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ABSTRACT: In this paper, we propose a new mathematical
optimization approach to make decisions on the optimal design of
the complex logistic system required to produce biogas from waste. We
provide a novel and flexible decision-aid tool that allows decision
makers to optimally determine the locations of different types of plants
(pretreatment, anaerobic digestion, and biomethane liquefaction plants)
and pipelines involved in the logistic process, according to a given
budget, as well as the most efficient distribution of the products (from
waste to biomethane) along the supply chain. The method is based on a
mathematical optimization model that we further analyze and that, after
reducing the number of variables and constraints without affecting the
solutions, is able to solve real-size instances in reasonable CPU times.
The proposed methodology is designed to be versatile and adaptable to
different situations that arise in the transformation of waste to biogas. The results of our computational experiments, both in
synthetic and in a case study instance, prove the validity of our proposal in practical applications. Synthetic instances with up to 200
farms and potential locations for pretreatment plants and 100 potential locations for anaerobic digestion and biomethane
liquefaction plants were solved, exactly, within <20 min, whereas the larger instances with 500 farms were solved within <2 h. The
CPU times required to solve the real-world instance range from 2 min to 6 h, being highly affected by the given budget to install the
plants and the percent of biomethane that is required to be injected in the existing gas network.
KEYWORDS: Logistics, Green Energy, Facility Location, Mathematical Optimization, Biogas, Supply Chain

■ INTRODUCTION
The decarbonization of energy has emerged as a critical global
priority in recent years, due to the urgent need to combat
climate change. Most world organizations have recognized the
significance of transitioning to cleaner and more sustainable
energy sources in the next few years to reduce greenhouse gas
emissions. Different agreements have been signed to promote
this change. Specifically, the United Nations, through its
Sustainable Development Goals, has set different targets to
ensure affordable, reliable, sustainable, and modern energy by
2030.1 The International Energy Agency (IEA) has been
actively promoting decarbonization efforts by providing policy
recommendations, conducting research, and facilitating inter-
national cooperation.2 Additionally, the Intergovernmental
Panel on Climate Change (IPCC)3 has been instrumental in
assessing the impacts of climate change and highlighting the
importance of decarbonizing the energy sector. In 2019, the
European Commission presented the European Green Deal,4

the roadmap that Europe should follow for the implementation
of the United Nations’ Sustainable Development Agendas for
2030 and 2050, which is designed to mitigate the effects of
climate change. Various measures have been taken by these

organizations, including advocating for renewable energy
investments, promoting energy efficiency, encouraging the
use of electric vehicles, and supporting the development of
innovative technologies such as carbon capture and storage.
These collective efforts by world organizations are crucial in
driving the global transition toward a low-carbon future and
mitigating the adverse effects of climate change.

One of the challenges is to decarbonize the energy system by
developing a new power sector based on renewable sources.
One of the main strategies to achieve the proposed goal is the
use of biogas as an alternative renewable energy source to
carbon-based energies, since it contributes not only to the
reduction of greenhouse gases but also to the development of
the circular economy through the anaerobic digestion of
organic waste from different sources and its transformation to
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fuel. Since biomethane is the same molecule as natural gas, it
can be distributed via the existing gas distribution networks,
facilitating the transition from natural gas to biogas energy.
Thus, the installation of anaerobic digestion plants for the
conversion of organic waste and livestock manure to
biomethane has gained prominence in recent years as a
sustainable waste-to-energy solution. Many countries are
assessing different alternatives to install and adapt these biogas
plants. For instance, the U.S. Farm Bill,5 periodically
reauthorized by Congress, includes provisions that support
the development and utilization of biogas from agricultural
sources. The bill provides funding for biogas projects, such as
the installation of anaerobic digester plants on farms or near
them, which capture methane emissions from manure and
convert them to usable biogas for electricity generation or
transportation fuel.

Analyzing the logistic systems behind the implementation of
different modes of energy, particularly biogas, is of paramount
importance in ensuring the successful and sustainable
integration of renewable energy sources to our global energy
landscape. Biogas, derived from organic waste materials
through anaerobic digestion, presents a promising alternative
to conventional fossil fuels (see refs 6 or 7 for further details on
the recent technological breakthroughs in anaerobic digestion
of organic biowaste for biogas generation). However, their
widespread adoption hinges on addressing intricate logistic
challenges. Understanding the logistics involved in the
collection, transportation, and processing of organic feedstocks
is crucial for optimizing efficiency and minimizing environ-
mental impact. Rigorous analyses on the logistical aspects of
biogas production in different countries reveal opportunities
for streamlining supply chains, enhancing resource utilization,
and reducing overall costs see, e.g., refs 8 and 9. Effective
logistic planning also ensures reliable and consistent feedstock
availability, which is a key factor in the stable operation of
biogas plants. By delving to the logistics of biogas
implementation, we can develop strategies that not only
bolster the economic viability of this renewable energy source
but also contribute to the broader goal of achieving a more
sustainable and resilient energy infrastructure.

Among the decisions to be made in the design of an efficient
logistic system, the most critical one is the selection of the best
sites to locate the different types of plants involved in the
system (biogas plants, pretreatment plants, and liquefaction
plants). This is a difficult task that involves different agents,
production and conversion technologies, and types of demand
centers. Furthermore, this placement must be coordinated with
the different distribution processes.10 Mathematical optimiza-
tion is known to play a very important role in these types of
decisions. For instance, mathematical optimization tools have
been applied by Tampio et al.11 for the design of a cost-optimal
processing route for a biogas anaerobic digestion plant to
produce fertilizer products based on specified regional needs.
Balaman and Selim12 developed a mixed integer linear
programming model to determine the appropriate locations
for the biogas plants and biomass storages. Scarlat et al.13

provided a spatial analysis algorithm that uses data of manure
production and collection to assess the spatial distribution of
the biogas potential in Europe, in order to decide the location
of bioenergy plants. A geographic information system-based
analysis was used by Valenti et al.14 to determine the size and
location of four biogas plants in Catania (Sicily, Italy). A
multiobjective optimization approach for the optimal location

of biogas and biofertilizer plants at the maximum profit and the
minimum environmental impact is presented in the work of
Diáz-Trujillo and Naṕoles-Rivera,15 and it is applied for a
geographical region in Mexico. Mathematical methods have
been used to study the location of bioenergy plants in many
other regions and countries (Park et al.16 in North Dakota,
Sultana and Kumar17 in Alberta, Egieya et al.18 in Slovenia,
Amigun and von Blottnitz19 in Africa, Silva et al.20 in
Portugal,21 in Nigeria, Soha et al.22 in Hungary, Iglinśki et
al.23 in Poland, Delzeit and Kellner24 in Germany). Hernandez
and Martin25 proposed a nonlinear optimization model to
compute the optimal operating conditions of the reactors, the
biogas composition, and the content of nutrients in the
digestate in the production of biodiesel from waste via
anaerobic digestion. Hu et al.26 gave a mathematical
optimization framework to analyze the economical and
environmental benefits of recovering biogas, caproic acid,
and caprylic acid from different sources of organic waste.
Ankathi et al.27 considered a mixed integer linear optimization
model to determine the location and capacities of biogas plants
based only in the location and production of the farms. In
terms of locational decisions, some of the classical
mathematical approaches have been already adapted to
incorporate green goals (see, e.g., ref 28), although more
advances are expected within the next few years, based on what
our society needs.

On the other hand, mathematical optimization is recognized
as a fundamental tool for the design and modeling of multiple
logistics, transportation, and supply chain problems (see, e.g.,
refs 21 and 29−37, among many others). Specifically,
mathematical optimization is particularly useful to construct
robust and effective supply chains to integrate bioenergy in any
economy (see, e.g., refs 38−42 and references therein). In
order to implement an efficient and sustainable biogas
distribution system, it is necessary to adequately design a
robust logistic plan for all the elements involved in the process,
such as manure, waste, biomethane, liquefied gas, biofertilizer,
etc. In this phase, one must decide not only where to locate the
anaerobic digestion plants but also where to locate pretreat-
ment plants for preparing, cleaning, or drying the waste, or
transshipment plants to distribute the products, how to collect
the manures from the farms or fields and send them to the
plants, how to link (if needed) the different types of plants,
how to distribute the final biomethane to the gas distribution
network or, once it has been previously liquefied, to external
clients, how to dispatch possible fertilizers back to some of the
farms, etc. A few works have already proposed models to make
optimal decisions in this type of situations. Jensen et al.43

proposed a minimum cost flow-based model for finding the
optimal production and investment plan for a biogas supply
chain by means of minimizing the transportation cost on an
existing supply chain network. Three layers of analysis for
designing optimal animal waste supply for anaerobic
biodigestion are detailed by Mayerle and Neiva de
Figueiredo:44 (1) identification of the optimal locations for
the anaerobic digestion plants based on the farms’ information;
(2) specification of the optimal distribution system; and (3)
scheduling the optimal biomass collection from each farm to
minimize biogas loss. Sarker et al.45 studied the optimization of
the supply chain cost for a biomethane gas production system,
which is organized in four stages (collecting feedstock to hubs
located according to zip code areas, transporting feedstock
from hubs to reactor(s), transporting biomethane gas from
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reactor(s) to condenser(s), and shipping the liquefied
biomethane gas from condensers to final demand points).
The problem studied by Sarker et al.45 is formulated as a
mixed-integer nonlinear mathematical optimization problem
and, due to its complexity, a genetic heuristic algorithm is
proposed to solve it. Abdel-Aal46 provided a mathematical
optimization model (together with a metaheuristic solution) to
maximize the profit of a biomass supply chain designed to
commercialize electricity. The model allows us to determine
the electricity demand, power plant operations, biomass
feedstock purchase and storage, and biomass transport trucks.

In this paper, we introduce the waste-to-biomethane logistic
problem and provide a general and flexible mathematical
optimization model to make decisions of locating pretreat-
ment, biogas, and liquefaction plants together with the
pipelines linking the biogas plants with either the liquefaction
plants or the injection points of the existing gas network and
distributing the different types of elements along a complex
logistic system that integrates all the aspects mentioned above.
Thus, we consider a supply chain for the biomethane gas
production combining six stages:

(A) collecting waste and sending it to pretreatment plants
(regardless of zip code);

(B) delivering contaminant-free organic waste from pretreat-
ment plants to the anaeorobic digestion plants;

(C) constructing pipelines for transporting biomethane from
the anaerobic digestion plants to the injection points of
an existing gas pipeline network;

(D) constructing pipelines for transporting biomethane from
the anaerobic digestion plants to the biomethane
liquefaction plants;

(E) dispatching biofertilizers from the anaerobic digestion
plants to the waste sources; and

(F) shipping liquefied biomethane from the biomethane
liquefaction plants to external customers.

We jointly integrate all of these complex stages to a mixed
integer linear programming (MILP) model seeking to
minimize the overall transportation cost of the system by
assuming that a limited budget is given to install all of the
different types of plants and pipelines. Our MILP model can be
efficiently solved using off-the-shelf optimization solvers (such
as Gurobi, CPLEX, or FICO) after proving some theoretical
results for reducing the number of variables and constraints.
Then, we first test our method to synthetic (but realistic)
instances and show that our proposal is a valid decision making
tool for situations where the logistics behind energy trans-
formation is required to be optimized. We also apply our
model to a real-world dataset based on the region of upper
Yahara Watershed in the state of Wisconsin (see refs 47 and 48
for further information about this dataset).

The remainder of this paper is organized as follows. In the
next section, we introduce the Waste-to-Biomethane Logistic
Problem (W2BLP) and present our modeling assumptions.
The next section is devoted to detailing the mathematical
optimization model that we developed for the problem. We
also prove in this section a theoretical result that allows us to
significantly reduce the number of variables and constraints in
the model. After that, we report the results of our
computational experiments on realistic synthetic instances. A
case study is also presented where the model is applied to the
real-world dataset based on the region of the upper Yahara

Watershed. The paper concludes with some conclusions and
future research.

■ THE WASTE-TO-BIOMETHANE LOGISTIC
PROBLEM

The problem under analysis consists of efficiently using
agricultural waste, such as livestock manure, energy crops,
municipal waste, etc., to be transformed to biomethane. This
transformation consists of different phases. First, from a given
set of waste sources (WS), as farms or residual storages, each
of them producing an amount of waste, it is transported to the
pretreatment (PT) plants, where the nonorganic material is
removed, and what remains is dried, pressed, or adequately
prepared. Feedstocks with low dry matter content, such as pig
slurry, are often preseparated before digestion to a liquid and a
solid fraction, so that only the solid fraction is supplied to the
biogas plant. Solid−liquid separation is used to reduce the
volumes and the costs of the feedstock transport.49,50

Additionally, as already observed by several authors (see,
e.g., refs 51 and 52, among others), the proper pretreatment of
the biowaste for biogas production reduces environmental
pollution and enhances the recovery of renewable energy. In
this first phase, the location of the PT plants is determined
among a finite set of potential positions.

The dried contaminant-free organic waste (DOW) obtained
after the pretreatment is delivered to an anaerobic digestion
(AD) plant, where it is transformed to biomethane. The
positions of the AD plants are also to be decided among a
finite set of potential locations. Biomethane is then either
directly injected to the existing gas pipeline network (GPN) or
processed to liquid natural gas (LNG). We assume that we are
given a finite set of injection points in the GPN and that the
pipelines connecting the AD plants with a selected set of
injection points are to be built (with a given cost). A minimum
percentage of the produced biomethane is to be injected in the
GPN, and the remaining biomethane is transformed to
liquefied natural gas (LNG) and distributed to a given set of
external customers (EC), each of them with a given demand.
This minimum percentage represents the tradeoff between the
gas injection to the network, with respect to the amount of gas
served to the external customers. The liquefaction of
biomethane requires the construction of biomethane lique-
faction (BL) plants, as well as pipelines connecting the AD
plants with them. Then, the liquified gas is delivered to the
customers by using tank trucks. Finally, the remaining material
in the DOW to biomethane transformation process (digestate)
is then returned back from the AD plants to some of the WS,
where it can be used as a biofertilizer. In Table 1, we
summarize the notation used for the different elements
involved in the problem.

In Figure 1, we illustrate the different elements that appear
in this logistic problem. The names are differentiated by color.
We indicate the input data (WS, GPN, and EC) in blue,
whereas we highlight the decisions to be made in green: these
are the (PT, AD, and BL) plants and the (to GPN and BL)
pipelines to be installed. The transportation routes are
highlighted with red arrows in the plot.

In what follows, we summarize the hyphotesis mentioned
above that are based on the technological requirements of the
process:

• A minimum percentage of the total amount of waste in
the WS must be collected and delivered to the PT plants

ACS Sustainable Chemistry & Engineering pubs.acs.org/journal/ascecg Research Article

https://doi.org/10.1021/acssuschemeng.4c01429
ACS Sustainable Chem. Eng. 2024, 12, 8453−8466

8455

pubs.acs.org/journal/ascecg?ref=pdf
https://doi.org/10.1021/acssuschemeng.4c01429?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


to satisfy the gas requirements of the GPN. Since a given
percent of the produced biomethane is to be injected in
the GPN, this hypothesis implies that a minimum
amount of biogas must be produced to be injected to the
network. The aim of this assumption is to ensure that a
minimum amount of the production of biogas is
supplied to the existing network, but not forcing the
collection of all the waste from the WS in case this is not
productive for the decision maker.

• Each PT plant sends its whole produced DOW to the
AD plants. In the AD plants, the DOW received is
transformed to biomethane. This transformation gen-
erates an amount of digestate that can be delivered to
the WS in the form of biofertilizer.

• We assume that each WS receives a given proportion of
the total amount of digestate produced at the AD plants.
This assumption allows the WS to get benefit for giving
the waste for producing energy, apart from get rid of the
waste produced in their lands. In case this proportion is
0, the WS does not receive any biofertilizer (as in the
case of residual storages that may not be interested in
the product). For this reason, we do not force delivering
the whole digestate produced in the AD plants to the
WS.

• The whole biomethane production obtained in the AD
plants is delivered to the GPN and the BL plants. As
already mentioned, a minimum percentage of the total
biomethane production is required to be injected to the
GPN. The aim of this assumption is to ensure that a
minimum amount of the production of biogas is
supplied to the existing network. Otherwise, the whole
production would be delivered to the external
customers, since it implies a positive profit to the
distribution company.

• Each BL plant sends its whole LNG production to the
EC.

• The demand of the EC is not assumed to be fully
satisfied, since the production of biomethane (which
depends on the production of waste) might not be
enough to satisfy their whole demand. Instead, we
consider that every EC receives a prespecified
proportion of the total LNG produced at the BL plants.
This proportion may depend on its demand or other
preference criterion that the agents consider reasonable.
This assumption is flexible and allows the decision
maker to share the amount of biogas to be delivered to
the external customers as desired. A possible choice is to
share the liquified biogas proportional to the demand of
the customers, but the decision maker may prefer to give
priority to some strategic customers.

• A percent of the amount (weight and volume) of the
different products is assumed to be lost at each phase of
the whole process. Specifically, a given percentage of the
amount of waste, DOW, and biomethane received in PT,
AD, and BL, respectively, is lost during the process. This
technical hyphotesis is derived from the chemical
processes to obtain the different types of products
from their raw materials.

The efficient management of this system requires both
deciding the location of the different types of plants (PT, AD,
and BL) and pipelines (connecting AD with GPN and AD with
BL) to be constructed, as well as the distribution of the
product along the different phases of this process.

There is a cost for opening each potential location of each
different type of plants and a construction cost per unit length
for the pipelines. We assume that a budget is given to install all
of the plants and pipelines.

For the distribution of the products, we assume that a unit
transportation cost is provided for the different phases, namely,
delivering from WS to the PT plants (waste), from PT to the
AD plants (DOW), from the BL plants to the EC (LNG), and
from AD to the WS (biofertilizer).

The Waste-to-Biomethane Logistic Problem (W2BLP)
consists of deciding the location of the different plants and
pipelines and the way the product is distributed, minimizing
the overall transportation cost with the given installation
budget.

In Figure 2, we show a solution of a toy instance of the
W2BLP. In such an instance, we consider 5 farms (blue dots in
the left side of the plot) with production written at the left of
the dot, 5 external customers (purple dots in the right side),
and 5 injection points (brown squares in the right side linked
with dashed lines in the bottom right side of the plot).
Additionally, from left to right, we consider 5 potential
locations for the PT plants (orange dots), 5 potential locations
for the AD plants (green dots), and 5 potential locations for
the BL plants (red dots). Among the potential positions for the
plants, the W2BLP decides which of them to open (in this
case, those with larger circles), as well as the amount of
product that is delivered between the different elements in the
system). For instance, the waste produced at the two left top
farms (80 and 97 units, respectively) is delivered to the top
open PT plant. This plant receives 177 units of waste, and after
processing them, 80% (141.6 units of DOW) is delivered to
the AD plants. Since only one AD plant is opened, all this
production is received in there (together to the rest of the

Table 1. Notation for the Different Elements Involved in the
Problem

notation description

WS waste sources
PT pretreatment plants
AD anaerobic digestion plants
BL biomethane liquefaction plants
EC external customers
GPN gas pipeline network
DOW dried organic waste
LNG liquefied natural gas

Figure 1. Process modeled in the problem.
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DOW production from the other PT plant). In total, the AD
plant receives 266.6 units of DOW. Of this product, after
processing it and producing biogas, it is delivered to the
injection points and to the EC. The total biogas produced is
80% of the volume of the DOW received from the PT plants
(213.28 units). In this solution, 160.3 units are delivered to a
single injection point. The rest of the biogas (52.98 units) is
delivered to the BL plants. Since two BL plants are opened,
one part is delivered to each of them (25.5 and 27.9 units,
respectively). Then, the BL plants deliver the LNG (70% of
the total amount of biogas received at the BL plants) to the
EC. In this case, we assume that, of this production, the LNG
is delivered proportionally to the demand of the EC
(highlighted at the right of the EC nodes in the plot�in
absolute and in percentage in parentheses). The LNG
delivered to each of the EC is indicated over the lines linking
the BL plants to each of the EC. Finally, the dotted lines
represent the biofertilizer delivered from the AD plants to the
WS (15% of the volume of the DOW received from the PT
plants). We assume that, of this production, the biofertilizer is
delivered proportionally to the waste production at the WS. As
can be observed, the logistic system is complex and requires
making decisions in different layers that affect the others.

■ MATHEMATICAL OPTIMIZATION MODEL
In this section, we present the mathematical optimization
model that we propose for the W2BLP. First, we define the
parameters and variables that we use in our model.
Parameters. The following parameters are assumed to be

given to our model.
Index Sets. We use the following terms to denote the

number of elements within each of the index sets: n is the
number of WS; m1 is the number of potential locations for the
PT plants; m2 is the number of potential locations for the AD
plants; m3 is the number of potential locations for the BL
plants; d is the number of EC; and s is the number of injection
points in the GPN. Then, we use the following notation for the
index sets:

• N = {1, ..., n}: index set for the set WS.
• P1 = {1, ..., m1}: index set for the set of potential PT

plants.
• P2 = {1, ..., m2}: index set for the set of potential AD

plants.

• P3 = {1, ..., m3}: index set for the set of potential BL
plants.

• I = {1, ..., s}: index set for injection points in GPN.
• C = {1, ..., d}: index set for the set of EC.

Production Parameters. The following production param-
eters are used in this work:

• wi: waste produced at the ith WS, for all i ∈ N.
• W = ∑i∈ N wi: overall production of waste in all of the

WS.
• δ: proportion of waste transformed to DOW at the PT

plants (0 < δ < 1).
• γ1: proportion of DOW transformed to biomethane at

the AD plants (0 < γ1 < 1).
• γ2: proportion of DOW transformed to biofertilizer at

the AD plants (0 < γ2 < 1). We assume that γ1 + γ2 < 1.
• β: proportion of biomethane transformed to LNG at the

BL plants (0 < β < 1).
• Dl: demand of ECl ∈ C.
• p: lower bound percentage of the total waste produced

at the WS that must be collected and sent to the PT
plants (0 < p ≤ 1).

• q: lower bound for the total proportion of biomethane
produced at the AD plants that must be injected to the
GPN (0 < q ≤ 1).

• Ri: proportion of the total amount of biofertilizer to be
delivered to WS i ∈ N (∑i∈N Ri ≤ 1).

• αl: proportion of the total amount of LNG at the BL
plants that will be received by demand point l ∈ C
(∑l∈C αl = 1).

Set-up Costs and Budget. These costs represent the
installation costs of the different types of plants and links.
They may include not only the construction cost of the
different plants and pipelines but also other costs related with
the maintenance and use of them, such as labor costs, land
costs, etc.:

• f j1: set-up cost for opening PT plant j ∈ P1.
• f j2: set-up cost for opening AD plant j ∈ P2.
• f j3: set-up cost for opening BL plant j ∈ P3.
• hjk: set-up cost for installing a pipeline linking AD plant j

∈ P2 with BL plant k ∈ P3.
• gjl: set-up cost for installing a pipeline linking AD plant j

∈ P2 with the injection point in GPN l ∈ I.
• B: total budget for installing plants and pipelines.

Transportation Costs. These costs represent the trans-
portation costs of the different products (waste, DOW, LNG,
and digester solid) that are usually transported by trucks from
different geographical locations of the elements in the system:

• cij1 ≥ 0: unit transportation cost of waste from WS i ∈ N
to PT plant j ∈ P1.

• cjk2 ≥ 0: unit transportation cost of DOW from the PT
plant j ∈ P1 to AD plant k ∈ P2.

• cjlC ≤ 0: unit transportation cost (profit) of LNG from
the BL plant j ∈ P3 to EC l ∈ C. Note that this
nonpositive cost represents the benefit of delivering to
the EC each unit of liquified gas for their particular use.

• cjiN ≥ 0: unit transportation cost of biofertilizer from the
AD plant j ∈ P2 to WS i ∈ N.

Note that the transportation costs for the biogas through the
pipelines are already included in the setup costs described
above.

Figure 2. Solution of W2BLP for a toy instance.
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Variables. Our model makes a decision on the different
plants and pipelines that are opened as well as the amount of
product delivered at the different phases of the process.

Binary Variables. The following variables determine
whether a plant or a pipeline should be installed:

l
moo
noo

y
j

j P
1 if PT is open

0 otherwisej
1

1=

l
moo
noo

y
j

j P
1 if AD is open

0 otherwisej
2

2=

l
moo
noo

y
j

j P
1 if BL is open

0 otherwisej
3

3=

l
moo
noo

z
j k

j P k P

1 if a pipeline linking AD with BL is built

0 otherwise

,

jk

2 3

=

l
m
ooooo

n
ooooo

t
j

l

j P l I

1 if a pipeline linking AD plant
with injection point in GPN is built

0 otherwise

,

jl

2

=

Continuous Variables. The following variables of our model
decide the amount of product delivered between the different
sites in the system:

• xij
1: amount of waste delivered from WS i to the PT plant

j, ∀i ∈ N, j ∈ P1.
• xjk

2 : amount of DOW delivered from PT plant j to AD
plant k, ∀j ∈ P1, k ∈ P2.

• xjk
3 : amount of biomethane delivered from AD plant j to

BL plant k, ∀j ∈ P2, k ∈ P3.
• xjl

I : amount of biomethane delivered from AD plant j to
GPN’s injection point l, ∀j ∈ P2, l ∈ I.

• xji
N: amount of digester solid delivered from AD j to WS

i, ∀j ∈ P2, i ∈ N.
• xjl

C: amount of LGN delivered from BL plant j to EC l, ∀j
∈ P3, and l ∈ C.

Objective Function. The goal of W2BLP is to minimize the
total transportation cost of the system. For that, one must
decide the optimal position of the different plants and pipelines
with the given budget B. These locations have a direct impact
on the transportation cost.

With the above set of variables, the overall transportation
cost of the system can be written as follows:

c x c x c x c x
i N j P

ij ij
j P k P

jk jk
j P i N

ji
N

ji
N

j P l C
jl
C

jl
C1 1 2 2

1 1 2 2 3

+ + +

(1)

Constraints. The assumptions of our problem are
adequately established by the following constraints:

• The budget for installing the different plants and pipelines
must be satisfied:

f y f y f y h z g t B
j P

j j
j P

j j
j P

j j
j P k P

jk jk
j P l I

jl jl
1 1 2 2 3 3

1 2 3 2 3 2

+ + + +

(2)

• Flow Conservation Constraints: The product must be
adequately routed through the intermediate stages of the
supply chain and enforced by the following constraints:

x x j P
k P

jk
i N

ij
2 1

1

2

=
(3)

x x x j P
k P

jk
l I

jl
I

k P
kj

3
1

2
2

3 1

+ =
(4)

x x j P
i N

ji
N

k P
kj2
2

2

1

=
(5)

x x j P
l C

jl
C

k P
kj
3

3

2

=
(6)

Constraints (3) ensure that all the waste received at a PT plant
is delivered to the AD plants once it is processed (100δ% of
the waste is transformed to DOW). 100γ1% of the amount of
DOW received at each AD plant is transformed to biomethane
and fully delivered either to the injection points or to the BL
plants (Constraint (4)) and 100γ2% is converted to digester
solid and delivered to the WS (Constraint (5)). Finally,
Constraints (6) ensure that the amount of biomethane
received at the BL plants is converted to 100β% of LNG
and fully delivered to the EC.

• Demand and Capacity Constraints: The different products
obtained in the process are adequately delivered according to
demand and capacity. Specifically, the WS must send waste and
receive digester solid, the EC must receive LNG, and the GPN
must receive biomethane. To this end, the following
constraints are incorporated to our model:

x w i N
j P

ij i
1

1 (7)

x pW
i N j P

ij
1

1 (8)

x q x
j P l I

jl
I

k P j P
kj1
2

2 1 2 (9)

x D l C
j P

jl
C

l
3 (10)

Constraints (7) ensure that the amount delivered from each
WS is, at most, the waste that it produces. Constraint (8)
forces the sending, from the WS’s, of at least 100p% of the total
amount of waste. Constraint (9) states that at least 100q% of
the produced biomethane must be injected in the GPN. Each
EC, by Constraints (10), at the most, receive its required
demand. Note that the transportation cost for the product in
this phase is nonpositive, and then, if possible, this demand will
be satisfied. Also note that, by using Constraints (3),
Constraints (8) and (9) can be equivalently rewritten as

x pq W
j P l I

jl
I

1
2 (11)

It may happen that if q is large, the overall demand for the EC
that can be satisfied is small. Thus, one can establish a sharing
rule for the available LNG, i.e., a vector (α1, ..., α|C|) ∈ [0, 1]|C|

representing the percent of the LNG at the BL plants that will
be received by each EC. The following constraints ensure the
adequate verification of this share:

x x l C
k P

kl
C

l
j P k P

jk
3

3 2 3

=
(12)
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Finally, Constraints (13) force each WS to receive its given
percentage of the total production of digester solid:

x R x i N
j P

ji
N

i
j P k P

jk2
2

2 1 2

=
(13)

• Distribution through Open Plants and Links: The trans-
portation of the product in the different phases forces the
plants and/or pipelines to be installed. This is ensured by the
following constraints:

x pWy j P
i N

ij j
1 1

1
(14)

x p Wy j P
k P

kj j
2 2

2

1 (15)

x p Wz j P k P,jk jk
3

1 2 3 (16)

x p Wt j P l I,jl
I

jl1 2 (17)

These constraints ensure that, in case a plant or a link is not
open, the product cannot be distributed through the
corresponding plant or link.

• Compatibility of Open Plants and Links: The installation of
a pipeline linking a plant with other plant, or with an injection
point in the GPN, is subject to the previous installation of the
plants that the pipelines are connecting. These conditions are
imposed in our model with the following linear constraints:

z y j P k P,jk k
3

2 3 (18)

z y j P k P,jk j
2

2 3 (19)

t y j P l I,jl j
2

2 (20)

Summarizing all the previous descriptions, the W2BLP can
be modeled with the following mathematical optimization
problem that we denote by (W2BLP)0:

c x c x c x c xmin
i N j P

ij ij
j P k P

jk jk
j P i N

ji
N

ji
N

j P l C
jl
C

jl
C1 1 2 2

1 1 2 2 3

+ + +

subject to Constraints (2)−(7),Constraints (10)−(20),
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3
3

2 3

2

1
1

2
1 2

3
2 3

2

2

3

{ }

{ }

{ }

{ }

{ }

The above model is a mixed-integer linear programming
(MILP) problem with m1 + m2 + m3 + m2m3 + m2s binary
variables, nm1 + m1m2 + m2m3 + m2s + m2n + m3d continuous
variables and 2m1 + 3m2 + m3 + 3m2m3 + 2m2s + 2(n + d) + 2
constraints. Although commercial solvers are able to handle
this type of problem, it can be challenging to solve for real-
world instances. Thus, in what follows, we provide a result that
allows us to reduce the number of variables and constraints
considerably, thus reducing the size of the mathematical
optimization model above without affecting the solutions of
the W2BLP. Specifically, the result is based on the fact that
once the potential AD plants that are open are decided, each of
them will optimally distribute the biogas to the GPN through
its less costly injection point.
Lemma 0.1 Let S̅ = (y̅1, y̅2, y̅3, z,̅ t,̅ x̅1, x̅2, x̅3, x̅I, x̅N, x̅C) be an

optimal solution of the model (W2BLP)0. If tj̅l = 1 for some j ∈ P
and l ∈ I, then there exists an optimal solution Ŝ = (y̅1, y̅2, y̅3, z,̅ t,̂
x̅1, x̅2, x̅3, x̂I, x̅N, x̅C) with:

t x x1,jl j jl j
I

l I
jl
I

( ) ( )= =

t x l l j0, 0, ( )jl jl
I= =

where l(j) = arg minl∈ I gjl.
Furthermore, the overall setup costs of Ŝ is smaller or equal than

the ones for S̅.
Proof. The proof that follows is straightforward, since there

are no transportation costs between the AD plants and the
injection points, but linking them is taken to account in the
budget constraint. Thus, replacing the link (j, l) by (j, l(j))
does not affect the objective function but reduces the setup
costs.

The result above allows us to simplify the model by reducing
the number of variables modeling the links and the flows
between the AD plants and the GPN. Specifically, one can
replace the two-index variables t and xI by one-index variables
that, abusing the notation, we denote as

l
m
oooo

n
oooo

t
j

l j

1 if a pipeline linking AD plant

with injection point ( ) is built
0 otherwise

j =

for all j ∈ P2, and xj
I(j) is the amount of biomethane delivered

from AD plant j to GPN’s injection point l(j), ∀j ∈ P2.
Thus, if we denote by gj = gjl(j) for all j ∈ P2, one can replace

the two-indices t and xIvariables in model (W2BLP)0 by the
one-index t and xIvariables above. Consequently, Constraints
(2), (4), (11), (17), and (20) are replaced by the following
inequalities and equations:

f y f y f y h z g t B
j P

j j
j P

j j
j P

j j
j P k P

jk jk
j P

j j
1 1 2 2 3 3

1 2 3 2 3 2

+ + + +

(21)

x x x j P
k P

jk j
I

k P
kj

3
1

2
2

3 1

+ =
(22)

x pq W
j P

j
I

1
2 (23)

x p Wt j Pj
I

j1 2 (24)
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t y j Pj j
2

2 (25)

The simplified model above has m1 + 2m2 + m3 + m2m3
binary variables, nm1 + m1m2 + m2m3 + m2 + m2n + m3d
continuous variables, and 2 + 2m1 + 4m2 + m3 + 2n + 2d + m2s
+ 3m2m3 linear constraints and, as one can observe in the next
section, this reduced model is able to solve real instances of the
W2BLP in reasonable CPU time. Our approach is then a useful
tool for making decisions on the logistic of the biogas
production system. Note that in case any of the phases in the
process are not present (PT-AD, AD-BL-EC, AD-GPN, or AD-
WS), the model above can be simplified, reducing its number
of variables and constraints.

■ COMPUTATIONAL EXPERIMENTS
We have run a series of experiments to analyze the
computational performance of our approach. The main goal
of the experiments is to determine the computational
limitations of our model and its ability to obtain solutions
for real-world instances.

We randomly generated different instances with different
sizes and parameters. We generate the coordinates for the WS,
the potential location for the different plants (PT, AD, and
BL), the injection points in GPN, and the EC uniformly in [0,
1000] × [0, 1000]. For the sake of simplification, we assume
that the number and the location of WS (n) is the same that
the number and the location of potential PT plants (m1), and
that the number and the location of potential AD plants (m2)
and potential BL plants (m3) are also the same. Additionally,
the number of EC atoms (|C|) also coincides with the number
of injection points in GPN (s). The value of n = m1 ranges in
{25, 50, 100, 200, 500}, m ≔ m2 = m3 ranges in {5, 10, 20, 50,

100} with m ∈
Ä
Ç
ÅÅÅÅÅÅ
Ä
Å
ÅÅÅÅÅ

É
Ñ
ÑÑÑÑÑ

Å
Ç
ÅÅÅÅÅ

Ñ
Ö
ÑÑÑÑÑ),n n

10 2
, and d = s ranges in {10, 20, 50,

100} with d ≤
Ä
Å
ÅÅÅÅÅ

É
Ñ
ÑÑÑÑÑ

n
2

(here, ⌈·⌉ and ⌊·⌋ stand for the ceiling and
floor integer rounding functions, respectively).

Let distij denote the Euclidean distance between the
locations i and j. We considered as unit transportation costs
the Euclidean distances between the different points (distij),
except for the transportation costs of LNG from BL plants to
the EC, where the unit transportation cost is considered as a
profit and is defined as

c
max (dist )

1 distjl
C k P l C

kl

jl

,

2

3=
+ (26)

These costs are designed to represent the concept that the
closer the extra customer is to the open BL plant, the larger the
profit to satisfy its unit demand.

The setup costs for the PT plants and the BL plants were
chosen all equal to one unit (in millions of U.S. dollars) and
the installation cost for the AD plants was fixed to 5 units (in
millions of U.S. dollars). The setup costs for the pipelines
linking the AD plants with the injection points in GPN and the
BL plants are 0.1 times the normalized (by the maximum)
Euclidean distance between the corresponding points.

For determining adequate budgets for a given instance, we
first solved the problem without the budget constraint
(Constraint 2). After solving the problem, we compute its
effective set-up cost by adding up the costs of the open plants
and pipelines that route a positive flow. We use B̂ to denote
this set-up cost and consider as budget B = 0.2 B̂. This budget

indicates that one can use only 20% of the cost of making the
best (minimum transportation cost) decision with no budget.

The slurry production at each farm (wi for i ∈ N) has been
uniformly generated in [1, 100] ∩ + (here, + stands for the
set of non-negative integer numbers). The percentage of the
overall produced biomethane that must be injected to the
existing GPN (q) ranges in {50%, 70%, 90%}. We have
considered parameters p = 1, δ = 0.8, γ1 = 0.8, γ2 = 0.15, β =
0.7, αl =

D
D

l

l C l
for all l ∈ C, and Ri =

w
W

i for all i ∈ N. The LNG

demand of each EC (Dl for l ∈ C) was randomly generated in
[δγ1β, 100δγ1β].

The values of the parameters that we consider in our
experiments are summarized in Table 2.

The model has been coded in Python 3.7, using an iMac
computer with a 3.3 GHz processor and an Intel Core i7 with
4 cores and 16 GB 1867 MHz DDR3 RAM. We used Gurobi
9.1.2 as the optimization solver. A time limit of 6 h was fixed
for all the instances. All the instances with n ≤ 100 were
optimally solved. For the larger instances, we fixed a MIPGap
limit (the solver stops when reaching such a limit and outputs
the best feasible solution). For n = 200, we fix a MIPGap limit
of 2%, and for n = 500, an MIPGap limit of 4% is used. For
each combination of parameters n, m, d = s, and q, we solved
five instances. Thus, we have solved a total of 450 instances.

Figure 3 depicts performance profiles, with respect to CPU
times and MIP Gaps. In these pictures, we plot the percentage
of instances solved up to each value of the CPU or MIP Gap,
respectively. We analyze the computational performance of the
model for the different values of the parameter q. As one can
observe, the model seems to perform slightly better for the
smaller values of q, although the differences are tiny. For this

Table 2. Summary of the Parameters Used in Our
Experiments

coordinates unif[0, 1000]2

n = m1 {25, 50, 100, 200, 500}

m ≔ m2 = m3 {5, 10, 20, 50, 100} with
Ä
Ç
ÅÅÅÅÅÅÅ
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Å
ÅÅÅÅÅ

É
Ñ
ÑÑÑÑÑ

Å
Ç
ÅÅÅÅÅ

Ñ
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ÑÑÑÑÑ)m ,n n

10 2

d = s {10, 20, 50, 100} with d ≤
Ä
Å
ÅÅÅÅÅ

É
Ñ
ÑÑÑÑÑn

2

cij1, cij2, cijN distij

cjlC
max (dist )

1 dist
k P l C kl

jl

3,
2

+

f 2 5
f1, f 3 1

hjk 0.1
dist

max dist
jk

j k j k,
×

gj 0.1 minl
dist

max dist
jl

k l k l,
×

B 0.2 B̂
wi Unif[1, 100] ∩ +

q {50%, 70%, 90%}
δ = γ1 0.8
γ2 0.15
β 0.7
p 1

αl
D

D
l

l C l

Ri
w
W

i

Dl Unif[δγ1β, 100δγ1β]
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reason, in what follows, we will not differentiate between the
different values of q.

In Table 3, we summarize the results of our computational
experiments. The first three columns indicate the sizes of the
instances. Each of the rows summarize the results of a total of
15 instances (5 random instances and 3 values of q).
Information given in the column with the header “CPUTime”
is the average CPU time (in seconds) that the solver required
to solve the instances. Information given in the column with
the header “MIPGap” indicates the average percent MIP Gap.
In the case where the instance is optimally solved, the MIPGap
is 0%. Otherwise, this number reports either the MIPGap
obtained within the time limit (if it is greater than the MIP
Gap limit) or the MIPGap when the MIPGap limit was
reached (which can be slightly smaller than the MIPGap limit).
Finally, information given in the column with the header “%
Unsolved” indicates the percentage instances summarized in
the row that were not optimally solved or that reached the
MIPGap limit within the time limit.

As mentioned previously, we observe that all of the instances
with up to n = 100 have been optimally solved within the time
limit. As expected, the computing time increases with the
values of n and m, while it does not seem to depend on the
value of d. The average computing time over all these instances
is ∼46.26 s, being 1.19 s for the instances with n = 25, 11.11 s
for n = 50, and 96.44 for n = 100. The average computing time
needed to obtain an optimal solution is dependent on the value
of m: 1.5 s for m = 5, 19.9 s for m = 10, and 104.8 s for m = 20.

Regarding the instances with n = 200, we observe that all the
instances have been solved, which, in this case, means that all
the instances have reached the MIP gap limit within the time
limit, being the average consuming time over all the instances
300 s and the average MIP gap 1.57%. One can observe that,
for these instances, the computing time is greater than the
value of d (EC = number of injection points). This may be
because the value of d does not affect the number of binary
variables in our improved formulation, and it might happen
that the smaller the number of EC and injection points, the
more difficult it is to decide where to install the different plants
to satisfy them at optimal cost. This fact can also be observed
for the largest instances with n = 500. For d = 10, 20% of the

instances with m = 50 and 6.67% of the instances with m = 100
have not been solved within the time limit; that is, these
instances have not reached the MIP gap of 4% within 6 h. The
rest of the instances have been solved within the time limit.
The average computing time for all the instances with n = 500
was 3057 s, and the average MIP gap was 2.55%.

The results shown in Table 3, together with Figure 3, allow
us to get a clear empirical evidence that, using our improved
formulation, the problem can be solved (with the MIP gap
limit) within the time limit using a commercial solver. In fact,
only 4 of the 450 instances (all of them with n = 500) have
reached the time limit with an MIPGap greater than the MIP
gap limit. This number represents <1% of the total instances
and only 3.3% of the instances with n = 500.

From our experiments, we conclude that our approach
provides a useful tool to make decisions about the complex
logistic problem behind the energy transformation of waste to
biogas in realistic instances using reasonable computational
resources. Thus, our model can also be used to evaluate
different alternatives, based on different values for the setup
costs for the plants or different transportation costs.

■ CASE STUDY
We tested our model in a real-world dataset based on the
upper Yahara watershed region in the state of Wisconsin (see
Figure 4), the data for which are available at https://github.
com/zavalab/JuliaBox/tree/master/Graph_S%26C. A detailed
description of this dataset can be found in refs 40, 47, 48, and
53. This region consists of 203 dairy farms whose waste
production is known and whose locations are predefined.
These locations determine our set of WS and the potential
positions for the PT plants. The potential positions for AD
plants and BL were randomly generated in that region. The
positions of the injection points on the GPN were also
randomly generated in this region, and a network connecting
these points was constructed. The position of the EC was
randomly generated outside that region but in the minimum
rectangular box containing it.

In Figure 5, we plot the coordinates of the different agents
involved in the W2BLP. Red points in the plot indicate the WS
locations (as larger the size of the dot, larger the production of

Figure 3. Performance profile ((a) CPU time and (b) MIPGap) of our computational experience for the different values of parameter q.
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waste in the farm) and the potential locations for PT, blue
points are the potential locations for AD plants and for BL
plants, green points indicate the EC locations, gray dotted lines
represent the GPN, and gray points denote the injection points
of the GPN.

The parameters not provided in the above repository were
fixed as follows:

• cij1 = 0.3 × distij, for i ∈ N and j ∈ P1

• cjk2 = 0.15 × distjk, for j ∈ P1 and k ∈ P2

• cjiN = 0.15 × distji, for j ∈ P2 and i ∈ N
• Dl was randomly generated in [δγ1β × min wi, δγ1β ×

max wi]
• The setup budget was fix to κ × B̂, for κ ∈ {0.1, 0.2},

where B̂ was computed as described in the previous
section:

l

m
ooooooo

n
ooooooo

B

q

q

q

472.33 if 50%

472.45 if 70%

472.32 if 90%
=

=
=
=

• The rest of parameters have been considered as
described in the previous section (q ranges in {50%,
70%, 90%}, p = 1, δ = 0.8, γ1 = 0.8, γ2 = 0.15, β = 0.7, αl

= D
D

l

l C l
for all l ∈ C, and Ri = w

W
i for all i ∈ N).

The parameters required to reproduce the obtained results are
available at https://github.com/vblancoOR/w2blp.

As in the previous section, we set a time limit of 6 h for
solving the problem. In Table 4, we show the CPU times (in

Table 3. Summary of Our Computational Experience

n m d CPUTime MIPGap %Unsolved

25 5 10 0.67 0% 0%
10 10 1.71 0% 0%

25 total 1.19 0% 0%

50 5 10 1.58 0% 0%
20 2.24 0% 0%

10 10 4.55 0% 0%
20 4.70 0% 0%

20 10 24.78 0% 0%
20 28.83 0% 0%

50 total 11.11 0% 0%

100 10 10 32.08 0% 0%
20 48.22 0% 0%
50 28.14 0% 0%

20 10 109.59 0% 0%
20 181.59 0% 0%
50 179.04 0% 0%

100 total 96.44 0% 0%

200 20 10 444.32 1.47% 0%
20 137.37 1.69% 0%
50 70.65 1.44% 0%

100 51.63 1.40% 0%
50 10 1195.32 1.77% 0%

20 413.42 1.81% 0%
50 46.63 1.54% 0%

100 40.78 1.45% 0%
200 total 300.01 1.57% 0%

500 50 10 6946.33 4.45% 20.00%
20 1041.76 2.90% 0%
50 912.06 1.93% 0%

100 713.42 1.74% 0%
100 10 5656.14 3.10% 6.67%

20 3625.32 2.50% 0%
50 2366.02 2.47% 0%

100 3195.16 1.32% 0%
500 total 3057.03 2.55% 3.33%

total 916.80 1.10% 0.89%

Figure 4. Lake Mendota in the Upper Yahara watershed region in
Dane County, WI.

Figure 5. Input data of the case study.

Table 4. CPU Times and MIP Gaps for Solving the
Instances in the Case Study

B q CPU Time (s) MIPGap

0.1 B̂ 0.5 2595.82 0%
0.7 18093.03 0%
0.9 21602.8 0.1%

0.2 B̂ 0.5 84.67 0%
0.7 473.81 0%
0.9 3106.91 0%
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seconds) and MIP Gaps obtained after running our model in
the six different configurations of budget and q that we
consider. In that table, one can observe that, except for the case
B = 0.1B̂ with q = 0.9, all of the instances were optimally solved
within the time limit. The case were the optimality is not
guaranteed, we obtained a MIP gap of 0.1% which is negligible.
Furthermore, as expected, a more-limited budget has a
significant impact in the CPU time required to solve the
problem, the problems with budget 0.1B̂ being more
challenging than those with budget 0.2B̂.

In Figures 6, 7, and 8, we show the results of our experiment
for the Yahara watershed dataset for the different choices of
budget, B, and q, and the different decisions that are made by
our model.

In Figure 6, we show the results regarding the optimal
locations for the PT plants (thick red points), the AD plants

(blue squares), and the BL plants (blue triangles), as well as
the optimal locations for the links connecting AD plants with
BL plants (blue lines) and AD plants with injection points of
the GPN (black lines). As can be observed, the budget and the
percentage of production that must be injected in the GPN
have a direct impact on the structure of the obtained solutions.
On the one hand, as expected, the smaller the budget, the
smaller the number of plants and pipelines that are open. In
particular, the budget mostly affects the construction of
pipelines to either inject to the GPN or transport to the BL,
but it also affects the number of installed plants. We also
observed that the network of the different installed plants and
pipelines has more connected components for the larger
budget, whereas it is almost connected for the small budget.

Regarding the value of q, it seems that the larger the value of q,
the closer the new facilities to the GPN.

In Figure 7, we show the distribution network between the
WS plants, PT plants, and AD plants. Specifically, the figure

shows the links for which there is a positive waste flow from
WS to PT plants (red lines), a DOW flow from PT plants to
AD plants (purple lines), and digester solid flow from AD
plants to WS (yellow lines). The main observation that can be
drawn from these plots is that, in most of the cases, there are
differentiated clusters of WS plants (farms) that share the same
PT plants and AD plants. This observations implies that, for
larger datasets, where the model could not be able to solve the
problem, the optimal solution would be adequately approxi-
mated by clustering the WS (with an adequate criterion) and
solve the problem separately for each cluster.

Finally, in Figure 8, we show the biomethane flow from AD
plants to BL plants (blue lines) and to injection points of the
GPN (black lines), and LGN flow from BL plants to EC
(green lines). Note that some of the AD plants are devoted
only to give service to the GPN; others serve the BL plants
(and then the EC) exclusively. However, one can also find AD
plants that send part of the production to the GPN and the
remainder is sent to the BL plants. This behavior would never
happen if an integrated model, such as the one that we
propose, would not have been considered. Note also that a
single AD plant is allowed to send biomethane to different BL
plants.

Figure 6. Optimal location of the different types of plants and
pipelines for different values of B and q: (a) q = 50% and B = 0.2B̂,
(b) q = 50% and B = 0.1B̂, (c) q = 70% and B = 0.2B̂, (d) q = 70%
and B = 0.1B̂, (e) q = 90% and B = 0.2B̂, and (f) q = 90% and B =
0.1B̂.

Figure 7. Distribution network between WS, PT plants, and AD
plants for the different configurations of q and B: (a) q = 50% and B =
0.2B̂, (b) q = 50% and B = 0.1B̂, (c) q = 70% and B = 0.2B̂, (d) q =
70% and B = 0.1B̂, (e) q = 90% and B = 0.2B̂, and (f) q = 90% and B
= 0.1B̂.
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■ CONCLUSIONS
In this paper, we propose a mathematical optimization
approach to design an optimal logistic system to distribute
the different products involved in the generation of biogas
from waste. Specifically, given a set of waste storage centers, an
existing gas pipeline network, and a set of external customers,
we provide a decision aid tool to determine the number and
optimal locations of pretreatment plants, anaerobic digestion
plants, and biomethane liquefaction plants, as well as the
pipelines linking some of these plants. Additionally, we provide
a distribution plan to send the different wastes, to serve either
the gas pipeline network or the external customers with the
produced biogas and to serve the waste storage centers with
the generated fertilizer. All of the decisions are made by
minimizing the transportation costs of the different products
and restricting the installation of plants and pipelines to a given
budget.

We developed a new mixed integer linear programming
(MILP) formulation for the problem and proved some results
that allow us to reduce the size of the model. With this
simplification, we were able to obtain optimal solutions for this
problem in real-world instances.

We report the results of an extensive battery of synthetic
computational experiments, and we conclude that our
approach is suitable to be applied to different settings and
sizes. We also analyze the case study of the Yahara watershed
and study the obtained solutions based on different
parameters.

Our future research on this topic includes the incorporation
of uncertainty in some parameters of the model. Concretely,
the production of waste in farms or waste storages is known to

vary over the different seasons of the year, and this production
may have an impact in the solution of the problem. We will
design stochastic optimization models that take to account this
uncertainty to construct a robust solution of the W2BLP.
Additionally, we will consider capacity constraints for the
different plants and multiple periods for the decisions made in
our model. Instead of assuming that the plants and pipelines
are installed here and now, we decide in which period of time
each of the installations is constructed and used, assuming that
they have a limited capacity and that a budget is available for
each period. The integrated model that considers uncertainty,
capacity constraints, and multiperiod decisions will be closer to
reality, but the mathematical programming model for it would
be prohibitive, even for small instances. Thus, a different
solution approach will have to be designed to solve it, which
would not be exact but heuristic.
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