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Chapter 1

Introduction

We explore Radial Basis Functions (RBF) and their applications. The jour-
ney begins with the solution of integral equations and integro-differential
problems, followed by an investigation into numerical solutions for data sci-
ence, with a focus on density estimation. The exploration concludes with
a novel approach using Generalized Wendland radial basis functions for the
approximation of bivariate functions. In this thesis, we dive into an in-depth
understanding of these mathematical methods and their practical applica-
tions.

In the pursuit of advancing the field of Radial Basis Functions (RBF), our
exploration begins with a novel approximation method proposed for solving
second-kind Volterra integral equation systems. Grounded in the minimiza-
tion of a functional within a discrete space defined by compactly supported
radial basis functions of Wendland type, this methodology achieves not only
acceptable accuracy but also remarkably low computational costs. The sig-
nificance of our contributions is underscored by the proof of two convergence
results, a feature notably absent in recent literature.

Volterra integral equations, introduced by Vito Volterra in the early 20th
century, serve as one of the fundamental applications for our research. The
rich variety of applications includes but is not limited to elasticity, plasticity,
semi-conductors, scattering theory, and population dynamics. These integral
equations arise naturally when transforming initial value problems into inte-
gral forms, simplifying solutions and often revealing connections to systems
of ordinary differential equations (ODEs). Exploiting this link, our approach
aligns with authors who leverage effective ODE codes for numerical solutions.

Expanding our exploration to linear Volterra integro-differential prob-
lems, we introduce an approximation method based on the minimization of
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a functional within a finite-dimensional space generated by a finite set of
Wendland radial basis functions. Proving the existence and uniqueness of
solutions, alongside establishing two convergence results, our methodology
is validated through numerical examples. This expansion serves as another
evidence of the widespread use of Volterra integral equations in a variety of
fields, including quantum physics and population dynamics.

In our next work, we deal with two approximation problems in a finite-
dimensional Generalized Wendland space of compactly supported radial basis
functions. Namely, we present an interpolation method and a smoothing
variational method in this space. Next, the theory of the presented method
is justified by proving the corresponding convergence result. Likewise, to
illustrate such method, some graphical and numerical examples are presented
in R2 and a comparison with another work is analyzed.

Transitioning seamlessly into the realm of data science, we delve into the
importance of density estimation, a fundamental statistical tool with wide-
ranging applications. Our focus is on kernel density estimation, a method
integral to probabilistic modeling and reasoning with uncertainty. A three-
step strategy is employed, adapting an algorithm that subdivides data into
high and low-density regions, each assigned a bandwidth parameter. Uti-
lizing Gaussian and Birnbaum-Saunders Power-Exponential (BS-PE) kernel
estimators, we introduce a residual-based posteriori error estimator τi for each
region or class Si for comprehensive evaluation. A series of simulation studies
and real data are realized for evaluating the performance of the procedure
proposed. Moreover, our computational methodologies incorporate a proven
convergence algorithm, enhancing the reliability and theoretical robustness
of our approach. The real-world implications of density estimation span fi-
nance, healthcare, environmental science, and machine learning, forming a
bridge between theoretical foundations and practical challenges.

Through the combination of these diverse paths of research, our thesis
aims to contribute to the evolving landscape of mathematical methodologies
and their real-world implications.

So, the thesis is organized as follows: Apart from this introduction, in
Chapter 2, we recall some notations and preliminaries. Chapter 3 is an in-
troduction to radial basis functions interpolation with their historical and
theoretical background. Chapter 4 is devoted to the detailed numerical so-
lution of integral equations by RBF’s, in which the results of our two pub-
lished articles are included. Our third paper is covered in Chapter 5, which
is an application of Generalized Wendland RBFs. Chapter 6 discusses Non-
parametric Density Estimation. Finally, chapter 7 ends with conclusions and
future work, followed by the references cited throughout the thesis.



Chapter 2

Preliminaries

In the chapter, we establish the groundwork by presenting essential defini-
tions, foundational concepts, and relevant theorems. This serves as a neces-
sary framework for the subsequent chapters.

2.1 Vector spaces

This section is devoted to introduce definitions and some examples of the
concept of vector spaces, normed spaces, Banach spaces, Hilbert spaces and
Sobolev spaces.

2.1.1 Basic notions on vector spaces

Definition 2.1.1. [19] Let V be a set of objects, to be called vectors; and

let K be a set of scalars, either R the set of real numbers, or C the set of

complex numbers. Assume there are two operations: (u, v) → u + v ∈ V

and (α, v) → αv ∈ V , called addition and scalar multiplication, respectively,

defined for any u, v ∈ V and any α ∈ K. These operations are to satisfy the

following rules.

1. u+ v = v + u for any u, v ∈ V (commutative law);
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2. (u+ v) + w = u+ (v + w) for any u, v, w ∈ V (associative law);

3. there is an element 0 ∈ V such that 0+u = u for any u ∈ V (existence

of the zero element);

4. for any u ∈ V there is an element −u ∈ V such that u + −u = 0

(existence of opposite elements);

5. 1u = u for any u ∈ V ;

6. α(βu) = (αβ)u for any u ∈ V any α, β ∈ K (associative law for scalar

multiplication);

7. α(u + v) = αu + αv and (α + β)u = αu + βu for any u, v ∈ V and

any α, β ∈ K (distributive laws).

Then V is called a linear space, or a vector space.

Here are some examples of vector spaces.

1. The set of the real numbers R is a real linear space when the addition
and scalar multiplication are the usual addition and multiplication.
Similarly, the set of complex numbers C is a complex linear space.

2. Let d be a positive integer. The letter d is used generally in this work
for the spatial dimension. The set of all vectors with d real components,
with the usual vector addition and scalar multiplication, forms a linear
space Rd. A typical element in Rd can be expressed as x = (x1, · · · , xd)T
where x1, ..., xd ∈ R. Similarly, Cd is a complex linear space.

3. For any non-negative integer m, we may define the space Cm( Ω) as the
space of all the functions that together with their derivatives of orders
up to m are continuous on Ω.

4. The space of matrices of real numbers with m rows and n columns, for
every m,n ∈ N∗, is a linear space and is denoted by Mm,n(R).
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Definition 2.1.2. [19] We say v1, ..., vn ∈ V are linearly dependent if

there are scalars αi ∈ K, 1 ⩽ i ⩽ n, with at least one αi non-zero such that

n∑
i=1

αivi = 0.

We say v1, ..., vn ∈ V are linearly independent if they are not linearly de-

pendent, meaning that the only choice of scalars αi for which the last equation

is valid is αi = 0 for i = 1, 2, · · · , n.

We observe that v1, ..., vn are linearly dependent if and only if at least
one of the vectors can be expressed as a linear combination of the rest of the
vectors.

Definition 2.1.3. [18] The span of v1, · · · , vn ∈ V is defined to be the set

of all the linear combinations of these vectors:

span {v1, · · · , vn} =

{
n∑

i=1

αivi, αi ∈ K, 1 ⩽ i ⩽ n

}
.

2.1.2 Normed spaces

Definition 2.1.4. Given a linear space V a norm ∥·∥ is a function from V

to R with the following properties.

1. ∥v∥ ⩾ 0 for any v ∈ V, and ∥v∥ = 0 if and only if v = 0;

2. ∥αv∥ = |α| ∥v∥ for any v ∈ V and α ∈ K;

3. ∥u+ v∥ ⩽ ∥u∥+ ∥v∥ for any u, v ∈ V.

The space V equipped with the norm ∥·∥ is called a normed linear space
or a normed space. We usually say V is a normed space when the definition
of the norm is clear from the context. Two of the famous and widely used
norms are:
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1. For x = (x1, ..., xd)
T, the formula

∥x∥2 =

(
d∑

i=1

x2i

)1/2

defines a norm in the space Rd, called the Euclidean norm, which is the
usual norm for the space Rd. When d = 1, the norm coincides with the
absolute value: ∥x∥2 = |x| for x ∈ R.

2. More generally, for 1 ≤ p ≤ ∞ the formulas

∥x∥p =

(
d∑

i=1

|xi|p
)1/p

for 1 ≤ p <∞

∥x∥∞ = max
1≤i≤d

|xi|

define norms in the space Rd. The norm ∥·∥p is called the p-norm, and
∥·∥∞ is called the maximum norm or infinity norm.

With the notion of a norm at our disposal, we can define the concept of
convergence as follows.

Definition 2.1.5. [18]

Let V be a normed space with the norm ∥·∥. We say that a sequence

{un} ⊆ V is convergent to u ∈ V if

lim
n→∞

∥un − u∥ = 0.

We say that u is the limit of the sequence {un} , and write un −→ u as

n −→ ∞ or limn→∞ un = u.

2.1.3 Banach spaces

Definition 2.1.6. [18]

Let V be a normed space. A sequence {un} ⊆ V is called a Cauchy

sequence if
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lim
m,n→∞

∥um − un∥ = 0.

Obviously, a convergent sequence is a Cauchy sequence. In the finite-
dimensional space Rd, any Cauchy sequence is convergent. However, in a
general infinite-dimensional space, a Cauchy sequence may fail to converge.

Definition 2.1.7. [18] A normed space is said to be complete if every

Cauchy sequence from the space converges to an element in the space. A

complete normed space is called a Banach space.

Examples:

• The space of real-valued vectors with n components equipped with the
standard Euclidean norm

∥(x1, . . . , xn)∥2 =
√

(x21 + . . .+ x2n).

• lp spaces equipped with with lp-norm

∥(x1, . . . , )∥p =

(
∞∑
k=1

∥xk∥p
) 1

p

.

• C(J,R) the space of all continuous functions from J to R, endowed
with the sup-norm ∥ · ∥∞, defined by

∥f∥∞ = sup
t∈J

|f(t)|.

It is not hard to prove that any finite-dimensional normed vector space is a
Banach space. So completeness is really only an issue for infinite dimensional
spaces.

2.1.4 Hilbert spaces

In studying linear problems, inner product spaces are usually used. These
are the spaces where a norm can be defined through the inner product and
the notion of orthogonality of two elements can be introduced. The inner
product in a general space is a generalization of the usual scalar product in
the plane R2 or the space R3.
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Definition 2.1.8. [18] Let V be a linear space over K = R or C.

An inner product (·, ·) is a function from V ×V to K with the following

properties.

1. Positivity: For any u ∈ V, (u, u) ≥ 0 and (u, u) = 0 if and only if

u = 0.

2. Conjugate symmetry: For any u, v ∈ V, (v, u) = (u, v).

3. Linearity: For any u, v, w ∈ V any α, β ∈ K, (αu+ βv, w) = α (u,w)+

β (v, w) .

The space V together with the inner product (·, ·) is called an inner
product space . When the definition of the inner product (·, ·) is clear from
the context, we simply say V is an inner product space. When K = R, V
is called a real inner product space, while if K = C, V is a complex inner
product space.

Commonly seen inner product spaces are usually associated with their
canonical inner products. As an example, the canonical inner product for
x = (x1, ., xd)

T , y = (y1, ., yd)
T ∈ Rd is

(x, y) =
d∑

i=1

xiyi.

This inner product induces the Euclidean norm

∥x∥ =

√√√√ d∑
i=1

|xi|2 =
√
(x, x).

Among the inner product spaces, of particular importance are the Hilbert
spaces.

Definition 2.1.9. [18] A complete inner product space is called a Hilbert

space.

In what follows, H will always denote a Hilbert space.
A basic example is L2(Ω) equipped with the scalar product
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(u, v) =

∫
Ω

u(x)v(x)dµ

is a Hilbert space. In particular, ℓ2 is a Hilbert space.

Definition 2.1.10. [18]

Suppose A = (aij), aij ∈ R, 1 ≤ i ≤ m, 1 ≤ j ≤ n and A ∈ Mm,n(the

space of real m×n matrices). We will define in this space the following scalar

product

∀A = (aij), B = (bij) ∈ Mm,n, ⟨A,B⟩m,n =
m∑
i=1

n∑
j=1

aijbij ,

and the corresponding matrix norm

∀A ∈ Mm,n, ⟨A⟩m,n = ⟨A,A⟩1/2m,n .

is called the Hilbert-Schmidt norm.

2.1.5 Sobolev spaces

In preparation for Sobolev spaces, we first introduce the notion of locally
integrable functions and the concept of a weak derivative.

Definition 2.1.11. [7] Let 1 ≤ p < ∞. A function v : Ω ⊆ Rd → R is said

to be locally p-integrable, v ∈ Lp
loc(Ω), if for every x ∈ Ω, there is an open

neighborhood Ω′ of x such that Ω′ ⊆ Ω and v ∈ Lp (Ω′).

Definition 2.1.12. [7] Let Ω be a non-empty open set in Rd, v, w ∈ L1
loc(Ω).

Then w is called a weak αth derivative of v if

∫
Ω

v(x)Dαϕ(x)dx = (−1)|α|
∫
Ω

w(x)ϕ(x)dx ∀ϕ ∈ C∞
0 (Ω).

Definition 2.1.13. [7] Let k be a non-negative integer, p ∈ [1,∞]. The

Sobolev space W k,p(Ω) is the set of all functions v ∈ L1
loc (Ω) such that
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for each multi-index α with |α| ≤ k, the αth weak derivative Dαv exists and

Dαv ∈ Lp(Ω). The norm in the space W k,p(Ω) is defined as

∥v∥Wk,p(Ω) =


(∑

|α|≤k ∥Dαv∥pLp(Ω)

)1/p
, 1 ≤ p <∞

max|α|≤k ∥Dαv∥L∞(Ω) , p = ∞

When p = 2, we write Hk(Ω) ≡ W k,2(Ω).

Usually we replace ∥v∥Wk,p(Ω) by the simpler notations ∥v∥k,p,Ω, or even
∥v∥k,p when no confusion results. The standard semi-norm over the space
W k,p(Ω) is

|v|Wk,p(Ω) =


(∑

|α|=k ∥Dαv∥pLp(Ω)

)1/p
, 1 ≤ p <∞,

max|α|=k ∥Dαv∥L∞(Ω) , p = ∞.

It is not difficult to see that W k,p(Ω) is a normed space. Moreover, we
have the following result.

Theorem 2.1.1. [7] The Sobolev space W k,p(Ω) is a Banach space.

A simple consequence of the theorem is the following result.

Corollary 2.1.14. [7] The Sobolev space Hk(Ω) is a Hilbert space with the

inner product

(u, v)k =

∫
Ω

∑
|α|≤k

Dαu(x)Dαv(x)dx, u, v ∈ Hk(Ω).

2.2 Notations

In this section, we establish the notations that will be consistently used
throughout the thesis.

For n ∈ N we denote by ⟨ · ⟩n and ⟨ · , · ⟩n the Euclidean norm and inner
product in Rn.
Given I = (a, b) ⊂ R an open bounded real interval and k ∈ N, let Pk(I) be
the real linear space of the restrictions to I of the polynomials of degree ≤ k.
On the other hand, for m ≥ 1, we designate by Hm((0, 1);Rn) the Sobolev
space of order m of (classes of) functions u ∈ L2((0, 1);Rn) together with all
j-th derivative functions u(j) of order j ≤ m, in the sense of distributions.
This space is equipped with
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• the semi–inner products, for any u,v ∈ Hm((0, 1);Rn),

(u,v)j =

∫ 1

0

⟨u(j)(t),v(j)(t)⟩ndt, 0 ≤ j ≤ m,

• the corresponding semi–norms |u|j = (u,u)
1
2
j , for 0 ≤ j ≤ m,

• the inner product ((u,v))m =
m∑
0

(u,v)j,

• and the corresponding norm ∥u∥m = ((u,u))
1
2
m.

Let D : H2n(I) → L2(I) be the differential operator given by

Du(t) =
n∑

i=0

(−1)idi(pi(t)d
iu(t)), t ∈ I, u ∈ H2n(I),

where pi(t) ∈ H i(I), for 0 ≤ i ≤ n. Consider the integral operator Λ given
by

Λu(t) =

∫ t

a

k(t, s)u(s)ds, ∀ t ∈ I, ∀u ∈ L2(I).

Let Rn,p be the space of real matrices of n rows and p columns, equipped
with the inner product

⟨A,B⟩n,p =
n∑

i=1

p∑
j=1

aijbij, ∀A = (aij) 1≤i≤n
1≤j≤p

, B = (bij) 1≤i≤n
1≤j≤p

∈ Rn,p,

and the corresponding norm ⟨A⟩n,p = ⟨A,A⟩
1
2
n,p.
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Chapter 3

Radial Basis Functions

In this chapter we give an introduction to radial basis functions interpolation
with their historical and theoretical background. Also some basic results of
the interpolation problem are given. Furthermore, we explain the need to
use radial basis functions in the interpolation and approximation problems.
Finally, we introduce the class of compactly supported radial basis functions
(CSRBFs) with some examples.

In mathematics, most functions are not exactly evaluated, even though
we typically use them as if they were fully known quantities. The procedure
of finding and evaluating a function whose graph passes through a set of given
points is known as interpolation. These points may come from measurements
in a physical issue or they could come from a function that is well-known.

3.1 Scattered data Interpolation

The following issue arises in many scientific fields. Finding a rule that enables
us to infer details about the process we are investigating at locations other
than the ones where our measurements were taken is what we want to do with
a set of data, such as measurements and the locations at which they were
collected. Therefore, we are attempting to identify a function that provides
a “good” fit for the provided data. There are various ways to define “good.”
But, for the purposes of this discussion, we will limit the criteria to the desire
that the functions precisely match the provided measurements at the given
locations. This approach is known as interpolation; if the measurement sites
are not on a uniform or regular grid, the procedure is known as scattered
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data interpolation.
Given a set of data points (xi, yi) ∈ X × Y , where i = 0, 1, . . . , N , X

and Y are subsets of R (or C), representing the domains where xi and yi
reside, respectively. The points xi are referred to as interpolation nodes
and are assumed to be distinct. Provided with a specific linear subspace V
of functions in C(X). Find an interpolating function f in V satisfying the
interpolating condition

f(xi) = yi, i = 0, 1, . . . , N.

Before going further with the univariate case, it’s worth mentioning the
fact that we might allow xi to lie in an arbitrary s-dimensional space Rs

means that the formulation of the Problem above allows us to cover many
different types of applications. Here are some examples:

1. If s = 1 the data could be a series of measurements taken over a certain
time period, thus the “data sites” xi would correspond to certain time
instances.

2. For s = 2 we can think of the data being obtained over a planar region,
and so xi corresponds to the two coordinates in the plane.

3. For s = 3 we might think of a similar situation in space. One possibility
is that we could be interested in the temperature distribution inside
some solid body.

4. Higher-dimensional examples might not be that intuitive, but a multi-
tude of them exist, e.g., in finance, optimization, economics or statis-
tics, but also in artificial intelligence or learning theory.

An interpolation function is also called interpolant. The primary purpose
of interpolation is to replace a set of data points (xi, yi) with a function given
analytically, another purpose is to approximate functions with simpler ones,
usually polynomials or piecewise polynomials.

We start with the simplest case, when only the values fi := f(xi), for
i = 0, ..., N are given at the pairwise distinct nodes x0, ..., xN .We now seek a
unique polynomial P ∈ PN = RN [x] (a set of polynomials with coefficients in
R and of degree ⩽ N), which interpolates f at the (N + 1) nodes x0, ..., xN ,
i.e., P (xi) = fi for i = 0, ..., N.

In order to compute the interpolating polynomial, we need to choose a
basis of the space of polynomials PN .

A polynomial can be represented using many different kinds of bases.
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1. Monomial basis: the monomial basis of a polynomial is of the form{
1, x, . . . , xN

}
.

2. Center basis: the center basis of a polynomial is of the form{
1, (x− c), . . . , (x− c)N

}
with c ̸= 0.

3. Lagrange basis: let (xi)
N
i=0, be N distinct points, the associated basis

is given by

Li(x) =
N∏

j=0,i ̸=j

x− xj
xi − xj

4. Newton basis: let (xi)
N
i=0, be N distinct points, the associated basis is

given by

{
1, (x− x0) , (x− x0) (x− x1) , ..,

N−1∏
k=0

(x− xk)

}
.

If we write P as above, in coefficient representation

PN(x) =
N∑
i=0

aix
i

i.e., with respect to the monomial basis
{
1, x, . . . , xN

}
of PN , then the in-

terpolation matrix resulting from interpolation conditions PN (xi) = f (xi)
is called Vandermonde matrix. The determinant of Vandermonde matrix is
different from zero precisely when the nodes x0, . . . , xN are pairwise distinct.
However, the solution of the system requires an excessive amount of compu-
tational effort. In addition, the Vandermonde matrices are almost singular
in higher dimensions N .

3.1.1 Runge’s phenomenon

Theorem 3.1.1. [97] Let f be a function in CN+1[a, b], and let PN be a

polynomial of degree ≤ N that interpolates the function f at (N +1) distinct

points x0, x1, . . . , xN ∈ [a, b]. Then to each x ∈ [a, b] there exists a point

ξx ∈ [a, b] such that
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f(x)− PN(x) =
1

(N + 1)!
f (N+1) (ξx)

N∏
i=0

(x− xi)

Runge phenomenon is a problem of oscillation at the edges of an interval
that occurs when using polynomial of high degree over a set of equispaced
interpolation points. The discovery was important because it shows that
going to higher degree doesn’t always improve accuracy [41].

Interpolation at equidistant points is a natural and well-known approach
to construct approximating polynomials. Runge’s phenomenon demonstrates
that interpolation can result in divergent approximations.

Let consider the function

f(x) =
1

1 + x2
.

Runge found that if this function is interpolated at equidistant points
xi = −5 : 10

N
: 5, the resulting interpolation oscillates towards the end of the

interval. It can be proven that the interpolation error increases when the
degree of the polynomial is increased [97].

If we consider the class of functions

F =

{
f ∈ CN+1[a, b],

∣∣∣∣∣ supτ∈[a,b]
f (N+1)(τ)

∣∣∣∣∣ ≤M(N + 1)!

}
for a constant M > 0, then the approximation error obviously depends cru-
cially on the choice of the nodes x0, . . . , xN via the expression

prod(x) = (x− x0) . . . (x− xN)

Also the equidistance between points leads to Lebesgue constant that in-
creases quickly whenN increases. Table 3.1 shows the error between Runge’s
function and its interpolation polynomial when N increase, with xN−1/2 =
5− 5

N
. We remark that

lim
N→∞

∥∥PN

(
xN−1/2

)
− f

(
xN−1/2

)∥∥
∞ = +∞

The evaluation of prod(x) =
∏N

i=0 (x− xi) is illustrated in table 3.2 ,
with: xi = −5 : 10

N
: 5.

Runge’s phenonmenon can be avoided by (See for example [41]):

1. Change of the interpolation points
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N f(x) pN(x) Absolute error

2 0.1379 0.7596 0.6217

10 0.0471 1.5787 1.5317

16 0.0435 -10.1739 10.2174

20 0.0424 -39.9524 39.9949

Table 3.1 : The error between Runge’s function and its interpolation poly-

nomial when N → ∞.

x f(x) p20(x) Absolute error prod(x)

0.25 0.9412 0.9425 0.0013 2.0468e+ 006

1.75 0.2462 0.2384 0.0077 −6.5587e+ 006

3.75 0.0664 -0.4471 0.5134 −7.5594e+ 008

4.75 0.0424 -39.9524 39.9949 −7.2721e+ 010

Table 3.2 : The behavior of prod(x).

The oscillation can be minimized by using nodes that are distributed
more densely towards the edges of the interval. This set of nodes is
Chebyshev nodes for which the maximum error in approximating the
Runge function is guaranteed to diminish with increasing polynomial
order.

2. Use piecewise polynomials

The problem can be avoided by using spline curves which are piecewise
polynomials, when trying to decrease the interpolation error one can
increase the number of polynomials pieces which are used to construct
the spline instead of increasing the degree of the polynomial.

3.1.2 Interpolation in higher dimensions

In the univariate setting it is well known that one can interpolate arbitrary
data at N + 1 distinct data sites using a polynomial of degree N [44]. For
the multivariate setting, however, there is a negative result in the coming
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theorem of (Mairhuber-Curtis). In order to understand this theorem we
need the following definition.

Definition 3.1.2. [44] Let the finite-dimensional linear function space B ⊆

C(Ω) have a basis {B1, · · · , BN} . Then B is a Haar space on Ω if

det(A) ̸= 0 (3.1)

for any set of distinct points x1, · · · , xN in Ω. Here A is the matrix with

entries Ajk = Bk(xj).

Theorem 3.1.3. [44] (Haar-Mairhuber-Curtis)

If Ω ⊂ Rs, s ≥ 2, contains an interior point, then there exist no Haar

spaces of continuous functions.

Proof. To prove Haar-Mairhuber-Curtis theorem , let s ≥ 2 and suppose B is

a Haar space with basis {B1, · · · , BN} with N ≥ 2. Then, by the definition

of a Haar space

det(A) ̸= 0 (3.2)

for any set of distinct x1, · · · , xN . Now consider a closed path P in Ω con-

necting only x1 and x2. This is possible since by assumption contains an

interior point. We can exchange the positions of x1 and x2 by moving them

continuously along the path P (without interfering with any of the other xi).

This means, however, that rows 1 and 2 of the determinant (3.2) have been

exchanged, and so the determinant has changed sign. Since the determinant

is a continuous function of x1 and x2 we must have determinant equal to zero

at some point along P . This is a contradiction.

Remarks

• Note that existence of a Haar space guarantees invertibility of the in-
terpolation matrix A, i.e., existence and uniqueness of an interpolant
to data specified at x1, · · · , xN from the space B.
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• The only exception would be the one-dimensional case s = 1. Univari-
ate polynomials of degree N-1 form an N -dimensional Haar space for
data given at x1, · · · , xN .

• The Haar-Mairhuber-Curtis theorem implies that in the multivariate
setting we can no longer expect this to be the case. For example,
it is not possible to perform unique interpolation with (multivariate)
polynomials of degree N to data given at arbitrary locations in R2.

So as a result of this theorem, if we choose our basis functions independently
of the data, we are not guaranteed a well-posed problem.

The Haar-Mairhuber-Curtis theorem tells us that if we want to have a
well-posed multivariate scattered data interpolation problem, we can’t fix in
advance the set of basis functions, but the basis should depend on the data
location.

3.2 Radial Basis Functions

In this section, we explore the principal tool underpinning our thesis - Ra-
dial Basis Functions. Firstly, we navigate through the Meshfree methods and
their historical development, highlighting their advantages and diverse appli-
cations. The subsequent subsection is dedicated to unraveling the origins of
radial basis functions (RBFs) and furnishing a precise definition of a RBF. To
conclude this investigation, the final subsection sheds light on the historical
evolution of the RBF interpolation problem, accompanied by a foundational
theoretical overview. As a culmination, we present a collection of tables and
figures showcasing prominent examples of radial basis functions.

3.2.1 Meshfree methods

Historical landmarks

Originally, the motivation for the basic meshfree approximation methods
(radial basis functions) came from applications in geodesy, geophysics, map-
ping, or meteorology. Later, applications were found in many areas such as in
the numerical solution of PDEs, artificial intelligence, learning theory, neural
networks, signal processing, statistics (kriging), finance, and optimization. It
should be pointed out that meshfree local regression methods have been used
(independently) in statistics for more than 100 years. “Standard” multivari-
ate approximation methods (splines or finite elements) require an underlying
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mesh (e.g. triangulation) for the definition of basis functions or elements.
This is very difficult in space dimensions greater than two [44].

Some historical landmarks for meshfree methods in approximation theory
[44]:

• D. Shepard, Shepard functions, late 1960s (application, surface mod-
elling).

• Rolland Hardy (Iowa State Univ.), multiquadrics (MQs), early 1970s
(application, geodesy).

• Jean Meinguet (Universitè Catholique de Louvain, Louvain, Belgium),
surface splines, late 1970s (mathematics).

• Richard Franke (NPG, Montery), in 1982 compared scattered data
interpolation methods, and concluded MQs and TPs were the best.
Franke conjectured interpolation matrix for MQs is invertible.

• Charles Micchelli (IBM), Interpolation of scattered data: Distance ma-
trices and conditionally positive definite functions, 1986.

Advantages of meshfree methods

Meshfree methods have gained much attention in recent years. This is due
to the following reasons:

• Many traditional numerical methods (finite differences, finite elements
or finite volumes) have trouble with high-dimensional problems.

• Meshfree methods can often handle better the changes in the geometry
of the domain of interest (e.g., free surfaces, moving particles and large
deformations).

• Independence from a mesh is a great advantage since mesh generation
is one of the most time consuming parts of any mesh-based numerical
simulation.

• New generation of numerical tools.

Applications

• Original applications were in geodesy, geophysics, mapping, or meteo-
rology.
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• Later, many other application areas such as Numerical solution of PDEs
in many engineering applications, Computer graphics, Sampling theory,
Artificial intelligence, Machine learning or Statistical learning (neural
networks or SVMs), Signal and image processing, Statistics (kriging),
Finance, Optimization, etc.

3.2.2 Basis functions depending on data

• The basis functions of meshless methods noted by ϕi are dependent on
the data sites xi as suggested by Haar-Mairhuber-Curtis.

• The points xi for which the basic function is shifted to form the basis
functions, are usually referred as centers or knots.

• Technically, one could choose these centers different from the data sites.
However, usually centers coincide with the data sites. This simplifies
the analysis of the method, and is sufficient for many applications. In
fact, relatively little is known about the case when centers and data
sites differ.

• ϕi(x) are radially symmetric about their centers, for this reason we call
these functions Radial Basis Functions (RBFs).

In 1968, R.L. Hardy [52] aimed to create a function capable of accurately
representing a topographical curve. In his investigation, Hardy discovered
that the data could be effectively depicted by a piecewise linear interpolating
function [52]. He proposed that given a set ofN distinct scattered data points
{xj}Nj=0 and their corresponding measurements {fj}Nj=0, the following form
would be adequate:

ϕj(x) = |x− xj| , j = 0, 1, . . . , N.

Hardy soon recognized that the absolute function had a jump in the
first derivative at each source point. Hardy figured out that this problem
could be solved by removing the absolute value basis function and replacing
it with a function that is continuously differentiable. Hardy’s function was√
ϵ2 + r2, where ϵ is an arbitrary non-zero constant [52]. Hardy applied the

interpolation method using this function to multidimensional spaces. Note
that the absolute value of the difference between two points in two dimen-
sional space is the Euclidean distance between the two points; for example,

|x− xj| =
√

(x− xj)
2 in one dimension. What Hardy created was an inter-

polating function based on translates of the Euclidean distance function in
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two dimensions. Hence, given N distinct scattered data points {(xj, yj)}Nj=0

and corresponding topographic measurements {fj}Nj=0 for j = 0, 1, . . . , N ,
Hardy proposed the following basis function

ϕi,j(x, y) =

√
(x− xj)

2 + (y − yj)
2. (3.3)

To be exact ϕ(r) =
√
x2 + y2. Also, as previously described in one di-

mension, the vertex of each cone is centered at one of the data points. Again,
Hardy ran into the same problem as his one dimensional interpolating func-
tion. The problem was that function defined in equation (3.3) suffered from
being piecewise continuous. He was unable to find a simple fix for this prob-
lem. Hardy proposed using a linear combination of circular hyperboloid basis
functions (rotated hyperbola basis functions

√
ϵ2 + x2 translated to be cen-

tered at each source point). The new form of equation (3.3) is

ϕi,j(x, y) =

√
ϵ2 + (x− xj)

2 + (y − yj)
2.

Hardy discovered that the interpolation method based on the new func-
tion was an excellent method for approximating topographical information
from sparse data points. Unlike the Fourier series, the new function did
not suffer from large oscillations. Also, the function alleviated the problem
associated with the polynomial series method (i.e. the polynomial series
was unable to account for rapid variations of the topographical surface) [51].
Hardy named this new technique the multiquadric basis function (MQ).

Notice that the multiquadric basis function is also radially symmetric
about its center. Because of this radial symmetry, the multiquadric kernel
can be described as a Radial Basis Function. In other words, it is a basis
function which depends only on the radial distance from its center. Since
our basis functions depend only on distance. This leads us to the following
definitions.

Definition 3.2.1. A function Φ : Rs → R is called radial provided there

exists a univariate function ϕ : [0,∞) → R such that

Φ(x) = ϕ(r),

where r = ∥x∥ , and ∥·∥ is some norm on Rs -usually the Euclidean norm.

The last definition says that for a radial function Φ

∥x1∥ = ∥x2∥ =⇒ Φ(x1) = Φ(x2),∀x1, x2 ∈ Rs.
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In other words, the value of Φ at any point at a certain fixed distance from
the origin (or any other fixed center point) is constant. Thus, Φ is radially
(or spherically) symmetric about its center. The definition shows that the
Euclidean distance function is just a special case of a radial (basis) function;
namely, with ϕ(r) = r.

Definition 3.2.2. RBF approximations are usually finite linear combina-

tions of the translation of a radially symmetric basis function. The set of

RBFs ϕi, is as follows

ϕi : Rd −→ R, ϕi(x) = ϕ (∥x− xi∥) ,

where ∥.∥ denote the Euclidean norm and xi is the center of the RBF .

3.2.3 RBF interpolation problem

This method was proposed by Edward Kansa in 1990 [66], a professor at
the University of California. It was used for the first time for polynomial
interpolation problems.The method makes it possible to achieve high-order
accuracy with nodes dispersed on a totally irregular geometry, employing a
particularly simple algorithm compared to the classical methods used un-
til this moment. Before Kansa’s successful research, Hardy ([51], [52]) used
the multiquadric function to interpolate multidimensional data and fit two-
dimensional geographic surfaces, showing that the multiquadric function has
a physical foundation as a consistent solution to the biharmonic potential
problem. Buhmann and Michelli [24] have shown that the MQ interpolation
sheme converges faster as the spatial dimension increases, and converges ex-
ponentially as the density of the nodes increases. Buhmann and Michelli
[25] and Chui et al [29] have shown that MQ and other RBFs were pre-
wavelets. Kansa intervened to solve partial differentiall equations of elliptic,
parabolic or even hyperbolic type [67]. This intervention which modified
the multiquadric function was very succesful. Finaly, in 1990 Hon et al [54]
have improved the MQ method for solving varieties of nonlinear boundary
problems, the most common of which is the Burgers equation.

The scattered data approximation problem is as follows: Given a set of
N distinct data points X = (x1, x2, . . . , xN) in RN and a corresponding set
of N values (y1, y2, . . . , yN) sampled from an unknown function f such that
yi = f (xi). We can then choose a radial function ϕ and a set of centers
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(xc1 , xc2 , . . . , xcN ) for some N ∈ N, to obtain a basis (ϕ (∥.− xc1∥) , ϕ(∥.−
xc2∥) , . . . , ϕ (∥.− xcN∥)).

This basis can then be used to construct an approximation σ of the func-
tion f . One option is to center an RBF on each data site. In that case, the
approximation will be constructed from N radial basis functions, and there
will be one basis function with xc = xi for each i = 1, 2, . . . , N .

The approximation σ is then constructed from a linear combination of
those N RBFs, such that

σ(x) =
N∑
i=1

ciϕ (∥x− xi∥) , (3.4)

with: ri = ∥x− xi∥. Then,
ϕ (r1) ϕ (r2) · · · ϕ (rN)
ϕ (r1) ϕ (r2) · · · ϕ (rN)

...
...

. . .
...

ϕ (r1) ϕ (r2) · · · ϕ (rN)



c1
c2
...
cN

 =


f1
f2
...
fN


such that, c = [c1, c2, . . . , cN ] and y = [f1, f2, . . . , fN ] .The constants ci are
determined by ensuring that the approximation will exactly match the given
data at the data points. This is accomplished by enforcing s (xi) = yi =
fi, i = 1, . . . N , which produces the system of linear equations

Ac = y

The solution of the system requires that the matrix A is non-singular. The
situation is favorable if we know in advance that the matrix is positive def-
inite. Moroever we would like to characterize the class of functions ϕ for
which the matrix is positive definite.

Positive-definite matrices and functions

Definition 3.2.3. [44] A real symmetric matrix A is called positive semi-

definite if its associated quadratic form cTAc ≥ 0, that is

N∑
i=1

N∑
j=1

cicjAi,j ≥ 0 (3.5)

for all c = [c1, · · · , cN ]T ∈ RN . If the quadratic form (3.5) is zero only for

c = 0 then A is called positive definite.
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Hence, if in (3.4) the basis ϕi generates a positive definite interpolation
matrix, then we would always have a well-defined interpolation problem. In
order to get such property, we need to introduce the class of positive definite
functions.

Definition 3.2.4. [44] A continuous complex valued function ϕ : Rs → C

is called positive semidefinite if, for all N ∈ N, all sets of pairwise distinct

points X = {x1, . . . , xN} ⊂ Rs and c ∈ CN the quadratic form is nonnegative:

N∑
i=1

N∑
j=1

cicjϕ (xi − xj) ≥ 0.

The function ϕ is then called positive definite if the quadratic form above is

positive for any c ∈ CN , c ̸= 0.

One of the most celebrated results on positive definite functions is their
characterization in terms of Fourier transforms established by Bochner in
1932.

Theorem 3.2.1. (Bochner)[17] A (complex-valued) function Φ ∈ C (Rs) is

positive definite on Rs if and only if it is the Fourier transform of a finite

non-negative Borel measure µ on Rs, i.e.

Φ(x) =
1√
(2π)s

∫
Rs

e−ixydµ(y), x ∈ Rs.

Completely monotone functions

Definition 3.2.5. [44](p.47) A function ϕ : [0,∞) → R that is C[0,∞) ∩

C∞(0,∞) and satisfies

(−1)kϕ(k)(r) ≥ 0, for r > 0, and k = 0, 1, 2, . . .

is called completely monotone.

Here we enumerate some of the most important positive definite functions
showing that they are completely monotone.
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• The function ϕ(r) = ϵ, ϵ ≥ 0 is completely monotone on [0,∞).

• The function ϕ(r) = e−ϵr, ϵ ≥ 0 is completely monotone on [0,∞) since

(−1)kϕ(k)(r) = ϵke−ϵr ≥ 0, k = 0, 1, 2, . . .

• The function ϕ(r) = 1
(1+r)β

, β ≥ 0 is completely monotone on [0,∞)

since (−1)kϕ(k)(r) = (−1)2kβ(β+1) . . . (β+k−1)(1+ r)−β−k ≥ 0, k =
0, 1, 2, . . .

Theorem 3.2.2. (Hausdorff-Bernstein-Widder)[117](p.91) A function Φ :

[0,∞) → R is completely monotone on [0,∞) if and only if it is the Laplace

transform of a nonnegative finite Borel measure ν, i.e. it is of the form

Φ(r) =

∫ ∞

0

e−rtdν(t)

Theorem 3.2.3. (Schoenberg)[117](p.93) A function ϕ is completely mono-

tone on [0,∞) if and only if Φ = ϕ (∥.∥22) is positive semi-definite on Rs for

all s.

Multiply monotone functions

This characterization allows to check when a function is positive definite and
radial on Rd for some fixed d.

Definition 3.2.6. [44](p.49) A function ϕ : (0,∞) → R which is Cs−2(0,∞), s ≥

2 and for which (−1)kϕ(k)(r) ≥ 0, non-increasing and convex for k = 0, 1, . . . , s−

2 is called s times monotone on (0,∞). In case s = 1 we only require

ϕ ∈ C(0,∞) to be non-negative and non-increasing.

Characterizing positive definite functions using a more comprehensible
approach based on the definition of completely monotone and multiply mono-
tone functions can be found in ([23],[44],[117]).
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Conditionally positive definite functions

Definition 3.2.7. [117](p.97) A continuous function Φ : Rs −→ C is said

to be conditionally positive semi-definite of order m in Rs, if

N∑
i=1

N∑
j=1

cicjϕ (xi − xj) > 0, (3.6)

for any set X = {x1, . . . , xN} ⊂ Rs of N pairwise distinct points, and c =

(c1, . . . , cN)
T ⊂ CN such that

N∑
k=1

ckp (xk) = 0,

for any complex-valued polynomial p of degree ≤ m − 1. The function Φ is

then called conditionally positive definite of order m on Rs if the quadratic

form (3.6) vanishes only when c ≡ 0.

The first important fact concerning conditionally positive (semi)-definite
functions is their order. To this aim, the following important results hold.

• A function which is conditionally positive (semi)-definite of order m is
also conditionally positive (semi)-definite of any order s ≥ m.

• A function that is conditionally positive (semi)-definite of order m in
Rs is also conditionally positive (semi)-definite of order m on Rk with
k ≤ s.

Theorem 3.2.4. [117](p.99) Suppose Φ is conditionally positive definite of

order 1 and that Φ(0) ≤ 0. Then the matrix A ∈ RN×N , i.e. Ai,j =

Φ(xi − xj), has one negative and N − 1 positive eigenvalues. In particu-

lar it is invertible.

The most used positive definite RBFs and conditionally positive definite
RBFs are given in tables 3.3 and 3.4 respectively. The representations of
multiquadric, gaussian, inverse multiquadric, inverse quadric and polyhar-
monic splines RBFs are given in figures 3.2.1 and 3.2.2.
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Name ϕ(r)

Inverse Multiquadric (IMQ) ϕ(r) = 1√
r2+ϵ2

Gaussian Function (GS) ϕ(r) = e−ϵr2

Table 3.3 : Positive definite radial basis functions.

Name ϕ(r) Order

Multiquadric (MQ) ϕ(r) = (r2 + ϵ2)
k
, k > 0, k /∈ N ⌈k⌉+ 1

Inverse Multiquadric (IMQ) ϕ(r) = (r2 + ϵ2)
−k
, k > 0, k /∈ N 0

Polyharmonic spline ϕ(r) = r2k−1, k ∈ N ⌈k/2⌉+ 1

Polyharmonic spline ϕ(r) = r2k ln(r), k ∈ N ⌈k/2⌉+ 1

Thin Plate Spline (TPS) ϕ(r) = r2 ln(r) 2

Table 3.4 : Conditionally positive definite radial basis functions, where ⌈k⌉

denotes the nearest integers less than or equal to k, and N the natural num-

bers, ϵ a positive constant which is known as the shape parameter .

Figure 3.2.1: Graph of gaussian RBF (left), multiquadric RBF (right), for a

center x = 0, with different values of shape parameter.
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Figure 3.2.2: Graph of inverse multiquadric RBF (left), inverse quadric RBF

(right), for a center x = 0, with different values of shape parameter.

3.3 Compactly supported radial basis func-

tions

Here we introduce the concept of compactly supported radial basis functions
CSRBFs. Then we explain a popular family of them that we will use in the
following chapter through some applications.

After successful studies and tests for the result of partial differential equa-
tions, such as the resolution of hydrodynamic equations by Hon et al [55],
the numerical results demonstrated that the MQ diagrams are more assuring
than the finite element method. However, the MQ method requires solving a
linear system with a full matrix, which could make the method cumbersome
and very expensive once you have to do hundreds of collocation points. To
overcome this problem, researchers have developed a sheme based on radial
basis functions with compact support (CSRBFs). The compactly supported
radial basis functions can cover the global schemes that the simple RBF
methods are weak to solve as in the case of the badly conditioned matrices
[55],[56].

The accuracy of the RBFs method depends on the value of the shape
parameter which is still an unsolved problem, also the resulting interpolation
matrix is dense and highly ill conditioned. So it was suggested the use of
compactly supported radial basis functions which can reduce the resultant
full matrix to a sparse one, also the operation of the banded matrix system
could reduce the ill-conditioning of the resultant coefficient matrix when
using the global radial basis functions [56].

We need the following theorem to justify the need for Compactly Sup-
ported Radial Basis Functions CSRBFs.
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Theorem 3.3.1. [44] (P.35) There are no oscillatory univariate continuous

functions that are strictly positive definite and radial on Rs for all s. More-

over, there are no compactly supported univariate continuous functions that

are strictly positive definite and radial on Rs for all s.

Theorem 3.3.2. [44] (P.75) Assume that the complex-valued function Φ ∈

C (Rs) has compact support. If Φ is strictly conditionally positive definite

of (minimal) order m, then m is necessarily zero, i.e., Φ is already strictly

positive definite.

As we see in the last theorem (3.3.2), compactly supported functions
Φ that are truly strictly conditionally positive definite of order m > 0 do
not exist. The compact support automatically ensures that Φ is strictly
positive definite. An observation from the theorem (3.3.1) is that compactly
supported radial functions can be strictly positive definite on Rs only for a
fixed maximal s-value. It is not possible for a function to be strictly positive
definite and radial on Rs for all s and also have a compact support.

According to Bochner’s work [17], a function is strictly positive definite
and radial on Rs if its s-variate Fourier transform is non-negative.

The Bessel function J of the first kind of order v ∈ C can be expressed
as follow

Jν :=
∞∑
k=0

(−1)k(z/2)2k+v

k!Γ(k + v + 1)
, for z ∈ C\{0}.

such that the Γ-function is given as follow

Γ(z) := lim
n−→∞

n!nz

z(z + 1) . . . (z + n)
, for z ∈ C.

Theorem 3.3.1. [117](p.119) Suppose Φ ∈ L1 (Rs) ∩ C (Rs) is radial, i.e.

Φ = ϕ (∥.∥2) , x ∈ Rs. Then its Fourier transform Φ̂ is also radial, i.e.

Φ̂ = Fs (∥.∥2) with

Φ̂(x) = Fsϕ(r) = r−(s−2)/2

∫ ∞

0

ϕ(t)ts/2J(s−2)/2(rt)dt.
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3.3.1 Operators for Radial Functions and Dimension

Walks

Schaback andWu [101] defined an integral operator and its inverse differential
operator, and discussed an entire calculus for how these operators act on
radial functions. These operators will facilitate the construction of compactly
supported radial functions.

Definition 3.3.3. [117](p.121) Let ϕ be given such that t→ tϕ(t) ∈ L1[0,∞),

then we define

(Iϕ)(r) =
∫ +∞

r

tϕ(t)dt, r ≥ 0

For even ϕ ∈ C2(R) we define

(Dϕ)(r) = −1

r
ϕ′(r), r ≥ 0.

In both cases the resulting functions are to be interpreted as even func-
tions using even extension.

Theorem 3.3.2. [117](p.121-122)

1. Both D and I preserve compact support, i.e., if ϕ has compact support,

then so do Dϕ and Iϕ.

2. If ϕ ∈ C(R) and t→ ϕ(t) ∈ L1[0,∞), then DIϕ = ϕ.

3. If ϕ ∈ C2(R) and ϕ′ ∈ L1[0,∞), then IDϕ = ϕ.

4. If t→ ts−1ϕ(t) ∈ L1[0,∞) and s ≥ 3, then Fs(ϕ) = Fs−2(Iϕ).

5. If ϕ ∈ C2(R) is even and t→ tsϕ′(t) ∈ L1[0,∞), then Fsϕ = Fs+2(Dϕ).

The operators I and D allow us to express s-variate Fourier transforms
as (s− 2) or (s+ 2)-variate Fourier transforms, respectively.
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3.3.2 Wendland’s Compactly Supported Functions

In [117] Wendland constructed a popular family of compactly supported ra-
dial functions by starting with the truncated power function which we know
to be strictly positive definite and radial on Rs for s ≤ 2l − 1, and then
walking through dimensions by repeatedly applying the operator I.

Definition 3.3.4. [117](p.128) With ϕl(r) = (1− r)l+ we define

ϕs,k = Ikϕ⌊s/2⌋+k+1.

It turns out that the functions ϕs,k are all supported on [0, 1] and have a
polynomial representation there.

Theorem 3.3.3. [117](p.128) The functions ϕs,k are strictly positive definite

and radial on Rs and are of the form

ϕs,k(r) =

ps,k(r), if r ∈ [0, 1]

0, if r > 1

with a univariate polynomial ps,k of degree ⌊s/2⌋+ 3k + 1. Moreover, ϕs,k ∈

C2k(R) are unique up to a constant factor, and the polynomial degree is

minimal for given space dimension s and smoothness 2k.

Wendland gave recursive formulas for the functions ϕs,k for all s, k. The
abbreviation SPD means striclty positive definite.

Example 3.3.5. Wendland’s compactly supported functions ϕs,k, for k =

0, 1, 2, 3, are written in the following form

• ϕs,0(r) = (1− r)
⌊s/2⌋+1
+

• ϕs,1(r)
.
= (1− r)l+1

+ [(l + 1)r + 1]

• ϕs,2(r)
.
= (1− r)l+2

+ [(l2 + 4l + 3) r2 + (3l + 6)r + 3]

• ϕs,3(r)
.
= (1−r)l+3

+ [(l3 + 9l2 + 23l + 15) r3 + (6l2 + 36l + 45) r2 + (15l + 45)r + 15],
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where l := ⌊s/2⌋ + k + 1, and the symbol
.
= denotes equality up to a multi-

plicative positive constant.

Example 3.3.6. For s = 3 we get some of the most commonly used functions

as

• ϕ3,0(r) = (1− r)3+ ∈ C0 ∩ SPD (R3)

• ϕ3,1(r)
.
= (1− r)4+[4r + 1] ∈ C2 ∩ SPD (R3)

• ϕ3,2(r)
.
= (1− r)6+ [35r2 + 18r + 3] ∈ C4 ∩ SPD (R3)

• ϕ3,3(r)
.
= (1−r)8+ [32r3 + (6l2 + 36l + 45) r2 + (15l + 45)r + 15] ∈ C6∩

SPD (R3).

Graph (3.3.3) shows three of Wendland’s Compactly Supported Functions.

Figure 3.3.3: Graph of Wendland’s CSRBFs for s = 3.

Furthermore, in the cited references ([118] and [22]), one can explore
additional families of Compactly Supported Radial Basis Functions, that
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were suggested by Wu and Buhmann, expanding the understanding of this
class of functions beyond the context discussed earlier.



Chapter 4

Numerical solution of Integral

equations by RBF’s

4.1 Introduction

A considerable large amount of research literature and books on the theory
and applications of Volterra’s integral equations have emerged over many
decades since the apparition of Volterra’s book “Leçons sur les équations
intégrales et intégro-différentielles” [110] in 1913.

The applications include elasticity, plasticity, semi-conductors, scattering
theory, seismology, heat and mass conduction or transfer, metallurgy, fluid
flow dynamics, chemical reactions, population dynamics, and oscillation the-
ory, among many others (see for example [31]). Other important references
more related with the numerics of this type of equation are [11, 26].

In fact, Volterra integral equations (VIEs) appear naturally when we try
to transform an initial value problem into integral form, so that the solution
of this integral equation is usually much easier to obtain than the original
initial value problem. In the same way, some nonlinear Volterra integral
equations are equivalent to an initial-value problem for a system of ordinary
differential equations (ODEs). So, some authors (like for example [103]) have
sought to exploit this connection for the numerical solution of the integral
equations as well, since very effective ODE codes are widely available.

Volterra integral equations arise in many usual applications of technology,
engineering and science in general: as in population dynamics, the spread of
epidemics, some Dirichlet problems in potential theory, electrostatics, mathe-
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matical modeling of radioactive equilibrium, the particle transport problems
of astrophysics and reactor theory, radiative energy and/or heat transfer
problems, other general heat transfer problems, oscillation of strings and
membranes, the problem of momentum representation in quantum mechan-
ics, etc. However, many other complex problems of mathematics, chemistry,
biology, astrophysics and mechanics, can be expressed in the terms of Volterra
integral equations. Moreover, some practical problems, where impulses arise
naturally (like in population dynamics or many biological applications) are
caused by some control system (like electric circuit problems and simulations
of semiconductor devices) can be modeled by a differential equation, an inte-
gral equation, an integro-differential equation, or a system of these equations
all combined.

The systems of integral and/or integro-differential equations are usually
difficult to solve analytically, in particular systems of Volterra integral non-
linear equations or with variable coefficients; so a numerical method is often
needed. In such cases, it is required to approximate the solutions; and many
different numerical techniques have been developed and presented during
decades of research, with appropriate combinations of numerical integration
and interpolation procedures (see the references [11, 20], among others).

In order to approximate numerically the solution of general integral equa-
tions, the predominant technique have been the use of some kind of piecewise
constant basis functions (PCBFs) (see for example [21], among many oth-
ers); Chebyshev polynomial ([40] and others). However, after a long period
of time many other techniques have attracted much attention recently; like
wavelets theory, started with the introduction of Haar function in 1910, and
from 1990’s (see [33]) also many wavelet type methods have been applied
for solving integral equations. Haar wavelets, despite its relative simplic-
ity, have many valued properties: as its compact support and orthogonality
properties. So they can be used for the solution of differential and integro-
differential equations related with signal and image processing, for example.
They have been also used to solve linear and nonlinear integral equations
by Aziz et. al. [9], Babolian et. al. [10], Lepik [77], Maleknejad et al. [82],
Farshid Mirzaae [85], among others. More recently, several numerical meth-
ods based on different triangular type and delta orthogonal functions were
designed for approximating the solution of integral and/or integro-differential
Volterra equations (see for example [87, 34, 95], and the references therein).
All these publications have demonstrated and revealed that these techniques
based on PCBF and wavelets are effective to obtain the solution of such
integral equations.

Particularly, systems of linear integral equations, and their exact or ap-
proximate solutions, are of great importance in science and engineering.
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There are several numerical methods for solving systems of linear Volterra
integral equations of the second kind, and they have been often solved by
classical numerical and analytical methods: such as Galerkin and Finite Ele-
ment methods, collocation and spectral methods, Taylor or Power series and
expansion methods, transforming the equations into a linear or nonlinear
system of algebraic equations, and so on. However, new methods also have
been applied to solve them, like the homotopy perturbation method [46],
Adomian decomposition method (and many others) [112], use of Legendre
wavelets [120] or hybrid Legendre and block pulse functions [81], Chebyshev
polynomials [39, 121], etc. Berenguer et al. [13, 14] have solved them with
the aid of a combination of analytical methods and bi-orthogonal systems
in Banach spaces, Sahn et al. [32] have used Bessel polynomials method,
Malnekad et al. [87] have employed delta basis functions (DBFs), Balaku-
mar et al. [12] have applied the block-pulse functions method, Li-Hong et
al. [119] have applied reproducing kernel method. Furthermore, there are
also expansion methods for integral equations such as El-gendi’s and Wolfe’s
methods (see for example [35]). Additionally, the approximate solutions of
systems of integral equations that usually appear in problems of physics, bi-
ology and engineering are based on numerical integration methods: such as
Euler–Chebyshev or Runge–Kutta methods (see for example [109]).

Concerning many other possible techniques to solve these types of integral
equations, Draidi and Qatanani [37] implemented a product Nystrom and
sinc-collocation methods to solve Volterra integral equations with Carleman
kernel; also Issa, Qatanani and Daraghmeh [61] used a Taylor expansion and
the variational iteration methods to give an approximate solution of Volterra
integral equations of the second kind. Aggarwal et al. [1] and Chauhan [27]
used different integral transformations for obtaining the solutions of VIEs
of second kind. Mahgoub [86] solved constant coefficient linear differential
equations by defining the called Sawi transformation, but many other authors
exploited this idea, or other appropriate transforms, to deal with these types
of integral or integro-differential equations.

Next, we are going to cite the most recent references from the last 3 or
4 years. In [60] the authors present an approximation solution of system of
Volterra integral equations of second kind in an analytical way, using an Ado-
mian decomposition method in Mathematica. In [57] the authors propose a
numerical algorithm based on Monte Carlo method for approximating solu-
tions of the system of Volterra integral equations. In [69] the authors develop
a numerical technique for the solution of 2D Volterra integral equations based
on a discretization method by using two-dimensional Bernstein’s approxima-
tions. In [2] the authors discussed the solution of linear Volterra integral
equations of second kind using Mohand transform. In [90] the authors pro-
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pose Bernstein polynomials to present effective solution for the second kind
linear Volterra integral equations with delay. In [68] the author presents a
method to solve numerically Volterra integral equations of the first kind with
separable kernels.

In this chapter, we explore some practical applications of radial basis
functions. The initial section introduces the fundamental concept of inte-
gral equations, followed by a comprehensive classification based on linearity,
homogeneity, and the integration domain. Subsequently, we provide a nu-
merical solution to systems of linear Volterra integral equations, employing
radial basis functions of Wendland’s type. The ensuing section addresses the
numerical approximation of a solution to a linear Volterra integro-differential
problem, utilizing compactly supported radial basis functions of Wendland’s
type. It is noteworthy that the outcomes presented in these sections have
been disseminated through published articles.

4.2 Integral equations

In this section, we explore the concept of integral equations. We’ll look at
how these equations can be classified based on linearity, homogeneity and
the integration domain.

Definition 4.2.1. [107] An integral equation is one in which function to be

determined appears under the integral sign. The most general form of an

integral equation is

h(t)x(t) = f(t) +

∫ b(t)

a

K(t, s, x(s))ds

for all t ∈ [a, b] in which, x(t) is the function to be determined, K(t, s) is

known and is called the Kernel of the integral equation and h(t), f(t) and

b(t) are known functions.

There are different classification methods for integral equations [107]:

• Based on linearity, one can divide integral equations into:

1. linear integral equations if the unknown function x(t) and its
integrals appear in linear form. For example

x(t) = f(t) +

∫ b(t)

a

K(t, s)x(s)ds.
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2. nonlinear integral equations if x(t) or any of its integrals appear
nonlinearly in the equation. For example

x(t) = f(t) +

∫ b)

a

K(t, s)cos(x(s))ds.

• Based on homogeneity, integral equations can be classified into:

1. homogenous if the known function f(t) is identically zero. For
example

x(t) =

∫ b(t)

a

K(t, s)x(s)ds.

2. inhomogenous if the known function f(t) is nonzero.

• In classifying integral equations we say, very roughly, that those integral
equations in which the integration domain varies with the independent
variable in the equation are Volterra integral equations; and those in
which the integration domain is fixed are Fredholm integral equations.

Definition 4.2.2. [6] A Fredholm integral equation is one of the form:

h(t)x(t) = f(t) +

∫ b

a

K(t, s, x(s))ds

for all t ∈ [a, b].

That is, b(t) = b in this case, or we can say that in Fredholm integral

equation both lower and upper limits are constant.

Definition 4.2.3. [6] A Volterra integral equation is one of the form:

h(t)x(t) = f(t) +

∫ t

a

K(t, s, x(s))ds (4.1)

for all t ∈ [a, b].

That is, in Volterra equation b(t) = t.

Integral equations can be thought of as generalizations of

x′(t) = f(t, x(t)), t ≥ a, x(a) = x0
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an initial value problem for ordinary differential equations. This equation is
equivalent to the integral equation

x(t) = x0 +

∫ t

a

f(s, x(s))ds, t ≥ a

which is a special case of (4.1).
A linear Volterra integral equation is one of the form:

h(t)x(t) = f(t) +

∫ t

a

K(t, s)x(s)ds

for all t ∈ [a, b].
There are two kinds of a linear Volterra integral equation [6]:

1. If h(t) = 0, the above equation reduces to

−f(t) =
∫ t

a

K(t, s)x(s)ds

This equation is called Volterra integral equation of first kind.

2. If h(t) = 1, the above equation reduces to

x(t) = f(t) +

∫ t

a

K(t, s)x(s)ds

This equation is called Volterra integral equation of second kind.

4.3 Numerical Solution of LVIES’s of Second

Kind by RBFs

Volterra integral equations find applications across various fields including
technology, engineering, and science such as population dynamics, epidemics
spread, electrostatics, chemistry, biology, and astrophysics. They are also
used in mathematical modeling of radioactive equilibrium, particle transport
problems in astrophysics and reactor theory, and radiative energy/heat trans-
fer problems. Additionally, they are applicable in electric circuit problems,
simulations of semiconductor devices, oscillation of strings and membranes,
momentum representation in quantum mechanics, and certain Dirichlet prob-
lems in potential theory. (See, for example, [104], [78], and [110].)
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In this section, we present specific variational methods used to study and
approximate systems of linear Volterra integral equations with Radial Basis
Functions (RBFs) of Wendland type. Wendland functions, being compactly
supported radial basis functions, simplify calculations. However, determining
the actual functions for software implementation often requires extensive
manual or symbolic calculations (refer, for instance, to [16]). Despite the
availability of just a few articles on these techniques (such as [4], [43], [83],
[111], and [122]), we believe there is ample scope for further investigation in
this area.

Our goal in this section is to devise an appropriate approach procedure
that is capable of solving this type of problem in a precise and efficient way.
We consider then the linear Volterra equations system of the second kind as
follows (see for example [110]):

x(t) = f(t) +

∫ t

0

k(t, s)x(s)ds, 0 ≤ s ≤ t ≤ 1, (4.2)

where
x(t) = (x1(t), . . . , xn(t))

⊤,
f(t) = (f1(t), . . . , fn(t))

⊤,
k(t, s) = (kij(t, s))1≤i,j≤n.

We assume that (4.2) has a unique continuous solution for appropriate
functions f . In any case, the equations system (4.2) can be re-written in
operator form as an equation of second kind

f = (I −K)x,

where K is an integral operator and I denotes the identity operator. It is
usual to impose certain assumptions on compactness on the operator K (see
[7], Section 2.8.1) in order to establish the existence and uniqueness of the
solution of (4.2), that we will assume throughout this chapter.

Moreover, in [75] the authors proposed another method to solve second
kind Fredholm integral equation systems, but the discrete functional space
chosen in that article has been the space of spline functions. While at first
glance it might seem that both works are similar, especially in the way they
are presented, the two methods are totally different, not only be the fact
that the discretization spaces are different (so we have adapted the notations
accordingly), while the proofs (except the very preliminary ones, that can
be also adapted), of the convergence results, are completely different, due to
their greater complexity.
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4.3.1 Discretization Space

For the remainder of the chapter, we are going to consider a space of fi-
nite dimension, where we will formulate and solve a discrete approximation
problem. The discrete functional space we have chosen is the radial ba-
sis functions space with compact support, namely the radial basis function
space generated by the Wendland functions (see [115]).

Definition 4.3.1. Given a continuous function ϕ : R+
0 → R, a subset Ω ⊂

Rd, d ≥ 1, and a point ξ ∈ Ω, the radial function defined on Ω from the

function ϕ with center ξ is the continuous function Φξ : Ω → R given by

Φξ(x) = ϕ(⟨x− ξ⟩d).

Then Φξ only depends of the distance to ξ.

Definition 4.3.2. Given a centers set Ξ = {ξ1, . . . , ξN} the linear space

generated by the functions

{ϕ(⟨· − ξ1⟩d), . . . , ϕ(⟨· − ξN⟩d)}

is called a radial basis functions space.

Definition 4.3.3. For a function u ∈ C([0, 1];Rn), the radial basis function

interpolating u on a set of distinct centers TN = {t1, . . . , tN} ⊂ [0, 1] is given

by

su,TN
(t) =

N∑
i=1

αiϕ(|t− ti|), t ∈ [0, 1],

where ϕ : R+
0 → R is a continuous function and the coefficients α1, . . . ,αN ∈

Rn are determined by the interpolation conditions

su,TN
(ti) = u(ti), 1 ≤ i ≤ N.

In his work [115], H. Wendland introduced a family of compactly sup-
ported radial basis functions, as detailed in Section 3.3.
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For the remainder of this section we suppose 0 ≤ k ≤ N − 1, and we take
ϕ = ϕ1,k in Definition 4.3.3.

Table 4.1 shows the Wendland functions ϕ1,k for k = 0, 1, 2, and its
continuity order.

Table 4.1 : Wendland functions ϕ1,k for k = 0, 1, 2 and its continuity order.

k Wendland function Continuity order

k = 0 ϕ1,0(r) = (1− r)+ C0

k = 1 ϕ1,1(r)
.
= (1− r)3+(3r + 1) C2

k = 2 ϕ1,2(r)
.
= (1− r)5+(8r

2 + 5r + 1) C4

Let
h = sup

t∈[0,1]
min

1≤i≤N
|t− ti|. (4.3)

From ([115], Theorem 2.1) we can affirm that ϕ1,k ∈ C2k([0, 1]) and the
corresponding native space is Hk+1([0, 1]). Finally, from ([115], Theorem 2.1)
and ([116], Theorem 4.1) we conclude that there exists C > 0 such that

∥u− su,TN
∥L∞((0,1);Rn) ≤ C∥u∥k+1h

k+ 1
2 , ∀u ∈ Hk+1([0, 1];Rn),

and

|u− su,TN
|j ≤ Chk+1−j∥u∥k+1, 0 ≤ j ≤ k + 1, ∀u ∈ Hk+1([0, 1];Rn).

(4.4)
Let SN be the space of the restrictions of functions on [0, 1] of the func-

tional space generated by the radial basis functions {ϕ1,k(| · −t1|), . . . , ϕ1,k(| ·
−tN |)} and SN = (SN)

n. Then SN ⊂ Hk+1((0, 1);Rn) ∩ C2k([0, 1];Rn).

4.3.2 Formulation of the Problem

We can define the operator ρ : Hk+1((0, 1);Rn) → RN,n given by

ρv = ((I −K)v(ti))1≤i≤N .

Let assume that f ∈ Hk+1((0, 1);Rn), and consider the affine variety HN =
{u ∈ SN : ρu = (f(ti))1≤i≤N} and the linear subspace H0

N = {u ∈ SN :
ρu = 0 ∈ RN,n}.
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Proposition 4.3.4. The set HN is a nonempty closed bounded convex subset

of SN . Moreover it is an affine variety associated with the linear subspace

H0
N .

Proof. By adapting the notations, as in the proof of Proposition 4.1 of [75].

Lemma 4.3.5. The application << · , · >>: Hk+1((0, 1);Rn)×Hk+1((0, 1);Rn) →

R defined by

<< u,v >>= ⟨ρu, ρv⟩N,n + ((I −K)u, (I −K)v)k+1

is an inner product on Hk+1((0, 1);Rn) and its associated norm, given by

[[u]] =<< u,u >>
1
2 , is equivalent to the usual Sobolev norm ∥ · ∥k+1.

Proof. By adapting the notations as in the proof of Lemma 4.2 of [75] and

using ([7], Theorem 7.3.12) the proof can be obtained.

Definition 4.3.6. We say that uN ∈ HN is an approximating radial basis

function relative to TN , ρ and f if uN is a solution of the following mini-

mization problem:

Find uN ∈ HN such that ∀v ∈ HN , J(uN) ≤ J(v), (4.5)

where J : Hk+1((0, 1);Rn) → R is given by

J(v) = |(I −K)v|2k+1.

Theorem 4.3.1. Problem (4.5) has a unique solution uN ∈ HN which is

the unique solution of the variational problem

∀v ∈ H0
N , ((I −K)uN , (I −K)v)k+1 = 0. (4.6)
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Proof. From Proposition 4.3.4 and ([7], Theorem 3.4.3) we can deduce that

there exists a unique uN ∈ HN , which is the projection of 0 on HN such

that

[[uN ]] ≤ [[v]], ∀v ∈ HN

and verifying

∀w ∈ HN , << −uN ,w − uN >>≤ 0,

that is

∀v ∈ H0
N , << −uN ,v >>≤ 0

and, taking into account that H0
N is a vector space, we obtain that

∀v ∈ H0
N , << uN ,v >>= 0.

Therefore (4.6) holds. Finally, uN is the unique solution of (4.5) since J(v) =

[[v]]2 − ⟨ρf⟩2N,n, for any v ∈ HN .

Theorem 4.3.2. There exists a unique λ ∈ RN,n such that

∀v ∈ SN , ((I −K)uN , (I −K)v)k+1 + ⟨λ, ρv⟩N,n = 0, (4.7)

where uN is the unique solution of (4.6).

Proof. For i = 1, . . . , N , let us consider φi ∈ SN the unique radial basis

function determined by the interpolation conditions

φi(tj) = δij, ∀ j = 1, . . . N.

Let take v ∈ SN , and we consider the function

w = v −
N∑
i=1

(I −K)v(ti)φi,

then

(I −K)w(tj) = (I − k)v(tj)−
N∑
i=1

(I −K)v(ti)φi(tj) = 0, ∀ j = 1, . . . , N ;
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that is ρw = 0 ∈ RN,n, and in fact w ∈ H0
N . Thus, from Theorem 4.3.1, we

have

((I −K)uN , (I −K)w)k+1 = 0. (4.8)

We notice Πℓ : Rn → R, for ℓ = 1, . . . , n, the projection application given by

Πℓ(x1, . . . , xn) = xℓ.

Then, for i = 1, . . . , N , it is verified that

((I −K)uN , (I −K)v(ti)φi)k+1 =
n∑

ℓ=1

(Πℓ((I −K)uN ,Πℓ((I −K)v(ti)φi))k+1

=
n∑

ℓ=1

Πℓ((I −K)v(ti)) (Πℓ((I −K)uN , φi)k+1 .

Let denote λiℓ = − (Πℓ((I −K)uN , φi)k+1 ∈ R and λ = (λiℓ) 1≤i≤N
1≤ℓ≤n

∈ RN,n.

Then

((I −K)uN , (I −K)w)k+1 =

((I −K)uN , (I −K)v)k+1 −
N∑
i=1

((I −K)uN , (I −K)v(ti)φi)k+1 =

((I −K)uN , (I −K)v)k+1 +
N∑
i=1

n∑
ℓ=1

Πℓ((I −K)v(ti))λiℓ =

((I −K)uN , (I −K)v)k+1 + ⟨λ, ρv⟩N,n.

From (4.8), we conclude that there exists λ = (−(Πℓ((I−K)un), φi)k+1) 1≤i≤N
1≤ℓ≤n

∈

RN,n such that

((I −K)uN , (I −K)v)k+1 + ⟨λ, ρv⟩N,n = 0

and (4.7) holds.

The uniqueness of λ is immediate.

4.3.3 Convergence Result

Assume that f ∈ Hk+1((0, 1);Rn) and k ∈ Hk((0, 1) × (0, 1);Rn,n), then
there exists a unique solution x ∈ Hk+1((0, 1);Rn) of (4.2). Moreover, the
following convergence result is verified.
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Theorem 4.3.3. Suppose given f ∈ Hk+1((0, 1);Rn) and k ∈ Hk((0, 1) ×

(0, 1);Rn,n). Let denote x ∈ Hk+1((0, 1);Rn) the unique solution of (4.2)

and uN ∈ HN the unique solution of (4.5). Suppose that the hypothesis

(4.3) holds, where h is mentioned. Then, one has

lim
h→0

∥uN − x∥k = 0.

Proof. Let sx,TN
be the interpolating radial basis function of x on TN from

the Wendland function ϕ1,k, then sx,TN
∈ SN . Thus J(uN) ≤ J(sx,TN

), that

also implies that

|(I −K)uN |k+1 ≤ |(I −K)sx,TN
|k+1.

In this case, we have

[[(I −K)uN ]] ≤ [[(I −K)sx,TN
]].

From this, and that the operator (I −K) is linear and compact in the finite-

dimensional space SN , and thus bijective, we can deduce that there exists

C1 > 0 verifying

∥uN∥k+1 ≤ C1∥sx,TN
∥k+1. (4.9)

Taking into account (4.4), it is verified that there exists C2 > 0 such

∥sx,TN
∥k+1 ≤ C2∥x∥k+1.

and, from here and (4.9) we obtain that there exists C > 0 such that

∥uN∥k+1 ≤ C∥x∥k+1.

Thus, the family (uN)N∈N is bounded in Hk+1((0, 1);Rn), and consequently
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there exists a sequence (uNℓ
)ℓ∈N extracted from this family, and an element

x∗ ∈ Hk+1((0, 1);Rn) such that

x∗ = lim
ℓ→+∞

uNℓ
weakly in Hk+1((0, 1);Rn). (4.10)

Suppose that x∗ ̸= x; then, from the continuous injection of Hk+1((0, 1);Rn)

into C([0, 1];Rn), there exists γ > 0 and a nonempty interval ω ⊂ [0, 1] such

that

∀ t ∈ ω, ⟨x∗ − x⟩n > γ.

As this injection is compact, from (4.10)

∃ℓ0 ∈ N, ∀ ℓ ≥ ℓ0, ⟨uNℓ
(t)− x∗(t)⟩n ≤ γ

2
.

Thus, for any ℓ ≥ ℓ0 and t ∈ ω it is verified

⟨uNℓ
(t)− x(t)⟩n ≥ ⟨x∗(t)− x(t)⟩n − ⟨uNℓ

(t)− x∗(t)⟩n >
γ

2
. (4.11)

On the other hand, as we are taking h → 0 along the whole process, using

the density condition (4.3) we can assure that there exists ℓ ∈ N and t∗ℓ ∈ ω

such that t∗ℓ ∈ TNℓ
∩ ω and thus

(I −K)uNℓ
(t∗ℓ) = (I −K)x(t∗ℓ).

The operator I −K, considering the hypotheses taken from the beginning,

it is also a bijection in C((0, 1);Rn), and thus uNℓ
(t∗ℓ) = x(t∗ℓ), which is a

contradiction with (4.11). Thus x∗ = x.

For any ℓ ∈ N it is verified

∥uNℓ
− x∥2k = ∥uNℓ

∥2k + ∥x∥2k − 2(uNℓ
,x)k.



4.3. Numerical Solution of LVIES’s of Second Kind by RBFs 49

Then, from (4.10) and the compact inclusion ofHk+1((0, 1);Rn) intoHk((0, 1);Rn)

(see for example [7]), one has

lim
ℓ→+∞

∥uNℓ
− x∥k = 0. (4.12)

Suppose now that ∥uN −x∥k does not tend to 0 as h tends to 0; in this case,

it would exist α > 0, and a sequence (uN ′
ℓ
)ℓ∈N such that

∀ ℓ ∈ N, ∥uN ′
ℓ
− x∥k > α. (4.13)

However, the sequence (uN ′
ℓ
)ℓ∈N is bounded in Hk+1((0, 1);Rn) and then,

by reasoning as above, we deduce that from this sequence we can extract a

subsequence convergent to x in Hk((0, 1);Rn), what contradicts (4.13). Thus

lim
h→0

∥uN − x∥k = 0.

Corollary 4.3.7. Under the conditions of Theorem 4.3.3 one has

lim
h→0

∥f − (I −K)uN∥k = 0.

Proof. From Theorem 4.3.3 and the continuity of the operator I−K we have

lim
h→0

(I −K)uN = (I −K)x = f in Hk((0, 1); Rn).

Then, from here the result is obtained.

4.3.4 Computation

Let us compute the unique solution of (4.7). The solution of problem (4.6)
can be expressed by

uN =
N∑
i=1

αiϕ1,k(| · −ti|),
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with α1, . . . ,αN ∈ Rn.
Consider the basis {B1, . . . ,BNn} of the space SN given, for ℓ = 1, . . . Nn,
by

Bℓ(t) = ϕ1,k(|t− ti|)ej,

being i = quotient(ℓ− 1, n) + 1 and j = ℓ− (i− 1)n.
Then, the solution of (4.6) can be expressed by

uN =
Nn∑
ℓ=1

αℓBℓ,

with α1, . . . , αNn ∈ R.
By replacing in (4.7), we have

Nn∑
ℓ=1

αℓ ((I −K)Bℓ, (I −K)v)k+1 + ⟨λ, ρv⟩N,n = 0, ∀v ∈ SN ,

subject to the restrictions

Nn∑
ℓ=1

αℓ(I −K)Bℓ(ti) = f(ti), i = 1, . . . , N.

Taking v = Bj, for j = 1, . . . , Nn, we obtain a linear system of order 2Nn
with unknowns α1, . . . , αNn, λ1, . . . , λNn ∈ R, that can be expressed in matrix
form as follows: (

C D
D⊤ 0

)(
α
λ

)
=

(
0
F

)
,

with
C = (((I −K)Bℓ, (I −K)Bj)k+1) 1≤ℓ≤Nn

1≤j≤Nn
,

D = (dij) 1≤i≤Nn
1≤j≤Nn

,

α = (α1, . . . , αNn)
⊤, λ = (λ1, . . . , λNn)

⊤,
F = (fi)1≤i≤Nn,

being, for i = 1 . . . , Nn and j = 1, . . . , Nn,

dij = Πℓ((I −K)Br(ts)),

with r = quotient(i− 1, n) + 1, s = quotient(j − 1, n) + 1, ℓ = j − (s− 1)n
and for i = 1, . . . , Nn,

fi = Πℓ(f(ts)),

with s = quotient(i− 1, n) and ℓ = i− (s− 1)n.
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4.3.5 Numerical Examples

To check the validity of the described method for approximating the solution
of Problem (4.2) we present some numerical experiments.
In order to show the accuracy of the method, we have computed two relative
error estimations, given by the expressions

E1 =
1

1000

1000∑
i=1

⟨f(ai)− (I −K)uN(ai)⟩n,

which estimates how close uN is to the solution of (4.2) and

E2 =

√√√√√√√√√
1000∑
i=1

⟨uN(ai)− x(ai)⟩2n

1000∑
i=1

x(ai)⟩2n

,

which is an approximation of the relative error of uN with respect to x in
L2((0, 1); Rn) being {a1, . . . , a1000} ⊂ [0, 1] thousand distinct random points.
From Theorem 4.3.3 and Corollary 4.3.7, these relative error estimations E1

and E2 tend to 0 as h tends to 0.
Moreover, in all the examples, the discrete space that we use to calculate the
approximated solution uN is the radial basis function space constructed from

the Wendland function ϕ1,1 and the centers set TN = {ti =
i

N
, i = 0, . . . , N}.

In order to compute the numerical integrals, we have employed the following
quadrature formula (see [99])∫ b

a

g(t)dt ≈
n−3∑
i=6

g(ξi) + h

(
206

1575
(g(ξ1) + g(ξn+2) +

107

128
(g(ξ2) + g(ξn+1))+

6019

5760
(g(ξ3) + g(ξn)) +

9467

9600
(g(ξ4) + g(ξn−1))+

13469

13440
(g(ξ5) + g(ξn−2))

)
,

where h =
b− a

n
and

ξ1 = a, ξn+2 = b, ξi = a+
2i− 1

2
h, i = 2, . . . , n+ 1.

This formula has an error order of O(h6) for g ∈ C6([a, b]).
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Example 4.3.8. We consider the following Volterra equation system of order

2 
x1(t)−

∫ t

0

((t− s)3x1(s) + (t− s)2x2(s))ds = t− t5

12
,

x2(t)−
∫ t

0

((t− s)4x1(s) + (t− s)3x2(s))ds = t2 − t6

20
.

The exact solution is

x1(t) = t, x2(t) = t2.

Table 4.2 shows the relative error estimations for distinct values of N .

Table 4.2 : Computed relative error estimations for Example 4.3.8 from some

values of N

N E1 E2

5 2.1868 × 10−2 3.1058 × 10−2

10 3.6034 × 10−3 4.8048 × 10−3

20 6.2683 × 10−4 8.2990 × 10−4

30 2.0727 × 10−4 3.0254 × 10−4

40 1.0215 × 10−4 1.2509 × 10−4

50 6.4520 × 10−5 9.2824 × 10−5

Example 4.3.9. We consider the following Volterra equation system of order

2 
x1(t)−

∫ t

0

(et−sx1(s) + et+sx2(s))ds = et(1− 2t),

x2(t)−
∫ t

0

(−et−sx1(s) + et+sx2(s))ds = e−t.

The exact solution is

x1(t) = et, x2(t) = e−t.
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Table 4.3 shows the relative error estimations for distinct values of N .

Table 4.3 : Computed relative error estimations for Example 4.3.9 from some

values of N

N E1 E2

5 3.0586 × 10−2 2.5854 × 10−2

10 6.4473 × 10−3 3.7229 × 10−3

20 1.1610 × 10−3 6.3689 × 10−4

30 4.4048 × 10−4 2.2905 × 10−4

40 1.5159 × 10−4 1.1068 × 10−4

50 9.9079 × 10−5 6.3629 × 10−5

Example 4.3.10. We consider the following Volterra equation system of

order 3

x1(t)−
∫ t

0

(x1(s) + tx3(s))ds = −t+ t2,

x2(t)−
∫ t

0

((t+ s)x1(s) + x2(s) + (t− s)x3(s))ds = 1− t− t4

2
,

x3(t)−
∫ t

0

((−t− s)x1(s)− x2(s) + (−t+ s)x3(s))ds = −t− t2 +
t4

2
.

The exact solution is

x1(t) = t2, x2(t) = 1, x3(t) = −t2.

Table 4.4 shows the relative error estimations for distinct values of N .
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Table 4.4 : Computed relative error estimations for Example 4.3.10 from

some values of N

N E1 E2

5 2.0024 × 10−2 3.5705 × 10−2

10 2.4457 × 10−3 5.2296 × 10−3

20 2.9878 × 10−4 7.5222 × 10−4

30 7.5462 × 10−5 2.6518 × 10−4

40 2.6133 × 10−5 1.1834 × 10−4

50 1.0932 × 10−5 7.1453 × 10−5

4.4 Linear Volterra integro-differential equa-

tions

In this section, we propose a specific variational method for the numerical
approximation of the solution of a linear Volterra integro-differential problem.
The proposed method is based on the minimization of a suitable functional
in a finite-dimensional space generated by a finite Wendland’s type radial
basis functions (RBFs) set.

4.4.1 Wendland radial basis functions

We consider the same functions ϕ1,k for k = 0, 1, 2 listed in table 4.1 in the
previous section.
Consider

h = sup
t∈I

min
1≤i≤N

|t− ti|. (4.14)

From [115, Theorem 2.1 and Theorem 2.2 ] we can prove the following results.

Theorem 4.4.1. The function ϕ1,n belongs to C2n(R) and the corresponding

native space coincides with the Sobolev space Hn+1(R). Moreover, if ϕ̂1,n is

the Fourier transform of the function ϕ1,n(| · |) then there exist constants K1
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and K2 such that

K1(1 + t2)−n−1 ≤ ϕ̂1,n(|t|) ≤ K2(1 + t2)−n−1, ∀ t ∈ R. (4.15)

Theorem 4.4.2. For all u ∈ Hn+1(I), let su,TN
be the radial basis function

interpolating u on TN from the Wendland function ϕ1,n. Then, there exists

C > 0 such that

∥u− su,TN
∥L∞(I) ≤ C∥u∥n+1h

n+ 1
2 , ∀u ∈ Hn+1(I). (4.16)

Finally, from (4.15) and [Theorem 4.1] in [116] we conclude the following
result.

Theorem 4.4.3. There exists a real number C > 0 and a integer N0 > 0

such that for all N ≥ N0 one has

|u− su,TN
|j ≤ Chn+1−j∥u∥n+1, 0 ≤ j ≤ n+ 1, ∀u ∈ Hn+1(I). (4.17)

Let be r ∈ N with r ≥ n and let SN be the space of the restrictions of
functions on I of the functional linear space generated by the radial basis
functions {ϕ1,r(| · −t1|), . . . , ϕ1,r(| · −tN |)}. Then SN ⊂ Hn+1(I) ∩ C2n(I).

4.4.2 Formulation of the problem

Consider the Volterra integro-differential problem: Find u ∈ H2n(I) such
that  Du(t) = f(t) +

∫ t

a

k(t, s)u(s)ds, a ≤ t ≤ b,

diu(a) = yi1, diu(b) = yi2, 0 ≤ i ≤ n− 1,

(4.18)

where k ∈ C(I × I), f ∈ C(I) and yi1, y
i
2 ∈ R, for i = 0, . . . , n− 1, are given.

In the remainder of this section, we suppose that Problem (4.18) has a unique
solution x ∈ H2n(I).
Then, Problem (4.18) is equivalent to the problem: Find u ∈ H2n(I) such
that {

(D − Λ)u = f,
diu(a) = yi1, diu(b) = yi2, 0 ≤ i ≤ n− 1,

(4.19)
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and x = (D−Λ)−1(f), verifying dix(a) = yi1, dix(b) = yi2, for 0 ≤ i ≤ n−1,
is the unique solution of Problem (4.18).
Suppose N > 2n+ 2 and let ρ : Hn(I) → RN−2n be the operator given by

ρv = ((D − Λ)v(ti+n))1≤i≤N−2n.

For i = 1, . . . , 2n, let φi be the linear form in Hn(I) given by

φi(v) =

{
di−1v(a) if i = 1, . . . , n,
di−n−1v(b) if i = n+ 1, . . . , 2n,

and consider the operator τ : Hn(I) → R2n given by

τu = (φi(v))1≤i≤2n,

the vector y = (y1, . . . , yn) ∈ R2n, being

yi =

{
y1i−1 if i = 1, . . . , n,
y2i−n−1 if i = n+ 1, . . . , 2n,

the vector F = (f(ti+n))1≤i≤N−2n ∈ RN−2n, the affine variety KN = {u ∈
Sn : ρu = F} and the linear subspace K0

N = {u ∈ SN : ρu = 0}.

Lemma 4.4.4. The set KN is a nonempty closed convex subset of SN . More-

over it is an affine variety associated with the linear subspace K0
N .

Proof. Let x ∈ H2n(I) the unique solution of Problem (4.18), then there

exists a unique u0 ∈ SN such that

u0(ti) =

 0, if i = 1, . . . , n, or i = N − n+ 1, . . . , N,

x(ti), if i = n+ 1, . . . , N − n.

Then ρu0 = ρx = F and thus u0 ∈ KN and KN is a nonempty set.

The remainder of the proof is immediate.

Lemma 4.4.5. For ε > 0, the application << · , · >>: Hn+1(I)×Hn+1(I) →

R defined by

<< u, v >>= ⟨τu, τv⟩2n + ε(u, v)n+1 (4.20)

is an inner product on Hn+1(I) and its associated norm, given by [[u]] =<<

u, u >>1/2, is equivalent to the usual Sobolev norm ∥u∥n+1.
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Proof. Is similar to the proof of [49, Lemma 1].

Definition 4.4.6. We say that uN ∈ KN is an approximating radial basis

function of Problem (4.18) relative to ϕ1,n, TN , ε, F and y if uN is a solution

of the following minimization problem: Find uN ∈ KN such that

∀ v ∈ KN , ⟨τuN − y⟩22n + ε|uN |2n+1 ≤ ⟨τv − y⟩22n + ε|v|2n+1. (4.21)

Theorem 4.4.7. Problem (4.21) has a unique solution uN ∈ KN which is

the unique solution of the following variational problem:

∀ v ∈ K0
N , ⟨τuN , τv⟩2n + ε(uN , v)n+1 = ⟨y, τv⟩2n. (4.22)

Proof. The application << · , · >> is a coercive bilinear and symmetric

form on Hn+1(I)×Hn+1(I).

Let φ(v) = ⟨y, τv⟩2n, which is clearly a linear and continuous operator on

Hn+1(I). So, by applying Stampacchia Theorem [19, Theorem 5.6] we con-

clude that there exists a unique uN ∈ KN such that << uN , w − uN >>≥

φ(w − uN) for all w ∈ KN , which implies that << uN , v >>≥ φ(v) for all

v ∈ K0
N .

As K0
N is a linear subspace, if v ∈ K0

N verifies that −v ∈ K0
N , then it follows

that << uN , v >>= φ(v), for any v ∈ K0
N . Furthermore, uN is the minimum

in KN of the functional ϕ(v) = 1
2
<< v, v >> −φ(v), that is equivalent to

Problem (4.22).

Theorem 4.4.8. There exists one and only one (N−2n+1)-tuple (uN , λ) ∈

SN × RN−2n such that

∀ v ∈ SN , ⟨τuN , τv⟩2n + ε(uN , v)n+1 + ⟨λ, ρv⟩N−2n = ⟨y, τv⟩2n, (4.23)

where uN is the unique solution of (4.22).
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Proof. For any i = 1, . . . , N , let pi ∈ PN−1(I) the interpolating Lagrange

polynomial such that pi(tj) = δij, for i = 1, . . . , N , and let ωi = (D−Λ)−1pi,

with τωi = y. Finally, let si ∈ SN be the Wendland basis function associated

with TN and ωi.

Then (D − Λ)si(tj) = (D − Λ)ωi(tj) = pi(tj) = δij, for any j = 1, . . . N .

For any v ∈ KN , let w ∈ KN given by

w(t) = v(t)−
N−n∑
j=n+1

(D − Λ)v(tj)sj(t).

Then, for any i = n+ 1, . . . , N − n we have

(D − Λ)w(ti) = (D − Λ)v(ti)−
N−n∑
j=n+1

(D − Λ)v(tj)(D − Λ)sj(ti) =

(D − Λ)v(ti)− (D − Λ)v(ti) = 0.

Hence we deduce that w ∈ K0
N and, from Theorem 4.4.7,

⟨τuN , τw⟩2n + ε(uN , w)n+1 = ⟨y, τw⟩2n,

that is

⟨τuN , τv⟩2n −
N−n∑
j=n+1

(D − Λ)v(tj)⟨τuN , τsj⟩2n+

ε(uN , v)n+1 − ε

N−n∑
j=n+1

(D − Λ)v(tj)(uN , sj)n+1 =

⟨y, τv⟩2n −
N−n∑
j=n+1

(D − Λ)v(tj)⟨y, τsj⟩2n.

Here we have

⟨τuN , τv⟩2n + ε(un, v)n+1+
N−n∑
j=n+1

(⟨y − τuN , τsj⟩2n − ε(uN , sj)n+1) (D − Λ)v(tj) = ⟨y, τv⟩2n.

Taking λ = (⟨y − τuN , τsj⟩2n − ε(uN , sj)n+1)n+1≤j≤N−n we obtain (4.23).

The uniqueness of λ is immediate.
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4.4.3 Computation of the numerical solution

The solution of Problem (4.22) can be expressed by

uN =
N∑
j=1

αjϕ1,r(| · −tj|),

with α1, . . . , αN ∈ R.
By replacing in (4.23) we have

⟨τ(
N∑
j=1

αjϕ1,r(| · −tj|), τv⟩2n + ε(
N∑
j=1

αjϕ1,r(| · −tj|), v)n+1+

⟨λ, F ⟩N−2n = ⟨y, τv⟩2n, ∀ v ∈ SN ,

subject to the restrictions

N∑
j=1

αj(D − Λ)ϕ1,r(|ti − tj|) = f(ti), i = n+ 1, . . . , N − n.

Taking v = ϕ1,r(| · −ti), for i = 1, . . . , N , we obtain a linear system of order
2N −2n with unknowns α1, . . . , αN ∈ R, λ ∈ RN−2n, which can be expressed
in matrix form as follows(

C D
D⊤ 0

)(
α
λ

)
=

(
G
F

)
,

with
C = AA⊤ + εR,

A = (φj(ϕ1,r(| · −ti|))) 1≤i≤N
1≤j≤2n

R = ((ϕ1,r(| · −ti|), ϕ1,r(| · −tj|)n+ 1)1≤i,j≤N ,

D = ((D − Λ)(ϕ1,r(|tj − ti|))) 1≤i≤N
n+1≤j≤N−n

G = Ay

and α = (α1, . . . , αN)
⊤.

4.4.4 Convergence results

Theorem 4.4.9. Let denote x ∈ H2n(I) the unique solution of Problem

(4.18) and uN ∈ SN the unique solution of Problem (4.21). Suppose that the
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hypothesis (4.14) holds and moreover

ε = O(1), N → +∞, (4.24)

h2

ε
= o(1), N → +∞. (4.25)

Then, one has

lim
N→+∞

∥uN − x∥n = 0. (4.26)

Proof. Let sx,TN
∈ SN be the interpolating radial basis function of x on TN

from the Wendland function ϕ1,r. Then

⟨τuN − y⟩22n + ε|uN |2n+1 ≤ ⟨τsx,TN
− y⟩22n + ε|sx,TN

|2n+1. (4.27)

From (4.21) and (4.17) there exists C > 0 and N0 ∈ N such that for

N ≥ N0 one has

⟨τsx,TN
− y⟩22n ≤ Ch2∥x∥2n+1 and |sx,TN

|2n+1 ≤ C∥x∥2n+1.

Thus, from (4.27), one has

|uN |2n+1 ≤ C(
h2

ε
+1)∥x∥2n+1 and ⟨τuN⟩22n ≤ C(h2 + ε)∥x|2n+1 + ⟨y⟩22n. (4.28)

We conclude, from (4.24)–(4.28), that there exists C > 0 and N0 ∈ N such

that

⟨τuN⟩22n + |uN |2n+1 ≤ C, ∀N ≥ N0.

Finally, from Lemma 4.4.5, we conclude that there exists C > 0 and N0 ∈ N

such that

∥uN∥n+1 ≤ C, ∀N ≥ N0.

Hence, the family (uN)N≥N0 is bounded in Hn+1(I) and consequently there
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exists a sequence (uNℓ
)ℓ∈N extracted from this family and an element x∗ ∈

Hn+1(I) such that

x∗ = lim
ℓ→+∞

uNℓ
weakly in Hn+1(I). (4.29)

From here the proof is analogous to the proof of [49, Theorem 4]

Corollary 4.4.10. Under the conditions of Theorem 4.4.9 one has

lim
N→+∞

∥f − (D − Λ)uN∥0 = 0.

Proof. From Theorem 4.4.9 and the continuity of the operator D−Λ we have

lim
N→+∞

(D − Λ)uN = (D − Λ)x = f in L2(I).

Then, from here the result is obtained.

4.4.5 Numerical Examples

We present some numerical examples by computing an approximating solu-
tion of Problem (4.17) in order to verify the validity of the described method.
To this end, in each case, we have computed two error estimations, given by
the expressions

E1 =
1

3000

3000∑
i=1

|f(ai)− (D − Λ)uN(ai)|,

and

E2 =

√√√√√√√√√
3000∑
i=1

(uN(ai)− x(ai))
2

3000∑
i=1

x(ai)
2

,

which estimate how close uN is to the solution of (4.17) and an approxima-
tion of the relative error of uN with respect to this exact solution in L2(I),
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respectively, being {a1, . . . , a3000} ⊂ I a distinct random points set.
From Theorem 4.4.9 and Corollary 4.4.10, these relative error estimations E1

and E2 tend to 0 as N tends to +∞.
Moreover, in all the examples, we have taken ε = 10−9, r = 2 and the centers

set is TN = {ti = a+
b− a

N
i, i = 0, . . . , N}.

In order to compute the numerical integrals, we have used the composite
Simpson 1/3 rule for max{N + 1, 50} equidistant knots.

Example 4.4.11. We consider [a, b] = [0, 1] and the following Volterra

integro-differential problem of order 2
−u′′(t)−

∫ t

0

(s− t)u(s)ds = −1− t, 0 < t < 1

u(0) = 1, u(1) = e.

The exact solution is

u(t) = et.

Table 4.5 shows the relative error estimations for distinct values of N .

N E1 E2

10 2.7218× 10−1 8.1013× 10−3

20 6.1951× 10−2 1.4603× 10−3

40 1.6277× 10−2 3.5987× 10−4

80 6.2561× 10−3 1.4030× 10−4

160 1.0771× 10−3 6.0484× 10−5

320 4.5853× 10−4 3.0030× 10−5

Table 4.5 : Computed relative error estimations for Example 1 from some

values of N .
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Example 4.4.12. We consider [a, b] = [0, 1] the following Volterra integro-

differential problem of order 2
−u′′(t) + u(t)−

∫ t

0

−t tan(s)u(s)ds = t+ (2− t) cos t, 0 < t < 1

u(0) = 1, u(1) = cos 1.

The exact solution is

u(t) = cos t.

Table 4.6 shows the relative error estimations for distinct values of N .

N E1 E2

10 7.1910× 10−2 3.5985× 10−3

20 2.0539× 10−2 5.4592× 10−4

40 5.0931× 10−3 5.6814× 10−5

80 1.3689× 10−3 1.9949× 10−5

160 4.9810× 10−4 9.9007× 10−6

320 6.8934× 10−5 4.9236× 10−6

Table 4.6 : Computed relative error estimations for Example 2 from some

values of N .

Example 4.4.13. We consider [a, b] = [0, π] and the following Volterra

integro-differential problem of order 2

−u′′(t) + sin t u(t)−
∫ t

0

(− cos t− cos s)u(s)ds =

t

2
+ cos(t) +

5

2
sin(t) cos(t), 0 < t < π

u(0) = 1, u(π) = −1.
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The exact solution is

u(t) = cos t.

Table 4.7 shows the relative error estimations for distinct values of N .

N E1 E2

20 1.0101× 10−1 1.0072× 10−2

40 3.0369× 10−2 5.4190× 10−3

80 8.4776× 10−3 1.0948× 10−3

160 1.5010× 10−3 7.2447× 10−4

320 5.5338× 10−4 5.1316× 10−4

Table 4.7 : Computed relative error estimations for Example 3 from some

values of N .

Example 4.4.14. We consider [a, b] = [0, 1] and the following Volterra

integro-differential problem of order 4
uiv(t) + u(t)−

∫ t

0

u(s)ds = −t
5

5
+ t4 + 24, 0 < t < 1

u(0) = u′(0) = 0, u(1) = −1, u′(1) = 4.

The exact solution is

u(t) = t4.

Table 4.8 shows the relative error estimations for distinct values of N .
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N E1 E2

20 2.4411× 10−1 1.4699× 10−1

40 7.3201× 10−2 4.6247× 10−2

80 1.9593× 10−2 1.3083× 10−2

160 5.0002× 10−3 3.6938× 10−3

320 1.1289× 10−3 9.8196× 10−4

640 3.1596× 10−4 2.3896× 10−4

Table 4.8 : Computed relative error estimations for Example 4 from some

values of N .
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Chapter 5

Generalized Wendland RBFs

for bivariate functions

5.1 Introduction

Frequently, positive kernels reproducing Hilbert spaces of continuous func-
tions appear in some applications and they are presented as radial basis
functions

Ψ(x, y) = ψ(⟨x− y⟩n), ∀x, y ∈ Rn,

where ⟨ · ⟩n denotes the Euclidean norm in Rn, and ψ : [0,+∞) → R is a
given smooth univariate function.

The Wendland functions [114] yield compactly supported and differen-
tiable functions in Rn that reproduce kernels of Hilbert spaces isomorphic to
the Sobolev space Hn/2+k+1/2(Rn). Thus, when the dimension n is even, the
order of this Sobolev space is not integer.

Robert Shaback [100] extend the classical Wendland functions to the miss-
ing Wendland functions that reproduce kernels of Hilbert spaces isomorphic
to the Sobolev spaces of integer order in even dimensions. Moreover, they
have compact support.

To better understand the objective of this work, we believe that we should
cite a brief history of the theory of the approximation problem using the
variational spline functions. The theory of the approach using the variational
splines has been introduced by Attéia [8] based on the Dm-splines functions,
after Duchon [38] developed the idea using the technique of the minimization
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of quadratic functionals. We have enriched this generic idea by minimizing
various types of quadratic functionals, first in Hilbert spaces and secondly in
a finite element space, such as in [71]. We have studied some interpolation
and smoothing methods for constructing free-form curves and surfaces from
a given Lagrangian and/or Hermite data set. The methods consist in the
minimization of a certain quadratic functional in a Sobolev space.

In recent years, some authors related with this thesis have started some
works of approximation using the Wendland radial basic functions.In [72] we
have presented an approximation method from a given scattered data set, by
minimizing a quadratic functional in a parametric finite element space. In
[73] we consider the same problem from a given noisy data set; meanwhile,
in [74] we study these problems in a bicubic spline functional space and the
optimal solution is obtained by a suitable optimization of some parameters
that appear in the minimization functional. The recent publications were
the result of them, see for example [49], where the authors proposed an
approximation method for solving second kind Volterra integral equation
systems by radial basis functions.

Specially, in this chapter we deal with the smoothing problem in a finite-
dimensional Generalized Wendland functions space; formulating the problem
of smoothing variational splines by Generalized Wendland functions, we show
how to compute in practice the solution of such problem and the method
is justified by proving the corresponding convergence result. In order to
illustrate the method, some graphical and numerical examples are presented
in R2 and also comparison with other works are analyzed.

The remainder of this chapter is organized as follows. In section 2 we
present some notations and preliminaries that are necessary to formulate the
problem. Section 3 is devoted to study the Generalized Wendland compactly
supported radial basis functions while section 4 is dedicated to show the
problem of the smoothing variational splines by Generalized Wendland func-
tions. In the last section, we finish this work by illustrating some numerical
and graphical examples and a study of comparisons with another work.

5.2 Generalized Wendland CSRBFs

Definition 5.2.1. Let be ψ : [0,+∞) → R a continuous function, a set

Ω ⊂ R2, and a finite set TN = {ξ1, . . . , ξN} of points of Ω, the linear space
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generated by the functions set

SN = {ψ(⟨· − ξ1⟩2), . . . , ψ(⟨· − ξN⟩2)} (5.1)

is called the radial basis functions space relative to the function ψ and the

centers set TN , bein < · , · >2 the Euclidean inner-product in R2.

Definition 5.2.2. Consider a function u ∈ C(Ω) and the radial basis func-

tion su,TN
∈ SN given by

su,TN
(x) =

N∑
i=1

ciψ(⟨x− ξi⟩2), x ∈ Ω, (5.2)

where c1, . . . , cN ∈ R are determined by the interpolating conditions

su,TN
(ξi) = u(ξi), 1 ≤ i ≤ N. (5.3)

Then su,TN
, if it exists, is called the interpolation radial basis function (RBF)

of u in SN (relative to ψ and TN).

Remark 5.2.3. The interpolation RBF su,TN
exists and it is unique if and

only if

det((ψ(⟨ξi − ξj⟩2))1≤i,j≤N) ̸= 0.

Robert Shaback in [100] consider the integral operator

Iα(f)(t) =

∫ ∞

t

f(s)
(s− t)α−1

Γ(α)
ds

for all α > 0, t ≥ 0.
Consider the truncated power functions for all µ > 0.

aµ(s) = (1−
√
2s)µ+.

Since the Iα operators preserve compact supports and are applicable to aµ
for all α, µ > 0, we can define aµ,α = Iα(aµ).
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Definition 5.2.4. We call Generalized Wendland functions The functions

Ψµ,α given by

Ψµ,α(r) = aµ,α(
r2

2
), ∀α, µ > 0,

which are well defined and supported in [0, 1]

Remark 5.2.5. Taking into account the above definition, we have that

Ψµ,α(t) =

∫ 1

t

s(1− s)µ
(s2 − t2)α−1

+

Γ(α)2α−1
ds, ∀t ∈ [0, 1].

In [100] it deduces an algorithm for constructing the Generalized Wend-
land functions for even dimensions 2m in the following way

Ψ2m,(2ℓ−1)/2(r) = r2ℓpm,ℓ(r
2)L(r) + qm,ℓ(r

2)S(r), r ∈ [0, 1],

for any integers m, ℓ ≥ 0, being

L(r) = log

(
r

1 +
√
1− r2

)
, S(r) =

√
1− r2,

and pm,ℓ, qm,ℓ two associated polynomials of degree m − 1 and m − 1 + ℓ,
respectively.

Ψ2,1/2(r) =

√
2

3
√
π
(3r2L(r) + (2r2 + 1)S(r)),

Ψ2,3/2(r) = −
√
2

60
√
π
(15r4L(r) + (8r4 + 9r2 − 2)S(r)),

Ψ2,5/2(r) =

√
2

2520
√
π
(105r6L(r) + (48r6 + 87r4 − 38r2 + 8)S(r)),

Ψ4,1/2(r) =

√
2

30
√
π
((45r4 + 60r2)L(r) + (16r4 + 83r2 + 6)S(r)),

Ψ4,3/2(r) = −
√
2

420
√
π
((105r6 + 210r4)L(r) + (32r6 + 247r4 + 40r2 − 4)S(r)),

Table 5.1 : Some Generalized Wendland functions in even dimensions.

Theorem 5.2.6. Let be Ω ⊂ R2, TN = {ξ1, . . . , ξN} ⊂ Ω a centers set and

n, k ∈ N with k ≥ 0. Let be sf,TN
the interpolation RBF of f ∈ Hk+2(Ω)

relative to TN from Ψk+2,k+1/2 = Ψα+3/2,α with α = k + 1/2.
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Let

h = sup
x∈Ω

min
1≤i≤N

⟨x− ξi⟩2

be the fill-distance of TN in Ω, where < · >2 denote the Euclidean norm in

R2.

Then

|f − sf,TN
|j ≤ Chk+2−j∥f∥k+2, ∀ j = 0, . . . , k + 2, (5.4)

where C is independent of f .

Proof. Applying [91, Proposition 3.2] for α = 0, s = 0 and τ = k + 2 it

is verified that k + 2 > α + 1 and thus there exists a real constant C > 0,

independent of f , such that

∥f − sf,TN
∥0 ≤ Chk+2∥f∥k+2 (5.5)

From Madych-Nelson Theorem[59, Theorem 6] it is verified that

(Ψk+2,k+1/2(⟨· − ξj⟩2), sf,TN
) = sf,TN

(ξj)

and

(Ψk+2,k+1/2(⟨· − ξj⟩2), f) = f(ξj) = sf,TN
(ξj),

where ( · , · ) denotes de inner product in the dual space of SN . Then (Ψk+2,k+1/2(⟨·−

ξj⟩2), sf,TN
− f) = 0, for all i = 1, . . . , N and here we have that sf,TN

− f is

orthogonal to SN .

Thus, for any s ∈ SN it is verified ((sf,TN
− s, sf,TN

− f))k+2 = 0 and we

obtain that

∥s− f∥2k+2 = ∥s− sf,TN
+ sf,TN

− f∥k+2 = ∥s− sf,TN
∥2k+2 + ∥sf,TN

− f∥2k+2.

Hence we have

∥sf,TN
− f∥2k+2 ≤ ∥s− f∥2k+2
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and taking s = 0 we conclude that

∥sf,TN
− f∥k+2 ≤ ∥f∥k+2. (5.6)

From (5.5)– (5.6) and [62, Lemma 3.3.3] we can affirm that there exists

C > 0, independent of f , such that

∥f − sf,TN
∥j ≤ Chk+2−j∥f∥k+2, ∀ j = 0, . . . , k + 2.

Then, there exists C > 0, independent of f such that

|f − sf,TN
|j ≤ Chk+2−j∥f∥k+2, ∀ j = 0, . . . , k + 2

and (5.4) holds.

5.3 Smoothing variational splines by Gener-

alized Wendland functions

Given a function f ∈ Hk+2(Ω) with k ≥ 0 and a finite set of points A =
{a1, . . . ,an} ⊂ Ω, we consider the functional θ : Hk+1(Ω) → Rn given by

θv = (v(ai))1≤i≤n ∈ Rn

and let Γ be the functional defined on Hk+2(Ω) by

Γ(v) = ⟨θv − θf⟩2n + ε|v|2k+2.

Remark 5.3.1. The first term of Γ(v) indicates how well v approaches

f in a least discrete square sense. The second term represents a classical

smoothness measure weighted by the parameter ε.

Let SN be the radial basis functions space relative to the function ψk+2,k+ 1
2

and the centers set TN and consider the following minimization problem:
Find σ ∈ SN such that

∀ v ∈ SN , Γ(σ) ≤ Γ(v). (5.7)
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Suppose that A is a Pk+1-unisolvent set, that is,

ker θ ∩ Pk+1(Ω) = {0} (5.8)

and suppose that

sup
x∈Ω

min
a∈A

⟨x− a⟩2 = o(
1

n
), n→ +∞. (5.9)

Theorem 5.3.2. Problem (5.7) has a unique solution, called smoothing vari-

ational spline in SN associated with A, θf and ε, which is the unique solution

of the following variational problem: Find σn ∈ SN such that

∀ v ∈ SN , ⟨θσn, θv⟩n + ε(σn, v)k+2 = ⟨θf, θv⟩n. (5.10)

Proof. From (5.8) we have that the bilinear application η : Hk+2(Ω) ×

Hk+2(Ω) → R given by

η(u, v) = 2(⟨θu, θv⟩n + ε(u, v)k+2)

is continuous and Hk+2(Ω)-elliptic. Applying Lax-Milgram Lemma [7, Theo-

rem 3.8.2] for η and the continuous linear application ℓ : Hk+2(Ω) → R given

by ℓ(v) = 2⟨θf, θv⟩n there exists σn ∈ SN such that

∀ v ∈ SN , η(σn, v) = ℓ(v)

and (5.10) holds. Moreover σn minimizes the functional φ(v) = 1
2
a(σn, v) −

ℓ(v) = Γ(v)− ⟨θf⟩2n and thus σn is the solution of Problem (5.7).

For computing the solution function σn, for i = 1, . . . , N , let wi ∈ SN be
the function

wi(ξ) = ψk+2,k+ 1
2
(⟨ξ − ξi⟩2), ∀ ξ ∈ Ω,

then σn =
N∑
i=1

αiwi. Applying Theorem 5.3.2 we obtain that c = (c1, . . . , cN)
⊤ ∈

RN is the solution of the linear system

(AA⊤ + εR)c = Aθf ,
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where its coefficients are given as follows

A = (θwi)1≤i≤N ∈ RN,n

and
R = ((wi, wj)k+2)1≤i,j≤N .

Now, we are going to prove that the smoothing variational spline σn
converges to the function f under suitable hypotheses.

Theorem 5.3.3. Suppose hypotheses (5.8)–(5.9) hold and that

ε = o(1), n→ +∞ (5.11)

and
n2h2k+4

ε
= o(1), n→ +∞. (5.12)

Then

lim
n→+∞

∥σn − f∥k+2 = 0.

Proof. Let sf,TN
be the interpolation RBF of f relative to TN from ψk+2,k+1/2,

then Γ(σn) ≤ Γ(sf,Tn) and one has

⟨θσn − θf⟩2n + ε|σn|2k+2 ≤ ⟨θsf,TN
− θf⟩2n + ε|sf,TN

|2k+2. (5.13)

From(5.4) there exists C > 0 such that

|sf,TN
|2k+2 ≤ C∥f∥2k+2 (5.14)

and

⟨θf − θsf,TN
⟩2n ≤ n2Ch2k+4∥f∥2k+2. (5.15)

Thus, from (5.13)–(5.15) we have that

|σn|2ks2 ≤
1

ε
⟨θf − θsf,TN

⟩2n + |sf,TN
|2k+2 ≤ (

n2h2k+4

ε
+ 1)C∥f∥2k+2

and, from (5.12) we conclude that there exists C1 > 0 and n1 ∈ N such that

|σn|2k+2 ≤ C1, ∀n ≥ n1. (5.16)
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Moreover, from (5.13)–(5.15) we have that

⟨θσn − θf⟩2n ≤ (n2h2k+4 + ε)C∥f |2k+2

and, from (5.11)–(5.12) there exists C2 > 0 and n2 ∈ N such that

⟨θσn − θf⟩n ≤ C2, ∀n ≥ n2. (5.17)

From (5.16)–(5.17) we can deduce that there exists a real constant C > 0

and n0 ∈ N such that

∥σn∥k+2 ≤ C, n ≥ n0,

which means that the family (σn)n≥n0 is bounded in SN . It follows that

there exists a subsequence (σnl
)l∈N with lim

l→+∞
nl = +∞ and an element

f ∗ ∈ Hk+2(Ω) such that

σnl
converges weakly to f ∗ in Hk+2(Ω).

Finally, reasoning as the points 3), 4) and 5) of the proof of [3, Theorem

VI-3.2], we obtain the result.

5.4 Numerical and graphical examples

To show the effectiveness of the method, we have computed two relative error
estimations given by

Ei =

√√√√√√√√√
5000∑
i=1

(sf,TN
(ai)− f(ai))

2

5000∑
i=1

f(ai)
2

, Es =

√√√√√√√√√
5000∑
i=1

(σn(ai)− f(ai))
2

5000∑
i=1

f(ai)
2

,

being {a1, . . . , a5000} ⊂ I five thousands distinct random points, which are
some approximations of the relative error of sf,TN

and σn respectively, with
respect to f in L2(I) .
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From Theorem 5.3.3, these relative error estimations Ei and Es tends to
0 as n tends to +∞, under adequate conditions.

Consider the Franke function given by

f(x, y) = 0.75e−
1
10

(9x+1)1− 1
49

(9y+1)2 − 0.2e−((9x−7)2+(9y−4)2)+

0.5e−
1
4((9x−3)2+(9y−7)2) + 0.75e−

1
4((9x−2)2+(9y−2)2),

for any (x, y) ∈ Ω = (0, 1)× (0, 1).
Moreover, the discrete space that we use to calculate the approximated

solution σn is the RBFs space constructed from the Generalized Wendland
function Ψ2,1/2 and the centers set

TN =

{
(

i

r − 1
,

j

r − 1
) i, j = 0, . . . , r − 1

}
,

being N = r2.

Table 5.2 shows the relative error estimation Es from r = 10 (N =
dimSN = 100) and n = 1000 for different values of ε. In this case Ei =
5.8496 × 10−3. We observe that there exists an optimum value of ε that
could be estimated minimizing Es.

ε Es

10−3 6.1827× 10−3

10−6 3.1421× 10−3

10−9 2.9671× 10−3

10−12 3.0629× 10−3

10−15 3.0927× 10−3

Table 5.2 : Computed relative error estimation Es from r = 10 and n = 1000

for different values of ε. Ei = 5.8496× 10−3.

Table 5.3 shows the relative error estimation Es from r = 10 (N =
dimSN = 100) and ε = 10−9 for different values of n. In this case Ei =
5.8496× 10−3. We observe that Es decreases when n increases and it seems
that it tends to stabilize.
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n Es

100 5.7736× 10−3

500 3.5199× 10−3

1000 3.0276× 10−3

2500 2.9316× 10−3

5000 2.7236× 10−3

Table 5.3 : Computed relative error estimation Es from r = 10 and ε = 10−9

for different values of n. Ei = 5.8496× 10−3.

Table 5.4 shows the relative error estimations Ei and Es from n = 1000
and ε = 10−9 for different values of r. We observe that Ei and Es decrease
when r increases.

r Ei Es

5 5.9404× 10−2 4.4007× 10−2

7 3.1667× 10−2 2.5946× 10−2

10 5.8496× 10−3 3.0276× 10−3

12 3.9227× 10−3 1.8972× 10−3

Table 5.4 : Computed relative error estimation Es from n = 1000 and ε =

10−9 for different values of r.

Figure 5.4.1 shows the graphs of the function f and Figure 5.4.2 shows the
interpolation RBF sf,TN

and the smoothing variational spline σn for r = 10,
n = 1000 and ε = 10−9, from left to right. We have obtained that Ei =
5.8496× 10−3 and Es = 3.0276× 10−3.
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Figure 5.4.1: Graph of the function f .

Figure 5.4.2: Graphs of the interpolation RBF sf,TN
and the smoothing vari-

ational spline σn for r = 10, n = 1000 and ε = 10−9, from left to right.



Chapter 6

Non-parametric Density

Estimation

6.1 Introduction

The foundational statistical method of density estimation, as articulated by
Silverman [106], boasts a multitude of applications spanning diverse fields. In
the intricate landscape of finance, density estimation serves as a key element
for risk assessment and asset pricing. It unveils market volatility, offering
valuable insights that guide investment choices, as highlighted by Johannes
[65]. Transitioning to healthcare, experts leverage density estimation for
in-depth illness analysis and medical imaging. This strategic application
facilitates the identification of irregularities, fostering a comprehensive un-
derstanding of how diseases propagate within populations [93].

Moreover, density estimation plays a pivotal role in environmental science,
where it functions as a predictive tool for pollution levels [30]. Its contribu-
tion to supporting the formulation of effective environmental laws cannot be
overstated [76]. Beyond these applications, density estimation emerges as an
indispensable tool for anomaly detection and generative modeling within the
realms of machine learning and artificial intelligence. Its impact resonates
in applications such as fraud detection and data synthesis, underscoring its
relevance in cutting-edge technological domains [50].

The utility of density estimation extends into the social sciences and
urban planning, as noted by McArthur [84]. Criminologists employ its an-
alytical power to dissect crime trends and craft preventive strategies [63].
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Similarly, sociologists use it for meticulous population research and resource
allocation. Urban planners, grappling with the complexities of modern cities,
heavily rely on density estimation. It aids in examining complex issues like
traffic congestion, land use, and the strategic direction of infrastructure devel-
opment. The pervasive influence of density estimation is further exemplified
in its role in refining chat-bots and recommendation engines. By enhanc-
ing language modeling, sentiment analysis, and recommendation systems in
natural language processing, density estimation significantly contributes to
the effective functioning of these technological applications [80]. These real-
world use cases collectively emphasize the overarching importance of density
estimation across a spectrum of academic disciplines and practical domains.

Nonparametric density estimation avoids the parametric assumptions in
probabilistic modeling and reasoning, which achieves flexibility in data mod-
eling while reducing the risk of model misspecification [105],[47]. Hence,
nonparametric density estimation is an important research area in statistics.
In this chapter, we focus on the estimation of univariate density functions,
which is a classic problem in nonparametric statistics.

There are four main techniques for nonparametric estimation, i.e., his-
tograms, orthogonal series, kernels, and splines. Histograms transform the
continuous data into discrete data, while important information may be lost
during the discretization process [45]. Kernel density estimation is one of the
most famous methods for density estimation, which still remains an active
research area (see [15] and references therein).

Asymmetric kernel estimators have been suggested as a solution to the
well-known problem of boundary bias. This problem arises from using sym-
metric kernels, which assign weights outside the density support near zero.
The statistical literature has introduced several kernels with asymmetric den-
sities, including the gamma and modified gamma kernels [28], inverse and
reciprocal inverse Gaussian kernels [20], lognormal and Birnbaum-Saunders
(BS) kernels [64], and more recently, the generalized Birnbaum-Saunders
(GBS) [88] and skewed GBS kernels [98]. It’s important to note that the
GBS kernels include special cases like the BS-power-exponential (BS-PE)
and the BS-Student-t (BS-t) kernels. These kernels, such as lognormal, BS,
GBS, and skewed GBS, are primarily designed for analyzing the densities of
nonnegative heavy-tailed HT data, which are considered irregular data and
are encountered in various fields like finance, actuarial science, web traffic,
environmental science, and more. Research [88] has shown that the BS-PE
kernel estimator for an unknown probability density function of nonnegative
HT data can outperform other estimators, such as those using lognormal,
BS, and BS-t kernels, in terms of integrated squared error (ISE).

The important part of any estimation procedure is the bandwidth selec-
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tion method. The existing literature on bandwidth is quite rich (see [70],[79]
and references therein). It should be noted that the least squares cross-
validation (LSCV) formula in closed form was proposed in [70], which can be
used to determine the bandwidth efficiently. In this paper, we use nonuniform
kernel density estimators. By introducing the local error indicator attached
to the class of data points, we design an adaptive refinement strategy, which
increases the approximation capability of the local density estimator. The
numerical experiments show that our adaptive local density estimation pro-
duces a smaller approximation errors. The adaptive approach we used yielded
reasonable results, which are shown in graphs at the end of this work.

The remainder of the chapter is organized as follows. In the next section
we give the basic notions of non-parametric density estimation. In Section
3, we detail the proposed methodology for density estimation with the adap-
tive bandwidth refinement strategy. Numerical experiments are provided in
Section 4. Finally, conclusions will be included in Chapter 7.

6.2 Density estimation

In practice, the probability density function (PDF) of some observable ran-
dom variable X is in general unknown. All we have are n observations
X1, ..., Xn of X and our task is to use these n values to estimate f(x). We
shall assume that the n observations are independent and that they all indeed
come from the same distribution, namely f(x). That is, we will be concerned
with estimating f(x) at a certain value x from i.i.d. data (independent and
identically distributed).

A density estimate is created by extrapolating the density function from
the observed data. Basically, we are interested in finding an unknown func-
tion f(x) given only random samples or observations spread over this func-
tion. More formally, the goal of density estimation is to infer the probability
density function, or pdf, from observations of a random variable.

The distribution from which the data set is produced is a crucial ques-
tion when a dataset is accessible. In parametric estimation, a distribution is
hypothesized before the parameters are estimated; nevertheless, the validity
of the analysis is called into doubt if the assumed distribution is incorrect.
However, no distributional presumptions are assumed while doing nonpara-
metric density estimation. As a result, it became a widely used technique for
estimating density. In this research, we use kernel density estimation which
is one of the most effective methods for nonparametric density estimation.
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6.2.1 Kernel density estimation

Kernel Density Estimation (KDE) stands as an effective non-parametric sta-
tistical technique employed to estimate the probability density function of
continuous random variables. Its versatility lies in its ability to capture the
inherent distributions of data without imposing restrictive assumptions on
their forms. This adaptability has led to KDE’s widespread adoption across
diverse fields, ranging from environmental research to the complexities of
finance. The foundations of KDE were laid by Rosenblatt (1956) [96] and
Parzen (1962) [92], whose pioneering work laid the theoretical groundwork for
this powerful method. Over the years, KDE has undergone significant evolu-
tion, emerging as an indispensable tool for contemporary statistical analysis
and data visualization.

The applicability of KDE extends across various scientific domains owing
to its adaptability and wide-ranging utility. Silverman (1986) [106] played a
pivotal role in advancing adaptive KDE in the realm of ecology, enhancing
its ability to adjust to dynamic spatial structures and evolving data patterns.
Scott (1992) [102] further broadened the scope of KDE by introducing meth-
ods to handle spatial data within spatial statistics. This extension opened
avenues for KDE’s application in Geographic Information Systems (GIS) and
spatial modeling, making it a valuable tool for researchers dealing with geo-
graphical data.

Beyond its contributions to ecology and spatial statistics, KDE has found
practical applications in the financial sector. Fan (1996) [42] notes its sig-
nificance in offering insights into asset return distributions, thereby aiding
in risk assessment and portfolio optimization. These references underscore
the pivotal role of KDE in modern statistical practices and its expansive
use in domains requiring precise estimates of data densities. However, it
is essential to recognize that these references represent only a fraction of
the extensive literature on KDE, emphasizing its enduring impact and con-
tinuous relevance in advancing statistical methodologies. The versatility of
KDE, coupled with its continuous refinement, positions it as a cornerstone
in contemporary statistical analysis, offering a robust and flexible approach
to estimate probability density functions across a multitude of scientific and
applied disciplines.

It is easy to generalize the naive estimator to overcome some of its diffi-
culties. Replace the weight function w by a kernel function K which satisfies
the condition ∫ ∞

−∞
K(x)dx = 1.

Usually, but not always, K will be a symmetric probability density function,
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the normal density, for instance, or the weight function w used in the def-
inition of the naive estimator. By analogy with the definition of the naive
estimator, the kernel estimator with kernel K is defined by

f̂n(x) =
1

nh

n∑
i=1

K

(
xi − x

h

)
, (6.1)

where h is the window width, also called the smoothing parameter or band-
width by some authors. We shall consider some mathematical properties of
the kernel estimator later, but first of all an intuitive discussion with some
examples may be helpful.

Just as the naive estimator can be considered as a sum of ’boxes’ centred
at the observations, the kernel estimator is a sum of ’bumps’ placed at the
observations. The kernel function K determines the shape of the bumps
while the window width h determines their width where the individual bumps
n−1h−1K {(x−Xi) /h} are shown as well as the estimate f̂ constructed by
adding them up.

According to Hart (1997)[53], a kernel function that satisfies the following
equations would allow for the minimization of the mean integrated squared
error.

(i)
∫
K(u)du = 1

(ii)
∫
uK(u)du = 0

(iii)
∫
u2K(u)du = k2 ̸= 0 <∞

(iv)
∫
K2(u)du = I2 <∞

The kernel must be a probability density function with a mean of zero
according to the first two equations. These two requirements enable the
function to be symmetric and have a maximum near zero, which are great
characteristics for estimating data with an unknown distribution. To en-
able the computation of the AMISE, the other two equations must be finite.
According to B.W. Silverman (1986) [106], the kernel functions must also
be continuous and differentiable in order for f(x) to inherit these charac-
teristics. As we mentioned before, some kernels don’t satisfy some of these
conditions. Nevertheless, they can still be used. However, many density
functions can satisfy these requirements, hence a list of some of the most
popular choices as stated in Silverman (1986)[106] is provided. As examples,
Gaussian, Epanechnikov and Quartic kernels could be considered.
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6.2.2 Approximated mean integrated squared error

Mean integrated squared error (MISE) is the most popular used measure of

accuracy of f̂(x) according to Silverman (1986)[106]. It can be expressed as
following:

MISE
(
f̂(x)

)
=

∫
E
{
f̂(x)− f(x)

}2

dx.

As stated in Parzen(1962)[92], the the minimization of the approximated
mean integrated squared error AMISE will be given by:

AMISE
(
f̂(x)

)
=

1

4
h4k22

∫ (
f (2)(x)

)2
dx+

1

nh

∫
K2(u)du.

It is also shown in Parzen(1962)[92] that the optimal value of h can be given
by:

ha = k
− 2

5
2

(∫
K2(u)du

) 1
5
(∫ (

f (2)(x)
)2
dx

)− 1
5

n
− 1

5 . (6.2)

These approximation equations may be solved by substitution if the den-
sity function f(x) of our observed data is known. With the exception of∫ (

f (2)(x)
)2
dx, this equation’s components have all been solved for. The ob-

served data’s density function will usually be unknown. f (2)(x) will likewise
be unknown as a result. As stated by Rahman et al. (1996)[94], an estimate
of f (2)(x) is required in this situation and will be defined as follows:

f̂ (2)(x) =
1

nh

n∑
i=1

K(2)

(
x−Xi

h

)
.

Using a standard family of distributions to give the term
∫ (

f (2)(x)
)2
dx

in the formula (6.2) a value is a fairly simple and straightforward method
(see Silverman (1986)[106]).∫ (

f (2)(x)
)2
dx =

3

8σ5
√
π
.

Hence, for the Gaussian kernel, we can conclude that

AMISE =
3h4a

32σ5
√
π
+

1

2nha
√
π

And, in this case, an optimal value of the smoothing parameter h will be

ha =

(
4

3n

) 1
5

σ ≃ 1.06σn− 1
5 .
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This last result was concluded by Silverman (1986)[106] and what is now
called the normal distribution approximation, Gaussian approximation, or
Silverman’s rule of thumb.

When an h value enhances the fit for long-tailed, skewed, or bimodal
mixed distributions, it is seen as more robust. Empirically, this is frequently
accomplished by substituting the following parameter A for the standard
deviation σ:

A = min

(
σ,
IQR

1.34

)
where IQR is the interquartile range.

Another modification was suggested by Silverman (1986)[106], that will
improve the model, is to reduce the factor from 1.06 to 0.9. The final formula
would therefore be:

h = 0.9 min

(
σ,
IQR

1.34

)
n− 1

5 (6.3)

where n is the sample size.

6.2.3 BS-PE kernel estimator

Given the observations x1, . . . , xn from a random sample X1, . . . , Xn, the
classical kernel estimator of the unknown true density f is given in (6.1)
where K is a function called kernel that satisfies

∫
K(x)dx = 1 and h a

smoothing parameter known as bandwidth. Generally, K corresponds to a
symmetric density, as in the case of the Gaussian kernel. As aforementioned,
expression given in (6.1) is classically used for estimating nonparametrically
a density with support in R. However, when nonnegative data are modeled,
(6.1) leads to the boundary bias problem, because it assigns weight outside
the density support near x = 0. Consider the Birnbaum-Saunders power-
exponential (BS-PE) kernel estimator of unknown asymmetric densities with
nonnegative support, which is is given by [88]

f̂(x) =
1

n

n∑
i=1

Kh,x (xi) , (6.4)

where Kh,x is a kernel corresponding to an asymmetric density with nonneg-
ative support of parameters h (bandwidth) and x (point where the density
is estimated) and
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Kh,x(xi) =
a

2
1
2aΓ( 1

2a
)
√
4h

(
1

√
xxi

+

√
x

x3i

)
exp

(
−1

2ha

(
xi
x

+
x

xi
− 2

)a)
(6.5)

where x > 0 is the point where the density is estimated, h > 0 is a smoothing
parameter and a > 0 is a fixed parameter.

6.3 Methodology

The primary phases of our approach to creating a probability density function
for n-independent, identically distributed (iid) continuous random variables
are covered in this section. The next subsections provide a detailed explana-
tion of our methodology using algorithms.

6.3.1 Grouping procedures

Let X1, . . . , Xn be independent and identically distributed (iid) continuous
random variables with an unknown probability density function (pdf) f.

In the following, we present examples generated according to the normal
and exponential densities for different sample size n = 100, 50.

From Graphics 1 and 2 in Figure 6.3.1, it is easy to observe the bene-
fit of decomposition of the sample into different regions with respect to its
densities. We note that the decomposition delimits in a rather efficient way
the two or more regions of the densities. This will be efficiently performed
through the coming algorithm.
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Figure 6.3.1: Examples of datasets of normal and exponential distributions.

We propose an algorithm for grouping data. It is based on the notion of
distance between observations [124].
Let Y1, . . . , Yk, with k ≤ n, be a subset of X1, . . . , Xn.

Algorithm 1

1. We start with the data y1, . . . , yk placed in order, i.e., y(1) ≤ y(2) ≤
. . . ≤ y(k).

2. Compute the distance di for each pair of observations (yi, yi+1), where
di(yi, yi+1) = |yi − yi+1|.

3. We define the constant ε which displays the dispersion distances already
calculated as ε =

√
V ar(di).

4. Grouping procedure:

(i) Sk
1 = {yi; di ≤ ε};

(ii) Once di > ε, we stop the test, and we consider the rest of obser-
vations as being the set low-density region Sk

2 .

Suppose that the algorithm decomposes the sample with respect to its
density into k regions S1, S2, . . . , Sk. Let hj, j = 1, . . . , k, denote the band-
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width assigned to the observations of Sj, respectively. Then

f̂(x) =
k∑

j=1

Nj∑
i=1

1

nhj
K

(
x− xi(j)
hj

)
χxi

(j)
∈S(j)

.

6.3.2 A residual-based posteriori error estimator

Since the true density function f is unknown, we define, as suggested in [125],
a local error indicator attached with the class Si as follows:

τi = −
Ni∑
j=1

1

Ni

log
(
f̂(xji )

)
, (6.6)

where x1i , . . . , x
Ni
i be all the sampling points in {xj, j ∈ {1, . . . , N}} located

in the class Si. Note that τi is an estimate of information entropy restricted
on the class Si;

H(f, f̂) |Si
= −

∫
Ii

f(x) log(f̂(x))dx,

and Ii = [min(Si),max(Si)].

6.3.3 Adaptive refinement strategy

Compute bandwidth −→ Error Estimate for each bandwidth −→
Mark and Refine.

Inspired by the adaptive refinement strategy [89], in the numerical anal-
ysis, we introduced the adaptive refinement strategy to compute a sequence
of estimates that converged to the true probability density function. As the
error indicator for each interval was available, we marked each class Si to be
refined that had a large error. In order to find the intervals with a large error
efficiently, we adopted the refinement strategy given in Algorithm 2.

Algorithm 2:

Input: X1, . . . , Xn; di; ε =
√
V ar(di), S1, S2, errors indicators τi, i = 1, 2,

parameters 0 < θ and ν < 1, S := [S1, S2].

Output: A new classification S ′.

Calculate τmax = max(τi) and τ :=
∑
τi,
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Sum := 0, µ = 1;
while sum < θτ
µ = µ− ν
for all Si

if Si is not marked
if τi > µτmax then mark the interval Si, refine Si, by a new class.

sum := sum+ τi

Morin et al. [89] employed Algorithm 2, specifically referred to as Algo-
rithm 5.1 (Marking algorithm), drawing on Dörfler’s foundational work [36].
The convergence proof, expounded in those references, establishes the algo-
rithm’s reliability in practical applications. This integration of insights en-
sures Algorithm 2 not only addresses computational challenges effectively
but also boasts a robust theoretical underpinning, as outlined in the cited
works.

We have already covered the grouping procedure in Algorithm 1 and
then constructed a new classification utilizing the adaptive refinement strat-
egy in Algorithm 2. It is now time to demonstrate Algorithm 3, which
completes the task and yields the final density estimation f̂(x).

Algorithm 3:

Input: X1, . . . , Xn;

Output: f̂(x) =
∑k

j=1

∑Nj

i=1
1

nh(j)
K

(
x−xi

(j)

h(j)

)
χxi

(j)
∈S(j)

.

Step 1 Grouping

Step 2 Initialize S = [S1, S2, . . .]

Step 3 Compute hi, 1 ≤ i ≤ card(S)

Step 4 Evaluate the error τi

Step 5 Apply Algorithm 2 to get a refined S ′

Step 6 If S ′ ̸= S, update S = S ′ and go to Step 3

Step 7 f̂(x).
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6.4 Numerical experiments

In this section, we shall operationalize our methodology. Specifically, we will
conduct estimations for two probability density functions, one characterized
by symmetry, and the other displaying asymmetry. These estimations will be
documented in the ensuing table, incorporating the respective kernel func-
tions employed. Subsequently, we will present a thorough exposition of the
results, complemented by accompanying graphical representations.

Table 1. Distributions in our experiments.

Distribution Density Parameters

D1 Normal 1
σ
√
2π

exp
(
−1

2

(
x−µ
σ

)2 )
(µ, σ) = (0, 1)

D2 lognormal 1
xσ

√
2π

exp
( −1
2σ2 (ln(x)− µ)2

)
, x > 0 (µ, σ) = (1, 1)

6.4.1 Density estimation for rnorm distribution

In this subsection, we implement our strategy to investigate the probability
density function of a normal distribution, utilizing the Gaussian function
as our kernel density estimator. Our initial dataset is visualized in Figure
6.4.2, comprising 200 randomly sampled points from a normal distribution,
denoted as D1 with parameters (µ, σ) = (0, 1).

Firstly, to decompose the dataset, we applyAlgorithm 2 resulting in the
dataset’s division into three distinct classes, as illustrated in Figure 6.4.2.
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Figure 6.4.2: Normal distribution dataset (left), and its decomposition

(right).

Secondly, it is necessary to construct the density estimations for all classes.
This is in order to obtain the local error τi which is defined above in formula
(6.6) and the associated bandwidth at each class. In this step, we use the
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Gaussian function as a kernel estimator and Silverman’s rule of thumb for
bandwidth selection. Figure 6.4.3 shows the density estimation for each class.
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Figure 6.4.3: Density estimation for each class.

Finally, we are in a position to apply Algorithm 3 to obtain an estima-
tion for our probability density function. In this case the final estimation
will be defined as follows

f̂(x) =
3∑

j=1

∑
xi
(j)

∈S(j)

1

nhj
K

(
x− xi(j)
hj

)
.

The final density estimation, displayed alongside the original probability den-
sity function, is visualized in Figure 6.4.4.
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Figure 6.4.4: True pdf and final kernel estimator for D1(rnorm) with n = 200.
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6.4.2 Density estimation for Log-normal distribution

In this section, we apply our approach to estimate the probability density
function of an asymmetric distribution which is Log-normal distribution. We
employ the (BS-PE) function, mentioned above in Equation (6.5) with a = 2,
as our kernel density estimator. The initial dataset is depicted in Figure 6.4.5,
consisting of 800 randomly sampled points from a Log-normal distribution,
which was denoted in the table above as D2 with parameters (µ, σ) = (0, 1).

Firstly, to regroup the dataset, we implement Algorithm 2, resulting in
the dataset’s division into four distinct classes, as depicted in Figure 6.4.5.
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Figure 6.4.5: Log-normal distribution dataset (left), and its decomposition

(right).

Secondly, it is necessary to construct the density estimations for all classes.
This is in order to obtain the local error τi which is defined above in formula
(6.6) and the associated bandwidth at each class. In this step, we use the
(BS-PE) function as a kernel estimator. Figure 6.4.6 shows the density esti-
mation for each class.
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Finally, we are in a position to apply Algorithm 3 to obtain an estima-
tion for our probability density function. In this case the final estimation
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will be defined as follows

f̂(x) =
4∑

j=1

∑
xi
(j)

∈S(j)

1

n
Khj ,x

(
xi(j)
)
,

where Khj ,x is the (BS-PE) function, mentioned above in Equation (6.5) with
a = 2, as our kernel density estimator.

The final density estimation, displayed alongside the original probability
density function, is visualized in Figure 6.4.7.
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Chapter 7

Conclusions and future work

7.1 Conclusions

In this concluding chapter, we synthesize the novel insights gleaned from
our exploration into the applications of Radial Basis Functions (RBFs) in
diverse mathematical domains. Through our four key applications address-
ing Second Kind Volterra Integral Equation Systems, Numerical Solutions
of Linear Volterra Integro-Differential Problems, Approximation of bivariate
functions by Generalized Wendland RBFs and Nonparametric Density Es-
timation, our conclusions illuminate the collective impact on interpolation,
approximation, and data science. As we disclose the significance of these new
developments, this chapter serves as the culmination of our research journey,
offering insights, reflections, and paving the way for future investigations in
the dynamic field of RBF applications. We have also prepared some articles
with the content of some of the chapters:

• The content of our first article titled “Numerical Solution of Linear
Volterra Integral Equation Systems of Second Kind by RBFs” was
shown in Section 4.3. We conclude that the above presented exper-
iments (see Tables 4.2 – 4.4 ) confirm the validity of the method and
justify the convergence results given in Theorem 4.3.3 and Corollary 4.3.7.
In fact, in all our experiments (see the Examples 4.3.8–4.3.10), by using
small values of N , we obtain a significant good order of approximation
using the relative errors E1 and E2 considered. So, our original goal to
devise an appropriate variational procedure that is capable of solving
this type of problems in a precise and efficient way has been completely
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accomplished.

As compared with the other recently published works, for example
[60, 57, 69, 90, 68], they do not study convergence results. Likewise,
our technique gives an acceptable accuracy with a small use of data,
resulting also a low computational cost.

In ([57], Tables 1 and 2) the mean of the error is of the order 10−5. We
have obtained the same order of error with only 50 points.

In [90] the authors use Bernstein polynomials and the degree of its
approximation is of order 10−4 in most of the tables. The same happens
in ([68], Table 4), it uses the simple block-by-block method and its
degree of approximation is about 10−3.

• In section 4.4, the contents of our second article under the title “Nu-
merical solution of a linear Volterra integro-differential equations” were
presented. In this study, we proposed and developed an approximation
method for solving numerically a linear Volterra integro-differential
problem. This numerical method is based on the associated varia-
tional formulation of this type of problems, in the appropriate finite-
dimensional space generated by a finite set of Wendland RBFs. Apart
from proving the existence and uniqueness of the corresponding solution
of the discrete problem, we have also given two convergence theoretical
results which have also been finally endorsed by the numerical experi-
ments (see examples 4.4.11 – 4.4.14) carried out in the corresponding
subsection 4.4.5. There, the tables (4.5 – 4.8 ) of the computed rel-
ative errors associated to the four chosen significant examples ratify
both the convergence theoretical ratio, as well as the good approach of
the numerical procedure.

• We included the content of our third article titled “Approximation of
bivariate functions using Generalized Wendland RBFs” in Chapter 5.
Apparently the method to develop this work is known, but in reality
the use of the Generalized Wendland compactly supported RBFs is
totally new. In fact, the question that one can be asked is why use
these functions?. The answer totally convincing is that the time cost
when programming these functions is quite reduced, if we compare it,
for example, with the variational splines mentioned in the references.
Moreover, the order of the degree of approximation, represented with
the calculation of the estimate of the interpolation error Ei and smooth-
ing error Es, with 500-1000 approximation points are of order between
1.8972×10−3 and 3.0276×10−3 in most cases in tables 5.2 –5.4 while
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in Table 2 subsection 5.2.2 of [71] the degree of approximation with
900 points of approximation are 8.8... × 10−3. All this shows the im-
provement and the effectiveness of the approximation method studied
in this article.

• In Chapter 6, we discussed adaptive nonparametric estimation of band-
width using mixtures of kernel estimators for symmetric and length-
biased data. Addressing the challenges of density estimation in the era
of Big Data, our research highlights the significance of efficient tools
for estimating probability distributions from extensive datasets. The
incorporation of local adaptation techniques and genetic algorithms
proves crucial, emphasizing the need to identify optimal combinations
for real-world applications. Experimental results validate the effec-
tiveness of our refinement procedures and algorithms, demonstrating
satisfactory outcomes for both symmetric (See Figures 6.4.2 to 6.4.4)
and asymmetric distributions (See Figures 6.4.5 to 6.4.7).

These conclusions collectively mark significant strides in the understand-
ing and application of Radial Basis Functions, offering valuable insights into
their performance across diverse problem domains.

7.2 Future work

In order to do more research on these topics in the future, among some of
the open problems that we consider are:

• Regarding the methods we used to solve Volterra integral and integro-
differential equations in Chapter 4 and the approximation method we
used in Chapter 5:

– Numerical comparisons between our methods and many others in the
literature.

– The theoretical study of the order of convergence of the presented meth-
ods.

– The adaptation of our first procedure (in Section 4.3) to find a numer-
ical solution of the linear systems of 2D Volterra integral equations of
second kind by means of appropriate radial basis functions.

– The adaptation of our second procedure (in Section 4.4) to find a nu-
merical solution of a linear system of Volterra integro-differential equa-
tions.
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– The application of Generalized Wendland RBFs in solving integral
or/and differential equations.

• Regarding the procedures we used for nonparametric density estima-
tion:

– Future work will focus on further testing with real data samples and
exploration of additional kernels and bandwidth selection methods to
enhance the versatility and applicability of our proposed strategies.

– The theoretical study of the order of convergence of the presented
methodology shown in Section 6.3.
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