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Abstract
Motivation: Simulating gut microbial dynamics is extremely challenging. Several computational tools, notably the widely used BacArena, enable 
modeling of dynamic changes in the microbial environment. These methods, however, do not comprehensively account for microbe– 
microbe stimulant or inhibitory effects or for nutrient–microbe inhibitory effects, typically observed in different compounds present in the daily diet.
Results: Here, we present BN-BacArena, an extension of BacArena consisting on the incorporation within the native computational framework 
of a Bayesian network model that accounts for microbe–microbe and nutrient–microbe interactions. Using in vitro experiments, 16S rRNA gene 
sequencing data and nutritional composition of 55 foods, the output Bayesian network showed 23 significant nutrient–bacteria interactions, 
suggesting the importance of compounds such as polyols, ascorbic acid, polyphenols and other phytochemicals, and 40 bacteria–bacteria 
significant relationships. With test data, BN-BacArena demonstrates a statistically significant improvement over BacArena to predict the 
time-dependent relative abundance of bacterial species involved in the gut microbiota upon different nutritional interventions. As a result, 
BN-BacArena opens new avenues for the dynamic modeling and simulation of the human gut microbiota metabolism.
Availability and implementation: MATLAB and R code are available in https://github.com/PlanesLab/BN-BacArena

1 Introduction
There is an ever-increasing body of literature that supports a 
key relationship between gut microbiota and different aspects 
of human health (Gentile and Weir 2018). As a result, huge 
efforts have been made to elucidate the inner workings of 
bacteria-host interactions. The tremendous complexity of 
these interactions has triggered the development of different 
computational models to explain them, leading to testable 
hypothesis that can be validated via in vitro or interventional 
studies (Fuertes et al. 2019).

Particularly, the use of genome-scale metabolic models of 
bacterial species present in the gut has built up during the last 
years and high-quality repositories are now available for a 
huge number of species (Machado et al. 2018), including 
AGREDA (Blasco et al. 2021) and AGORA (Magn�usd�ottir 
et al. 2016). These reconstructions have enabled the 
simulation of the metabolic capabilities of the human gut 

microbiota for very different scenarios, mainly based on 
constraint-based bacterial community models (Li et al. 
2023). Though very promising, these models are not able to 
explore dynamic changes in either microbial abundance or 
metabolite production. This is of critical importance when it 
comes to evaluating the interaction diet-gut microbes because 
diet itself is dynamic as is the ecological environment that 
comprises the gut. There are some computational tools that 
allow modeling dynamic changes in the microbial environ-
ment, such as Comets (Dukovski et al. 2021) or BacArena 
(Bauer et al. 2017). They combine constraint-based and 
agent-based modeling to update metabolite input and bacte-
rial abundance at each iteration and simulate time evolution. 
However, these tools do not comprehensively account for mi-
crobe–microbe stimulant or inhibitory effects or nutrient– 
microbe inhibitory effects, globally observed in compounds 
present in the daily diet (Poirier et al. 2016).
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Here, we present BN-BacArena, an extension of BacArena 
that incorporates in the native computational framework a 
Bayesian network model that integrates microbe–microbe 
and nutrient–microbe interactions. The Bayesian network 
was built using 16S rRNA gene sequencing data obtained 
from gut microbial in vitro fermentation of 44 foods and 
their associated nutritional composition. Simulated bacterial 
growth obtained by BN-BacArena was then validated on a 
set of 11 in vitro fermented foods. BN-BacArena shows that 
the inclusion of our Bayesian network model significantly 
improves the accuracy for predicting bacterial abundances in 
the gut microbiota. BN-BacArena was developed in R by 
extending native functions of BacArena. However, we also 
translated BN-BacArena into MATLAB for integration with 
the COBRA Toolbox (Heirendt et al. 2019), a popular plat-
form for constraint-based reconstruction and analysis of met-
abolic networks, which will increase the accessibility and use 
in the Systems Biology community.

2 Materials and methods
2.1 In vitro digestion and gut microbial in vitro 
fermentation
Food samples were in vitro digested following the protocol 
described by Brodkorb et al. (2019). Five grams of each sam-
ple were weighed (in triplicate) into 50 ml centrifugation 
tubes. Five milliliters of simulated salivary fluid with 150 U/ml 
of α-amylase were added into the tube carrying the sample 
and kept at 37�C for 2 min. Then, 10 ml of simulated gastric 
fluid with 4000 U/ml of gastric pepsin was added to the mix, 
the pH was lowered to 3, and kept at 37�C for 2 h. Finally, 
20 ml of simulated intestinal fluid with 200 U/ml of pancrea-
tin and 20 mM bile salts were added into the tube, the pH 
increased to 7 and kept at 37�C for 2 h. Enzyme activity was 
halted by immersion in ice for 15 min. Tubes were centri-
fuged, the supernatant (fraction available for absorption at 
the small intestine) collected and the pellet (fraction not 
digested that would reach the colon) used for in vitro 
fermentation.

In vitro fermentation was carried out following the proto-
col described by P�erez-Burillo et al. (2021). Fecal samples 
were collected from three healthy donors (BMI¼21.3–23.8 
and they had not taken antibiotics in the last 3 months). Fecal 
material was pooled to account for interindividual variabil-
ity. In vitro fermentation was carried out at 37�C for 20 h, 
under oscillation. For this purpose, 0.5 grams of the pellet 
obtained after in vitro gastrointestinal digestion were used, as 
well as 10% of the supernatant. Fermentation medium com-
posed of peptone 14 g/l, cysteine 312 mg/l, hydrogen sulfide 
312 mg/l, and resazurin 0.1% v/v was added to the fermenta-
tion tube at a volume of 7.5 ml. A fecal inoculum mas made 
from fecal material by mixing it with phosphate-buffered sa-
line at a concentration of 33%. Two milliliters of inoculum 
were added to the fermentation tube. Afterward, nitrogen 
was bubbled into the tube until reaching anaerobic condi-
tions (transparent solution as opposed to pink when oxygen 
is dissolved). After 20 h at 37�C, microbial activity was halted 
by immersion in ice for 15 min and tubes were centrifuged to 
collect the supernatant (fraction available for absorption at 
the large intestine), which was stored at −80�C until further 
analysis. Blanks carrying water instead of sample were 
included in the in vitro digestion as well as in the in vitro 
fermentation.

2.2 DNA extraction, 16S rRNA gene sequencing, 
and bioinformatic analysis
The solid fractions derived from in vitro fermentation were 
used to obtain the bacterial suspensions, lysed with lysozyme 
at a final concentration of 0.1 mg/ml. The genomic DNA ex-
traction was then performed with the MagNaPure LC JE379 
platform (Roche) and DNA Isolation Kit III (Roche), follow-
ing the manufacturer’s instructions. DNA was quantified 
with a Qubit 3.0 Fluorometer (Invitrogen), while agarose gel 
electrophoresis (0.8% w/v agarose in Tris-borate-EDTA 
buffer) was used to determine DNA integrity. Finally, the 
DNA was stored at −20�C until further processing.

The V3-V4 hypervariable region of the 16S rRNA gene 
was amplified using a template of 12 ng of microbial genomic 
DNA, following the Illumina protocol for 16S Metagenomic 
Sequencing Library Preparation. PCR primers were as de-
scribed by Klindworth et al. (2013) with the forward primer 
(50-TCGT CGGC AGCG TCAG ATGT GTAT AAGA 
GACA GCCT ACGG GNGG CWGCA-G30) and the reverse 
primer (50-GTCT CGTG GGCT CGGA GATG TGTA 
TAAG AGAC AGGA CTAC HVGG GTAT CTAA TCC30). 
Primers were fitted with adapter sequences to make them 
compatible with the Illumina Nextera XT Index kit. Then, 
amplicon libraries were pooled and sequenced in an Illumina 
Miseq sequencer in a 2×300 cycles paired-end run (MiSeq 
Reagent kit v3). The data for the present study were depos-
ited in the European Nucleotide Archive (ENA) at EMBL-EBI 
under accession number PRJEB51719.

The DADA2 (v1.8.0) package as implemented in R 
(v3.6.0) was employed for 16S rRNA gene sequence read 
processing and forward and reverse merging as well as clus-
tering into amplicon sequence variants (ASVs) (Callahan 
et al. 2016). Filtering and trimming parameters were as fol-
lows: maxN¼0, maxEE¼c(2,5), truncQ¼0, trimLeft¼c 
(17,21), truncLen¼c(270,220), and rm.phix¼TRUE. A mini-
mum overlap of 15 nucleotides and a maximum mismatch of 
1 were required for read merging. Reads were aligned against 
the human genome (GRCh38.p13) using Bowtie2 (v2.3.5.1) 
(Langmead and Salzberg 2012) and matches were discarded.

Once the ASV table was obtained, species-level taxonomic 
identification was assigned to each ASV with DADA2, apply-
ing a 100% identity matching between ASVs and the refer-
ence sequences in the SILVA138 reference database (Quast 
et al. 2013). Furthermore, the MegaBLAST tool from BLAST 
v(2.10.0) was used for those ASVs that were identified with 
DADA2 at genus level but not at species level, requiring at 
least 97% identity to be species-level assigned. In addition, 
we only considered ASVs with the same genus assignation 
from the DADA2 and MegaBLAST methods as well as with a 
minimum difference of 2% between the first- and second-best 
matches. Finally, ASVs with total number of counts lower 
than 10 were removed.

2.3 BacArena algorithm
BacArena is an agent-based modeling framework for cellular 
communities that allows the time simulation of cell growth in 
an environment called arena of dimensions nxm (Bauer et al. 
2017). This environment is defined by specific geometry and 
culture medium. BacArena loads different bacterial cells into 
this arena and simulates their individual growth and reaction 
fluxes based on genome-scale models and flux balance analy-
sis (FBA) (Orth et al. 2010).
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In brief, for a genome-scale metabolic model that involves c 
metabolites and r reactions, which are integrated in the stoi-
chiometric matrix S of dimensions cxr, FBA searches for the re-
action flux vector v of dimensions rx1 that maximizes the flux 
rate through the biomass reaction, called growth rate (vbio), 
(Equation 1), assuming the steady-state condition (Equation 2) 
and specific reaction flux limitations (Equation 3), namely: 

max vbio (1) 

s:t: S � v ¼ 0 (2) 

lb≤ v≤ub (3) 

where lb and ub denote the lower and upper bound for reac-
tion fluxes, respectively, which are defined according to the 
growth medium (nutrient availability) and reaction reversibil-
ity in Equation (3).

Importantly, BacArena imposes an upper bound for the 
biomass production at each time point vmax

bio in the FBA model 
to guarantee physiologically feasible conditions: 

vbio ≤ vmax
bio (4) 

The biomass generated at a particular time point for a spe-
cific individual in the arena B_(tþ 1) is updated according to 
an exponential growth model and the growth rate obtained 
from FBA vFBA

bio , namely: 

Btþ1¼ Bt � vFBA
bio þBt (5) 

Moreover, nutrient level availability for each individual in 
the arena at each time point is also updated according to the in-
put/output exchange fluxes predicted by FBA and the diffusion 
of these metabolites across the environment. Here, the diffusion 
of nutrients was modeled following the Moore neighborhood 
strategy, one of the options available in BacArena.

In addition, at each time step, BacArena considers specific 
cell requirements and environmental conditions to trigger 
specific events such as cell division, lysis, or movement. 
Moreover, beyond cross-feeding and competitive microbe– 
microbe interactions, which can be captured by metabolic 
models, BacArena can consider interactions via the presence 
of predators which rapidly end up killing the target cell type, 
typically mediated by specific toxins. However, these interac-
tions are generally unknown and, thus, their use in the 
modeling of the microbial population dynamics is uncom-
mon. We detail below the extensions to BacArena to consider 
microbe–microbe and nutrient–microbe interactions obtained 
from a Bayesian network model.

Finally, for the sake of clarity, note here that each individ-
ual in the arena corresponds to a specific microbe in the bac-
terial community, which obviously requires a different 
metabolic model. In our case, for the definition of bacterial 
species and metabolic models in the community, we used 
AGREDA (Blasco et al. 2021), our previously published met-
abolic reconstruction of the human gut microbiota.

2.4 BN-BacArena algorithm
BN-BacArena is an extension of BacArena that incorporates 
in the native computational framework a Bayesian network 

model that integrates microbe–microbe and nutrient–microbe 
interactions. The Bayesian network was built using the rela-
tive bacterial abundance and nutrient composition of 55 
in vitro fermented foods. We trained the network using 80% 
of the foods (randomly selected). In order to highlight only 
strong relationships (those resistant to perturbations of the 
data), we resampled the data using bootstrapping (n¼200) 
and learnt a new network for each sample. Arc strength was 
calculated as a measure of how often an arc appeared, and 
deemed significant for those that were present in more than 
50% of the networks.

In brief, there are two approaches to learn Bayesian net-
works from data (Pearl 1988). Constraint-based structure 
learning algorithms are used to statistically test conditional 
independencies among triplets of variables from data. The 
output of this family of algorithms is graphs, mostly directed 
acyclic graphs (DAGs), which integrate a large percentage 
(and whenever possible all) of identified conditional indepen-
dence constraints. Each time the number of variables in the 
conditioning part of the hypothesis tests goes up, the cardi-
nality of the dataset from which to learn the structure of the 
model increases considerably, greatly slowing down the 
search process. Score- and search-based methods are an alter-
native approach. A score function relative to data measures 
the goodness of fit of each candidate Bayesian network to the 
data. The goal is to find a network structure that optimizes 
the scoring function. These methods usually start from an ini-
tial structure, which can be manually defined or randomly 
generated. Then, best-scored Bayesian networks are proposed 
using a search method responsible for intelligent movements 
in the space of possible network structures. There are differ-
ent space structures, where DAGs are the most used. In the 
BN-BacArena algorithm, we used this second approach, 
available in the R package bnlearn (Scutari 2010). The scor-
ing function (to be minimized) was the penalized likelihood 
called Bayesian Information Criterion (BIC) (Schwarz 1978), 
where the estimated log-likelihood of the data given the 
Bayesian network adds a term that penalizes the network 
complexity to avoid structural overfitting. Starting from an 
empty network, we followed a search process based on the 
greedy hill-climbing procedure (hc function in bnlearn), 
where local changes to the current network (arc addition, arc 
deletion, arc reversal) are repeatedly applied until there is no 
further improvement of the BIC score. Note here that bnlearn 
gives the possibility to prevent specific subsets of arcs from 
appearing in the resulting network (blacklist parameter in hc 
function). We forbade nutrient–nutrient and bacteria ! nu-
trient interactions, as they are biologically meaningless, en-
abling nutrient ! bacteria and bacteria–bacteria interactions.

As a result of the score and search process, for each bacte-
rial species node, a linear regression model was obtained us-
ing as explanatory variables its associated parent nodes in the 
Bayesian network: the relative abundance of its parent bacte-
rial species and/or the abundance of its parent nutrients. The 
resulting models were incorporated into the BacArena algo-
rithm to update species biomass accordingly, as described be-
low. As the nodes are continuous random variables, we 
assumed they followed the Gaussian probability function. 
Thus, we can determine the significance of the relationships 
between microbes and other microbes, as well as microbes 
and nutrients, through the coefficients of such linear regres-
sion model. These coefficients define the relationship between 
individual variables and their respective parent variables 
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within the Bayesian network. Henceforth, we will refer to βC
i 

and βN
i as the set of coefficients of the linear regression model 

for each bacterial species i in relation to the other bacterial 
species and nutrients in the culture medium, respectively. We 
describe below how the linear regression models within the 
Bayesian network are integrated with BacArena.

Let xit represent the proportion of bacterial species i pre-
sent in the arena at time step t, and let Mkt represent the mo-
lar concentration of each nutrient in the environment at time 
step t. Then, for each bacterial species i and time step t, we 
can define a factor αit as: 

αit ¼
xitþ

P
j2C βj

i � xjtþ
P

k2N βk
i �Mkt

xit
(6) 

and, accordingly, the upper boundary of the growth rate of 
every individual of bacterial species i in the arena is modified 
as follows: 

vbio ≤ αit � vmax
bio (7) 

Clearly, when βC
i ¼ βN

i ¼ 0, αit ¼ 1, and, thus, our ap-
proach does not have any effect. If αit > 1, the microbe–mi-
crobe and nutrient–microbe interactions have stimulatory 
effect on the growth of the bacterial species. The opposite 
occurs when αit < 1.

In summary, the general idea of our approach is to guide 
the growth of every individual in the arena according to an 
empirically driven Bayesian network that considers the pres-
ence of other bacterial species and nutrients in the environ-
ment and modifies the upper bound for the growth rate in the 
FBA model at each time step. We call our proposed method 
BN-BacArena.

2.5 BN-BacArena validation
For each of the 11 validation set recipes, 20 random com-
puter runs were conducted for both BN-BacArena and 
BacArena. The random simulations yield distinct cell distri-
butions in the arena and different initial biomass values 
assigned to every cell. In each of the runs, the time-dependent 
relative abundance of bacterial species was predicted over 
6-time iterations (measured in h). The bacterial species were 
randomly located in the arena based on 16S rRNA gene 
sequencing data of the fermented samples. The random initial 
biomass for each cell was fixed following the standard 
parameters of BacArena.

2.6 Statistical analysis
Relationships between the simulated relative abundance and 
in vitro relative abundance (obtained from16S rRNA gene se-
quencing data) were performed via Pearson correlation and 
linear regression. Computation times between MATLAB and 
R were compared via Wilcoxon test. P-values were adjusted 
for false discovery rate with the Benjamini–Hochberg method 
(Benjamini and Hochberg 1995). Adjusted P-values <.05 
were deemed significant. Statistical analysis was performed in 
R version 4.2.0 and MATLAB version R2018a.

3 Results
3.1 BacArena implementation into MATLAB
We translated most of the functionalities of the native 
BacArena code in R to MATLAB, including cell growth, 

nutrient diffusion, presence of predators, cell movement, or 
chemotaxis among others (see Supplementary Table S1). All 
the BacArena objects were integrated into a single structure 
while maintaining the different relationships between them as 
in the original code. Moreover, many statements were 
substituted according to COBRA functions to be amenable 
and integrable within the COBRA Toolbox software. We 
also included the associated Bayesian network-based decision 
step in BN-BacArena in both MATLAB and R.

In order to ensure that the MATLAB version of BacArena 
and BN-BacArena reached the same simulation results than 
the R version, we ran 20 simulations for each of the 11 vali-
dation foods with the same initial gut microbial composition. 
For each food, we performed linear regressions between mi-
crobial mean relative abundance across replicates obtained 
using MATLAB and R versions as well as Pearson correla-
tions (Supplementary Fig. S1). Linear regression P-values 
were always significant and lower than 2.2e-16, achieving 
high correlation coefficients �1. The same outcome was 
obtained for BacArena (Supplementary Fig. S2). These results 
definitely suggest that the translation from R to MATLAB 
was successful.

We also recorded the computation time for R and 
MATLAB. MATLAB times were significantly lower (P< .05) 
(Supplementary Fig. S3). The main reason of this difference is 
the computation time for simulating cell growth in the origi-
nal BacArena code, which grows significantly as the number 
of bacteria in the arena increases in R in comparison 
with MATLAB.

3.2 Bayesian network interactions
In order to identify bacteria–bacteria (inhibitory or coopera-
tive) and nutrient–bacteria (inhibitory or favorable) interac-
tions, we built a Bayesian network with the strategy 
described in Section 2. The input data consisted of an nxP 
matrix, where P¼216, namely 19 different bacterial species 
(relative abundance) and 197 different nutrients (expressed in 
their corresponding units) found in the fermented foods, 
whereas n represented each of the fermented foods (n¼ 55). 
The Bayesian network was built using 80% of the samples 
randomly selected (n¼44). To test the network, bacterial 
abundance was predicted on the remaining samples (n¼ 11) 
and Pearson correlations between predicted values and real 
values were calculated. We obtained 12 out of 19 significant 
correlations (P< .05) with correlation coefficients ranging 
from 0.67 to 0.96. Overall, the Bayesian network detected 62 
significant direct relationships (as determined by arc strength 
and bootstrapping) (Supplementary Table S2); 23 of those 
were nutrient–bacteria relationships, which mostly included 
xanthines, phenolic compounds, polyols, ascorbic acid, and 
carotenoids.

3.3 Bayesian network incorporation into BacArena
As detailed in Section 2, the resulting Bayesian network was 
introduced into BacArena, leading to BN-BacArena. In par-
ticular, with the significant direct relationships obtained from 
the Bayesian network, we built a linear regression model for 
each bacterial species and predicted the stimulatory/inhibi-
tory effect of other bacterial species and nutrients for each 
time step. This step influences the biomass update and other 
events, including cell death or cell duplication, which are gov-
erned by the native BacArena growth function. In order to 
validate our proposed strategy, we run BN-BacArena using as 
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growth medium input each of the foods that were not used 
for the Bayesian network training (11 foods). Each of the 
test foods were run over six-time iterations and, thus, 6 h of 
simulation. We performed 20 random runs of each case to 
consider the underlying variability of agent-based modeling. 
We repeated the same analysis with the native tool, 
BacArena. The ability of both approaches to predict bacte-
rial growth during in vitro fermentations of the 11 validation 
foods was quantified via the Pearson correlation between 
the mean simulated relative abundance (across 20 random 
runs) and the relative abundance obtained from in vitro 
experiments.

As shown in Fig. 1, considering the 19 species that com-
posed the in silico microbial community, BN-BacArena was 
able to simulate significantly better (P-value <.05) the growth 
of nine species (Bacteroides thetaiotaomicron, Bacteroides uni-
formis, Barnesiella intestinihominis, Bifidobacterium longum, 
Collinsella aerofaciens, Dialister invisus, Faecalibacterium 

prausnitzii, Ruminococcus bicirculans, and Subdoligranulum 
variabile, see Supplementary Table S4), whereas the native 
tool only achieved significantly better results for two species 
(Alistipes putredinis and Parabacteroides distasonis).

Additionally, we performed linear regression between the 
simulated relative abundances and in vitro relative abundances 
for both approaches. In this case, we used mean relative abun-
dances of those 20 runs and only the relative abundances 
obtained in times 5 and 6, when the simulation has reached a 
stable community. In this case, the incorporation of the 
Bayesian network resulted in significant linear relationships 
for Bifidobacterium longum, Collinsella aerofaciens, Dialister 
invisus, Dorea formicigenerans, Faecalibacterium prausnitzii, 
Ruminococcus bicirculans, Ruminococcus bromii, and 
Subdoligranulum variabile, whereas the use of the native tool 
showed just two biologically relevant linear relationships 
(Bacteroides caccae and Ruminococcus bicirculans) (Fig. 2A 
and B). The most accurate results were obtained with 

Figure 1. Pearson correlations between simulated relative abundance and in vitro relative abundance with BN-BacArena and BacArena. For each species 
and time point, the mean simulated bacterial relative abundance (across 20 random runs) for the 11 validation foods was correlated with in vitro 
experimental levels after 20 h of fermentation. Abbreviations: A. putredinis, Alistipes putredinis; B. caccae, Bacteroides caccae; B. eggerthii, Bacteroides 
eggerthii; B. stercoris, Bacteroides stercoris; B. thetaiotaomicron, Bacteroides thetaiotaomicron; B. uniformis, Bacteroides uniformis; B. vulgatus, 
Bacteroides vulgatus; B. intestinihominis, Barnesiella intestinihominis; B. longum, Bifidobacterium longum; C. aerofaciens, Collinsella aerofaciens; D. 
invisus, Dialister invisus; D. formicigenerans, Dorea formicigenerans; F. prausnitzii, Faecalibacterium prausnitzii; O. splanchnicus, Odoribacter 
splanchnicus; P. distasonis, Parabacteroides distasonis; P. merdae, Parabacteroides merdae; R. bicirculans, Ruminococcus bicirculans; R. bromii, 
Ruminococcus bromii; S. variabile, Subdoligranulum variabile. See Supplementary Table S3 for more details
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Bacteroides uniformis (S6) and Bifidobacterium longum (S9) 
in the case of BN-BacArena, where we found correlations near 
1 (Fig. 1). Therefore, we concluded that the incorporation of 
the Bayesian network information to BacArena significantly 
improves the predictive capacity.

3.4 Metabolic interactions in BN-BacArena 
and BacArena
As noted above, BacArena can account for bacteria–bacteria 
interactions at the metabolic level, such as cross-feeding inter-
actions and nutrient competition interactions. However, 

Figure 2. Linear regression between simulated relative abundance and in vitro relative abundance with BN-BacArena and BacArena. The linear regression 
was performed considering simulated bacterial relative abundances across the different foods at 5–6 h and the in vitro results. (A) Simulation results 
using BN-BacArena and (B) BacArena. Abbreviations: A. putredinis, Alistipes putredinis; B. caccae, Bacteroides caccae; B. eggerthii, Bacteroides 
eggerthii; B. stercoris, Bacteroides stercoris; B. thetaiotaomicron, Bacteroides thetaiotaomicron; B. uniformis, Bacteroides uniformis; B. vulgatus, 
Bacteroides vulgatus; B. intestinihominis, Barnesiella intestinihominis; B. longum, Bifidobacterium longum; C. aerofaciens, Collinsella aerofaciens; D. 
invisus, Dialister invisus; D. formicigenerans, Dorea formicigenerans; F. prausnitzii, Faecalibacterium prausnitzii; O. splanchnicus, Odoribacter 
splanchnicus; P. distasonis, Parabacteroides distasonis; P. merdae, Parabacteroides merdae; R. bicirculans, Ruminococcus bicirculans; R. bromii, 
Ruminococcus bromii; S. variabile, Subdoligranulum variabile
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other bacteria–bacteria interactions that go beyond genome- 
scale metabolic modeling are also important but typically un-
known. With our Bayesian network model, we directly ad-
dress this limitation of existing tools and predict 
undocumented bacterial relationships. Here, we aim to ex-
plore further the set of predicted interactions in the Bayesian 
network model, which can be either positive or negative, par-
ticularly their relevance at the metabolic level in both BN- 
BacArena and BacArena.

To that end, for each microbial pairwise interaction pre-
dicted by the Bayesian network, we determined the number 
of cross-feeding interactions occurring with the different 
foods and replicates both in BacArena and in BN-BacArena. 
Note here that cross-feeding interactions were identified as in 
BacArena, namely identifying if two bacteria share exchange 
fluxes, i.e. an output metabolite in one microbe is used as in-
put metabolite by another microbe. Moreover, based on the 
linear regression coefficients provided by the Bayesian 

Figure 3. Cross-feeding interactions in BN-BacArena and BacArena for bacteria–bacteria relationships in the Bayesian network model. The cross-feeding 
interactions were estimated at the end of the simulations across the different foods and replicates. Number of cross-feeding interactions for the 19 
predicted positive (A) and 20 negative (B) microbe–microbe interactions in the Bayesian network model. Note: ‘S1-S8’, for example, means that S1 
regulates S8. Thus, a cross-feeding interaction implies that S1 produces an output metabolite that is received by S8. Abbreviations: S1, Alistipes 
putredinis; S2, Bacteroides caccae; S3, Bacteroides eggerthii; S4, Bacteroides stercoris; S5, Bacteroides thetaiotaomicron; S6, Bacteroides_uniformis; 
S7, Bacteroides_vulgatus; S8, Barnesiella_intestinihominis; S9, Bifidobacterium longum; S10, Collinsella aerofaciens; S11, Dialister invisus; S12, Dorea 
formicigenerans; S13, Faecalibacterium prausnitzii; S14, Odoribacter splanchnicus; S15, Parabacteroides distasonis; S16, Parabacteroides merdae; S17, 
Ruminococcus bicirculans; S18, Ruminococcus bromii; S19, Subdoligranulum variabile
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network, we classified each microbial pairwise interaction as 
positive or negative, i.e. mutualistic or competitive interac-
tions. Full results are shown in Fig. 3.

As shown in Fig. 3A, both BN-BacArena and BacArena show 
similar results for predicted positive interactions in the Bayesian 
network model, specifically each of them found significantly 
higher cross-feeding interactions in 3 cases out of 19. However, 
when considering predicted negative interactions, BN-BacArena 
successfully predicts a lower number of interactions for 11 cases 
in comparison with BacArena. The same result was found in 
both MATLAB and R (see Supplementary Fig. S4). Hence, we 
can conclude that BN-BacArena alters the structure of metabolic 
interactions with respect to BacArena.

4 Discussion
There are several relevant computational tools for modeling 
gut microbial metabolism (Magn�usd�ottir et al. 2016, Blasco 
et al. 2021). However, the prediction of bacterial dynamics in 
the gut microbiota is still a challenging task, particularly 
given that external factors, such as diet, are highly dynamic. 
Although BacArena and other tools provide this functional-
ity, they still lack the ability to comprehensively account for 
bacteria–bacteria stimulant or inhibitory effects or nutrient– 
bacteria inhibitory effects, such as those exhibited by some 
phenolic compounds (Monlau et al. 2014).

Here, we present an update of BacArena, called 
BN-BacArena, consisting on the incorporation within the al-
gorithm of a Bayesian network model that integrates bacte-
ria–bacteria and nutrient–bacteria interactions. The Bayesian 
network showed 23 significant nutrient–bacteria interactions, 
suggesting that compounds such as polyols, ascorbic acid, 
polyphenols, and other phytochemicals can mediate bacterial 
growth either directly or indirectly by affecting competitors 
or cooperators. Relationships between bacterial species have 
been previously described, especially for fiber degradation 
where a first degrader establishes itself at the fiber surface 
and starts breaking down the structure releasing smaller com-
pounds that are then used by other species (Trosvik and de 
Muinck 2015, Cann et al. 2016). However, considering the 
complexity and diversity of gut ecology, undocumented rela-
tionships are still bound to happen. Our Bayesian network 
detected 40 bacteria–bacteria significant relationships.

We used a Gaussian Bayesian network model to extract 
bacteria–bacteria and nutrient–bacteria interactions and, 
thus, data normality is assumed. This assumption is not ideal 
for (compositional) relative abundance data; however, it sub-
stantially simplifies the analysis and interpretation of the 
resulting model. We expect to refine our approach in the fu-
ture using nonparametric Bayesian network models currently 
under development.

According to our results, BN-BacArena improved bacterial 
growth simulations on different foods as showed by Pearson 
correlations and linear regression models. More specifically, 
Pearson correlations obtained between simulated and experi-
mental values were higher for nine bacterial species (out of 
19) when compared to the native tool. On the other hand, 
the native tool achieved better correlations for two species. 
Additionally, we obtained eight significant (P< .05) linear 
relationships when using Bayesian network information and 
only two when using the native tool. Importantly, we showed 
that BN-BacArena changed the landscape of bacteria–bacte-
ria metabolic interactions through the different simulations 

with respect to BacArena, according to the predicted interac-
tions in the Bayesian network model.

Interestingly, it can be noted that the Bayesian network model 
obtains better predictions of relative abundance than BN- 
BacArena or BacArena. However, agent-based modeling 
approaches and constraint-based modeling allow us to more 
globally analyze the performance of bacterial communities at the 
metabolic level. In particular, as done in previous works in the lit-
erature (Blasco et al. 2021, Balzerani et al. 2022), BN-BacArena 
can be applied to predict the production of output microbial 
metabolites of interest, such as short-chain fatty acids, which can-
not be done with our current Bayesian network model. Future 
work will include applying and assessing the performance of BN- 
BacArena to predict the production of key metabolites in the hu-
man gut microbiota under different scenarios.

Finally, we have proven that using experimental data to 
update existing algorithms can improve their simulating abili-
ties. Next steps should include, on one hand, experimentally 
validating the relationships obtained via pure bacterial cul-
ture and co-cultures and, on the second hand, scaling-up the 
Bayesian network input including data from big human 
cohorts with thorough nutritional information, in order to 
build an algorithm that can be applied for the general popula-
tion or for those suffering from specific illnesses such as in-
flammatory bowel disease, obesity, etc.
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