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A B S T R A C T   

The increased interest in whole-grain products, along non unified European regulations on the composition of 
wholemeal bread could lead to its misleading labelling. Therefore, to ensure the safety of consumers, both health- 
wise and from possible fraud, a novel hyperspectral imaging-based authentication method is being proposed, 
given that no previous study has combined imaging techniques with authentication of wholemeal flour content. 
Quantification based on pixel counting by classification (QPC) utilizes multivariate analysis methods such as PLS- 
DA and SVM to classify pixels within a bread sample (as Wholemeal and White flour), based on their visible-near- 
infrared spectra, to later estimate its proportion of wholemeal flour. This is in accordance with the heterogeneous 
nature of bread samples, in which individual pixels belonging to both wholemeal and white flour can be 
accounted for, which was proved by implementing unsupervised training techniques such as hierarchical cluster 
analysis (HCA). Results show that the quantification model was able to successfully predict wholemeal flour 
content with a maximum deviation of 8 g wholemeal flour/100 g flour from the estimated value.   

1. Introduction 

Bread is one of the most consumed foods worldwide and is consid-
ered a basic staple (Pico, J. et al., 2016). The simplest bread recipe 
consists of a mixture of whole wheat flour, water, sugar, salt, and yeast, 
which is then subjected to fermentation and baking. However, bread 
recipes have become more complex, including different kinds of flours: 
wholemeal, refined, and flours from different cereals such as oats, rye, 
spelt, etc. (Edwards, W.P., 2007; Alnaeim, T. et al., 2014). 

Wholemeal flours preserve all the cereal grain components: brand, 
germane and endosperm. These components provide carbohydrates, 
fiber, vitamins, minerals, and antioxidants that are beneficial for human 
health (Ma, S. et al., 2021; De Angelis, Minervini, Siragusa, Rizzello, & 
Gobbetti, 2019; Yu, L. et al., 2013). These advantageous properties have 
boosted consumer interest in acquiring whole-grain products, including 
wholemeal bread, leading to increased production. Consequently, the 

establishment of quality control becomes an imperative necessity to 
protect consumers from fraud and to ensure their safety. 

Currently, there are no unified European regulations governing the 
composition of wholemeal bread, and each state member has its own 
regulations on this product. To illustrate it, the German wholemeal 
regulation requires this product to contain at least 90% wholemeal flour 
and Danish regulations require at least 30% wholemeal. Nevertheless, 
Spanish regulations do not set a minimum content, though the product 
label must indicate the percentage of wholemeal flour (Gobierno de 
España, 2019; Health Promotion Knowledge Gateway, 2022; Govern-
ment of UK, 2022). These discrepancies make international trade and 
control of this product difficult, which is aggravated by the absence of an 
official analytical methodology for quality control. This lacking com-
plicates the authentication of wholemeal bread and impacts public 
health, which makes the development of analytical methods to assess 
wholemeal bread both compelling and challenging. 
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Quality analysis of bread is one of the most widely researched areas 
in the food industry (Nashat, S. & Abdullah, M.Z., 2016). Some studies 
have explored different analytical methods to determine the physical 
and chemical characteristics of bread such as, texture, colour, individual 
fatty acids and soluble sugar content, etc. (Riyanto, R.A. & Caraka, R. E., 
2018; Carocho, M. et al., 2020; Melini, V. et al., 2021; Katsi, P. et al., 
2021). 

All of them applied conventional analytical methods based on tech-
niques such as, chromatography or atomic absorption spectroscopy that 
are tedious, time-consuming, require complex sample pretreatments 
involving the use of various solvents, long extraction stages, etc., and are 
destructive. As an alternative to the classical methods used to study the 
bread quality, some reported studies have developed analytical methods 
based on faster, non-destructive, and non-invasive techniques, such as, 
imaging techniques (Amigo, J. et al., 2021; Olakanmi, S.J. et al., 2024; 
de Almeida Duarte et al., 2022; Verdú, S. et al., 2016). Amigo, J. et al., 
studied the effect of staling process on white bread crumb using near 
infrared hyperspectral imaging (NIR-HSI). Olakanmi, S.J et al. charac-
terised the protein content in nutritionally enriched bread using 
hyperspectral imaging (HSI) in visible-near-infrared (VNIR) and in 
short-wave infrared spectral (SWIR) range. De Almeida Duarte, E.S. 
et al. quantified and authenticated the cassava starch content in wheat 
flour for bread-making using NIR spectroscopy and digital images. 
Verdú, S. et al. detected adulterations with different cereal flours in 
wheat bread using HSI in NIR and SWIR spectral range. All the above 
studies combined imaging techniques with chemometric tools to obtain 
relevant chemical information. 

Despite the large number of published studies focusing on bread 
quality, there is no known analytical solution to verify the content of 
wholemeal flour in marketed bread. The only current way to establish 
quality control in this context is to carry out on-site inspections at the 
production plants. Under this scenario, the present study proposes a 
solution consisting on a new methodology based on HSI techniques. 

HSI is a promising analytical platform for quality and safety food 
assessment, since it is a rapid, non-destructive, non-invasive, and envi-
ronmentally friendly technique requiring minimal sample preparation 
(Huang, H. et al., 2014; Saha, D. & Manickavasagan, A., 2021; An, D. 
et al., 2023). Note that HSI presents the advantages of traditional 
spectroscopy (results in obtained in a very short time, applied directly on 
the intact raw samples, and using a green methodology). Commonly, 
computer vision (so-called machine vision), can provide 
three-dimensional information for the simultaneous measurement of 
quality and safety attributes. The representation of a hyperspectral 
image is achieved through a three-dimensional data structure known as 
a data cube (or hyperspectral cube), where each pixel in the image is 
defined by its X and Y positions (spatial coordinates), has an associated 
value in each spectral band (spectral coordinates), which captures in-
formation about the reflected or emitted light in a specific region of the 
electromagnetic spectrum. 

Owing to the large data volume within the data cube, advanced data 
processing tools inherent to data mining must be applied. Data mining 
tools enable the reduction of the size of a data set, eliminate noise and 
interferences resulting from the recorded analytical signal and correct 
effects such as scattering, baseline drift, etc. (Basantia, N. C. et al., 
2018). After their application, a pretreated image which contains the 
spectral fingerprints characteristic of the test sample is obtained. Once 
this image is collected, multivariate analytical methods can be applied 
using tools like principal component analysis (PCA), partial least square 
discriminant analysis (PLS-DA), support vector machine (SVM), etc. 
Aligning with this, some authors have proposed the use of these tools to 
carry out qualitative and quantitative studies from signals obtained by 
HSI (Sampaio, P.S. et al., 2020; Li, F.L. et al., 2021; Sarkar, S. et al., 
2020). For example, Sampaio, P.S. et al., identified different kinds of rice 
using, firstly, PCA and PLS-DA as a screening analysis, and secondly, 
used SVM to classify their samples according to the rice variety. Li, F.L. 
et al., quantified the content of the mycotoxin DON in wheat flour using 

PLS. Sarkar, S et al. compared the results obtained from SVM and PLS 
application to quantify the soluble solids content in kiwi fruit. The last 
two studies are a clear example of the strategy commonly followed to 
quantify components through imaging techniques. Until now, the 
analytical studies focused on detecting and quantifying components in 
samples through spectral images have been based on the construction of 
quantification models using multivariate analysis methods. PLS and 
SVM are the most used. When the relationship between the spectral data 
and the measured parameters is linear, the best results were obtained by 
PLS (Rady, A. & Adedeji, A.A., 2020; Wiley, V. & Lucas, T., 2018; 
Femenias, A. et al., 2020). However, SVM has proven to achieve better 
results when the relationship is non-linear (Jiang, X. et al., 2022). 

Many researchers have developed analytical methods focused on 
component quantification to assess the quality of different foodstuffs 
(Liu, H. Y. et al., 2023; Perez, M., et al., 2023; Qin, C. et al., 2022; 
Candoğan, K. et al., 2021), but, to our knowledge, there are no known 
methods which use HSI and chemometrics to authenticate the content of 
wholemeal flour in bread. Thus, the aim of the present study is to 
develop an analytical method based on HSI in conjunction with che-
mometric tools to authenticate the content of wholemeal flour in bread, 
which does not require to identify which chemical compound belongs to 
which band as other analytical techniques usually do. For this purpose, 
bread samples were prepared from different wholemeal flour pro-
portions from different cereals, considering the most common compo-
sition used in the market. Then, the content of wholemeal flour was 
determined by imaging with a spectral camera in the visible and 
near-infrared range in combination with chemometric tools and a pro-
posed ad-hoc data analysis method named quantification based on pixel 
counting by classification (QPC). 

QPC methodology stemmed from the hypothesis that images 
captured from bread elaborated exclusively with a single kind of flour 
(white or wholemeal) contain spectral homogeneous pixels, while mixed 
bread present a greater spectral heterogeneous. In both cases, bread 
would be a homogeneous material. However, mixed bread exhibits 
dispersed particles into the material which arise heterogeneity. These 
discernible particles, located in certain pixels, could be captured 
through HSI and quantified using the methodology proposed in this 
study. 

2. Materials and methods 

2.1. Bread samples 

A total of 159 homemade bread samples were prepared, of which 59 
were made entirely with white flour, 52 with wholemeal flour only, and 
48 using different proportions of wholemeal and white flours (mixed 
samples). The proportions in the mixtures included those usually present 
in marketed mixed wholemeal breads in Spain: 30%, 50% and 70% 
wholemeal flour. In addition, this study included bread made with 10% 
and 90% wholemeal flour. Fifteen of the samples (7 only made with 
white flour and 8 only with wholemeal flour) were prepared at different 
times and by a different operator to validate the classification models 
developed in this study. For bread baking, two home bread makers 
(TAURUS, My Bread. Barcelona, Spain and Cecotec, Bread&Co, Valen-
cia, Spain) were used. The ingredients were water (180 mL), sugar (8 g), 
salt (3 g), flour (300 g), yeast (7 g) and extra virgin olive oil (22 g). Each 
bread was made with flour from one or two cereal varieties, including 
wheat, rye, spelt, and oats, purchased from local grocery shops. The 
crust of the homemade breads was discarded, and the crumb was 
dehydrated by drying in an oven (JP Selecta, Barcelona, Spain) at 105 ◦C 
for 1 h. Dried breads were ground using a hand blender and vacuum- 
packed in a plastic bag. All samples were stored under frozen condi-
tions (− 20 ◦C) to prevent deterioration before the measurements. 

The samples were placed in Petri dishes of 6 cm diameter and 1.5 cm 
high, filled to the top, and left until room temperature was reached. 
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2.2. HSI measurement 

HSI images were collected using a Resonon Pika L (Resonon Inc., 
Integrys, Mississauga, Canada) hyperspectral camera working in 
reflectance mode. This camera, by default, works covering the spectral 
range from 384 to 1018 nm with 300 bands. After applying spectral 
binning and data interpolation, our spectral information ranges from 
400 to 1000 nm with a 5 nm interval (121 bands). The size of the sensor 
is 900 pixels, the focal length is 23 mm, and the capturing distance was 
60 cm. The exposure time used was 2.2 ms/line and the framerate of the 
acquisition was 249 fps. This allowed to capture batches of 8 samples (in 
a 2 x 4 set up as it can be seen in Fig. 1A), in approximately 4.5 s. 

The illumination system consists of a set of 4 stabilized halogen 
lamps placed at an angle of approximately 45◦. Calibration was per-
formed using dark signal (with the lens occluded), and a reference white 
tile of Zenith Polymer® (SphereOptics GmbH., Herrsching am 
Ammersee, Germany) of approximately 90% reflectance. Hence, the 
workflow followed for the capturing and processing of the hyperspectral 
images was the following: first, the system was focused using a focusing 
target consisting on thin lines, allowing us to get live sharp images of this 
target. The exposure time is then set by the use of a reference white tile. 
This exposure settings are the ones used for all captures (Sample_raw, 
White and Black). Afterwards the white tile is scanned. Since the tile is 
spatially uniform, this image (White), is used afterwards as shown in eq. 
(1) to compensate the non-uniformity of the illumination. Later on, the 
dark image (Dark), is captured covering the camera lens with a cap, and 
will be used for subtracting the dark noise from the spectral images. 
Finally, the samples are captured in batches of 8 samples (Sample_raw) as 
mentioned before. 

All captured images were corrected into reflectance images (Sam-
ple_ref), using the known spectral reflectance of the white tile (White_ref) 
as indicated in equation (1): 

Sampleref =
Sampleraw − Dark

White − Dark
⋅Whiteref (1)  

2.3. Sample data handling 

The HSI images were captured over batches of samples. Each batch 
included 8 samples placed in different Petri dishes, which were arranged 
in two rows and four columns (2 × 4) on a white platform for spectral 
scanning. The first sample of each batch was consistently kept in the 
same position throughout all captures as a quality control. HSI images 
were stored as a ’band interleaved by line’ file (.bil) and converted to 
MATLAB file format later (.mat). MATLAB Hyperspectral Toolbox was 
used to visualise captured images (R2019a version, Mathworks Inc., 
Natick, MA, USA). 

Once the image was opened, a region of interest (ROI) for each 
sample was selected using a data processing MATLAB function devel-
oped by the Color Imaging Lab of the University of Granada. This process 
involved clicking on the centre of the image corresponding to each 
sample and defining a 225 × 225 pixels area. Each pixel contained a 
spectrum with 121 spectral bands. As a result, each ROI consisted of a 3D 
data structure (ROI data cube) of 225 × 225 × 121 elements, which is a 
total of 50,625 spectra (i.e., 6,125,625 reflectance values) per sample. 
For each ROI data cube, the representative average spectrum of each 
sample was computed and stored separately. 

In order to verify that the imaging conditions remained unchanged 
throughout the capturing process, a similarity analysis was performed 
on the spectra of the batch-to-batch control samples. In this regard, the 
nearness index (NEAR) was calculated between each pair of average 
spectra (Arroyo-Cerezo, A. et al., 2023). This index measures the 
Euclidean distance between two vectors, each of which define a spec-
trum. Equation (2) defines this index for the vectors YA and YB, where dN 

is the normalised distance and dmax is the maximum distance between 
points. Nearness index is 0–1 normalised, where values close to 1 

indicate a high similarity between spectra, and therefore no changes in 
the analysis conditions. The conformity limit was established for values 
surpassing 0.95. 

NEAR(YA,YB)= 1 − dN
(YA,YB)=1 −

d (YA,YB)

dmax (YA,YB)
=1

−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑ (

yAi − yBi

)2

∑(
yAi + yBi

)2

√
√
√
√ (2) 

Once the consistency of the quality control samples was ensured, the 
analysis of the data samples was carried out. 

Due to the large volume of data, a double reduction of the ROI data 
cube was performed: (1) a dimensionality reduction, and (2) a reduction 
of the number of elements. To achieve this, a reduced sample data 
matrix was extracted from each ROI data cube using a home-made 
MATLAB function. This new representative data matrix for each sam-
ple consisted of 100 randomly selected pixels and their corresponding 
spectra, resulting in a 2D data structure of 100 × 121 elements (i.e., 100 
unfolded spectra each consisting of 121 reflectance values, with a total 
of 12,100 values). Additionally, for each sample data matrix, a repre-
sentative average spectrum was computed (see Fig. 1A). 

In all cases, both ROI cube and matrix sample average spectra were 
previously scaled by performing standard normal variance (SNV) as pre- 
processing method to correct for both baseline shift and global intensity 
variations. 

2.4. Evaluation of data homogeneity 

Two data homogeneity evaluation procedures were carried out 
before proceeding to build the classification model. The first one was 
aimed at assessing the representativeness of each 100-pixel sample data 
matrix in respect to the 50,625-pixel ROI data cube. If the extracted data 
matrix is consistent with the ROI data cube, the average spectrum ob-
tained from that matrix should show a high similarity to the average 
spectrum of the starting ROI cube. In addition, if different extractions of 
random 100 pixels spectra are performed, the average spectra of each of 
the matrices should all be similar to each other. 

The second evaluation was intended to verify the spectral similarity 
between pixels within the same sample data matrix. If pixels present 
high similarity, the matrix is spectrally homogeneous, which should be 
related to the composition of the sample. The images of bread samples 
made from the same type of flour (100% white or 100% wholemeal) are 
expected to show high inter-pixel homogeneity, i.e, a high inter-pixel 
spectral similarity. Conversely, images captured from bread samples 
produced from a mixture of white and wholemeal flour will contain 
pixels that are more heterogeneous. 

2.4.1. Homogeneity between sample matrices from a same ROI cube 
To perform this evaluation, one ROI data cube was randomly chosen 

for each of the three kinds of bread samples considered in this study 
(white flour, wholemeal and 50% flour mix). Then, 10 sample data 
matrices were randomly extracted from each of these ROI cubes as 
explained in section 2.3. To evaluate the similarity between matrices 
from the same sample, a NEAR-based similarity analysis was conducted, 
comparing between the average spectra of each of the 10 sample 
matrices and the average spectrum of the ROI cube (see Fig. 1B). 

2.4.2. Inter-pixel homogeneity within a sample matrix 
From each set of 10 sample matrices used in the previous study, one 

was again randomly chosen to test for inter-pixel homogeneity. Unlike in 
the previous section, the spectral comparison was performed by running 
a hierarchical cluster analysis (HCA) deployed in MATLAB PLS_Toolbox 
on the pre-processed pixel-spectra. In this way, the analysis will identify 
pixel grouping according to their spectral information. Ward’s method 
was applied as a linkage criterion among groups of pixel spectra and 
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Fig. 1. Flowchart showing both stages performed for (A) sample data handling and (B) homogeneity study.  

M
. M

edina-G
arcía et al.                                                                                                                                                                                                                       



Food Control 166 (2024) 110715

5

Manhattan distance was employed as a measure of distance between 
pairs of spectra. The distance at which the first clustering pair opens, 
read on a dendrogram, will determine the degree of inter-pixel spectral 
heterogeneity or homogeneity within the sample matrix image. It is 
expected that bread samples prepared from the same type of flour will 
have a significantly smaller distance than bread samples containing 
mixed flour. If this is indeed the case, this provides a potential method 
for the quantification of the proportion of each type of flour through 
identification of the pixels belonging to each of the two clusters. This 
method (QPC) is described in the next section. 

2.5. Quantification based on pixel counting by classification (QPC) 

The inter-pixel homogeneity study of a mixed flour sample (section 
2.4.) reveals a continuous separation between two main clusters of 
pixels over a large distance interval (i.e., the length of the distinctive 
branches of each cluster are significantly larger than those of the 
following segments). Based on this first finding, a quantification method 
to estimate the wholemeal flour content in bread samples has been 
developed. It is based on a preliminary binary classification model that 
differentiates between the two types of pixels according to their char-
acteristic spectrum. To train this model, two classes are defined using 
the average spectra obtained from the ROI cubes: (1) the pure whole-
meal flour (‘Wholemeal’ class), and (2) the pure white flour (‘White’ 
class). Only the average spectra of the samples obtained with pure flour 
are used in the training phase. 

Once the classifier is trained it is tested on the 100 individual pixel 
spectra extracted from each mixed sample in our data set. As a result, the 
spectra will be distributed between the two classes, so that each pixel 
will be assigned to one of the classes. Just by counting the pixels 
assigned to the ’Wholemeal’ class, an estimate of the proportion of 
wholemeal flour in the bread is obtained. The classification process is 
repeated for each sample under analysis. This innovative quantification 
methodology is proposed and applied for the first time in this paper and 
has been referred to by the authors as quantification based on pixel 
counting by classification (QPC). 

Previously, a non-supervised exploratory analysis was performed in 
order to screen if the initial hypothesis formulated using the HCA results 
is valid. The details of the whole process are described in the following 
subsections. 

2.5.1. Screening analysis 
Principal component analysis (PCA) and partial least-squares 

regression (PLS) were firstly applied in order to perform a screening 
analysis of the 144 sample average spectra, to confirm the results sug-
gested by the HCA method. This screening analysis was aimed at 
exploring whether the natural grouping by clustering of the sample 
spectra is caused by the presence - or absence of wholemeal flour. 

2.5.2. Classification models for evaluating wholemeal/white bread samples 
Two classification methods were applied in this study: partial least 

square-discriminant analysis (PLS-DA) and support vector machine 
(SVM). Both methods were used to authenticate the wholemeal flour 
composition in bread samples, considering only samples made entirely 
with white or wholemeal flour (excluding mixed samples). For each 
method (PLS-DA and SVM), a total of 96 sample average spectra were 
used for building a classification model (52 spectra of white flour bread 
samples and 44 of wholemeal flour bread samples). The sample set was 
accordingly divided in two groups: ’Wholemeal’ and ’White’: ’Whole-
meal’ set consisted of samples elaborated only from wholemeal flour and 
’White’ set of samples from white flour. In turn, each sample set was 
partitioned into two subgroups: a training set, constituting 70% of the 
total spectra (68 samples), and an external validation set (Validation Set 
1) comprising the remaining ones (28 samples). Notice that the valida-
tion was conducted under repeatability conditions, i.e., the spectra 
involved in the model building and validation were captured from bread 

samples produced under the same conditions (production process, time, 
operator, etc.). Once the classification model is built and initially vali-
dated, an additional external validation (Validation Set 2) was per-
formed using a new sample set not included in the model development, 
which consisted of 15 bread samples produced from different batches of 
flour, on various dates and by a distinct operator. In this way the built 
model was reliably evaluated under real in-house scenarios with varying 
production conditions. Detailed information on the number and type of 
samples used for the validation of the model is shown in Table 1. 
Additionally, a scheme of the classification model development was 
included in supplementary material (see FS2). 

The CADEX algorithm, i.e., Kennard-Stone’s method, was employed 
to select the pixel-spectra of the validation set (Kennard, R. W., & Stone, 
L. A. 1969). For the SVM analysis, a radial basis function (RBF) was 
selected as a kernel function. The main quality metrics of each classifi-
cation model (sensitivity, specificity, precision and accuracy) are then 
assessed. 

2.5.3. Quantification of the wholemeal flour percentage 
According to the values of quality metrics, the best classification 

model was selected, and then the QPC methodology was applied to es-
timate the percentage of wholemeal flour in each flour mix bread sam-
ple. Each pixel-spectrum was classified either as ’Wholemeal’ or 
’White’. The number of pixel-spectra classified as ’Wholemeal’ directly 
represents the percentage of wholemeal flour searched. This process was 
consecutively performed for each mixed flour sample. A linear regres-
sion was used to relate QPC percentage values vs. nominal percentage 
values of wholemeal. In addition the assessment of the performance of 
the QPC method was based on estimating the main quantification met-
rics calculated on the validation set, i.e., the coefficient of determination 
(R2), the root mean square error of validation (RMSEV), the mean ab-
solute error of validation (MAEV), the median absolute error of vali-
dation (MdAEV), and standard deviation of validation residuals (SDV), 
as recommended by ASTM E2617 standard (ASTM E2617-17, 2017). 

3. Results and discussions 

3.1. Evaluation of pixels homogeneity 

Two pixels homogeneity evaluation methods were used in the pre-
sent study. The results and findings are detailed below. 

3.1.1. Homogeneity between sample matrices from a same ROI cube 
NEAR similarity index was calculated to assess the representative-

ness of each 100-pixel sample data matrix with respect to the ROI data 
cube. This estimation was performed taking one sample for each kind of 
bread made with different flour (white flour, wholemeal and 50% flour 
mix) as a representative example, using 10 average spectra derived from 
10 different data matrices within each sample, and its corresponding 
ROI average spectrum. Consequently, 11 spectra per sample were 
compared. 

Table 1 
Information about the type and number of bread samples used for the external 
validation of PLS-DA and SVM.  

External validation set Classification method Number and type of samples 

1 PLS-DA 10 (100% white flour) 
18 (100% wholemeal flour) 

SVM 10 (100% white flour) 
18 (100% wholemeal flour) 

2 PLS-DA 7 (100% white flour) 
8 (100% wholemeal flour) 

SVM 7 (100% white flour) 
8 (100% wholemeal flour) 

PLS-DA: partial least squares – discriminant analysis; SVM: support vector 
machine. 
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The nearness index (NEAR) is based on the proximity of two data 
vectors, i.e., spectra, in space so that the closer they are, the greater the 
similarity is. Moreover, it is normalised to range between 0 and 1, with 
0 meaning complete dissimilarity and 1 totally identical. As detailed in 
Table 2, the NEAR average value resulting from comparing the 11 
spectra of each sample varied between 0.96 and 0.94. These values 
underscore the high degree of similarity between average spectra 
derived from different sample data matrix. Consequently, any 100-pixel 
data matrix extracted from the ROI data cube could be representative of 
it. Thus, the reduction of data dimensionality and the reduction of the 
number of ROI data cube elements are viable, facilitating data man-
agement in the study. 

3.1.2. Inter-pixel homogeneity within a sample matrix 
In order to evaluate the spectral similarity between sample pixels, 

three of the sample data matrices used in the previous study, one per 
kind of bread sample (white flour, wholemeal and 50% flour mix), were 
assessed using HCA. The results of HCA were presented in a dendrogram 
in which the relationships between pixel spectra are shown. 

The clustering pixels from each type of sample are shown in Fig. 2. 
Notably, samples made exclusively with one kind of flour (Fig. 2A and B) 
present a dendrogram structure that is more compact with shorter 
branches. Additionally, the distance measured between the first pixel 
groupings was shorter compared with flour mix sample (Fig. 2C). These 
results indicate homogeneous behaviour among pixels from samples 
made with the same type of flour. In other words, pixels belonging to 
100% white or wholemeal flour samples share a high degree of spectral 
similarity, reflecting a more uniform composition. Therefore, the 
average spectrum in such cases would accurately capture the represen-
tative spectral characteristics of the entire sample. Conversely, the 
sample made with flour mix exhibits greater variability among pixels, 
leading more dispersed dendrogram structure and larger distances be-
tween the first groupings. In this scenario, the average spectrum might 
not contain all the spectral attributes of the entire sample. 

In short, HCA analysis provided compelling evidence confirming that 
single-type flour samples exhibit higher spectral homogeneity than 
mixtures. 

3.2. Screening analysis 

PCA and PLS were applied as multivariate analysis methods to 
identify behavioural patterns among samples, assessing their correlation 
with the presence or absence of wholemeal flour in bread composition. 

3.2.1. Principal component analysis 
PCA was performed using a dataset consisting of 144 average spectra 

derived from bread samples, represented by 121 variables (i.e., wave-
lengths). PC1 and PC2 accounted for 94.31% and 3.78% of the total 
variance (97.98%). The scores plot of PC1 and PC2 represents the most 
significant variability among the samples (Fig. 3A). Red rhombuses 
represent the average spectra of bread samples exclusively made with 
white flour, green squares samples exclusively made with wholemeal 
and blue triangle samples made with different proportions of both 
flours. As can be seen from the plot, most of the white bread samples 
tended to localize toward negative values of PC1. In contrast, all the 
wholemeal samples were located in positive values. Samples made with 

different proportions of both flours were located between positive and 
negative PC1 values, between the two groups (White flour and Whole-
meal flour). One important aspect to highlight is that mixed samples do 
not form a separated group suggesting that their differences are related 
to the proportion of white and wholemeal flours, and it could explain 
their tendency to locate close to one or other sample groups. Thus, PLS 
was performed as a complementary screening analysis. 

3.2.2. Partial least squares 
To verify whether the grouping tendency among bread samples is 

associated with the type and amount of flour used in their production, a 
PLS analysis was performed using the average spectrum of the samples 
involved in the previous study. Samples were labelled indicating their 
percentage of wholemeal flour content, with label 0 being the samples 
made exclusively from white flour and 100 samples made only from 
wholemeal flour. Fig. 3B shows the scores plot of LV1 versus LV2, where 
LV1 explained 94.24% of the total variance between the samples and 
LV2 explained 3.75%. The samples with a nil percentage of wholemeal 
flour content tended to present the most negative values along LV1. 
Moreover, when the percentage of wholemeal flour increases, the sam-
ples tend to separate gradually from negative to positive values along 
LV1. This gradual separation is particularly noticeable in samples with a 
percentage of wholemeal flour less than 50%. After these results, it was 
concluded that the best option was to build a classification model with 
the aim of separating samples made with any proportion of wholemeal 
flour from samples made only with white flour. 

3.3. Classification models for evaluating wholemeal/white bread samples 

Two multivariate analysis methods, PLS-DA and SVM, were used to 
build a classification model to discriminate between bread samples only 
made with white flour and bread samples only made with wholemeal 
flour. Accordingly, two classes were defined for the classification 
models: Wholemeal (target class) and White (alternative class). A total 
of 68 bread samples included in any of these two classes were selected to 
build the training set, and 28 samples were used for model external 
validation set 1, and 15 samples were employed for external validation 
set 2. 

3.3.1. Partial least squares discriminant analysis 
PLS-DA model was developed with 3 latent variables (LVs), 

explaining 95,83% and 71,51% of the accumulative variances over the 
x-variable and y-variable blocks. Then, the model was validated 
considering two different external validation sets (see Table 1) whose 
classification plots and classification results in terms of quality param-
eters are shown in Fig. 4 and Table 3, respectively. The purple line 
shown in this figure is the threshold established to separate between 
"White" and "Wholemeal"samples. Moreover, the overall quality metrics 
representatives of the classification were estimated from the pooled 
average of the corresponding metrics regarding the results and the 
number of samples from the two classes. Resulting in 86% sensitivity, 
81% specificity, 86% accuracy and 100% precision. Note that, the 
external validation step was not performed sequentially, i.e. once the 
external validation was carried out on the first set, this set was used to 
feed back the model and then external validation was carried out again 
on external validation set 2. 

In order to locate the region of the spectral fingerprint which con-
tains characteristic information to discriminate between "White" and 
"Wholemeal" classes, the LV1 PLS-DA scores and loading plots were 
evaluated. Fig. S1A (supplementary material) reveals that the most of 
"White" samples have negative scores on LV1 axis while, "Wholemeal" 
samples present positive scores on this axis. Accordingly, LV1 loading 
plot was evaluated (Fig. 1SB). The 66–121 variable interval correspond 
to LV1 positive loadings which could be considered as the discriminative 
region being characteristic of "Wholemeal" class while the 1–65 variable 
interval is characteristic of "White" class. 

Table 2 
Values of NEAR similarity index comparing 10 average spectra from 10 sample 
data matrix and the ROI average spectrum.  

Experience 
Run 

Sample composition Min value Max value Average value 

1 100% white flour 0.888 0.997 0.962 
2 100% wholemeal flour 0.879 0.997 0.946 
3 50% flour mixed 0.885 0.999 0.968  
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Likewise, the variable importance in projection (VIP) scores plot of 
the PLS-DA model was examined (see Fig. 5A). VIP scores is a metric for 
assessing the significance of each variable (i.e., wavelengths) within the 
classification model. The variables that present high VIP values are 
particularly influential in the discrimination of Wholemeal and White 
classes. In this case, VIP plot reveals two regions where the values are 
higher than the rest: one centered around variable 40 and another region 
around variable 120 (see Fig. 5A). To show the wavelengths that 
correspond to these variables, two raw average spectra from white and 

wholemeal samples are compared (see Fig. 5B). The discriminant spec-
tral regions between the two classes were highlighted in purple and 
correspond to 600 and 1000 nm. The plotted spectrum of wholemeal 
sample exhibits a lower reflectance compared to white sample at 600 
nm, while the opposite is observed at 1000 nm. Thus, these spectral 
regions could be considered as discriminant regions between Wholemeal 
and White classes. It suggests the possibility of working with a multi-
spectral camera in these two spectral regions, instead of hyperspectral 
camera, thereby cutting down on analysis costs. 

Differences around the 600 nm wavelength band are likely due to the 
colour differences of white and wholemeal samples; being that the 
higher wholemeal flour content a sample has, the lower the measured 
reflectance. Furthermore, spectral band analysis could be made in the 
NIR region of the analysed spectra. More specifically, around the 
900–1000 nm wavelength range, a clear distinction may be made be-
tween the wholemeal and white spectra, which correspond to the second 
overtone region of –OH bonds (Xiaobo, Z. et al., 2010). This could be due 
to the difference between the composition of wholemeal and white flour. 
While white flour only contains the endosperm (which has high starchy 
carbohydrate content), wholemeal flour preserves all the cereal com-
ponents. These other components contain a lower amount of carbohy-
drates and higher protein content than endosperm (Harris, P.J., et al., 
1993; Khalid, A. et al., 2023). Therefore, high starchy carbohydrate 
content could likely be the reason that explains the lower reflectance 
values measured in the 900–1000 nm range. 

3.3.2. Support vector machine 
Using the same training and validation sets as PLS-DA, SVM was 

employed as nonlinear computational learning method to build a bread 
classification model. 

For this purpose, the methodology outlined in the previous section 
was followed. Firstly, the model was validated using the validation set 1 
consisting of 28 samples.Next, the model was fed back using this vali-
dation set 1, and then it was revalidated with the 15 bread samples 
prepared at another time by another analyst (validation set 2). The 
classification plots as well as the quality parameters are shown in Fig. 6 
and Table 3, respectively. The purple line shown in this figure is the 
threshold established to separate between "White" and "Wholemeal" 
samples. Unlike PLS-DA, SVM yielded better results in discriminating 
between bread made with 100% whole wheat flour and those that were 
not. These results led to the decision to apply SVM as classifier instead of 
PLS-DA in the subsequent stage of the study, which focused on quanti-
fying the amount of whole wheat flour. 

3.4. Authentication of wholemeal flour content in bread samples 

The quantification of wholemeal flour content was carried out 

Fig. 2. Dendrogram of bread samples: (A) white flour bread sample; (B) wholemeal bread sample; (C) Flour mixed bread sample.  

Fig. 3. PCA and PLS cores plot using the average spectra of 144 bread samples 
labelled as White, Wholemeal or Mix, according to their flour composition: (A) 
PCA scores plot of PC1 versus PC2; (B) PLS scores plot of LV1 versus LV2. 
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applying the QPC methodology explained in detail in section 2.5. In this 
regard, after evaluating that SVM yielded better results as a classifica-
tion method (3.3 section), it was selected as the classifier and used to 
determine the percentage of wholemeal flour analysing one-by-one 48 
bread samples made with flour mix. 

Fig. 7 illustrates an example of QPC application to a bread sample 
made with a 70% of wholemeal flour. SVM model was applied to classify 
the sample pixels as Wholemeal or White. In this case, a total of 76 pixels 
were classified as Wholemeal. This would involve that the sample per-
centage of wholemeal flour is 76%. The results for the 48 bread samples 
(see Table S1 of the supplementary material) were evaluated following 
the same methodology yielding an R2 of 0.94, indicating a high degree of 
agreement between predicted and nominal values, coupled with rela-
tively low RMSEV of 7.77 and MAEV of 7.00. Furthermore, a MdAEV of 

Fig. 4. Classification plot of the validation set bread samples classification performed by PLS-DA considering two classes: Wholemeal and White 
Note: The purple line indicates the discrimination threshold established to separate between "White" and "Wholemeal" samples; Uncertainty band (grey) is the region 
of inconclusive classification. 

Table 3 
Summary of classification performance metrics from PLS-DA and SVM models.  

External 
validation set 

Classification 
method 

Quality 
Performance 
metric 

Wholemeal 
class 

Pooleda 

1 PLS-DA Specificity 0.94 0.86 
Sensitivity 0.73 0.81 
Precision 1.00 1.00 
Accuracy 0.86 0.86 

SVM Specificity 0.94 0.89 
Sensitivity 0.82 0.87 
Precision 0.89 0.89 
Accuracy 0.89 0.89 

2 PLS-DA Specificity 0.88 0.67 
Sensitivity 0.43 0.64 
Precision 0.64 0.81 
Accuracy 0.67 0.67 

SVM Specificity 0.88 0.80 
Sensitivity 0.71 0.79 
Precision 0.78 0.80 
Accuracy 0.80 0.80  

a Pooled: weighted average of quality metrics for the classification process 
with two input-classes: Wholemeal and White. 

Fig. 5. Specified discriminant windows concerning the classification between 
Wholemeal and White samples, located over the VIP plot (A), and the 
spectra (B). 
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6.48 and SDV of 6.94 were obtained (values expressed in g of wholemeal 
flour/100 g of total flour in the bread dough). Note that, the last four 
quantification metrics are given in g wholemeal flour/100 g flour. 

The prediction results which exhibited the greatest deviation from 
the nominal value were observed in samples containing blends of 
various cereal flours, particularly those incorporating white spelt or 
white oats. This fact can be attributed to the colour similarity of these 
flours with other kinds of wholemeal flours. Nevertheless, the results 
exhibited a maximum deviation of 8 units from the estimated value. This 
underlines the model’s ability to predict wholemeal flour content in 
breads, irrespective of the kind of the cereal flours used. 

4. Conclusions and future perspectives 

A new and innovative methodology for wholemeal bread authenti-
cation based on hyperspectral imaging (HSI) named QPC was developed 
in this study. This was able to predict the wholemeal flour content in 

flour mixed bread with a maximum deviation of 8 g wholemeal flour/ 
100 g total flour from the estimated value, irrespective of the kind of the 
cereal flours used in its production. Considering the common prevalence 
of 30%, 50% and 70% wholemeal flour percentages in marketed breads, 
this method exhibits considerable potential for addressing the current 
lack of official methods to authenticate the wholemeal composition in 
breads. Furthermore, a classification model trained with average spectra 
was also developed to assess whether the bread is produced with white 
flour or whole wheat flour, achieving results above 80% accuracy, 
sensitivity, and specificity. 

In essence, the methodology presented would represent the analyt-
ical solution to the current gap in the authentication control of this 
highly consumed food product from an environmentally friendly 
perspective. 
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