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A B S T R A C T   

Background: The fractal dimension (FD) is a valuable tool for analysing the complexity of neural structures and 
functions in the human brain. To assess the spatiotemporal complexity of brain activations derived from elec-
troencephalogram (EEG) signals, the fractal dimension index (FDI) was developed. This measure integrates two 
distinct complexity metrics: 1) integration FD, which calculates the FD of the spatiotemporal coordinates of all 
significantly active EEG sources (4DFD); and 2) differentiation FD, determined by the complexity of the temporal 
evolution of the spatial distribution of cortical activations (3DFD), estimated via the Higuchi FD [HFD(3DFD)]. 
The final FDI value is the product of these two measurements: 4DFD × HFD(3DFD). Although FDI has shown 
utility in various research on neurological and neurodegenerative disorders, existing literature lacks standardized 
implementation methods and accessible coding resources, limiting wider adoption within the field. 
Methods: We introduce an open-source MATLAB software named FDI for measuring FDI values in EEG datasets. 
Results: By using CUDA for leveraging the GPU massive parallelism to optimize performance, our software fa-
cilitates efficient processing of large-scale EEG data while ensuring compatibility with pre-processed data from 
widely used tools such as Brainstorm and EEGLab. Additionally, we illustrate the applicability of FDI by 
demonstrating its usage in two neuroimaging studies. Access to the MATLAB source code and a precompiled 
executable for Windows system is provided freely. 
Conclusions: With these resources, neuroscientists can readily apply FDI to investigate cortical activity complexity 
within their own studies.   

1. Introduction 

The concept of fractal dimension (FD) serves as a numerical measure 
of an object’s complexity [1]. The FD metric has been widely employed 
in neuroimaging studies to detect alterations in the structural compo-
sition and internal dynamical patterns of the human brain [2,3]. Due to 
its adaptability, the application of FD analysis to electroencephalogram 
signals (EEG) has led to the creation of numerous notable uses in many 
diseases such as epilepsy [4], sleep disorders [5], Alzheimer’s disease 
[6], schizophrenia [7], depression [8] and attention-deficit hyperactiv-
ity disorder [9], among others. 

Most of those studies compute the FD directly on the channels of the 
EEG signal by means of metrics such as Higuchi FD, Katz FD and cor-
relation dimension [2]. There are also studies where fractal analysis is 
performed on neural oscillations extracted from sources reconstructed 
from the EEG signal [10]. Nevertheless, there has been recent progress 
towards developing a new high-resolution assessment method for FD, 
combining both the temporal and the spatial dimensions. This novel 
technique, known as FDI, is calculated based on the sources recon-
structed from the EEG data [11]. Two different FD measures are used for 
calculating FDI: the 3D fractal dimension (3DFD) and the 4D fractal 
dimension (4DFD) of cortical activations derived from the EEG signal 
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using source reconstruction methods. The 3D coordinates of the cortical 
activations in the epoch being studied form a sequence of 3D point 
clouds. From these point clouds, the 3DFD and 4DFD values are 
computed by using the box-counting method [12]. FDI is then calculated 
as the product of: 1) the 4DFD of the spatiotemporal set comprising all of 
the 3D point clouds in the epoch, which quantifies the integration of 
cortical networks; and 2) the Higuchi FD [13] of the curve defined by the 
3DFD values in the epoch, which measures cortical differentiation [11]. 

Many studies in neuroscience have used the FD in 3D for analysing 
the brain morphology from structural magnetic-resonance (MRI) data, 
as in Refs. [14–16], for citing some of the most recent works. The tem-
poral component was also included in some previous works based on 
functional MRI (fMRI) data, where maps of FD were constructed for 
analysing the spatial distribution of the complexity of the neural oscil-
lations [17,18]. However, the studies performing FD analyses of 3D and 
4D models representing brain activations are much more novel [11,19, 
20]. 

The primary strength of the FDI method lies in its ability to analyse 
brain complexity in two complementary ways: firstly, by examining the 
fractal structure of brain activity, and secondly, by tracking its evolution 
over time using the FD parameter. 

FDI has two major advantages compared to FD metrics based on 
direct analysis of the EEG signal. Firstly, FDI offers more comprehensive 
information because it is constructed as a product of both 4DFD (inte-
gration FD) and HFD of 3DFD (differentiation FD). As such, not only 
does FDI offer a complete picture, but it also reveals distinct aspects of 
spatiotemporal complexity. Secondly, FDI allows evaluation of indi-
vidual contributions from various brain regions towards overall 
spatiotemporal complexity. This capability could prove especially useful 
when studying conditions involving damage to particular parts of the 
cortex or diseases primarily impacting certain brain regions [19]. 

The novel FDI method has been increasingly employed in recent 
neuroimaging studies involving EEG. Researchers have utilized FDI to 
distinguish between conscious and unconscious states in healthy sub-
jects through high-density EEG measurements taken after transcranial 
magnetic stimulation (TMS) [11]. According to Ref. [19], the FDI 
technique is also valuable when studying long resting-state EEG signals; 
it can capture dynamic shifts in various functional networks influenced 
by schizophrenia, a mental illness marked by disrupted information flow 

in the spontaneous brain networks. Furthermore, FDI has proven 
beneficial in identifying distinctive alterations in brain dynamics asso-
ciated with Parkinson’s disease, particularly through its successful 
application in analysing resting-state EEG data [20]. 

Prior investigations relied on tailored, per-study techniques for 
calculating the FDI due to the absence of readily accessible software 
tools. Consequently, our primary objective in the current study is to 
develop and share an easy-to-use software solution with the neurosci-
ence community, enabling efficient computation of the FDI for future 
studies. To achieve this goal, we developed our FDI computer program 
using MATLAB (The MathWorks Inc., Natick, MA, US), a very popular 
platform in the biomedical field due to its compatibility across systems. 
The program FDI offers dual functionality, allowing users to interact 
with it via a graphical user interface (GUI) as well as through commands 
entered at the MATLAB prompt. Given that calculating 3DFD and 4DFD 
metrics for long EEG epochs requires significant computational power, 
we optimized these algorithms by implementing them in CUDA and 
integrating them into the MATLAB code. This integration enables us to 
leverage the immense parallelism offered by current graphics processing 
units (GPUs). Furthermore, our FDI software is compatible with the file 
formats used by common EEG source reconstruction pipelines in 
Brainstorm [21] and EEGLab [22], making it accessible and convenient 
for researchers utilizing these popular tools for EEG data analysis. 

In subsequent sections, we first outline the methodology behind 
computing the FDI measure. We then present an overview of our soft-
ware’s primary modules, illustrate the capabilities of its user interface, 
and evaluate its performance on two distinct hardware-software con-
figurations. Following that, we detail instructions for obtaining, 
installing, and running FDI. Lastly, we offer a comprehensive guide on 
employing FDI to analyse two different types of EEG recordings: event- 
related potentials induced by TMS, and periods of resting-state activity. 
By providing these detailed descriptions and practical examples, we aim 
to make the tool accessible to the neuroscientific community, enabling 
them to effectively harness its potential in their studies involving the 
analysis of brain dynamics complexity from EEG signals. 

2. Computational methods and theory 

This section focuses on explaining the process of estimating the FDI 

Fig. 1. Sources activity for 1 s in resting-state (A). 3D visualization of source activity at two distinct time samples (B). 3D visualization after binarization (C). Point 
cloud representations of cortical activations resulting from binarized sources (D). Adapted from Fig. 1 in Ref. [19]. 
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measure for sources reconstructed from EEG epochs. For those inter-
ested in the underlying technicalities of FDI calculation, we refer to prior 
publications [11,19,23]. As a quick reference, we include here a succinct 
reiteration of the essential steps involved in the procedure. 

2.1. Extraction of brain activations from EEG 

An initial preprocessing requirement for computing the FDI involves 
performing source modelling of the EEG signal. Common software 
suites, including Brainstorm and EEGLab, generally follow a multi-stage 
pipeline comprising: 1) construction of a forward EEG model [24] using 
tools such as OpenMEEG [25], wherein the model conforms to either the 
individual subject’s unique anatomy or a preexisting template [26] 
supplied by the software suite; and 2) solving the inverse problem of 
determining the 3D distribution of electrical sources (current dipoles) 
through techniques such as Weighted Minimum Norm constraint [27] or 
LORETA (Low Resolution Brain Electromagnetic Tomography) [28]. 
Once completed, the source modelling phase generates a matrix 
(#sources × #samples) containing the amplitude of brain electrical 
current at each source location for each time sample. 

After performing source modelling, a process of binarization is 
needed to determine cortical activations at each time sample. FDI uses 
the box-counting algorithm to compute 3DFD and 4DFD, and this al-
gorithm requires binary matrices as input data. FDI offers the binary 
classification of input sources by using a threshold based on the mean 
plus a specified number of standard deviations of the absolute values 
over the epoch. This method is usually employed with resting-state EEG 
recordings where cortical activations are identified as sources with in-
tensity values significantly higher than the average within the epoch 
[19,20]. See Fig. 1 for an example of the outlined binarization process. 
Other binarization methods may be employed when EEG is recorded in 
the presence of an external stimulus, as is the case of TMS-evoked po-
tentials. In this type of recording, activation thresholds are usually 
extracted from the pre-stimulus signal using nonparametric statistical 
approaches such as bootstrapping [29]. In FDI users can provide 
pre-binarized matrices obtained with specific statistical approaches 
when needed. Refer to Section 5 for detailed instructions on these 
features. 

2.2. FDI computation 

Upon completion of the binarization process to extract the matrix 
depicting the spatiotemporal dynamics of brain activations, the subse-
quent step involves calculating FDI according to the complexity of the 
spatiotemporal distribution of the sources. 

FDI can be expressed as:  

FDI = 4DFD × HFD(3DFD)                                                             (1) 

where: 4DFD represents the fractal dimension of the 4D matrix con-
sisting of the temporal evolution of brain activations (3D point clouds) at 
every time sample; 3DFD denotes the curve described by the sequence of 
fractal dimension values computed individually for the 3D point cloud at 
each sample; and HFD refers to the Higuchi FD [13] of that curve. 

FDI combines two measures of complexity in a single number. 4DFD 
captures the complexity of the temporally integrated spatial distribu-
tions of cortical activations, reflecting the dispersion of these activa-
tions. Meanwhile, the HFD(3DFD) quantifies the complexity of the states 
the system goes through as it evolves over time. In this way, FDI in-
tegrates both spatial and temporal domains, and combining these two 
domains is crucial to capture brain complexity as the balance of inte-
gration and differentiation. These two measures of information are 
related to the Integrated Information Theory of consciousness [30,31]. 
Therefore, FDI is an empirical measure, theoretically rooted, which 
provides a comprehensive assessment of how the complexity of the 
brain’s dynamical system changes over time. 

We estimate the FD values of both 3D and 4D point clouds by 
employing the box-counting algorithm [12]. Specifically, we calculate 
the FD value as the slope of the linear regression line fit to the plot of log 
(n(r)) versus log(1/r), where n(r) represents the count of boxes with size 
rd required to cover the entire point cloud (with d set equal to 3 for 3D 
point clouds and 4 for 4D point clouds). Fig. 2 illustrates this voxeliza-
tion process of covering a 3D point cloud (cortical activations at a given 
time sample) with boxes of varying sizes ranging from r = 1 to r = 128. 

Performing the box-counting algorithm in three and four dimensions 
can be computationally intensive, making it a potential bottleneck when 
calculating FDI values for long EEG epochs or large-scale studies with 
numerous EEG records. In an effort to mitigate this issue, we used a 
CUDA GPU-optimized parallel implementation of the box-counting al-
gorithm provided in Ref. [23]. This CUDA code was then compiled as a 
mexcuda function within MATLAB to seamlessly integrate with our 

Fig. 2. Sources activity at a time sample (A). Point cloud defined by sources binarization (B). 3D voxelizations of the point cloud from r = 1 to r = 128. Adapted from 
Fig. 2 in Ref. [11]. 
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Fig. 3. Data-flow diagram of FDI.  

Fig. 4. FDI GUI displaying the FDI (6.5062) of the cortical activations obtained from a resting-state EEG record of 3 s with a sliding window of 1 s and 20 % of 
overlapping. 
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existing FDI calculation pipeline, allowing users to transparently benefit 
from its improved performance. Section 4 details the performance 
analysis of FDI comparing the computational efficiency in two different 
platforms. 

The box-counting algorithm features two main configuration pa-
rameters: 1) the maximum size r for computing voxelizations (referred 
as boxSide in FDI), and 2) the range of box sizes to choose for fitting the 
linear regression line. Users can select either boxSide = 128 (the default 
setting) or boxSide = 256. Based on prior studies [11,19,20], the 
following predefined ranges of box sizes are empirically established in 
FDI for 3D FD computation: when boxSide = 128, the range goes from r 
= 8 to r = 64, whereas when boxSide = 256, the range extends from r =
16 to r = 128. Similarly, for 4D FD computation, the chosen ranges span 
from r = 4 to r = 64 (for boxSide = 128) and from r = 8 to r = 128 (for 
boxSide = 256). 

3. Program description 

Fig. 3 illustrates the data-flow diagram for FDI, highlighting its 
primary components. Note that the striped-shaded processes in this 
figure (Sources Visualization, 3D Sources Visualization and 3DFD Curve 
Visualization) are only available in the GUI mode of the application, 
while the remainder of the processes are available in both modes GUI 
and console. 

The first input to the program is a file containing the sources to 

process (a matrix of number of sources × number of time samples in 
MATLAB format). This file could contain the original sources as gener-
ated from software such as Brainstorm or EEGLab or a previously 
generated binarization (matrix with entries 0 and 1 for inactive and 
active spatiotemporal samples, respectively) according to any specific 
algorithm to extract the cortical activations. In case the original sources 
were provided, then a binarization process must be applied to each 
source, as shown in Fig. 1, using as threshold the mean plus the desired 
number of standard deviations of the absolute values of the source. 

A times file is also required to properly configure the sliding window 
generator. This file must include a MATLAB vector containing the actual 
time for each time sample. Then, a sliding window is created with the 
following parameters: 1) the starting time of the sliding window, 2) the 
duration of each window, 3) the overlap percentage between consecu-
tive windows (a value between 0 and 1), and 4) the maximum number of 
windows to generate. Sliding windows enable adequate processing of 
sources extracted from long EEG recordings, such as resting-state ses-
sions [19,20]. Within each window, the FDI is calculated independently, 
and the average across all windows is taken to represent the FDI for the 
entire epoch. Users can inspect both the sources activity and the sliding 
window in the GUI mode (see the Sources Visualization process in Figs. 3, 
and Fig. 4). 

Calculating the FDI also requires the 3D location of each cortical 
activation (Sources Locations in Fig. 3). This MATLAB file is provided by 
the software used to obtain the sources from the EEG data, and contains 

Fig. 5. Interactive display of FDI, 4DFD, HFD and 3DFDs values for each window in GUI mode.  
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the X, Y and Z coordinates for each source. From this data, two distinct 
voxelizations of the cortical activations are created: 1) the 3D voxeli-
zation at each individual time sample and 2) the 4D voxelization for 
each window. Both voxelizations are generated with the desired 
maximum resolution (parameter Voxelization BoxSide in Fig. 3: 128 or 
256). The source locations (X, Y and Z coordinates) are always the same 
since they are predefined from anatomy. However, the 3D voxelization 
at each sample time and the 4D voxelizations for each window are 
different, since they are constructed from the cortical activations ob-
tained in the binarization process of the reconstructed sources at each 
sample time. When operating in GUI mode, the 3D visualization of both 
the sources activity and cortical activations for the selected time sample 
appears (see 3D Sources Visualization in Figs. 3, and Fig. 4). 

Finally, the FDI value is obtained for each window according to 
Equation (1) (Compute FDI in Fig. 3). After processing, the average FDI 
across all windows and the individual FDI, 4DFD, HFD and 3DFDs values 
for each window are jointly saved in a MATLAB file. FDI stores the 4DFD 
and 3DFD values alongside their respective correlation coefficients 
calculated when performing linear regression fitting. 

FDI in GUI mode enables users to interactively examine the FDI, 
4DFD, HFD and 3DFDs values for each individual window (3DFD Curve 
Visualization process in Fig. 3). Fig. 5 displays the FDI interface con-
taining the FDI, 4DFD, HFD and 3DFDs results for the second window of 
the sliding window depicted in Fig. 4. 

4. Software/hardware specifications and performance analysis 

FDI is a MATLAB program. 3DFD and 4DFD values are computed in 
GPU through both MEX (MATLAB executable) functions compiled in 
C++/CUDA with the MATLAB command mexcuda. The graphical user 
interface of FDI was designed using MATLAB GUIDE (https://www.mat 
hworks.com/discovery/matlab-gui.html). 

FDI was tested on two different platforms: a desktop computer (PC) 
and a high-performance computing server (server). The PC operates on 
the Microsoft Windows 10 OS, featuring an Intel Core i7-9700 3.0 GHz 
CPU (8 cores – 8 threads), 64 GB of RAM, and an NVIDIA RTX 3060 GPU 
with 3584 CUDA cores and 12 GB of dedicated memory. On the other 
hand, the server platform uses Debian Linux 5.10 and boasts two Intel 
Xeon Silver 4210 2.20 GHz processors (20 cores – 40 threads), accom-
panied by 96 GB of RAM, and an NVIDIA RTX 3090 GPU with 10,406 
CUDA cores and 24 GB of dedicated memory. 

In order to analyse the computational performance of FDI, Table 1 
shows the average times (for ten executions) needed for computing the 
FDI value in two different conditions: Case #1) pre-binarized sources 
from 130 ms of TMS-evoked EEG with one window containing 47 
samples; and Case #2) original sources from 3 s of resting-state EEG with 
a sliding window of 1 s and 0 % overlapping (3 windows × 500 samples 
= 1500 samples). Computation times were obtained by executing FDI 
on our two testing platforms in console mode with no user interaction. 

The calculation of 3DFD values for cortical activations at every time 
sample represents the most compute-intensive part of the entire process. 
Specifically, for Case #1, calculating 3DFD values accounts for 51 % of 
the total time on the PC platform and 52 % on the server platform. For 
Case #2, this step takes up 79 % of the total time on the PC platform and 
75 % on the server platform. 

Higher percentages of 3DFD computation time were observed for 
Case #2 compared to Case #1 due to the larger number of time samples 
in Case #2 (1500 vs. 47). Nevertheless, the use of parallel GPU 
computing enabled the application to scale efficiently. Specifically, the 
total processing time for Case #2 was just 21.8 times longer on the PC 
and 16.1 times longer on the server compared to Case #1. Given that the 
ratio of time samples between the two cases was 31.9, this suggests that 
the computation time increases by almost half the increase in time 
samples to process, indicating a highly efficient scaling behaviour. 

Based on the reported computation times, calculating the FDI for 
large datasets with long epochs would require huge processing times, 
unless these epochs are computed concurrently on multi-core systems. 
As we will show in Section 6, FDI can be applied to a large-scale study 
involving 31 EEG records of 150 s, where five distinct regions of interest 
were analysed. In this study, a total amount of 11,625,000 3DFD values 
and 23,250 4DFD values were computed. This example additionally 
supplies detailed scripts for running FDI on multiple EEG registers in 
parallel. 

5. Availability of the program: download, installation, and 
usage 

The source code for FDI is publicly available and can be accessed at 
https://www.ugr.es/~demiras/fdi/. To use FDI on a Windows system, 
the Microsoft Visual C++ 2019 Redistributable Libraries (available for 
download at https://learn.microsoft.com/en-US/cpp/windows/latest-s 
upported-vc-redist?view=msvc-170#latest-microsoft-visual-c-redistri 
butable-version) are required to run the FDI MEX-files. Additionally, 
FDI requires a computer equipped with an NVIDIA CUDA-compatible 
GPU and the corresponding NVIDIA CUDA Runtime (version 11.6 or 
higher), which can be obtained from the NVIDIA website at https:// 
developer.nvidia.com/cuda-11-6-0-download-archive. MEX files are 
pre-compiled for both 64-bit Linux (Debian Linux 5.10) and Windows 
systems within the FDI source code. In order to compile these files on 
other platforms, users must use the mexcuda command provided by the 
Parallel Computing Toolbox in MATLAB. 

FDI can be executed in one of two ways: either at the MATLAB 
command prompt or as an independent operating system process. Using 
the former approach is suitable for single-epoch processing, while the 
latter allows for efficient parallelization of multiple epochs, as demon-
strated in Section 6. Here is the syntax for calling FDI from the MATLAB 
command prompt.     

Table 1 
Average computation times for calculating the FDI for: Case #1) the pre-binarized sources of 130 ms TMS-evoked EEG (1 window × 47 samples), and Case #2) the 
original sources of 3 s resting-state EEG (3 windows × 500 samples). Average times (in seconds) for 10 executions.  

Process Computation Time 

PC Server 

Case #1 Case #2 Case #1 Case #2 

Binarization – 0.572 s – 0.815 s 
3DFDs computation 0.438 s 14.676 s 0.539 s 12.327 s 
4DFD computation 0.412 s 3.273 s 0.489 s 2.893 s 
Total time 0.850 s 18.521 s 1.027 s 16.530 s  
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Two different examples for testing FDI can be found at https://www.ug 
r.es/~demiras/fdi/. The first example includes the reconstructed sour-
ces of a TMS-EEG measurement spanning 1 s, with 0.5 s before the TMS 
stimulation and 0.5 s after the TMS stimulation. This EEG originated 
from a prior investigation on sleep and consciousness that we conducted 
[11]. The second example comprises 3 s of the reconstructed sources 

derived from a 150-s resting-state EEG recording taken from a previous 
study on schizophrenia [19]. Additional details regarding the EEG data 
associated with these two examples are presented later in Section 6. 
Listing 1 shows the MATLAB code to test FDI using these two epochs. 

MATLAB files specified in lines 2, 3 and 4 in Listing 1 contain the 
matrices with the pre-binarized sources (cortical activations) of the 
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TMS-EEG epoch, the time for each sample, and the 3D coordinates of the 
cortical activations, respectively. Then, lines 5 through 11 configure 
parameters required to calculate FDI: processing one window (max-
Windows) of 0.130 s (windowTime), starting from time 0 s (iniTime) and 
covering the cortical activations with a voxelization of size 128 voxels 
(boxSide). Finally, the FDI is computed through the FDIConsole function 
in lines 12 and 13. Results are saved as a MATLAB structure in the file 
1_TMS_BinarizedSources_Results.mat, containing the FDI, 4DFD, HFD and 
3DFDs values for the analysed window. 

Similarly, lines 16 through 27 in Listing 1 show the code for 
computing the FDI of the second example: the 3-s resting-state EEG 
epoch. In this case, sources are not pre-binarized, so the optional 
parameter nStd must be set (lines 23 and 27). The sliding window is 
configured starting at time 0 (iniTime in Line 22), with a duration of 1 s 
(windowTime in line 20) and 0 % of overlapping (windowOverlap in line 
21). This configuration generates three windows because the duration of 
the epoch is 3 s and the maxWindows parameter is not set. Call to FDI-
Console in lines 26 and 27 computes the FDI for each window, and results 
are saved in the file 2_Resting_State_Original_Sources_Results.mat. This file 
contains the MATLAB structure with the average FDI value and, for each 
window, the FDI, 4DFD, HFD and 3DFDs values obtained. 

FDI, like any MATLAB program, can be run as an independent 
process to perform batch or parallel processing of multiple EEG epochs. 
To do this, MATLAB must be started without its GUI (-nodisplay, -nos-
plash and -nodesktop parameters) and including FDI as the script 
parameter as follows: 

matlab -nojvm -nodisplay -nosplash -nodesktop -r 

"FDIConsole parameters" 

6. Application of the program: FDI for characterizing 
consciousness states and schizophrenia 

This section demonstrates how to use FDI to process the EEG data for 
two separate studies involving large sample sizes. Since these two studies 
by our group were previously published in Refs. [11,19], we now briefly 
describe the aims, materials, methods and results of these studies, focusing 
the explanation on how to perform these studies with the new FDI tool. 

6.1. FDI for determining states of consciousness 

Determining the level of consciousness is a complex and multifaceted 
challenge with numerous clinical applications [32]. One approach in-
volves exploring the complexity content of EEG signals during conscious 
and unconscious states [33]. Our metric, FDI, was designed upon this 
approach by utilizing FD as the reference measure to estimate signal 
complexity. 

We applied the FDI methodology to analyse the complexity of 69 
high-density EEG recordings after TMS collected from 18 healthy par-
ticipants progressing from wakefulness to natural sleep and chemically- 
induced sedation via xenon and propofol exposure. TMS induces a non- 
invasive cortical perturbation which allows to measure the resulting 
electrical responses to causal interactions between neural areas. Our 
analysis revealed that FDI values were consistently and significantly 
lower during both sleep and sedation phases compared to wakeful pe-
riods, suggesting that FDI may serve as a reliable indicator of diminished 
consciousness [11]. 

To conduct this study, we first performed source modelling to 
localize the primary electromagnetic sources by using the MATLAB 
packages Brainstorm and SPM (https://www.fil.ion.ucl.ac.uk/spm/). 
Subsequently, we estimated the deterministic brain responses (cortical 
activations) caused by the TMS perturbation by applying nonparametric 
bootstrapping procedures on the corresponding TMS-evoked current 
distributions. The c-shell script for processing in parallel those 69 EEG 
epochs with the new FDI tool is shown in Listing 2. 

In Listing 2, the parent directory pointed by $EEGS_DIR in line 2 
contains individual folders for each registered EEG measurement. 
Within each subject-specific folder, the corresponding cortical activa-
tion estimates are stored as a MATLAB file named Sources.mat. Calls to 
FDIConsole use the parameters ’$eeg/Sources.mat’ (cortical ac-
tivations), ’Times.mat’ (times), 362.5 (signal frequency), 
’Vertices.mat’ (3D coordinates of cortical activations), 0.130 
(window duration), 0 (starting time), 0 (window overlapping), ’max-
Windows’ 1 (number of windows), ’subjectId’ ’$eeg’ (EEG register 
identification). Default values were used for parameters ’boxSide’ 
(128) and ’nStd’ (− 1, no binarize). 

Fig. 6 shows the receiver operating characteristic (ROC) curve and 
the area under the ROC curve (AUC) value obtained for the FDI measure 
as classifier for consciousness. An impressive AUC value of 0.96 was 

Fig. 6. Performance evaluation of FDI as classifier for consciousness through 
receiver operating characteristic (ROC) curve analysis. The area under the ROC 
curve (AUC) value for FDI is indicated in brackets [11]. 

Fig. 7. Correlation between schizophrenia positive symptoms and FDI values 
for the whole brain. 
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Listing 1. MATLAB code to test FDI.  

Listing 2. C-shell script for processing the TMS-evoked EEG dataset in parallel.  

Listing 3. C-shell script for processing the resting-state EEG dataset in parallel.  

J. Ruiz de Miras et al.                                                                                                                                                                                                                         
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obtained, demonstrating excellent discrimination capabilities between 
conscious and unconscious states [11]. Moreover, examination of the 
ROC curve, reveals a rapid ascent towards the upper-left quadrant, 
indicating a robust discriminative ability of the classifier for the dataset 
in question. The steepness of the curve in its initial phase suggests a high 
true positive rate, or sensitivity, achieved at low false positive rates, 
implying a commendable specificity concurrently. Specifically, the 
classifier demonstrates a heightened ability to detect the presence of the 
condition with minimal misclassification of the negative instances at 
lower decision thresholds. 

6.2. Analysing resting state functional networks in schizophrenia using 
FDI 

We evaluated the utility of the FDI methodology for analysing 
resting-state EEG signals in Ref. [19]. This study aimed to characterize 
the dynamic changes in various functional networks affected by 
schizophrenia, a neurological disorder characterized by impairments in 
how information flows through the spontaneous brain networks [34]. 

Our analysis included 31 resting-state EEG recordings of 150 s, 
comprising 20 healthy subjects and 11 patients with schizophrenia. In 
order to assess psychopathology in the group of patients suffering 
schizophrenia, the Spanish version of the Positive and Negative Syn-
drome Scale (PANSS) was used [35]. The PANSS Positive Scale consists 
of 7 items that measure the severity of positive symptoms such as de-
lusions, hallucinations, speech disorders, and thought disorder. Each 
item is scored from 1 (absent) to 7 (extreme), yielding a total Positive 
Scale score ranging from 7 to 49. Source modelling was performed in 
Brainstorm as described in Section 2.1. To obtain the brain activations 
at each time sample, we applied a binarization process using a threshold 
equal to the mean plus one standard deviation of the absolute values of 
the corresponding amplitudes of brain electrical currents across all time 
samples in the epoch. We then processed the brain activations in each 
resting-state functional network separately, following the cortical par-
cellation scheme proposed in Ref. [36], which identifies five distinct 
resting-state functional networks: AUD (auditory network), DAN (dorsal 
attention network), DMN (default mode network), SAN (salience 
network), and VIS (visual network). 

To compute the FDI, we used a sliding window with a window length 
of 1 s and no overlap. The c-shell script for computing the FDI for each 
functional network in all subjects with the new FDI tool is shown in 
Listing 3. 

In Listing 3, each subject-specific folder stores the cortical activations 
for the whole brain and the five functional networks, stored as MATLAB 
files named Sources.mat, SourcesAUD.mat, SourcesDAN.mat, Sour-
cesDMN.mat, SourcesSAN.mat and SourcesVIS.mat, respectively. The 3D 
coordinates of the sources in each functional network are stored in files 
Vertices.mat, VerticesAUD.mat, VerticesDAN.mat, VerticesDMN.mat, Ver-
ticesSAN.mat and VerticesVIS.mat, while the times file (Times.mat) is the 
same for all networks. All calls to FDIConsole use the same parame-
ters: 500 (signal frequency), 1 (window duration), 0 (starting time), 
0 (window overlapping), ’nStd’ 1 (number of standard deviations for 
binarization). and ’maxWindows’ 150 (number of windows). 

Our analysis of covariance (ANCOVA) revealed statistically signifi-
cant reductions in FDI for schizophrenia patients compared to healthy 
controls in three networks [19]: AUD (F = 7.72, p < 0.05), DAN (F =
7.33, p < 0.05), and SAN (F = 8.19, p < 0.05). Furthermore, our findings 
demonstrated strong negative correlations between positive symptoms 
and FDI in both the whole brain and all resting-state networks, excluding 
VIS [19]. Fig. 7 shows the results for the non-parametric Spearman 
correlation (ρ) analysis performed on the FDI values for the whole brain. 
These results suggest that FDI has the potential to serve as a reliable 
biomarker for diagnosing schizophrenia and monitoring its severity 
based on clinical symptomatology. 

7. Conclusions 

FDI is a MATLAB program created to compute the fractal dimension 
index of brain activations derived from EEG signal source reconstruc-
tion. Designed with compatibility in mind, FDI works with popular 
platforms like Brainstorm and EEGLab to process their output files. 
Using GPU programming techniques, FDI efficiently computes the 3DFD 
and 4DFD values needed for determining FDI, as our performance 
analysis on two different hardware/software platforms indicated. 

FDI prioritizes user experience by offering interactive capabilities 
via an easy-to-use graphical interface. Moreover, users can also opt for 
increased automation and flexibility through command-line invocation, 
enabling them to execute batch or parallel operations across multiple 
datasets and parameter configurations. To the best of our knowledge, 
FDI is the first publicly available software for computing the fractal 
dimension index of cortical activations extracted from EEG recordings. 

To facilitate adoption in diverse research settings, we include 
detailed steps illustrating the application of FDI in two neuroimaging 
studies [11,19]. With these resources, neuroscientists can readily apply 
FDI to investigate cortical activity complexity within their own studies. 
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