi

)†
= −

(
H†i

(
τ I
)k

i
ϵkjH

†j
)
,
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we have the UV amplitude

= −i2g
2

M4

(
ϵjm

(
τ I
)i

m

(
τ I
)n

l
ϵnk + ϵjm

(
τ I
)i

m

(
τ I
)n

k
ϵnl

)
s212 + · · · (A.8)

= i
4g2
M4

(
δi

kδ
j
l + δi

lδ
j
k

)
s212 + · · · (A.9)

= i
32g2
M4

(
0 1 0

)
M(1)

D4H2H†2

M(2)
D4H2H†2

M(3)
D4H2H†2

+ · · · . (A.10)

The UV states (Spin, SU(2)w, U(1)y) = (1, 1, 1):

Lint = gBµ†
1

(
HT ϵi

↔
Dµ H

)
+ h.c. .

Considering the conjugate relationship(
Hjϵ

jii
↔
Dµ Hi

)†
= i

(
DµH

†iϵijH
†j −H†iϵijDµH

†j
)
= −H†iϵiji

↔
Dµ H

†j , (A.11)

we have the UV amplitude

= i
4g2
M4

(
−δi

kδ
j
l + δi

lδ
j
k

) (
s213 − s214

)
+ · · · (A.12)

= i
32g2
M4

(
1 0 −1

)
M(1)

D4H2H†2

M(2)
D4H2H†2

M(3)
D4H2H†2

+ · · · . (A.13)

Now we discuss about the channel
{
H1, H

†
3

}
,
{
H2, H

†
4

}
.

The UV states (Spin, SU(2)w, U(1)y) = (2, 3, 0):

Lint = gM−1HµνI
0

(
∂µH

†τ I∂νH
)
. (A.14)

The UV amplitude

= i
g2

4M4

(
δi

kδ
j
l

(
s212 −

7
3s

2
14 +

8
3s

2
13

)
+ δi

lδ
j
k

(
s212 −

7
3s

2
13 +

8
3s

2
14

))
+ · · · (A.15)

= i
2g2
3M4

(
−7 3 8

)
M(1)

D4H2H†2

M(2)
D4H2H†2

M(3)
D4H2H†2

+ · · · . (A.16)

The UV states (Spin, SU(2)w, U(1)y) = (1, 3, 0):

LUV = gWµI
0

(
H†τ Ii

↔
Dµ H

)
, (A.17)

The UV amplitude

= i
g2

M4

(
δi

kδ
j
l

(
s212 + s214 − 2s213

)
+ δi

lδ
j
k

(
s212 + s213 − 2s214

))
+ · · · (A.18)

= i
8g2
M4

(
1 1 −2

)
M(1)

D4H2H†2

M(2)
D4H2H†2

M(3)
D4H2H†2

+ · · · . (A.19)
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The UV states (Spin, SU(2)w, U(1)y) = (0, 3, 0):

Lint = gMΞI
0

(
H†τ IH

)
.

The UV amplitude

= i
g2

M4

(
δi

kδ
j
l

(
2s214 − s213

)
+ δi

lδ
j
k

(
2s213 − s214

))
+ · · · (A.20)

= i
8g2
M4

(
2 0 −1

)
M(1)

D4H2H†2

M(2)
D4H2H†2

M(3)
D4H2H†2

+ · · · . (A.21)

The UV states (Spin, SU(2)w, U(1)y) = (2, 1, 0):

Lint = gM−1Gµν
(
∂µH

†∂νH
)
.

The UV amplitude

= i
g2

8M4

(
δi

kδ
j
l

(
s212 + s214 −

2
3s

2
13

)
+ δi

lδ
j
k

(
s212 + s213 −

2
3s

2
14

))
+ · · · (A.22)

= i
g2

3M4

(
3 3 −2

)
M(1)

D4H2H†2

M(2)
D4H2H†2

M(3)
D4H2H†2

+ · · · . (A.23)

The UV states (Spin, SU(2)w, U(1)y) = (1, 1, 0):

Lint = gBµ
0

(
H†i

↔
Dµ H

)
.

The UV amplitude

= i
g2

M4

(
δi

kδ
j
l

(
s212 − s214

)
+ δi

lδ
j
k

(
s212 − s213

))
+ · · · (A.24)

= i
8g2
M4

(
−1 1 0

)
M(1)

D4H2H†2

M(2)
D4H2H†2

M(3)
D4H2H†2

+ · · · . (A.25)

The UV states(Spin, SU(2)w, U(1)y) = (0, 1, 0):

Lint = gMS
(
H†H

)
.

The UV amplitude

= i
g2

M4

(
δi

kδ
j
l s

2
13 + δi

lδ
j
ks

2
14

)
+ · · · (A.26)

= i
8g2
M4

(
0 0 1

)
M(1)

D4H2H†2

M(2)
D4H2H†2

M(3)
D4H2H†2

+ · · · . (A.27)
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A.2 4W boson

A.2.1 Scalar couplings

The UV states (Spin, SU(3)c, SU(2)w, U(1)y) = (0, 1, 1, 0):

LUV = −1
2S

(
□+M2

)
S + gW I

LµνW
Iµν
L S + g∗W I

RµνW
Iµν
R S .

• W 2
LW

2
R — The EOM of S:

(□+M2)S = gW I
LµνW

Iµν
L + g∗W I

RµνW
Iµν
R ,

LEFT = gg∗

M2W
I
LµνW

Iµν
L W J

RρλW
Jρλ
R

= 4gg∗
M2

(
0 −1

)O(p)
W 2

LW 2
R,1

O(p)
W 2

LW 2
R,2

 .

(A.28)

• W 4
L — The EOM of S:

(□+M2)S = gW I
LµνW

Iµν
L ,

LEFT = g2

2M2W
I
LµνW

Iµν
L W J

LρλW
Jρλ
L

= 2g2
M2

(
−1 0

)O(p)
W 4

L ,1

O(p)
W 4

L ,2

 .

(A.29)

The UV states ( Spin, SU(3)c, SU(2)w, U(1)y) = (0, 1, 5, 0):

LUV = −1
2S

Λ
(
□+M2

)
SA + gW I

LµνW
Jµν
L

(
TA
)IJ
SA + g∗W I

RµνW
Jµν
R

(
TA
)IJ
SA .

• W 2
LW

2
R — The EOM of SA:

(□+M2)SA = gW I
LµνW

Jµν
L

(
TA
)IJ

+ g∗W I
R

µνW Jµν
R

(
TA
)IJ

,

LEFT = gg∗

M2W
I
LµνW

Jµν
L WK

RρλW
Lρλ
R

(
TA
)IJ (

TA
)KL

= 4gg∗
3M2

(
−3 1

)O(p)
W 2

LW 2
R,1

O(p)
W 2

LW 2
R,2

 .

(A.30)

• W 4
L — The EOM of SΛ:

(□+M2)SA = gW I
LµνW

Jµν
L

(
TA
)IJ

,

LEFT = g2

2M2W
I
LµνW

Jµν
L WK

LρλW
Lρλ
L

(
TA
)IJ (

TA
)KL

= g2

3M2

(
4 3

)O(p)
W 4

L ,1

O(p)
W 4

L ,2

 .

(A.31)
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A.2.2 Massive Spin-2 couplings

We have already discussed, there are only W 2
LW

2
R terms.

The UV states (Spin, SU(3)c, SU(2)w, U(1)y) = (2, 1, 5, 0):

Lint =W I
LµνW

J
Rρ

ν
(
TA
)IJ
HAµρ

5

LEFT = g2

2M2

(
gµλgνρ + gνλgµρ − 2

3g
µνgλρ

)((
TA
)IJ (

TA
)KL

W I
LµξW

J
Rν

ξWK
LλσW

L
Rρ

)

= g2

3M2 (−1− 3)

O(p)
W 2

L ,W 2
R,1

O(p)
W 2

LW 2
R,2

 . (A.32)

The UV states (Spin, SU(3)c, SU(2)w, U(1)y) = (2, 1, 3, 0):

Lint = ϵIJKW
I
LµνW

J
Rρ

νHKµρ
3 .

LEFT = g2

2M2

(
gµλgνρ + gνλgµρ − 2

3g
µνgλρ

)(
ϵIJM ϵKLMW I

LµξW
J
Rν

ξWK
L λσW

L
Rρ

)
= g2

M2

(
1 −1

)O(p)
W 2

LW 2
R,1

O(p)
W 2

LW 2
R,2

 . (A.33)

The UV states (Spin, SU(3)c, SU(2)w, U(1)y) = (2, 1, 1, 0):

Lint =W I
LµνW

I
RρGµρ ,

LUV = −1
2

(
gµλgνρ + gνλgµρ − 2

3g
µνgλρ

)−1
Gµν

(
□+M2

)
Gλρ + gW I

LλσW
I
RρGλρ ,

LEFT = g2

2M2

(
gµλgνρ + gνλgµρ − 2

3g
µνgλρ

)(
W I

LµξW
I
Rν

ξW J
LλσW

J
Rρ

σ
)

= g2

M2

(
−1 0

)O(p)
W 2

LW 2
R,1

O(p)
W 2

LW 2
R,2

 . (A.34)

A.3 Fermions with the multi-generation

The UV states (Spin, SU(3)c, SU(2)w, U(1)y) = (1, 1, 3, 1):

Lint = gp1p2ϵ
i1m

(
τ I
)i2

m
WµI

1

(
Lp1i1i

↔
Dµ Lp2i2

)
+ h.c. ,

LUV =W†I
1µ

(
□+M2

)
WµI

1 + gp1p2ϵ
i1m

(
τ I
)i2

m
WµI

1

(
Lp1i1i

↔
Dµ Lp2i2

)
− g∗p1p2

(
τ I
)m

i2
ϵmi1W

†µ
1

(
L†i2

p2 i
↔
Dµ L

†i1
p1

)
. (A.35)

• The EOM of WµI :(
□+M2

)
WI

1µ = g∗p1p2

(
τ I
)m

i2
ϵmi1

(
L†2

p2i
↔
Dµ L

†i1
p1

)
.
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• The EOM of W†µI
1 :

(□+M2)W†I
1µ = −gp1p2ϵ

i1m
(
τ I
)i2

m

(
Lp1i1i

↔
Dµ Lp2i2

)
.

LEFT =
gp1p2g

∗
p3p4

M2 ϵi1m
(
τ I
)i2

m

(
τ I
)n

i4
ϵni3

(
Lp1i1i

↔
Dµ Lp2i2

) (
L†4

p4i
↔
D

µL†i3
p3

)
= −

gp1p2g
∗
p3p4

M2 ϵi1m

(
τ I
)i2

m

(
τ I
)n

4
ϵni3(⟨12⟩⟨14⟩[14][34]− ⟨12⟩⟨13⟩[13][34])

=
gp1p2g

∗
p3p4

M2

(
0 0 0 −4

)

O(p)

L2L†2D2,1
O(p)

L2L†2D2,2
O(p)

L2L†2D2,3
O(p)

L2L†2D2,4

 . (A.36)

The UV states (Spin, SU(3)c, SU(2)w, U(1)y) = (0, 1, 3, 1):

Lint= gp1p2ϵ
i1m(τ I)i2

mΞI (Lp1i1Lp2i2)+h.c. ,

LUV =−Ξ†I
(
□+M2

)
ΞI+gp1p2ϵ

i1m

(
τ I
)i2

m
ΞI (Lp1i1Lp2i2)−g∗p1p2

(
τ I
)m

i2
ϵmi1Ξ†I

(
L†i2

p2 L
†i1
p1

)
.

• The EOM of ΞI :

−
(
□+M2

)
ΞI = g∗p1p2

(
τ I
)m

i2
ϵmi1

(
L†i2

p2 L
†i1
p1

)
.

• The EOM of Ξ†I :

(□+M2)Ξ†I = gp1p2ϵ
i1m

(
τ I
)i2

m
(Lp1i1Lp2i2) .

• After integrating out ΞI ,

= −
gp1p2g

∗
p3p4

M4

(
4 0 0 0

)

O(p)

L2L†2D2,1
O(p)

L2L†2D2,2
O(p)

L2L†2D2,3
O(p)

L2L†2D2,4

 . (A.37)

The UV states (Spin, SU(3)c, SU(2)w, U(1)y) = (1, 1, 1, 1):

Lint = gp1p2ϵ
i1i2Bµ

1 (Lp1i1i
↔
Dµ Lp2i2) + h.c. ,

LEFT =
gp1p2g

∗
p3p4

M2 ϵi1i2ϵi4i3

(
Lp1i1i

↔
Dµ Lp2i2

) (
Li4

p4i
↔
D

µL†i3
p3

)
= −

gp1p2g
∗
p3p4

M2 ϵi1i2ϵi4i3(⟨12⟩⟨14⟩[14][34]− ⟨12⟩⟨13⟩[13][34]) . (A.38)
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The UV states (Spin, SU(3)c, SU(2)w, U(1)y) = (0, 1, 1, 1):

Lint = gp1p2ϵ
i1i2S(Lp1i1Lp2i2) + h.c. ,

LEFT =
gp1p2g

∗
p3p4

M4 ϵi1i2ϵi4i3□ (Lp1i1Lp2i2)
(
L†i4

p4 L
†i3
p3

)
=
gp1p2g

∗
p3p4

M4 ϵi1i2ϵi4i3(⟨12⟩⟨12⟩[12][34])

=
gp1p2g

∗
p3p4

M4

(
0 0 −4 0

)

O(p)

L2L+2D2,1
O(p)

L2L+2D2,2
O(p)

L2⊥+2D2,3
O(p)

L2L+2D2,4

 . (A.39)

The UV states (Spin, SU(3)c, SU(2)w, U(1)y) = (2, 1, 3, 0):

Lint = gp1p3

(
τ I
)i1

i3
HµνI

(
Lp1i1iσµ

↔
Dν L

i3
p3

)
,

LUV = −1
2

(
gµλgνρ + gνλgµρ − 2

3g
µνgλρ

)−1
HµνI

(
□+M2

)
HλρI (A.40)

+ gp1p3

(
τ I
)i1

i3
HµνI

(
Lp1i1iσµ

↔
Dν L

†i3
p3

)
.

• The EOM of HµνI :

(□+M2)HµνI =
(
τ I
)i1

i3

(
gµλgνρ+gνλgµρ− 2

3g
µνgλρ

)(
Lp1i1σλ

↔
Dρ L

†i3
p3

)
,

LEFT = gp1p3gp2p4

2M2

(
τ I
)i1

i3

(
τ I
)i2

i4

(
gµλgνρ+gνλgµρ− 2

3g
µνgλρ

)
∗(

Lp1i1iσµ

↔
Dν L

i3
p3

)(
Lp2i2iσλ

↔
Dρ L

†i4
p4

)
= gp1p3gp2p4

2M2

(
τ I
)i1

i3

(
τ I
)i2

i4
[2⟨12⟩[34](−⟨12⟩[12]+⟨14⟩[14])

−(⟨14⟩[43]⟨23⟩[34]−⟨14⟩[43]⟨21⟩[14]−⟨12⟩[23]⟨23⟩[34]+⟨12⟩[23]⟨21⟩[14])]

=gp1p3gp2p4

M2

(
−5 9 15 −3

)

O(p)

L2L†+D2,1
O(p)

L2L†2D2,2
O(p)

L2L†2D2,3
O(p)

L2L†D2,4

 .

(A.41)

The UV states (Spin, SU(3)c, SU(2)w, U(1)y) = (1, 1, 3, 0) :

Lint = gp1p3(τ I)i1
i3
WµI

0 (Lp1i1σµL
†i3
p3 ) ,

LUV = 1
2W

I
0µ

(
□+M2

)
WµI

0 + gp1p3

(
τ I
)i1

i3
WµI

0

(
Lp1i1σµL

†i3
p3

)
. (A.42)

• The EOM of WI
0µ:

(□+M2)WI
0µ = −gp1p3

(
τ I
)i1

i3

(
Lp1i1σµL

†i3
p3

)
,
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LEFT = gp1p3gp2p4

2M4

(
τ I
)i1

i3

(
τ I
)i2

i4

(
Lp1i1σµL

†i3
p3

)
□
(
Lp2i2σ

µL†i4
p4

)
= gp1p3gp2p4

M4

(
τ I
)i1

i3

(
τ I
)i2

i4
⟨12⟩⟨24⟩[24][34]

= −
gp1p2g

∗
p3p4

M2

(
1 3 −3 −1

)

O(p)

L2L†D2,1
O(p)

L2L†D2,2
O(p)

L2L†2D2,3
O(p)

L2L†D2,4

 . (A.43)

The UV states (Spin, SU(3)c, SU(2)w, U(1)y) = (2, 1, 1, 0):

Lint= gp1p3δ
i1
i3
Gµν(Lp1i1iσµ

↔
Dν L

†3
p3) ,

LEFT= gp1p3gp2p4

2M2 δi1
i3
δi2

i4

(
gµλgνρ+gνλgµρ− 2

3g
µνgλρ

)(
Lp1i1iσµ

↔
Dν L

†i3
p3

)(
Lp2i2iσλ

↔
Dρ L

†i4
p4

)
= gp1p3gp2p4

2M2 δi1
i3
δi2

i4

(
−8⟨12⟩⟨34⟩[34]2+6⟨13⟩⟨24⟩[34]2

)

= gp1p3gp2p4

M2

(
−5 −3 −5 −3

)

O(p)

L2L†2D2,1
O(p)

L2L†2D2,2
O(p)

L2L†2D2,3
O(p)

L2L†D2,4

 . (A.44)

The UV states (Spin, SU(3)c, SU(2)w, U(1)y) = (1, 1, 1, 0):

Lint = gp1p3δ
i1
i3
Bµ
0 (Lp1i1σµL

i3
p3) ,

LEFT = gp1p3gp2p4

2M4 δi1
i3
δi2

i4

(
Lp1i1σµL

†i3
p3

)
□
(
Lp2i2σ

µL†i4
p4

)
= gp1p3gp2p4

M4 δi1
i3
δi2

i4
⟨12⟩⟨24⟩[24][34]

= −gp1p3gp2p4

M2

(
1 −1 1 −1

)

O(p)

L2L†+2D2,1
O(p)

L2L†2D2,2
O(p)

L2L†2D2,3
O(p)

L2L+2D2,4

 . (A.45)
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