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Underplated mafic intrusions ponded at the base of the lower continental crust in extensional settings can experience ultra-high-
temperature (UHT) granulite-facies metamorphism during tens of My due to slow cooling rates. These intrusions are also the source
of heat and carbonic fluids for regional high-temperature (HT) granulite-facies metamorphism in the continental crust. This work
analyses the fluid–melt–rock interaction processes that occurred during the magmatic to HT-UHT-granulite- and amphibolite-facies
metamorphic evolution of high-grade mafic rocks from the Eastern Ediacaran Adrar–Suttuf Metamafic Complex (EASMC) of the Oulad
Dlim Massif (West African Craton Margin, Southern Morocco). P–T conditions were determined using Ti-in-amphibole thermometry,
two-pyroxene and amphibole–plagioclase thermobarometry, and phase diagram calculations. The thermobarometric study reveals the
presence of tectonically juxtaposed lower- and mid-crustal blocks in EASMC that experienced decompression-cooling paths from,
respectively, UHT and HT granulite-facies conditions at ca. 1.2 ± 0.28 GPa and 975 ± 50◦C, and ca. 0.82 ± 0.15 GPa and 894 ± 50◦C, to
amphibole-facies conditions at ca. 0.28 ± 0.28 GPa and 787 ± 45◦C (precision reported for the calibrations at 1 s level). An age for the
magmatic to UHT granulite-facies metamorphic transition of 604 Ma was constrained from published SHRIMP Th–U–Pb zircon ages
of the igneous protoliths. An amphibole 40Ar–39Ar cooling age of 499 ± 8 Ma (precision at 2 s level) was obtained for the lower-crustal
blocks. Amphibole 40Ar–39Ar closure temperatures of 520–555◦C were obtained for an age range of 604–499 Ma and an average constant
cooling rate of 4.2◦C/My, suggesting that the lower-crustal blocks cooled down to the greenschist–amphibolite facies transition in ca.
100 My. During the high-temperature stage, interstitial hydrous melts assisted textural maturation of the rock matrix and caused
incongruent dissolution melting of olivine and pyroxenes, and, probably, development of An-rich spikes at the grain rims of plagioclase,
and local segregation of pargasite into veins. Subsequent infiltration of reactive hydrous metamorphic fluids along mineral grain
boundaries during cooling down to amphibolite-facies conditions promoted mineral replacements by coupled dissolution-precipitation
mechanisms and metasomatism. Ubiquitous dolomite grains, with, in some cases, evidence for significant textural maturation, appear
in the granoblastic aggregates of the high-grade mafic rocks. However, calculated phase relationships reveal that dolomite could not
coexist with H2O–CO2 fluids at HT-UHT granulite- and low-medium P amphibolite-facies conditions. Therefore, it is proposed that it
may have been generated from another CO2-bearing phase, such as an immiscible carbonatitic melt exsolved from the parental mafic
magma, and preserved during cooling due to the prevalence of fluid-absent conditions in the granoblastic matrix containing dolomite.
The lower-crustal mafic intrusions from EASMC can represent an example of a source of heat for granulitisation of the mid crust, but
a sink for carbon due to the apparent stability of dolomite under fluid-absent conditions.

Key words: Amphibole–plagioclase thermobarometry; 40Ar–39Ar geochronology; Ediacaran Adrar–Suttuf Metamafic Complex; fluid–
melt–rock interaction; UHT granulite-facies metamorphism

INTRODUCTION
Ultra-high-temperature (UHT) metamorphism, characterised by

temperatures over 900◦C, has been described in many granulite-

facies terranes across the world (e.g. Harley, 1998; Harley, 2004,

2008; Kelsey, 2008; Clark et al., 2011; Kelsey & Hand, 2015; Pownall,

2015; Harley, 2016; Touret et al., 2016; Lei & Xu, 2018). High-
temperature (HT) and UHT granulites can be generated in a large
diversity of tectonic settings including, among others, continental
rifts, collisional orogens, and oceanic and continental arcs (e.g.
Warren, 1983; Sandiford & Powell, 1986; Bohlen, 1991; Gibson &
Ireland, 1995; Müntener et al., 2000; Schmitz & Bowring, 2003;
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Harley, 2004, 2008; Petterson, 2010; Touret & Huizenga, 2012;
Kelsey & Hand, 2015; Cipar et al., 2020; Touret & Huizenga, 2020;
Dharmapriya et al., 2021; Touret et al., 2022).

The role of fluids during the amphibolite-granulite transition
and crustal anatexis is still under intense debate being proposed
scenarios varying from fluid-absent (e.g. Stevens & Clemens, 1993;
Clemens et al., 2016) to fluid-present conditions with the appear-
ance of CO2 and saline fluids, even with high-H2O activities, that
percolate the continental crust at granulite-facies conditions (e.g.
Aranovich et al., 2014, 2016; Newton et al., 2014). Fluid infiltra-
tion can promote metasomatism (e.g. Touret & Huizenga, 2012;
Harlov & Austrheim, 2013; Touret & Nijland, 2013; Touret et al.,
2019), melting (e.g. Stuart et al., 2017, 2018; Touret et al., 2022)
as well as profound mineralogical and textural transformations
(Putnis & Austrheim, 2013; Putnis et al., 2017) and changes in
the composition of magmas ascending from the mantle to the
mid crust, e.g. contamination of vaugnerites (mostly biotite-rich
diorites, quartz diorites, and quartz monzodiorites; Le Maitre,
1989) with supercritical fluids produced by biotite breakdown (Bea
et al., 2021).

One of the sources of fluids that assist the transformation of
the continental crust into granulites (i.e. granulitisation processes
that involve both blastesis of HT and UHT diagnostic mineral
assemblages and intense textural maturation that gives rise to
granoblastic aggregates) is degassing of underplated magmas that
pond at the base of the lower crust. These magmas also provide
a heat source to maintain high thermal regimes over millions of
years to achieve UHT granulite-facies conditions (e.g. Frost et al.,
1989; Huppert & Sparks, 1989; Frost & Frost, 2008; Newton, 2020).
Therefore, the study of lower-crustal mafic intrusions, which
transform themselves into granulites upon slow cooling, can thus
provide important constraints on: (i) f luid–melt–rock interaction
processes at the magmatic to metamorphic transition and during
subsequent cooling (e.g. Wang et al., 2022; Müntener et al., 2000;
Torres-Rodriguez et al., 2021; Munnikhuis et al., 2023; Tribuzio
et al., 2023); (ii) degassing of magmas sourced from the mantle
(e.g. Frost & Frost, 2008; Blanks et al., 2020; Newton, 2020; Touret
& Huizenga, 2020); and (iii) duration of the UHT metamorphism
recorded in their mineral assemblages and the relevance as a heat
source for granulitisation of the middle crust (e.g. Frost et al., 1989;
Harley, 2016). To this end, it is necessary to establish the P–T–t
evolution of these deep-seated complexes. However, determining
reliable P–T conditions in these hot, slowly cooled complexes is
challenging. Thus, the use of classical thermobarometry is ham-
pered by resetting of mineral compositions on cooling, especially
those of pyroxenes due to the development of exsolution lamellae
and the Mg–Fe2+ exchange between ferromagnesian minerals (e.g.
Lindsley, 1983; Frost & Chacko, 1989; Pattison et al., 2003; Ray
et al., 2021). Besides, the computation of equilibrium assemblage
diagrams is limited by the complex thermodynamic treatment
of multicomponent phases and the uncertainty in the system
composition, which may have been modified by migration of
reactive melts or metasomatic fluids (e.g. Touret & Huizenga,
2012; Putnis & Austrheim, 2013; Touret & Nijland, 2013; Forshaw
et al., 2019; Newton, 2020; Molina et al., 2021). However, amphibole–
plagioclase thermobarometry (Holland & Blundy, 1994; Molina
et al., 2015, 2021) and Ti-in-amphibole thermometry (Otten, 1984;
Liao et al., 2021) might give more promising results because the
composition of Ti amphibole and binary plagioclase from plutonic
and high-grade metamorphic rocks can be preserved during slow
cooling (Otten, 1984; Anovitz, 1991; Drüppel et al., 2001; Benisek
et al., 2004; Molina et al., 2009; Sajeev et al., 2009; Liao et al., 2021).
The results obtained by these methods can be combined with

two-pyroxene thermobarometry on both reintegrated and reset
compositions to get more reliable P–T determinations and a better
understanding of the petrogenetic processes.

The Adrar–Suttuf Metamafic Complex (ASMC), exposed in
the central region of the Oulad Dlim Massif (ODM), western
margin of the Reguibat Rise (Southern Morocco) (Figs. 1a-b),
contains large mafic igneous intrusions emplaced in the lower
crust. They were generated during an Ediacaran rift-related
basic magmatism and metamorphosed at high-P amphibolite-
and granulite-facies conditions (Molina et al., 2018; Bea et al.,
2020). In the eastern border of the ASMC, the granulitised
mafic rocks present a large diversity of near-solidus to post-
magmatic pargasite–clinopyroxene–orthopyroxene-plagioclase
assemblages that permit a robust determination of their P–
T conditions of equilibration, and an analysis of the reaction
processes that take place during cooling of deep-seated mafic
intrusions. Furthermore, a precise SHRIMP U-Pb zircon age of
604 Ma (Bea et al., 2020) for the magmatism can provide, in
combination with amphibole 40Ar–39Ar cooling ages, important
constraints on the cooling history of the intrusions.

This study aims to determine the metamorphic evolution
of the high-grade mafic rocks from the eastern border of the
ASMC, as well as to improve the understanding of fluid–melt–
rock interaction processes that occurred during the magmatic to
metamorphic transition and the slow cooling of these deep mafic
intrusions. To this end, we have performed a detailed textural
and mineralogical analysis of high-grade mafic rocks from the
Entajate and Mades bodies, located on the eastern border of the
ASMC (Fig. 1c). Their equilibrium P–T conditions were determined
using amphibole–plagioclase thermobarometry (Molina et al.,
2015, 2021), two-pyroxene thermobarometry (Putirka, 2008) and
Ti-in-amphibole thermometry (Liao et al., 2021). The P–T stability
fields determined for the mineral assemblages from the mafic
rocks were tested by thermodynamic modelling using the GeoPS
program (Xiang & Connolly, 2022). New amphibole 40Ar–39Ar
geochronological data are used to determine the cooling ages
and the closure temperatures of these deep intrusions, using
constraints for initial ages from zircon Th–U–Pb dating reported
in Bea et al. (2020).

GEOLOGICAL SETTING AND FIELD
RELATIONSHIPS
The Oulad Dlim Massif (ODM), exposed over an area of ca.
36 000 km2, constitutes an Archean to late Paleozoic metamorphic
collage of complexes located to the west of the Reguibat Shield
(Fig. 1a), between latitude 21◦ 24′ N to N 23◦ 30′ N and longitude 14◦

36′ W to W16◦ 18′ W, and forms, along with the Dhlou–Zemmour
and Mauritanide belts, the western pericratonic domain of the
Reguibat Shield (e.g. Sougy, 1962a, 1962b; Lécorché et al., 1991;
Villeneuve et al., 2006; Michard et al., 2008, 2010; Montero et al.,
2014, 2018; Molina et al., 2018; Bea et al., 2020). A revision of
the geochronology and geochemistry of the magmatism from
the Tichla–Awsard domain of the Reguibat Shield, and from the
Western Reguibat Alkaline Province can be found in Bea et al.
(2013, 2014, 2016), Montero et al. (2014, 2016, 2018) and Haissen
et al. (2016, 2018).

Villeneuve et al. (2015) (see also Gärtner et al., 2013, 2016)
proposed that the ODM (named by them ‘Adrar Suttuf’; term
that in the present work refers only to the mafic part of the
massif) represents a Pan-African belt that includes a Neopro-
terozoic island-arc reworked during the Variscan collision of the
West African Craton with the North American Craton. However,
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Fig. 1. (a) Geological map of the Western Reguibat Shield with the location of the Oulad Dlim Massif (Southern Morocco). (b) Geological map of the
Oulad Dlim Massif. (c) Location of samples studied in this work. (a and b reprinted from Bea et al., 2020, with permission from Elsevier).

recently Bea et al. (2020) have challenged this model, proposing
that the ODM is constituted by an Archean terrain, divided by
an Ediacaran intracontinental rift that produced a voluminous
bimodal mafic-felsic magmatism, and a Silurian-Devonian gran-
ite belt situated at the westernmost end of the massif (Fig. 1b).
Accordingly, these authors have distinguished two domains in the
Archean terrain: the Eastern and the Western Archean Sectors.
The Eastern Archean Sector overthrust the Paleozoic sedimentary
rocks of the Doloo-Esder-Tiznagaten belt, situated at the boundary
between the Oulad Dlim Massif and the Reguibat Shield, along its

eastern margin (Sougy, 1962b; Figs. 1a, b). The Western Archean
Sector is bounded to the west by the Silurian-Devonian Sector. The
Ediacaran Sector is exposed between these two Archean domains;
it is composed of two contrasting lithodemic units that, how-
ever, share a common, seemingly gradational, contact: the Adrar–
Suttuf Metamafic Complex (ASMC) and the Leucocratic Gneiss
Complex (LGC). The former overthrust the Eastern Archean Sector
at its eastern margin, while the latter is bounded to the west by the
Western Archean Sector through the NNE-trending Tagenaddest
normal fault (Bea et al., 2020; Fig. 1b). At their northernmost end,
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Fig. 2. Field relationships of high-grade mafic rocks from the Adrar–Suttuf Metamafic Complex. (a and b) Photographs of high-grade mafic rock
exposures. Views of hills and small mounds of metagabbros and mafic granulites, much more resistant to erosion than the surrounding amphibolites,
standing out on vast plains partially covered with desert sand. (c and d) Layering defined by alternating centimetre-scale felsic and mafic bands in
Ol-metagabbro. (e) Ol-metagabbros with pargasite veins cutting its layering obliquely. (f) Close-up of the vein. (g) Anorthositic segregations in mafic
granulites. (h) Migmatitic structures in charnockites from the western border of the Adrar–Suttuf Metamafic Complex.

the transitional contact between these roughly parallel NNE-
trending Ediacaran units is rotated and intricately folded (Fig. 1b).

The Adrar–Suttuf Metamafic Complex consists of a vast expo-
sure of foliated amphibolites, granulitised mafic rocks and minor
metasedimentary rocks (mostly marbles and calc-silicate rocks).
The igneous protoliths of the amphibolites and high-grade mafic
rocks have been dated by Bea et al. (2020) using the SHRIMP

Th–U–Pb zircon method. The results show that they are coeval
and have a gradual age variation from about 604 Ma in the east to
ca. 584 Ma in the west (Bea et al., 2020). The amphibolites and high-
grade mafic rocks show a restricted silica range (44–54 wt % SiO2)
and a bimodal distribution of the Mg-number that defines two
compositional series that occurs in distinct geographic positions
(Bea et al., 2020): a magnesian series, depleted in incompatible
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elements, is located in the east and a ferroan series with tholeiitic
affinity, less depleted in incompatible elements, occurs mostly,
but not exclusively, in the west. The high-grade mafic rocks
mainly consist of metacumulates with pargasite + plagioclase
+ clinopyroxene + orthopyroxene ± olivine in the magnesian
series, and metagabbroic rocks with pargasite + plagioclase +
clinopyroxene + orthopyroxene ± Fe-Ti oxides in the ferroan
series. The chemical and isotopic compositions of the two mafic
rock series and the spatially- and temporally-associated granites
from the LGC suggest that they represent a bimodal magmatism
generated in a continental rift (Bea et al., 2020).

The granulitised mafic rocks occur as enclaves within the
amphibolite sequences, often appearing as distinct mappable
bodies (Fig. 1b), such as those of Entajate and Mades on the east-
ern border of the ASMC (Fig. 1c). These bodies, significantly more
resistant to erosion than the surrounding amphibolites, form hills
and small mounds that protrude from vast plains, which are par-
tially covered with desert sand and rocky detritus (Figs. 2a, b). The
most common petrographic types are metagabbronorites, which
can contain either olivine in the high-Mg-number series or quartz
in the more ferrous compositions, and meta-anorthosites, some of
them pegmatitic. Rare bodies of metamorphosed charnockites s.s.
are found in the westernmost end of the complex (Bea et al., 2020).
The high-grade mafic rocks can be massive or layered, presenting
a millimetric to centimetric banding of alternating plagioclase
and mafic minerals (Figs. 2c, d). Notably, veins of pargasite cross-
cut the layering locally (Figs. 2e, f). Anorthositic segregations and
migmatitic structures have also been reported in, respectively,
mafic granulites and charnockites (Figs. 2g-h) suggesting that
they experienced partial melting during the high-grade meta-
morphic event, as discussed in Bea et al. (2020). The contacts
between the high-grade mafic rock bodies and the amphibolites
are highly sheared, resulting in the development of a mylonitic
banding in the former (Fig. 3a). The shear deformation produced
transposition of the pargasite veins (Fig. 3b), thus indicating that
there was a high-temperature veining process before shearing.
Besides, intense retrogression of the mafic rocks is observed adja-
cent to later veins of Cl-bearing amphibole (Fig. 3c; see below for
a discussion).

MINERAL TRANSFORMATION DURING
EVOLUTION FROM HT-UHT GRANULITE- TO
AMPHIBOLITE-FACIES CONDITIONS
Sample description
A total of 12 samples from the Eastern Adrar–Suttuf Metamafic
Complex (EASMC) were selected for this study, (Fig. 1c; see
Appendix A in Molina et al., 2024, for mineral modal abundances;
mineral abbreviations after Whitney & Evans, 2010): two samples
of meta-anorthosite (samples MG-10 and MG-11: 82–84 vol % Pl,
3–4 vol % Amp, ca. 3 vol % Cpx, 6–10 vol % Opx, and < 3 vol % Ol),
one sample of metaleucogabbronorite (sample MG-12: 56 vol %
Pl, 14 vol % Amp, 19 vol % Cpx, and 11 vol % Opx), five samples
of Ol metaleucogabbronorite (samples MG-02, MG-04, MG-06,
MG-08, and MG-09: 58–70 vol % Pl, 5–15 vol % Amp, 4–20 vol
% Cpx, 3–10 vol % Opx, and 4–20 vol % Ol), three samples of
metagabbronorite (samples MG-01, MG-03, and MG-05: 32–41 vol
% Pl, 11–16 vol % Amp, 19–50 vol % Cpx, and 4–20 vol % Opx)
and one sample of Ol metagabbronorite (sample MG-07: 42 vol %
Pl, 10 vol % Amp, 14 vol % Cpx, 22 vol % Opx, and 10 vol % Ol).
The accessory minerals are ubiquitous dolomite, coarse-grained
spinel, which is only present in Ol-bearing lithotypes, ± magnetite
± ilmenite, sulphides (pyrite, chalcopyrite, and pentlandite), and

Fig. 3. Field relationships of high-grade mafic rocks from the Eastern
Adrar–Suttuf Metamafic Complex. (a) Intensely deformed mafic
granulite presenting a mylonitic banding. (b) Intensely deformed mafic
granulite with a Ti pargasite vein transposed to the mylonitic banding.
(c) Late Cl amphibole veins with intense retrogression of the mafic rock.

very scarce garnet and corundum that only appear in sample
MG-10. A large variety of symplectitic aggregates, described later,
are present in all rock types.

Nine samples (MG-01, MG-02, MG-03, MG-04, MG-06, MG-07,
MG-08, MG-09, and MG-11) come from the inner parts of the
high-grade mafic bodies (Fig. 1c) and show granoblastic aggre-
gates with variable degrees of textural maturation. Among these,
seven samples (MG-02, MG-04, MG-06, MG-07, MG-08, MG-09, and
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MG-11) present relicts of olivine partially replaced by coronas
of orthopyroxene of probable igneous origin, as discussed later,
and are henceforth referred to as Ol-metagabbros to highlight the
presence of this igneous texture; the remaining two samples (MG-
01 and MG-03) are designated as mafic granulites. Additionally,
three samples (MG-05, MG-10, and MG-12) come from the borders
of these bodies and exhibit mylonitic fabrics, thus referred to as
mylonitic mafic granulites.

Mineral microanalysis and SEM images
Minerals analyses were performed by wavelength dispersive
spectrometry (WDS) using a CAMECA SX100 electron microprobe
at the Centro de Instrumentación Científica (CIC, University of
Granada, Spain) operated at 20 kV accelerating voltage and 20 nA
beam current. Both natural and synthetic standards were used
for the calibration: diopside (Si), hematite (Fe), wollastonite (Ca),
albite (Na), sanidine (K), rutile (Ti), rhodonite (Mn), vanadinite
(Cl), f luorite (F), and synthetic periclase (Mg), Al2O3 (Al), Cr2O3

(Cr), and NiO (Ni). The precision was close to 4% for an analyte
concentration of 1 wt %. Mineral analyses were also carried out
by energy dispersive spectroscopy (EDS) using a ZEISS EVO-10
high-vacuum scanning electron microscope (HV-SEM) at the CIC
operated at 15 kV, using natural mineral standards. The original
pre-exsolution compositions of clinopyroxene and orthopyroxene
were reintegrated by EDS raster analysis of rectangular areas
with edges ranging from 40 to 300 μm. Back-scattered electron
(BSE) images were also captured with the ZEISS EVO-10 HV-SEM
(see Appendix B in Molina et al., 2024, for representative BSE-SEM
images and microphotographs with location of spot and areal
analyses).

Selected mineral compositions are listed in Appendixes C and D
(Molina et al., 2024). Fe3+ and Fe2+ contents in amphibole (nor-
malisation to 23 O), garnet (normalisation to 12 O), ilmenite
(normalisation to 3 O), pyroxenes (normalisation to 6 O), spinel-
group minerals (normalisation to 4 O) were calculated by charge
balances and stoichiometric constraints. A modified version of
the average Fe3+ method of Spear & Kimball (1984), described in
Appendix A from Dale et al. (2005), was used for the amphibole
formula, assuming OH + Cl + F = 2 atoms per formula unit, apfu.
Mineral formulas were calculated assuming total Fe as Fe2+ for
carbonates (normalisation to 3 O), olivine (normalisation to 4 O),
and plagioclase (normalisation to 8 O).

Mineral assemblages
The high-grade mafic rocks present a main mineral assemblage
consisting mostly of pargasite/hornblende ± clinopyroxene +
orthopyroxene + labradorite/bytownite + dolomite ± spinel ± Fe-
Ti oxides. This mineral assemblage forms granoblastic aggregates
with different degrees of textural maturation and evidence for
the presence of a former interstitial melt, thus suggesting mineral
equilibration during a transition from magmatic to metamorphic
conditions. During cooling, this high-temperature texture was
overprinted by various types of symplectitic aggregates and cross-
cut by late veins that witness fluid–rock interaction processes
along grain boundaries and fractures. Besides, the high-grade
mafic bodies were intensely sheared at their borders, resulting
in the development of mylonitic fabrics that provide relative
time constraints on the sequence of processes occurring during
cooling.

Below, a detailed description is provided of the textural and
mineralogical imprints resulting from melt- and fluid-mediated
reaction processes on the EASMC high-grade mafic rocks. The
main textual criterion used for distinguishing between these two

reaction mechanisms is the formation of micropores, charac-
terised by their rounded shapes, in the mineral products resulting
from replacement processes caused by dissolution-precipitation
mechanisms assisted by fluids (c.f., Putnis, 2002, 2009; Putnis
& Austrheim, 2013; Spruzeniece et al., 2017). These mechanisms
differ from those involving melts in that the latter would lead to
the formation of melt inclusions in the mineral products, which
would crystallise during slow cooling (see Putnis, 2002, for further
discussion).

Melt-mediated reaction processes during
magmatic to metamorphic transition
Textural maturation in the presence of interstitial residual
melts
The rock matrix of Ol-metagabbros and mafic granulites is
characterised by medium- to coarse-grained granoblastic aggre-
gates of amphibole, clinopyroxene, orthopyroxene, plagioclase,
dolomite, spinel and Fe-Ti oxides (Figs. 4a-c). The composition
of amphibole from these aggregates is pargasite and Ti pargasite
(compositional ranges: Ti = 0.13–0.37 apfu (23 O), AlIV = 1.70–
2.12 apfu, A-site (Na + K occupancy in A site) = 0.68–0.95 apfu,
and Mg/(Mg + Fe2+) = 0.64–0.82 in Ol-metagabbros; Ti = 0.20–
0.31 apfu, AlIV = 1.86–2.01 apfu, A-site = 0.71–0.84 apfu, and
Mg/(Mg + Fe2+) = 0.62–0.74 in mafic granulites; Figs. 5a-c). The Cl
occupancy is very low (<0.02 apfu; XCl < 0.017, Xi = i/(F + Cl + OH);
i = F, Cl); Fig. 5d), while that of F is higher (up to 0.15 apfu;
XF < 0.075), but still much lower than that reported in pargasite
formed by infiltration of F-bearing fluids, such as this from the
Archean Napier Complex, which can achieve XF values of up
to 0.48 (Tsunogae et al., 2003). The amphibole grains show no
exsolution lamellae suggesting negligible compositional resetting
upon cooling. In some samples (e.g. MG-01, MG-03, MG-08, MG-09,
and MG-11), they present a typical cooling compositional path
characterised by decreasing in Ti occupancy and increasing in
Mg/(Mg + Fe2+) ratio (Figs. 6a-b) (c.f., Czamanske & Wones, 1973;
Molina et al., 2009). By contrast, the clinopyroxene grains from the
granoblastic aggregates experienced a significant compositional
resetting that is evidenced by the appearance of exsolution
lamellae of orthopyroxene at their cores; the rims can be devoid
of exsolutions suggesting overgrowth at lower temperature
conditions (Fig. 4c). Reintegrated compositions of grain cores are
mostly diopside (compositional ranges: Al = 0.17–0.21 apfu (6 O),
Ca = 0.83–0.86 apfu, CaTs (Ca-tschermak (%) = 100 [AlVI-Na]) = 3–
7 mol %, and Mg/(Mg + Fe2+) = 0.78–0.87 in Ol-metagabbro MG-09;
Al = 0.20–0.21 apfu Al, Ca = 0.84–0.85 apfu, CaTs = 4–7 mol % and
Mg/(Mg + Fe2+) = 0.83–0.87 in mafic granulite MG-01; Figs. 7a, b).
Spot analyses of grain cores and both areal and spot analyses
of rims show diopside compositions with a distinctive higher Ca
occupancy (> 0.86 apfu) (Fig. 7b). The orthopyroxene grains from
the granoblastic aggregates show very tiny exsolution lamellae of
clinopyroxene developed during cooling (Fig. 4d). They have rein-
tegrated compositions of enstatite with 0.11 to 0.16 apfu (6 O) Al,
0.021 to 0.031 apfu Ca, and Mg/(Mg + Fe2+) of 0.66 to 0.75 (samples
MG-01 and MG-09; Figs. 7a and c). Spot analyses of grain cores and
rims show similar compositions with 0.064 to 0.17 apfu Al, 0.007
to 0.019 apfu Ca, and Mg/(Mg + Fe2+) of 0.66 to 0.77 (Figs. 7a and c).
The plagioclase grain cores from the granoblastic aggregates
are relatively homogeneous within each sample ranging from
labradorite to bytownite with An58–63 (An = 100∗Ca/(Ca + Na + K)
atomic ratio) in MG-08 and MG-09, An67–71 in MG-01 and MG-
06, An72–76 in MG-02, MG-03, and MG-11, and An85–87 in MG-
07. The spinel from the Ol-metagabbros has Mg/(Mg + Fe2+) of
0.50–0.64 in grain cores, decreasing to 0.43–0.45 at the rims; its
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Fig. 4. Microphotographs and BSE images of high-grade mafic rocks from the Eastern Adrar–Suttuf Metamafic Complex. (a and b) Microphotographs of
medium- to fine-grained granoblastic aggregates of clinopyroxene, orthopyroxene, olivine, pargasite, and plagioclase in Ol-metagabbros MG-08 (a) and
MG-09 (b) with anhedral clinopyroxene grains rimmed by pargasite and blebs of pargasite. Note low dihedral angles subtended at Prg–Cpx–Cpx,
Prg–Pl–Pl and Pl–Prg–Prg junctions (marked with blue arrows) and pargasite films wetting plagioclase-clinopyroxene and plagioclase-orthopyroxene
grain boundaries (marked with red arrows). Plane-polarised light. (c) BSE image of medium-grained granoblastic aggregate from Ol-metagabbro MG-09
consisting of pargasite and clinopyroxene exhibiting exsolution lamellae of orthopyroxene with a low Cpx–Prg–Prg dihedral angle (marked with blue
arrow) and labradorite grain with an An-rich spike (arrowed) at its rim. Note that exsolution lamellae are absent in the clinopyroxene rim wetting the
pargasite-pargasite grain boundary. (d) BSE image of orthopyroxene grain from Ol-metagabbro MG-09 exhibiting very tiny exsolution lamellae of
clinopyroxene. In BSE images, the colour of circles corresponds to the mineral indicated by the label with the same colour. Mineral abbreviations after
Whitney & Evans (2010).

composition is similar to this from high-grade metamorphic rocks,
with negligible Cr/(Cr + Al) ratios and high Al occupancies (ranges:
1.92–1.95 apfu (4 O) in grain cores and 1.89–1.91 apfu at grain rims)
(Figs. 8a-b). In the granoblastic aggregates of mafic granulite MG-
03, it appears ilmenite and magnetite with, respectively, 0.26–0.31
apfu (3 O) Fe3+ and 0.45–0.46 apfu (4 O) Ti (Fig. 8c).

The granoblastic aggregates show high apparent dihedral
angles at many triple-junctions (Figs. 4a-b), implying a gen-
eralized solid-state re-equilibrium caused by an intense UHT
annealing (see section on P–T estimations for details). However,
dihedral angles subtended at Prg–Cpx–Cpx, Prg–Pl–Pl, Pl–Prg–Prg
and Cpx–Prg–Prg junctions remain low (blue arrows in Figs. 4a-c),
whereas pargasite can appear as thin films that ‘wet’ plagioclase-
clinopyroxene and plagioclase-orthopyroxene grain boundaries
(red arrows in Figs. 4a-b). This is taken as evidence for the
presence of a former interstitial melt during annealing (c.f.,
Holness et al., 2005, 2007; Stuart et al., 2016; Munnikhuis et al.,
2023). Locally, clinopyroxene grains are partially replaced by
pargasite (Figs. 4a-b) with a composition similar to that form
granoblastic aggregates (Figs. 6b-c; sample MG-01), implying an
incongruent dissolution that could have been caused by reaction
with this interstitial melt (c.f., Beard et al., 2004, 2005; Molina et al.,
2009; Beard, 2019).

Incongruent melting of olivine
In Ol-metagabbros (Figs. 9a-b), coronas of tabular and columnar
orthopyroxene grains, with a composition similar to that from
granoblastic aggregates (Al = 0.073–0.15 apfu, Ca = 0.007–0.024

apfu, and Mg/(Mg + Fe2+) = 0.66–0.83; Figs. 7a and c), appear
around olivine (Fo63–83; Fo = 100∗Mg/(Mg + Fe2+) atomic ratio).

The coronas are mostly developed at the grain boundaries
between olivine and plagioclase (Fig. 9a). The interface between
olivine and orthopyroxene is convex towards olivine, being consis-
tent with the partial dissolution of the former (c.f., Joesten, 1986).
By contrast, the orthopyroxene-plagioclase interface can be flat or
slightly curved whereas the polysynthetic twinning of plagioclase
grains is not truncated by the grain boundary (Fig. 9a). These
textural relationships suggest that plagioclase was not involved in
the replacement of olivine by orthopyroxene. The coronas can also
appear at olivine-pargasite interfaces (Fig. 9b), but locally these
mineral phases can be in direct contact, thus suggesting that they
were not unstable.

There has been a great deal of debate about the origin of
orthopyroxene coronas, with both igneous and metamorphic ori-
gins being proposed (see detailed revisions in Joesten, 1986; De
Haas et al., 2002; Gallien et al., 2012), but the textural relationships
of the EASMC Ol-metagabbros (c.f., Fig. 2b in Beard, 2019) are more
consistent with the reaction of olivine with melt without any
involvement of plagioclase or pargasite:

Ol + SiO2(in melt) → Opx

This mechanism also resolves the excess of Al, Ca and Na, and
of Ti, Al, Ca, Na, K, and H2O that would have been produced if pla-
gioclase or pargasite, respectively, were involved in the reaction.
This replacement corresponds to the classical peritectic dissolu-
tion reaction of olivine prescribed by the Bowen’s discontinuous
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Mafic granulites: MG-01 & MG0-3
Mylonitic mafic granulite MG-10
Mylonitic mafic granulite MG-05

Mylonitic mafic granulite MG-12
Vein in mylonitic mafic granulite MG-05

Vein in mylonitic mafic granulite MG-12

Fig. 5. Amphibole composition in high-grade mafic rocks from the Eastern Adrar–Suttuf Metamafic Complex. (a) Ti versus AlIV occupancies. (b) A-site
versus AlIV occupancies. (c) Mg/(Mg + Fe2+) ratio versus AlIV occupancy. (d) Cl versus F occupancies.

reaction series (Bowen, 1922) and is consistent with the tholeiitic
character of the magmatism.

An-rich spikes: Evidence for the action of hydrous melts
In most samples of Ol-metagabbros and mafic granulites, An-
rich spikes can appear at the rims of plagioclase grains from the
granoblastic aggregates, achieving An66–75 in MG-09, An70–78 in
MG-01, An75–77 in MG-02, An80–87 in MG-03 and An87–92 in MG-07
(e.g. Figs. 4c from Ol-metagabbro MG-09, and 10c and 14a from
mafic granulite MG-03).

This textural feature has been considered as an indication for
(i) infiltration of a reactive hydrous mobile phase in gabbroic
rocks, being proposed either a melt (e.g. Koepke et al., 2005a, 2005b,
2014) or a fluid (e.g. Bosch et al., 2004; Maier et al., 2021), or,
conversely, for (ii) crystallisation from an in situ hydrous residual
melt (e.g. Müller et al., 2022). In the EASMC high-grade mafic rocks,
the near-solidus conditions estimated for textural maturation (see
next section) suggest that it is more likely the involvement of an
in situ hydrous residual melt.

Dolomite recrystallisation during textural maturation
Dolomite (Ca = 0.50–0.51 apfu (3 O) and Mg/(Mg + Fe2+) = 0.84–
0.93) is ubiquitous in Ol-metagabbros and mafic granulites. This
mineral phase can occur within the rock matrix jointly with vari-
ous combinations of clinopyroxene, orthopyroxene, pargasite, pla-
gioclase, spinel, and magnetite (Figs. 10a-c). It also appears, along
with clinopyroxene and orthopyroxene, entrapped in anhedral
cores of bytownite replaced by labradorite (Fig. 10d). The inter-
faces between dolomite and silicate minerals present diverse
degrees of textural maturation, appearing rounded shapes that
suggest recrystallisation at high-temperature conditions (com-
pare Figs. 10b and d), i.e. during the magmatic to metamorphic
transition.

Pargasite veins crosscutting granoblastic aggregates as
evidence for melt-assisted segregation
The pargasite from veins crosscutting the layering of Ol-
metagabbros displays a granoblastic texture similar to that of the
host-rock matrix (Figs. 11a-b), indicating that textural maturation
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Fig. 6. Ti occupancy versus Mg/(Mg + Fe2+) ratio in amphibole from high-grade mafic rocks from the Eastern Adrar–Suttuf Metamafic Complex. (a)
Composition of amphibole displayed by samples. (b) Composition of amphibole from granoblastic aggregates. (c) Composition of amphibole included
in resorbed grains of clinopyroxene and orthopyroxene. (d) Composition of amphibole at reaction sites. (e) Composition of amphibole porphyroclasts.
(f) Composition of amphibole from grain-size reduced polycrystalline matrix.

due to annealing took place after the formation of pargasite
veins. Its composition is also similar to that of the granoblastic
aggregates (Figs. 5a-c; sample MG-08). Notably, the selvages of the
veins are depleted in pargasite, suggesting local segregation of
this mineral phase into the vein.

The evidence for interstitial melts during textural maturation
previously discussed suggests that this segregation could most
likely have been mediated by a melt.

Fluid-mediated reaction processes during cooling
A large variety of tiny symplectitic aggregates, i.e. vermicular
intergrowths of two or more minerals (e.g. Keevil et al., 2020), were
produced upon cooling at reaction sites located along the grain
boundaries of the granoblastic aggregates from the EASMC high-
grade mafic rocks (Figs. 10, 12-14).

The origin of symplectites has been intensely debated
(e.g. see Spruzeniece et al., 2017, for a review). Hydrothermal
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Fig. 7. Pyroxene composition in high-grade mafic rocks from the Eastern
Adrar–Suttuf Metamafic Complex. (a) Wo–En–Fs classification diagram.
(b) Ca versus Al occupancies in clinopyroxene. (c) Ca versus Al
occupancies in orthopyroxene.

experiments conducted by Spruzeniece et al. (2017) have demon-
strated the importance of dissolution–precipitation mechanisms
in the growth of symplectites. This process results in the creation
of micropores that are filled by fluids or melts at the time of
reaction, thus proving to be very useful for textural interpretation
(c.f., Putnis, 2002, 2009), as previously indicated.

The EASMC high-grade mafic rocks contain both hydrous
and anhydrous symplectites. They are characterised, as shown

mafic

Fig. 8. Mineral compositional relationships in high-grade mafic rocks
from the Eastern Adrar–Suttuf Metamafic Complex. (a) 100∗Cr/(Cr + Al)
versus 100∗Fe2+/(Mg + Fe2+) classification diagram for spinel-group
minerals. (b) Fe3+–Al–Cr classification diagram for spinel-group
minerals. Spinel compositional fields from Barnes & Roeder (2001). (c)
Rt–Hem–Wus classification diagram for Fe–Ti oxides.

below, by the development of micropores in the mineral reaction
products, thus attesting to the involvement of fluids in the
replacements.

Anhydrous symplectites
In Ol-metagabbros, there are anhydrous symplectites of clinopy-
roxene, orthopyroxene, and spinel at olivine-plagioclase grain

D
ow

nloaded from
 https://academ

ic.oup.com
/petrology/article/65/6/egae049/7671121 by U

niversidad de G
ranada - Biblioteca user on 21 June 2024



Journal of Petrology, 2024, Vol. 65, No. 6 | 11

Fig. 9. Microphotographs of olivine textural relationships in Ol-metagabbro MG-08 from the Eastern Adrar–Suttuf Metamafic Complex. (a)
Microphotograph of a corona of columnar and tabular orthopyroxene at the grain boundaries between olivine and plagioclase. Cross-polarised light.
(b) Microphotograph of orthopyroxene corona between the grain boundaries of olivine and pargasite. Note that olivine can be locally in contact with
pargasite, thus suggesting equilibrium. Cross-polarised light. Mineral abbreviations after Whitney & Evans (2010).

Fig. 10. Microphotographs and BSE images of dolomite textural relationships in Ol-metagabbros and mafic granulites from the
Eastern Adrar–Suttuf Metamafic Complex. (a) Microphotograph of a tiny intergrowth of dolomite, spinel, orthopyroxene, and plagioclase in the rock
matrix of Ol-metagabbro MG-08. Note that some interfaces at two-grain junctions are curved, whereas others are planar. Cross-polarised light. (b) BSE
image of a tiny aggregate of clinopyroxene, spinel and dolomite, and very tiny symplectitic aggregates of clinopyroxene + spinel set in the interstices
of an aggregate of labradorite from Ol-metagabbro MG-08. Note the occurrence of (i) one rounded inclusion of dolomite in spinel, (ii) planar to slightly
curved interfaces at dolomite-clinopyroxene and dolomite-spinel junctions, (iii) laths of spinel and clinopyroxene along the grain boundaries of
plagioclase with spinel, dolomite and symplectite and (iv) one tiny grain of dolomite within the symplectite that may be a relict of matrix dolomite. (c)
BSE image of a medium-grained aggregate of bytownite, Ti pargasite, dolomite, and magnetite and fine-grained aggregate of anhedral orthopyroxene,
Ti pargasite, andesine, magnetite, and dolomite in mafic granulite MG-03. Note An-rich spikes at plagioclase grain rims and planar to slightly curved
grain boundaries of dolomite. (d) BSE image of anhedral grain core of bytownite replaced by labradorite with inclusions of dolomite, clinopyroxene
and orthopyroxene with curved interfaces in Ol-metagabbro MG-04. Note a double corona between olivine and plagioclase with an inner shell
of orthopyroxene and an outer shell of clinopyroxene-spinel and orthopyroxene-spinel symplectites (see close-up of symplectites in Fig. 12a). In BSE
images, the colour of circles corresponds to the mineral indicated by the label with the same colour. Mineral abbreviations after Whitney & Evans (2010).

boundaries (Figs. 10d and 12a). Contrasting with the orthopyrox-
ene coronas previously described, the interface between plagio-
clase and symplectite is much more complex (Fig. 10d), suggesting
a reaction involving the consumption of plagioclase such as:

Ol + Pl → Cpx + Opx + Spl

The compositions of clinopyroxene and orthopyroxene are
characterized by significantly lower Al occupancies than those
from the granoblastic aggregates (ranges: 0.069–0.075 apfu in

clinopyroxene and 0.019–0.050 apfu in orthopyroxene; Figs. 7b-c).
The composition of spinel is rich in Al (range: 1.91–1.93 apfu) with
Mg/(Mg + Fe2+) of ca. 0.71.

In these rock types, there are also orthopyroxene-magnetite
symplectites (Fig. 12b) that may have been formed by oxidation of
olivine at subsolidus or supersolidus conditions (c.f., Keevil et al.,
2020; Wang et al., 2022).

In mafic granulites, anhydrous symplectites consist of
quartz and aluminosilicate (Als, Al2SiO5 polymorph;
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Fig. 11. Microphotographs of textural relationships of parasite veins in Ol-metagabbros from the Eastern Adrar–Suttuf Metamafic Complex. (a)
Scanned digital image of a standard-size petrographic thin section of Ol-metagabbro MG-08 with one pargasite vein crosscutting a millimetre-scale
layering defined by felsic and mafic minerals. Note depletion in pargasite at vein selvages. The thickness of the vein is ca. 1 mm. Plane-polarised light.
(b) Close-up of the pargasite vein showing a granoblastic texture similar to that of the host-rock matrix. Plane-polarised light. Mineral abbreviations
after Whitney & Evans (2010).

Fig. 12. BSE images of anhydrous symplectites in Ol-metagabbros and mafic granulites from the Eastern Adrar–Suttuf Metamafic Complex. (a)
Close-up of the double corona between olivine and plagioclase from Fig. 10d (Ol-metagabbro MG-04). Note an inner shell of orthopyroxene and an
outer shell of orthopyroxene-spinel and clinopyroxene-spinel symplectites. (b) Tiny symplectite aggregate of orthopyroxene and magnetite, probably
after olivine, in Ol-metagabbro MG-09. Note a band of magnetite at the contact between the symplectitic aggregate and orthopyroxene. (c) Very tiny
symplectitic aggregate of quartz and aluminosilicate at a bytownite-orthopyroxene grain boundary in mafic granulite MG-03. Note micropores with
rounded shapes, some of them highlighted by white circles, microcracks filled with quartz along the grain boundary of orthopyroxene, and fan-shaped
aluminosilicate needles that open towards plagioclase. The aluminosilicate shows acicular habit suggesting that it can be sillimanite. (d) Very tiny
symplectitic aggregate of quartz, aluminosilicate, orthopyroxene, and magnetite at a bytownite-clinopyroxene grain boundary in mafic granulite
MG-03. Note micropores with rounded shapes (some of them highlighted by white circles). The colour of circles corresponds to the mineral indicated
by the label with the same colour. Mineral abbreviations after Whitney & Evans (2010).

Whitney & Evans, 2010) at bytownite-orthopyroxene grain bound-
aries (Fig. 12c), and quartz, aluminosilicate, orthopyroxene, and
magnetite at bytownite-clinopyroxene grain boundaries (Fig. 12d).
The aluminosilicate exhibits an acicular habit and is, therefore,
most likely sillimanite, a mineral whose stability field is consis-
tent with the P–T conditions estimated in the next section. The
quartz-aluminosilicate aggregates display a fan-shaped opening
towards plagioclase grains, thus suggesting the dissolution
of plagioclase. These aggregates present rounded micropores
that are consistent with the replacement being produced by a

dissolution-precipitation mechanism assisted by fluids (c.f., Put-
nis, 2002, 2009; Putnis & Austrheim, 2013). Thus, these fluids could
have transported the excess of CaO and Na2O produced by the
replacement according to the following open-system reaction:

Pl → Qz + Als + CaO(in fluid) + Na2O(in fluid)

Hydrous symplectites
In Ol-metagabbros, there are hydrous symplectites of low-Ti par-
gasite, spinel, and andesine at the grain boundaries of plagioclase
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Fig. 13. BSE images of hydrous symplectites in Ol-metagabbros from the Eastern Adrar–Suttuf Metamafic Complex. (a) Double symplectite layer
between pargasite and labradorite with one band of orthopyroxene and spinel, and another of low-Ti pargasite and andesine in sample MG-08. Note
the appearance of (i) spinel limited to the orthopyroxene band, (ii) laths of low-Ti pargasite protruding into the plagioclase, (iii) replacement of
pargasite by orthopyroxene at a very local scale and (iv) micropores with rounded shapes, some of them highlighted by white circles. (b) Detail of
micropores at a reaction site in sample MG-08. (c) Low-Ti pargasite–spinel–andesine symplectite at the grain boundaries between zoned pargasite,
clinopyroxene and labradorite in sample MG-02. Note the resorption of labradorite and clinopyroxene (only at a local scale) by the symplectite and the
presence of spinel at the rim of andesine developed at the grain boundary between labradorite and pargasite. (d) Multiple symplectite layers between
orthopyroxene and labradorite in sample MG-09, consisting of (i) a discontinuous band of tiny clinopyroxene at the orthopyroxene grain boundary
showing evidence of corrosion, (ii) a thin band of andesine, low-Ti pargasite, and spinel at the labradorite grain boundary, and (iii) two bands between
them, one of low-Ti pargasite and another of low-Ti pargasite and spinel. Note protrusion of low-Ti pargasite into the orthopyroxene, and of low-Ti
pargasite + spinel into the plagioclase. The colour of circles corresponds to the mineral indicated by the label with the same colour. Mineral
abbreviations after Whitney & Evans (2010).

with pargasite (Figs. 13a-b), clinopyroxene (Fig. 13c) and orthopy-
roxene (Fig. 13d), indicating the more general consumption of an
infiltrated hydrous mobile phase during the cooling history of
these rocks. The composition of amphibole is low-Ti pargasite
(< 0.062 apfu Ti) with 0.85–2.18 apfu Al and Mg/(Mg + Fe2+) of
0.72–0.85 (Figs. 5a-c, and 6d). Plagioclase composition is andesine
with An36–47. The composition of clinopyroxene is similar to that
of spot analyses of cores and rims of grains from granoblastic
aggregates (ranges: Ca = 0.88–0.90 apfu and Al = 0.16–0.22 apfu),
but that of orthopyroxene shows a distinctive higher Al occu-
pancy (range: 0.15–0.22 apfu) (Fig. 7). The composition of spinel
from these symplectites is rich in Al (range: 1.90–1.95 apfu) with
variable Mg/(Mg + Fe2+) ratios that depend of the rock sample
(ranges: MG-02: 0.59–0.62; MG-08: 0.55–0.56; MG-09: 0.40–0.44).
Plagioclase, generally bytownite or labradorite, is replaced by
andesine. Thus, the protrusion of laths of low-Ti pargasite and
spinel into the plagioclase suggests the progress of this reaction
band towards plagioclase (Fig. 13). Indeed, this process should
have also been controlled by a dissolution-precipitation mecha-
nism, as evidenced by the presence of micropores in the reaction
band minerals.

In mafic granulite MG-03, it is remarkably the appearance
of symplectites consisting of clinopyroxene, orthopyroxene,
plagioclase, and magnetite replacing the rims of Ti pargasite
grains (Figs. 14a-b). The compositions of clinopyroxene, orthopy-
roxene and plagioclase are similar to those previously reported

for hydrous symplectites from Ol-metagabbros (compositional
ranges: 0.17–0.19 apfu Al and 0.88–0.90 apfu Ca in clinopyroxene;
0.19–0.22 apfu Al and 0.006–0.011 apfu Ca in orthopyroxene;
An44–48 in plagioclase). A rim of andesine appears at the boundary
between plagioclase from the rock matrix and the symplectite
(Fig. 14b). There are micropores dispersed along these aggregates
as well as tiny interstitial quartz at irregular, serrated, grain
boundaries of pyroxenes (Figs. 14b-c) that suggest the presence of
a reactive interstitial fluid phase that could account for an imbal-
ance for TiO2 that occurred during the replacement of Ti pargasite,
as evidenced by the scarcity of Ti mineral phases in the symplec-
titic aggregate. Thus, the infiltration of an H2O-rich fluid could
explain the loss from the reaction site of TiO2 and other compo-
nents like K2O and F, which are relatively abundant in Ti pargasite
(compositional ranges: 0.25–0.31 apfu Ti, 0.19–0.25 apfu K, and
0.10–0.15 apfu F), implying an open system reaction as follows:

TiPrg + Pl1 → Cpx + Opx + Pl2 + TiO2(in fluid)

+ K2O (in fluid) + H2O(in fluid) + F (in fluid)

This sample also exhibits a widespread growth of tiny
grains of clinopyroxene and orthopyroxene at the interface of
plagioclase with coarser grains of the same mineral phases
(Figs. 12c-d and 14a), which complicates the understanding of

D
ow

nloaded from
 https://academ

ic.oup.com
/petrology/article/65/6/egae049/7671121 by U

niversidad de G
ranada - Biblioteca user on 21 June 2024



14 | Journal of Petrology, 2024, Vol. 65, No. 6

Fig. 14. BSE images of Ti pargasite replacement textures in mafic
granulite MG-03 from the Eastern Adrar–Suttuf Metamafic Complex. (a)
Medium-grained aggregate of clinopyroxene, orthopyroxene, Ti
pargasite, labradorite and Fe–Ti oxides showing Ti pargasite replacement
by a tiny aggregate of clinopyroxene, orthopyroxene, and andesine at
grain rims and fractures. Note very tiny interstitial quartz at
clinopyroxene-orthopyroxene grain boundaries and An-rich spikes at
plagioclase grain rims. (b) Close-up of the Ti pargasite breakdown
reaction texture. Note the presence of micropores with rounded shapes
(some of them highlighted by white circles) and the scarcity of Ti
minerals (only one tiny grain of rutile) in the reaction zone. (c) Close-up
of very tiny interstitial quartz at the boundary of two clinopyroxene
grains. Note clinopyroxene with an irregular, serrated, grain boundary
with embayments filled by quartz. The colour of circles corresponds to
the mineral indicated by the label with the same colour. Mineral
abbreviations after Whitney & Evans (2010).

the mechanisms behind the development of the granoblastic
texture. Nonetheless, it is remarkable to note that these relation-
ships suggest that the formation of the pyroxene aggregates was

not driven by an intrinsic instability of Ti pargasite. Instead, their
growth is more likely attributed to the action of the reactive fluids.

Mylonitic mafic granulites: Evidence of shearing
during cooling
Mylonitic mafic granulites exposed in the border of the high-
grade mafic bodies show porphyroclasts of amphibole, clinopy-
roxene, orthopyroxene, and plagioclase with undulose extinc-
tion, mechanical twinning and bending that are set in a grain-
size reduced polycrystalline matrix (Figs. 15a-d). Remarkably, it
appears amphibole-spinel and orthopyroxene symplectites with
undulose extinction in sample MG-10 (Figs. 15e-f), thus evidencing
that shearing took place after symplectite generation.

Amphibole composition is very variable (Figs. 5a-c, and 6e-f).
In sample MG-05, the composition of amphibole porphyroclasts
is tschermakite with 0.13–0.14 apfu Ti, 1.58–1.60 apfu AlIV, ca.
0.44 apfu A-site and Mg/(Mg + Fe2+) of 0.65–0.66; amphibole
from the transposed veins is also tschermakite, but with slightly
lower AlIV and higher Ti occupancies (ranges: 1.51–1.52 apfu
and 0.18–0.20 apfu, respectively). In this rock type, it appears
amphibole included in clinopyroxene and orthopyroxene with
hornblende composition (Ti = 0.088–0.13 apfu, AlIV = 1.19–1.48
apfu, A-site = 0.32–0.44 apfu, and Mg/(Mg + Fe2+) = 0.78–0.83). In
sample MG-12, the composition of amphibole porphyroclasts is
Ti pargasite with 0.20–0.25 apfu Ti, 1.76–2.00 apfu AlIV, 0.62–0.77
apfu A-site, and Mg/(Mg + Fe2+) of 0.65–0.68. The composition of
amphibole from the rock matrix of both samples is very variable,
achieving lower Ti occupancies (ranges: 0.065–0.14 apfu in MG-
05 and 0.006–0.24 apfu in MG-12). In sample MG-10, amphibole
from the rock matrix and symplectites has low-Ti pargasite
composition (Ti = 0.028–0.10 apfu). The composition of plagioclase
from porphyroclasts is labradorite–bytownite (An79–87 in MG-05,
An83–84 in MG-10, and An70–85 in MG-12); this from the rock matrix
is much variable, ranging from andesine to anorthite (An82–89

in MG-05, An84–92 in MG-10, and An56–84 in MG-12). The more
calcic compositions from the rock matrix witness the milling and
grinding of pre-existing plagioclase grains with An-rich spikes at
their rims. On the other hand, the low-Ti pargasite (0.006–0.015
apfu Ti) and andesine (An38–49) grains from the rock matrix of
sample MG-12 could represent former reaction sites affected by
mylonitisation. Clinopyroxene porphyroclasts from sample MG-
12 present similar textural and compositional relationships
to those from granoblastic aggregates (Figs. 7b and 15g), with
reintegrated compositions of diopside with 0.15–0.19 apfu Al,
0.84–0.86 apfu Ca, CaTs2–5, and Mg/(Mg + Fe2+) of 0.78–0.81 in
the cores, and 0.14–0.19 apfu Al, 0.88–0.90 apfu Ca, CaTs2–5,
and Mg/(Mg + Fe2+) of 0.79–0.83 at the rims. Spot analyses of
cores and rims of the porphyroclasts from this sample have
Ca occupancies close to these latter (range: 0.88–0.92 apfu).
Clinopyroxene porphyroclasts from sample MG-05, as happens
with amphibole, show significantly lower Al occupancies (range:
0.068–0.098 apfu). The composition of matrix clinopyroxene
has 0.86–0.89 apfu Ca with Al occupancy ranging 0.069–0.11
apfu in sample MG-05 and 0.16–0.18 apfu in sample MG-12.
The orthopyroxene porphyroclasts show very tiny exsolution
lamellae of clinopyroxene (Fig. 15h). They have reintegrated
compositions of enstatite with slightly lower Ca occupancies
than those from the granoblastic aggregates (range: 0.010–0.023
apfu; Fig. 7c) suggesting a more intense compositional resetting
during mylonitisation. Their spot analyses tend to show lower
Ca occupancy (<0.019 apfu). The composition of orthopyroxene
from the rock matrix also shows low Ca occupancies (range:
0.008–0.013 apfu). Orthopyroxene from symplectites from sample

D
ow

nloaded from
 https://academ

ic.oup.com
/petrology/article/65/6/egae049/7671121 by U

niversidad de G
ranada - Biblioteca user on 21 June 2024



Journal of Petrology, 2024, Vol. 65, No. 6 | 15

Fig. 15. Microphotographs and BSE images of mylonitic textures in high-grade mafic rocks from the Eastern Adrar–Suttuf Metamafic Complex. (a,
plane-polarised light, and b, cross-polarised light) Porphyroclasts of clinopyroxene, orthopyroxene, hornblende and plagioclase developing undulose
extinction, mechanical twinning and bending set in a grain-size reduced polycrystalline matrix from mylonitic mafic granulite MG-05. (c,
plane-polarised light, and d, cross-polarised light) Detail of the contact between a transposed vein of tschermakite and the host rock in mylonitic
mafic granulite MG-05. (e, plane-polarised light, and f, cross-polarised light) Porphyroclasts of relatively coarse pargasite–spinel symplectite, pargasite
and plagioclase with undulose extinction set in a grain-size reduced polycrystalline matrix from mylonitic mafic granulite MG-10. (g) BSE image of
clinopyroxene porphyroclast from mylonitic mafic granulite MG-12 exhibiting exsolution lamellae of orthopyroxene at its core. (h) BSE image of
orthopyroxene porphyroclast from mylonitic mafic granulite MG-12 exhibiting very tiny exsolution lamellae of clinopyroxene. Mineral abbreviations
after Whitney & Evans (2010).

MG-10 has a very low Ca occupancy (range: 0.005–0.009 apfu),
whereas Al occupancy is relatively high (range: 0.11–0.17 apfu).
The composition of spinel from symplectites shows the highest Al
occupancies (range: 1.95–1.97 apfu).

Late veins: Evidence for fracture-focused fluid
flow
The sheared mafic granulites present veins crosscutting the
mylonitic banding, thus evidencing a late fracture-focused
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Fig. 16. Microphotographs and BSE images of later veins in high-grade mafic rocks from the Eastern Adrar–Suttuf Metamafic Complex. (a and b)
Microphotographs of Cl-bearing pargasite veins crosscutting the mylonitic banding in mylonitic mafic granulite MG-12. Note the partial replacement
of orthopyroxene by Cl-bearing pargasite and an aggregate of Cl-bearing pargasite that can probably be a pseudomorphic replacement of
clinopyroxene. Plane-polarised light. (c) BSE image showing a close-up of the Cl-bearing pargasite vein from mylonitic mafic granulite MG-12. Note
low-Ti, mid-Cl pargasite grains (ca. 0.3–0.4 apfu Cl) filling a vein crosscutting a plagioclase grain that are rimmed by low-Ti, high-Cl pargasite (up to ca.
1.3 apfu Cl). (d) Microphotograph of tiny veins filled with corundum in a porphyroclast of low-Ti pargasite–spinel symplectite from mylonitic mafic
granulite MG-10. Plane-polarised light. (e, plane-polarised light, and f, cross-polarised light) Very tiny vein of dolomite crosscutting the grain-size
reduced matrix of mylonitic mafic granulite MG-10. Note very tiny euhedral garnet grains with minute inclusions of dolomite occurring along the vein
selvages. In BSE images, the colour of circles corresponds to the mineral indicated by the label with the same colour. Mineral abbreviations after
Whitney & Evans (2010).

f luid flow after mylonitisation. Three different types of veins
are distinguished: (i) Cl-bearing pargasite veins (0.19–1.32 apfu
Cl; Figs. 5a-d and 16a-c), (ii) corundum veins (Fig. 16d) and (iii)
dolomite veins (Figs. 16e-f).

Cl-bearing pargasite veins crosscut plagioclase and pyroxene
grains from the rock matrix of sample MG-12; an intense
alteration was produced in their selvages, appearing very
tiny aggregates of secondary amphibole replacing pyroxene
(Figs. 16a-b). Corundum and dolomite veins appear in sample
MG-10 crosscutting, respectively, the strained low-Ti parga-
site–spinel symplectites and the grain-size reduced matrix.
The effects of vein fluids on the host rock are less intense
than in the first type, being limited to the formation of
very tiny euhedral grains of garnet (almandine with Gro16–20

and Prp32–40, where Gro = 100∗Ca/(Ca + Mg + Fe2++ Mn) and

Prp = 100∗Mg/(Ca + Mg + Fe2++ Mn)) along the selvages of the
dolomite veins.

P–T ESTIMATIONS: A
DECOMPRESSION-COOLING PATH FROM
HT-UHT GRANULITE- TO
AMPHIBOLITE-FACIES CONDITIONS
The texture relationships in the EASMC high-grade mafic rocks
suggest melt-mediated processes during texture maturation of
the rock matrix, incongruent dissolution melting of olivine and
pyroxenes, generation of An-rich spikes and high-temperature
veining, and f luid-mediated processes during symplectite growth at
mineral grain boundaries upon cooling. In this section, the P–T
conditions of the transition from a magmatic to metamorphic

D
ow

nloaded from
 https://academ

ic.oup.com
/petrology/article/65/6/egae049/7671121 by U

niversidad de G
ranada - Biblioteca user on 21 June 2024



Journal of Petrology, 2024, Vol. 65, No. 6 | 17

Fig. 17. Two-pyroxene thermobarometry in high-grade mafic rocks from the Eastern Adrar–Suttuf Metamafic Complex. (a) Temperatures given by
two-pyroxene thermometry versus clinopyroxene Ca occupancy. (b) Temperatures given by two-pyroxene thermometry versus orthopyroxene Ca
occupancy. (c) Pressures given by two-pyroxene barometry versus clinopyroxene Ca occupancy. (d) Pressures given by two-pyroxene barometry versus
orthopyroxene Ca occupancy. P–T conditions determined using calibrations 36 and 39 from Putirka (2008).

environment and the late cooling are contrained using classical
thermobarometry and calculations of phase stability diagrams.
The equilibrium P–T conditions were determined using amphi-
bole–plagioclase thermobarometry (Molina et al., 2015, 2021), two-
pyroxene thermobarometry (Putirka, 2008) and Ti-in-amphibole
thermometry (Liao et al., 2021). The P–T stability fields determined
for the mineral assemblages were tested by thermodynamic
modelling using the GeoPS program (Xiang & Connolly, 2022).

Classical thermobarometry
Methods
The P–T conditions for clinopyroxene-orthopyroxene equilibra-
tion were calculated by two-pyroxene thermobarometry, using
expressions 36 (based on the partitioning of enstatite + ferrosilite
between clinopyroxene and orthopyroxene) and 39 (based on
the method of Mercier et al., 1984) from Putirka (2008), with
precisions of, respectively, ±45◦C (precision reported at 1 s level)
and ± 280 MPa for Mg/(Mg + Fe2+) ratios in clinopyroxene >0.75.
Temperature estimates for amphibole equilibration were com-
puted by amphibole–plagioclase NaSi-CaAl exchange thermom-

etry, using the almost P-independent calibrations A1 and A2, and
the P-independent calibration B2 of Molina et al. (2021) (precision:
±50◦C), which give accurate results for Mg-rich amphiboles, and
by Ti-in-amphibole thermometry, using the calibration of Liao
et al. (2021) (precision: ±35◦C) for subalkaline systems saturated
in a Ti mineral phase (rutile, ilmenite, or titanite). Pressure esti-
mates were calculated using the calibration of the amphibole–
plagioclase Al-Si partitioning barometer of Molina et al. (2015)
(precision: ±150–200 MPa) at the temperatures obtained by the
thermometric expressions A1, A2 and B2.

It was selected four samples (Ol-metagabbro MG-09, mafic
granulites MG-01 and MG-03, and mylonitic mafic granulite MG-
12) for two-pyroxene thermobarometry and seven samples (Ol-
metagabbros MG-08, MG-09, and MG-11, mafic granulites MG-01
and MG-03, and mylonitic mafic granulites MG-05 and MG-12) for
amphibole–plagioclase thermobarometry.

Amphibole formulas were calculated assuming 13 cations
exclusive of Ca, Na and K (13-CNK method; Robinson et al.,
1982) for the amphibole–plagioclase barometer and a modified
version of the average Fe3+ method of Spear & Kimball (1984)
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Fig. 18. Amphibole–plagioclase and Ti-in-amphibole thermobarometry in high-grade mafic rocks from the Eastern Adrar–Suttuf Metamafic Complex.
(a) Temperatures given by amphibole–plagioclase thermometry versus amphibole Ti occupancy. (b) Temperatures given by amphibole–plagioclase
thermometry versus anorthite content of plagioclase. (c) Pressures given by amphibole–plagioclase barometry versus amphibole Ti occupancy. (d)
Pressures given by amphibole–plagioclase barometry versus anorthite content of plagioclase. (e) Relationships of temperatures given by
amphibole–plagioclase and Ti-in-amphibole thermometry. Note the consistency of results for sample MG-03 that presents ilmenite in the rock matrix.
P–T conditions determined using calibrations of the amphibole–plagioclase thermometer by Molina et al. (2021), the Ti-in-amphibole thermometer
from Liao et al. (2021) and the amphibole–plagioclase barometer from Molina et al. (2015). Abbreviations: L21, temperatures given by the
Ti-in-amphibole thermometer from Liao et al. (2021); M21, temperatures given by amphibole–plagioclase thermometers from Molina et al. (2021).

described in Dale et al. (2005) for the amphibole–plagioclase
and the Ti-in-amphibole thermometers. For two-pyroxene
thermobarometry, mineral formulas and parameters required for
using the expressions were calculated following the procedure
presented in Tables 2 and 3 by Putirka (2008).

The amphibole–plagioclase thermobarometric calculations
were performed using paired rims of grains in mutual contact
at reaction sites or, for grain cores, using different pairs that cover
the compositional range of the two mineral phases in the samples.
In the same way, reintegrated compositional pairs encompassing
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Fig. 19. Calculated P–T phase diagrams for high-grade mafic rocks from the Eastern Adrar–Suttuf Metamafic Complex. (a) Phase relations in
Ol-metagabbro MG-02 with H2O = 5 moles, O2 = 9.44 moles, and C = 9.03 moles. (b) Phase relations in mafic granulite MG-01 with H2O = 5 moles,
O2 = 10.35 moles, and C = 10 moles. (c) Phase relations in mafic granulite MG-03 with H2O = 5 moles, O2 = 14.52 moles, and C = 14 moles. (d) Phase
relations in mafic granulite MG-03 with H2O = 5 moles, O2 = 7.52 moles, and C = 7 moles. Calculations performed with GeoPS program (Xiang &
Connolly, 2022) using the internally consistent thermodynamic dataset of Holland & Powell (2011, updated version HP633) and the following mixing
models: cAmph(G) for amphibole (Green et al., 2016), Cpx(HGP) for clinopyroxene, Gt(HGP) for garnet, Melt(HGP) for silicate melt, O(HGP) for olivine,
Opx(HGP) for orthopyroxene and Sp(HGP) for spinel-group minerals (Holland et al., 2018), Ilm(W) for ilmenite (White et al., 2014), Fsp(C1) for plagioclase
(Holland & Powell, 2003), Ep(HP11) for epidote and F for H2O–CO2 fluids (Holland & Powell, 2011), and dis(EF) and oCcM(EF) for carbonates (Franzolin
et al., 2011). Bulk compositions taken from Bea et al. (2020); equivalence of labels: MG-01 = ASES21; MG-02 = ASES18; MG-03 = ASWS12. P–T fields for the
mineral subassemblage Amp–Cpx–Opx–Pl (± Spl ± Fe-Ti oxides) highlighted in light colour. Mineral abbreviations after Whitney & Evans (2010). Other
abbreviations: L = silicate liquid; X0/Mol = bulk composition expressed in moles (all components, except H2O, O2 and C, normalised to 100).

the compositional range of clinopyroxene and orthopyroxene
from granoblastic aggregates and porphyroclasts were used for

the two-pyroxene thermobarometry. In addition, spot analyses
of the reset compositions from these textural types and from
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Fig. 20. Average P–T conditions and calculated P–T phase diagrams for high-grade mafic rocks from the Eastern Adrar–Suttuf Metamafic Complex. (a)
Phase relations in Ol-metagabbro MG-02 with: (i) H2O = 2.5 moles, O2 = 5.43 moles, and C = 5 moles; (ii) H2O = 5 moles, O2 = 9.44 moles, and C = 9.03
moles; and (iii) H2O = 10 moles, O2 = 19.41 moles, and C = 19 moles. (b) Phase relations in mafic granulite MG-01 with: (i) H2O = 2.5 moles, O2 = 5.25
moles, and C = 4.9 moles; (ii) H2O = 5 moles, O2 = 10.35 moles, and C = 10 moles; and (iii) H2O = 10 moles, O2 = 24.35 moles, and C = 24 moles. (c) Phase
relations in mafic granulite MG-03 with: (i) H2O = 2.5 moles, O2 = 7.54 moles, and C = 7 moles; (ii) H2O = 5 moles, O2 = 14.52 moles, and C = 14 moles; and
(iii) H2O = 10 moles, O2 = 28.54 moles, and C = 28 moles. Refer to the caption of Fig. 19 for abbreviations and calculation methods. Bulk compositions
taken from Bea et al. (2020). P–T fields for the mineral subassemblage Amp–Cpx–Opx–Pl (± Spl ± Fe–Ti oxides) highlighted in light colour. P–T
conditions determined by amphibole–plagioclase and two-pyroxene thermobarometry (Putirka, 2008; Molina et al., 2015, 2021).

clinopyroxene-orthopyroxene symplectites replacing amphibole
from sample MG-03 were also used. To avoid spurious pressure
estimates with two-pyroxene thermobarometry, orthopyroxene
compositions with <0.01 apfu Ca were excluded from the

calculations. A selection of locations of spot and areal analyses
in the studied samples is presented in Appendix B (Molina et al.,
2024). The compositional data and the estimated P–T conditions
are available in Appendixes E and F (Molina et al., 2024).
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Fig. 21. 40Ar–39Ar age spectra of amphibole from Ol-metagabbros from the Eastern Adrar–Suttuf Metamafic Complex. (a) Mineral separate of pargasite
108AMP from sample MG-08. (b) Mineral separate of pargasite 114AMP from sample MG-09.

Clinopyroxene-orthopyroxene equilibration conditions
The P–T conditions obtained by two-pyroxene thermobarometry
and the composition of the selected compositional pairs (Ca
occupancies in clinopyroxene and orthopyroxene) are displayed
in the diagrams from Fig. 17. The precisions by samples of the
temperature estimates (< ±22◦C) are better than that of the
calibration indicating that compositional heterogeneities have a
minor impact on the estimates. The precision for the pressure
estimates is also better than the reported for the calibration in
all samples (< ±164 MPa) but MG-12 (±302 MPa, spot analyses).

Reintegrated compositional pairs of clinopyroxene and
orthopyroxene grains from the granoblastic aggregates of Ol-
metagabbros and mafic granulites give P–T conditions in the
ranges of 1.16 ± 0.16 GPa to 1.37 ± 0.14 GPa and 959 ± 13◦C
to 978 ± 14◦C. These conditions are similar, within the uncer-
tainties of the calibrations, to those obtained for reintegrated
compositions of pyroxene porphyroclasts (1.32 ± 0.03 GPa and
942 ± 16◦C). Taken all these compositional data together, an
overall P–T condition of 1.28 ± 0.28 GPa and 965 ± 45◦C is obtained
for the reintegrated compositions (hereafter, to avoid precision
overestimations, the poorer precision of the two, calibration or
sample, is considered for overall P–T estimates).

The P–T conditions for reset compositional pairs of pyroxenes
from both granoblastic aggregates and porphyroclasts are

significantly lower (overall values: 0.72 ± 0.28 GPa and 845 ± 45◦C;
ranges: 0.46 ± 0.05 GPa to 0.79 ± 0.16 GPa, and 842 ± 22◦C to
858 ± 14◦C). For symplectitic aggregates of clinopyroxene and
orthopyroxene after Ti pargasite from sample MG-03, a slightly
lower P–T estimate of 0.28 ± 0.10 GPa and 787 ± 9◦C was obtained.

These thermobarometric estimations suggest that clinopyrox-
ene and orthopyroxene from both Ol-metagabbros and mafic
granulites (both granoblastic and mylonitic) were equilibrated
at temperatures conditions consistent with a magmatic to UHT
metamorphic transition in the deep crust and that the production
of exsolution lamellae and amphibole replacements by symplec-
titic aggregates of pyroxenes occurred during decompression in
the mid-upper crust.

Amphibole–plagioclase equilibration conditions
The average P–T conditions obtained from temperature estimates
TA1, TA2, and TB2 and pressure estimates P(TA1), P(TA2), and P(TB2)
are displayed in the diagrams from Fig. 18. The precisions by
sample for the estimated P–T conditions (< ± 0.07 GPa and <

± 37◦C) are also significantly lower than those of the calibrations.
Average P–T estimates for pargasite–labradorite/bytownite pairs
(Figs. 18a-d) from granoblastic aggregates of Ol-metagabbros and
mafic granulite MG-01 and porphyroclasts from mylonitic mafic
granulite MG-12 range from 1.00 ± 0.02 GPa to 1.23 ± 0.04 GPa,
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Fig. 22. 40Ar–39Ar closure temperatures and average cooling rates for
high-grade mafic rocks from the Eastern Adrar–Suttuf Metamafic
Complex. Closure temperatures and average cooling rates calculated for
initial ages of 604 Ma (a), 594 Ma (b) and 614 Ma (c) using equation (9)
from Dodson (1979) for a constant rate of cooling. The cooling age was
set at the 499 Ma 40Ar–39Ar plateau age obtained from mineral separate
of pargasite 108AMP from sample MG-08. Calculations were performed
using amphibole parameters reported by Li et al. (2020):
E = 64.1 kcal/mol, Do = 0.024 cm2/s, and A = 55.

and from 957 ± 8◦C to 1018 ± 10◦C. These estimates give an
overall P–T condition of 1.11 ± 0.15 GPa and 982 ± 50◦C. These
values are in excellent agreement with those obtained by two-
pyroxene thermobarometry for reintegrated compositional pairs

of clinopyroxene and orthopyroxene grains (note a difference of
ca. 170 MPa and 17◦C).

Slightly lower average P–T conditions are determined for the
equilibration of Ti pargasite–bytownite pairs from granoblastic
aggregates of mafic granulite MG-03 and of tschermakite-
bytownite pairs from porphyroclasts of mylonitic mafic granulite
MG-05 (respectively, 0.74 ± 0.05 GPa and 876 ± 29◦C, and 0.90
± 0.02 GPa and 911 ± 21◦C; Figs. 18a-d). In sample MG-03,
there is a good agreement between temperatures determined
by amphibole–plagioclase and Ti-in-amphibole thermometry that
can be explained by the presence of ilmenite in its matrix (Fig. 18e;
note, however, that temperatures estimated by Ti-in-amphibole
thermometry for the other samples are systematically lower due
to the absence of a Ti mineral phase).

To understand the mechanisms that caused the equilibration
of granoblastic aggregates from sample MG-03 at lower P–T con-
ditions, it is important to indicate that, as previously mentioned,
the widespread occurrence of tiny grains of clinopyroxene and
orthopyroxene precludes an unambiguous determination of the
relationships between textural maturation and magmatism. How-
ever, Bea et al. (2020) have reported a gradual decrease in the
pressure of magmatism towards the west of the ASMC, achieving
0.3–0.4 GPa at the contact with the Ediacaran Leucocratic Com-
plex. In light of these relationships, the pressure differences may
likely be due to a tectonic juxtaposition of lower- and mid-crustal
blocks, which is consistent with the decompression-cooling path
and with the context of rifting suggested for the Ediacaran mag-
matism (Bea et al., 2020). This is supported by the absence of
garnet in sample MG-03, which implies, as discussed in the next
section, that pressures could not have exceeded 1 GPa.

The average P–T conditions for the equilibration of low
Ti pargasite–andesine from reactions sites in Ol-metagabbro
MG-09 and mylonitic mafic granulite MG-12 (Figs. 18a-d) are
1.08 ± 0.08 GPa and 772 ± 25◦C. These temperature conditions
are close to those yielded by two-pyroxene thermobarometry on
symplectites from sample MG-03; however, pressure estimates
are significantly higher suggesting an ‘apparent’ isobaric cooling
path. We are more confident with the decompression path model
inferred from two-pyroxene thermobarometry because the Ti
occupancy of amphibole is below the prescribed value for the use
of the amphibole–plagioclase barometer (<0.02 apfu; Molina et al.,
2015). Besides, a decompression path is more consistent with the
calculated phase relationships discussed below.

Phase stability diagram calculations
The P–T stability fields determined for the mineral subassemblage
Amp–Cpx–Opx–Pl (± Spl ± Fe–Ti oxides; dolomite did not appear
at the relevant P–T conditions, see discussion below) present in the
Ol-metagabbros and the mafic granulites from the EASMC were
determined by thermodynamic modelling using the GeoPS pro-
gram (Xiang & Connolly, 2022) with the internally consistent ther-
modynamic dataset of Holland & Powell (2011, updated version
HP633) and the following mixing models: cAmph(G) for amphibole
(Green et al., 2016), Cpx(HGP) for clinopyroxene, Gt(HGP) for gar-
net, Melt(HGP) for silicate melt, O(HGP) for olivine, Opx(HGP) for
orthopyroxene and Sp(HGP) for spinel-group minerals (Holland
et al., 2018), Ilm(W) for ilmenite (White et al., 2014), Fsp(C1) for
plagioclase (Holland & Powell, 2003), Ep(HP11) for epidote and F for
H2O–CO2 fluids (Holland & Powell, 2011), and dis(EF) and oCcM(EF)
for carbonates (Franzolin et al., 2011).

The calculations were performed for Ol-metagabbro MG-02
(#Mg = 79; magnesium number, #Mg = 100∗Mg/(Mg + Fe) atomic
ratio), and mafic granulites MG-01 (#Mg = 75) and MG-03 (#Mg = 57)
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Fig. 23. P–T evolution of high-grade mafic rocks from the Eastern Adrar–Suttuf Metamafic Complex. Average P–T conditions and experimentally
determined melting reactions for amphibolites. P–T conditions determined by amphibole–plagioclase and two-pyroxene thermobarometry (Putirka,
2008; Molina et al., 2015, 2021). Fluid-saturated solidi for aH2O = 1 from Lambert & Wyllie (1972; LW72) and for aH2O = 0.6 from Holloway & Burnham
(1972; HB72); fluid-absent solidi from Rapp (1995; R95) and Rushmer (1991; R91); amphibole-out reactions for H2O-saturated systems from Lambert &
Wyllie (1972; LW72) and fluid-absent conditions from Rapp & Watson (1995; RW95). Mineral abbreviations after Whitney & Evans (2010).

(bulk compositions taken from Bea et al., 2020), assuming H2O
contents of 2.5, 5 and 10 moles (volatile components expressed as
moles per 100 moles of condensed system components). For each
H2O value, optimal contents of C and O2 were selected through the
trial-and-error method to maximize the P–T stability fields of the
mineral subassemblage Amp–Cpx–Opx–Pl; the obtained values
are as follows:

Ol-metagabbro MG-02:

• H2O = 2.5 moles, O2 = 5.43 moles, and C = 5 moles
• H2O = 5 moles, O2 = 9.44 moles, and C = 9.03 moles
• H2O = 10 moles, O2 = 19.41 moles, and C = 19 moles

Mafic granulite MG-01:

• H2O = 2.5 moles, O2 = 5.25 moles, and C = 4.9 moles
• H2O = 5 moles, O2 = 10.35 moles, and C = 10 moles
• H2O = 10 moles, O2 = 24.35 moles, and C = 24 moles

Mafic granulite MG-03:

• H2O = 2.5 moles, O2 = 7.54 moles, and C = 7 moles
• H2O = 5 moles, O2 = 14.52 moles, and C = 14 moles
• H2O = 10 moles, O2 = 28.54 moles, and C = 28 moles

Figures 19a-c present detailed phase diagrams calculated for
5 moles of H2O displaying the stability fields of the mineral
subassemblage Amp–Cpx–Opx–Pl highlighted in light blue. The
diagram from Fig. 19d illustrates how a reduction of 7 moles
from the optimal contents of O2 and C (O2 = 14.52 moles and C = 14
moles) affects the extent of the stability field of the mineral
subassemblage Amp–Cpx–Opx–Pl in mafic granulite MG-03 with 5
moles of H2O (compare with Fig. 19c). Simplified phase diagrams
are displayed in Fig. 20 showing the loci of the solidus and the
phase boundaries for the incoming of Amp, Cpx, Dol, Grt, Opx
and Qz as a function of the volatile contents, as well as the phase
stability fields for the mineral subassemblage Amp–Cpx–Opx–Pl,
and the estimated P–T conditions for the high-grade mafic rocks
from the EASMC.

Forshaw et al. (2019) and Hernández-Uribe et al. (2022), among
others, have highlighted significant discrepancies between calcu-

lated and observed mineral phase compositions and abundances.
However, we have verified that the GeoPS program can reasonably
reproduce the P–T phase fields of mineral assemblages from
experiments on hydrous mafic systems as those conducted by
Ernst & Liu (1998) and Blatter et al. (2023) (not shown). However,
it is worth mentioning that the calculated phase diagrams for
the studied EASMC mafic rocks suggest an apparent instability of
dolomite under granulite-facies conditions. This issue may arise
from the limitations of mixing models in accommodating the
compositional complexities of fluids and melts in the investigated
systems, as will be discussed later. Olivine is also absent in the
diagrams calculated for the Ol-metagabbro. This absence could be
attributed to the cumulus nature of these rocks, as the accumula-
tion of plagioclase, pyroxenes and amphibole might have resulted
in a bulk composition undersaturated in olivine. In addition, the
bulk composition of the studied rocks may have been further
modified by metasomatic processes related to fluid infiltration
during the growth of the symplectites upon cooling, thus compli-
cating the computation of the phase stability relationships. Given
these limitations, the analysis of the phase relationships will
focus on searching for the P–T stability fields of the main mineral
subassemblage Amp–Cpx–Opx–Pl that are consistent with the P–T
conditions determined by classical thermobarometry.

The position of the curves for the appearance of the key mineral
phases highlighted in the diagrams from Figs. 19 and 20 depends
on the bulk composition of the system and the abundance of
volatile components (H2O, O2, and C). The solidus temperature in
Ol-metagabbro MG-02 at 1.1. GPa is ca. 960◦C for 10 and 5 moles
of H2O, increasing to ca. 1000◦C at 1.1. GPa for 2.5 moles of H2O
(Fig. 20a). In mafic granulites MG-01 and MG-03, the solidus posi-
tions for compositions with C/H2O molar ratios >2 cluster around,
respectively, 960◦C at 1.1 GPa and 1000◦C at 0.74 GPa (Figs. 20b-c).
These solidus temperatures are between 60 and 100◦C higher than
those determined experimentally for fluid-absent conditions by
Rushmer (1991) and Rapp (1995) (Fig. 23). However, a significant
decrease in these temperatures occurs with decreasing the carbon
abundance of the system; for example, it is displaced towards ca.
930◦C at 0.74 GPa in composition MG-03 with 5 moles of H2O and
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7 moles of C (Fig. 19d), whereas for 5 moles of H2O and 3 moles of
C (not shown), the solidus temperature decreases to ca. 870◦C at
0.74 GPa. In line with what has been known since the pioneering
experimental works on the gabbro-granulite transition (e.g. Ring-
wood & Green, 1966; Green & Ringwood, 1967), the garnet-in curves
are displaced towards higher pressures as the #Mg of the system
increases; thus, the incoming of garnet occurs between 1.28 and
1.32 GPa in compositions MG-01 and MG-02 at 980◦C (Figs. 20a-b),
and between 0.87 and 0.90 GPa in composition MG-03 at 875◦C
(Figs. 19d and 20c). The amphibole-in curves for composition MG-02
are located at temperatures well above the solidus at pressures
<1.3 GPa, with values ranging 1080–1100◦C for pressures between
0.5 and 1.3 GPa (Fig. 20a). These amphibole-saturation tempera-
tures are slightly higher than those experimentally determined at
pressures >1.0 GPa by Lambert & Wyllie (1972) for H2O-saturated
systems and by Rapp & Watson (1995) for fluid-absent condi-
tions (Fig. 23). In compositions MG-01 and MG-03, the amphibole-
saturation temperatures are displaced downward by, respectively,
125◦C at 1.1 GPa and 75–125◦C at 0.74 GPa (Figs. 19d and 20b-c),
thus being possible the appearance of low-P amphibole-absent
phase fields at subsolidus conditions. The quartz-in curves in com-
position MG-01 are located at temperatures slightly above the
solidus (e.g. 975–990◦C at 1.1 GPa), thus leading to all subsolidus
mineral assemblages being quartz-saturated (Fig. 20b). In com-
positions MG-02 and MG03, subsolidus quartz-free phase fields
appear at pressures <1.03–1.22 GPa and < 0.88–1.03 GPa, respec-
tively (Figs. 19d and 20a and c); thus, the quartz-in curves are
located between 920 and 950◦C at 1.0 GPa in composition MG-02,
and between 775 and 860◦C at 0.74 GPa in composition MG-03. The
P–T phase fields for dolomite-bearing assemblages appear at low-
temperature conditions, with dolomite-in curves located at <715◦C
and 1.0 GPa, and at <785◦C and 1.5 GPa.

P–T stability fields for the mineral subassemblage Amp–Cpx–
Opx–Pl are present in the Ol-metagabbro MG-02 (Fig. 20a) and the
mafic granulite MG-03 (Figs. 19d and 20c), but absent in the mafic
granulite MG-01 because of the stability of quartz at subsolidus
conditions (Figs. 20b). They are limited by the quartz-in curve at
low temperatures and the solidus at high temperatures in compo-
sition MG-02 for all the explored contents of volatile components
(Fig. 20a), and in composition MG-03 for 5 moles of H2O and 7
moles of C (Fig. 19d). For composition MG-03 with C/H2O molar
ratios >2, they are also limited by the garnet-in curve at high
pressures and the amphibole-in curve at high temperatures and
low pressures (Fig. 20c). Although the phase-relation calculations
do not reproduce the main mineral assemblages found in the
high-grade mafic rocks from the EASMC because of the apparent
instability of dolomite, it is worth mentioning that the average P–T
equilibration conditions for pargasite–labradorite/bytownite pairs
from Ol-metagabbros, and for Ti pargasite–bytownite pairs from
mafic granulite MG-03 are consistent with the absence of garnet
(Figs. 20a and c); the average P–T condition for reintegrated com-
positions of clinopyroxene-orthopyroxene pairs from metagabbro
MG-09 lies inside the stability field of garnet, but close to the
garnet-in curve, thus being, within the uncertainties, consistent
with the absence of garnet (Fig. 20a). Therefore, the P–T condi-
tions determined by classical thermobarometry in the previous
section are consistent with those spanned by the phase field of
the mineral assemblage Amp–Cpx–Opx–Pl determined by ther-
modynamic equilibrium calculations. It is important to note that
the absence of garnet in the magnesian metagabbros and mafic
granulites can then be explained by the significant displacement
towards higher pressures of the garnet incoming, while in the
ferroan mafic granulites, its absence can be attributed to the

significantly lower P–T conditions of amphibole–plagioclase equi-
libration. These thermodynamic equilibrium calculations also
support that the peak P–T conditions determined by classical
thermobarometry would be close to the solidus and, therefore,
that it is likely the presence of interstitial residual melts in the gra-
noblastic aggregates of metagabbros and mafic granulites during
textural maturation. Besides, it is worth noting that the cooling-
decompression path inferred from two-pyroxene thermobarom-
etry is more consistent with the calculated phase diagrams, as
the positive slope of the garnet-incoming curves would imply a
generalised garnet blastesis during an isobaric cooling.

However, as mentioned above, the calculated phase diagrams
show that dolomite cannot be stable in the studied mafic systems
at T > 720–750◦C and, hence, do not support the formation
of dolomite in the EASMC mafic rocks at high-temperature
conditions as suggested by annealing textural evidence of
dolomite grains. This problem was noted by Lamb (2005) who
highlighted the instability of carbonates in the presence of
quartz and orthopyroxene at granulite-facies conditions. This
is in line with more recent experiments on carbonate-biotite
gneisses conducted by Mityaev et al. (2022). However, the
presence of dolomite and ankerite grains disseminated along
grain boundaries and microfractures have been reported in
many granulite-facies terrains (see review in Lamb, 2005; see
also Dahlgren et al., 1993). Touret (1985) proposed that these
carbonates could have been derived from carbonatitic melts
(see also Touret & Huizenga, 2012, 2020), whereas Newton &
Manning (2002, 2010) also suggest that a supercritical phase with
no distinction between a carbonatite melt and carbonate-bearing
saline fluid at high P–T conditions could be the source of the
CO2 found in fluid inclusions from granulites (see Newton, 2020,
further discussion). The phase equilibria calculations performed
with the thermodynamic dataset of Holland & Powell (2011)
demonstrate that dolomite is not stable in the presence of
H2O–CO2 fluids at high-temperature conditions, however, they
cannot explore equilibria with immiscible carbonatite-silicate
melts or with complex carbonate-saline fluids due to the lack of
thermodynamic data. Therefore, the crystallisation of dolomite
in the EASMC high-grade mafic rocks during the UHT event
cannot be ruled out, as suggested by the presence of dolomite
grains with evidence of intense textural maturation as well as the
equilibration of dolomite with high-temperature minerals. Oth-
erwise, given the decompression-cooling path inferred from two-
pyroxene thermobarometry, dolomite should have crystallised
at temperatures well below 700◦C, i.e. after symplectite growth
that is inconsistent with the textural relationships (Fig. 10b).
Remarkably, as a consequence of the decompression P–T path
inferred for the EASMC, the infiltration of H2O–CO2 fluids would
have resulted in the dissolution of dolomite. This implies that
fluid-absent conditions likely prevailed in the granoblastic
aggregates of the main mineral assemblage Amp–Cpx–Opx–
Pl–Dol (± Spl ± Fe–Ti oxides) during cooling, thus limiting the
presence of fluids to the reaction sites located at the mineral
grain boundaries.

40Ar–39Ar DATING: CONSTRAINTS ON THE
TEMPERATURE–TIME EVOLUTION
40Ar/39Ar analyses were performed on amphibole grains sepa-
rated from Ol-metagabbros (mineral separates: 108AMP from
sample MG-08 and 114AMP from sample MG-09) —See Appendixes
G, H1 and H2 in Molina et al. (2024) for sample description
and 40Ar–39Ar data. Samples were crushed and sieved to the
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100–300 μm fraction, and the separates were washed in alcohol
and deionised water. Unaltered, clean 100–150 μm grains were
handpicked under a binocular microscope. The mineral concen-
trates were analysed by step-heating at the Western Australian
Argon Isotope Facility from the Curtin University (Australia). The
mean J-value (irradiation parameter) of 0.01082690 ± 0.00000217
was obtained from the Fish Canyon sanidine (age: 28.294
± 0.037 Ma (precision at 1 s level); Renne et al., 2010), used
as neutron flux monitor during the irradiation procedure (see
Scibiorski et al., 2015, for details). Age plateaus were determined
when plateaus included at least 70% of the total measured 39Ar,
distributed over at least three consecutive steps that agreed at a
95% confidence level and verified a probability of fit (P) of at least
0.05.

The spectrum for the mineral separate pargasite 108AMP
yielded a good plateau age of 499 ± 8 Ma (precision at 2 s
level) (Fig. 21a). Total fusion and normal and inverse isochrons
gave an identical age within errors. The spectrum for the
mineral separate pargasite 114AMP yielded progressively younger
apparent ages with an increasing fraction of 39Ar released
(Fig. 21b), thus preventing the calculation of a plateau (total
fusion age: 556 ± 2 Ma). This sample present relatively abundant
alteration sites with low-Ti pargasite (Fig. 13d). This behaviour
can be attributed to presence of excess 40Ar in fluid inclusions
entrapped in amphibole grains (c.f., Blanckenburg & Villa, 1988;
Cumbest et al., 1994; Wartho et al., 1996), which could have been
generated by the infiltration of fluids during the growth of low-Ti
pargasite.

The 40Ar–39Ar plateau age for 108 Amp suggests that the K-
Ar system in the less retrogressed pargasite grains from the
EASMC metagabbro MG-08 has remained undisturbed below a
certain closure temperature during the last 500 My. This closure
temperature was determined by iterative calculations using the
equations of Dodson (1973, 1979). For this purpose, we assumed a
constant cooling rate, ṙ, expressed as follows:

ṙ = Tc − Ti

tc − ti

where Tc and Ti are respectively the closure and the initial tem-
peratures, expressed in kelvin, and tc and ti the cooling and initial
ages, expressed in Ma. This can be considered as an average
cooling rate since it only involves the initial and final values. Since
the exact ṙ trajectory in the T–t space can be much more complex,
this assumption supposes a substantial simplification but it can
provide us a rough estimate of the temperature of closure. This
was iteratively calculated using a modified version of equation
(9) from Dodson (1979) for a constant rate of cooling:

Tc = E
Rln

{
ADo (tc − ti) RT2

c / [Ea2 (tc − ti)]
}

where R, A and a are respectively the gas constant, a geometric
factor and the effective diffusion radius in cm, and E and Do the
activation energy and the pre-exponential factor of the Arrhenius
type relation of the diffusion coefficient, D, with temperature:

D = Doe−E/RT

Calculations were performed for a between 0.01 and 0.05 cm and
Ti between 900 and 1050◦C, using amphibole parameters reported
in Li et al. (2020): E = 64.1 kcal/mol, Do = 0.024 cm2/s, and A = 55. The
initial age was set at 604 Ma, which is the zircon crystallisation

age reported by Bea et al. (2020) for EASMC metagabbros from
the Entajate body. This assumption is reasonable because recent
melt-zircon experiments by Cambeses et al. (2023) and numerical
modelling by Bea et al. (2022) predict that, in basic magmas,
zircon should crystallise from melts confined in isolated pores.
Therefore, it is likely that zircon saturation took place during the
last stage of magma crystallisation, i.e. during the transition from
magmatic to UHT metamorphic conditions when textural matu-
ration of pargasite grains from the rock matrix of the high-grade
mafic rock occurred. For this initial age, the calculated closure
temperatures range from 520 to 555◦C for Ti = 950–1000◦C and
grain size = 0.02–0.05 cm (Fig. 22a). Figures 22b and c show that
this closure temperature range is very close to those obtained for
initial ages of 594 and 614 Ma, suggesting that an uncertainty of
± 10 My in the initial age has a negligible impact on the estimated
closure temperatures. The average cooling rates estimated for an
initial age of 604 Ma range from 3.8 to 4.6◦C/My (Fig. 22a; range
for an average initial temperature of 975◦C: 4–4.4◦C/My).

Therefore, these results suggest that the deepest mafic blocks
from the EASMC could have evolved from magmatic-UHT meta-
morphic conditions in the lower crust at 604 Ma (stage 1a; Fig. 23)
to greenschist–amphibolite facies conditions in the mid-upper
crust at ca. 500 Ma (stage 3; Fig. 23). Considering an average cool-
ing rate of 4.2◦C/My, the resetting of clinopyroxene-orthopyroxene
compositions at 845◦C could take place at ca. 573 Ma (stage 2;
Fig. 23), whereas generation of low Ti pargasite–andesine at ca.
772◦C in reactions sites occurred at ca. 556 Ma, which is consistent
with concordant Th–U–Pb zircon ages of 570–550 Ma of metagab-
bros from the Entajate body, interpreted as metamorphic ages by
Bea et al. (2020). This is noteworthy as it supports the calculated
ages despite the limitations inherent in using a constant cooling
rate. Therefore, according to the assumed average cooling rate, it
can be inferred a duration for the UHT event in the EASMC of ca.
20 My (temperature range from 975◦C, the annealing temperature,
to 900◦C, the lower limit of the UHT metamorphism, Harley, 1998),
that is relatively short when compared to those of long-lived
UHT terrains (> 30 My, Harley, 2016). In the mid-crustal block
(stage 1b; Fig. 23), textural maturation should have occurred later
than 604 Ma due to the younger age of the shallower magmatic
intrusions from the central and western domains of the ASMC.

SUMMARY AND CONCLUSIONS
The Eastern Adrar–Suttuf Metamafic Complex contains high-
grade mafic rocks that represent mafic igneous intrusions
emplaced in the lower crust, with the main mineral assemblage
Amp–Cpx–Opx–Pl–Dol ± Spl that was equilibrated at UHT-
granulite-facies conditions (ca. 1.2 ± 0.28 GPa and 975 ± 50◦C;
stage 1a in Fig. 23). In addition, there are mafic blocks derived
from the mid crust with the main mineral assemblage Amp–Cpx–
Opx–Pl–Dol ± Fe–Ti oxides that was equilibrated at HT-granulite-
facies conditions (ca. 0.82 ± 0.15 GPa and 894 ± 50◦C; stage 1b in
Fig. 23).

At these conditions, experimental and calculated phase rela-
tions suggest that interstitial hydrous melts could be present
(Figs. 19, 20 and 23). These melts could cause the incongruent
melting of olivine, which is not stable in any calculated phase
fields, as well as pyroxenes. Additionally, it is likely that the
melts triggered the development of An-rich spikes at the grain
rims of plagioclase and assisted textural maturation of the rock
matrix and local segregation of pargasite into veins. So, all these
processes took place in the context of a transition from magmatic
to HT-UHT-granulite-facies metamorphic conditions, as recently
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proposed by Torres-Rodriguez et al. (2021) for cumulate rocks of
the Nova intrusions, Albany-Fraser orogen, and Wang et al. (2022)
for metatroctolite from the early Paleozoic Tongbai Orogen. In the
deepest blocks, the duration of this process was relatively short
(ca. 20 My, assuming a constant cooling rate of 4.2◦C/My).

Although dolomite cannot be stable at granulite-facies
conditions in the presence of H2O–CO2 fluids, the textural
evidence supports an early crystallisation at high-temperature
conditions that might have involved a more complex fluid or melt
phase (see discussion in Touret, 1985; Newton & Manning, 2002,
2010; Touret & Huizenga, 2012, 2020; Newton, 2020). Precipitation
of dolomite from externally derived CO2 fluids is also improbable
because of the low permeability of CO2-rich fluids (e.g. Brenan
& Watson, 1988; Holness & Graham, 1991; Johnson, 1991; Gibert
et al., 1998) and the scarcity of carbonate veins (only one late
vein was found in the mylonitic mafic granulites) despite of
the widespread occurrence of dolomite. However, infiltration
of saline fluids is also unlikely because of the low halogen
contents of pargasite from the granoblastic aggregates. For these
reasons, it is more likely that dolomite could have been formed
from a locally derived CO2-bearing phase that might be an
immiscible carbonatite melt exsolved from the basic parental
magma.

The EASMC experienced a decompression-cooling path (stage
2 in Fig. 23) down to the amphibolite-granulite-facies transition
at ca. 556 Ma and greenschist–amphibolite-facies conditions at
ca. 500 M (stage 3 in Fig. 23), being produced the tectonic juxta-
position of lower- and mid-crustal blocks that is consistent with
the context of rifting suggested for the Ediacaran magmatism
(Bea et al., 2020). During cooling, clinopyroxene and orthopyroxene
reset their composition by developing exsolution lamellae. How-
ever, Ti-rich amphiboles (pargasite, Ti pargasite and tschermakite)
and calcic plagioclase (mostly labradorite and bytownite) retained
their high-temperature equilibrium compositions. These mineral
phases were only transformed into low-Ti pargasite and andesine
at reaction sites by coupled dissolution-precipitation replacement
mechanisms mediated by infiltrated reactive fluids as attested by
the presence of micropores in the reaction products (Figs. 12-14)
(c.f., Putnis, 2002; Putnis & Austrheim, 2013; Putnis et al., 2017;
Spruzeniece et al., 2017). These fluids should have caused metaso-
matism in the EASMC high-grade mafic rocks as there is clear evi-
dence for the release of CaO and Na2O during replacement of pla-
gioclase by quartz-aluminosilicate aggregates (Figs. 12c-d) and of
TiO2, K2O and F during replacement of Ti pargasite by aggregates
of clinopyroxene, orthopyroxene, and sodic plagioclase (Figs. 14 a-
b). As in this latter case, there is no clear evidence for the growth of
mineral phases that could fix the released TiO2, K2O and fluorine
it is more likely that the scale of transport should be larger than a
single thin section. All these reaction textures developed in high-
grade mafic rocks highlight the importance of infiltrated fluids in
promoting the progress of metamorphic reactions in initially dry
systems (i.e. fluid-absent conditions), as extensively discussed in
the literature (e.g. Rubie, 1990; Austrheim et al., 1997; Austrheim,
1998; Scambelluri et al., 1998; Engvik et al., 2000; Molina et al.,
2002; Molina & Montero, 2003; Austrheim, 2013). Accordingly, the
textual relationships of the EASMC high-grade mafic rocks reveal
that only those zones that were permeable to the infiltration of
reactive fluids were able to develop amphibolite-facies overprints.
So, the presence of Cl-bearing amphibole veins crosscutting the
mylonitic banding in metagabbros indicates that the latter are
prone to react when a hydrous fluid is available. By contrast, in
those zones that remained closed to the infiltration of external
fluids, a high-temperature history is preserved that reveals the

crystallization of dolomite that survived due to the prevalence of
fluid-absent conditions in the granoblastic matrix.

The lower-crustal mafic intrusions from the EASMC can rep-
resent a source of heat for granulitisation of the mid crust as
they can maintain temperatures above 900◦C for almost 20 My,
but they could represent a sink for carbon due to the apparent
stability of dolomite under fluid-absent conditions.
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