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Abstract

Artificial Intelligence (AI) is catalyzing a profound revolution across diverse industry
sectors, reshaping the landscape of innovation and productivity with the development
of general-purpose AI systems (GPAIS). Machine Learning (ML) is the field of AI that
focuses on the study and development of algorithms that enable computers to perform
tasks effectively by learning from data and improving through experience. The increasing
impact of AI is notably evident in its ability to not only design novel systems but to
enhance the efficiency of existing ones. ML models have greatly benefited from this
revolution, as reflected in their optimization.

This AI revolution has been driven by the explosion of Deep Learning (DL), which uses
neural networks to learn complex patterns from data. These models have been applied to
solve a wide range of problems, having a great impact on society. The constant evolution
of AI and the application of new concepts to ML subfields, such as DL, has only increased
its importance in recent years. In addition, the existence of AI models capable of both
designing and improving other AI models facilitates the realization of new approaches.

In this context, Metaheuristics (MHs) are optimization algorithms used to efficiently
solve complex optimization problems, specifically when exact optimization methods
become impractical due to the large search space or computational complexity of the
problem. One of the families in the field of MH is the bio-inspired algorithms, which are
inspired by the simulation of biological processes to create these optimization algorithms.

Within bio-inspired algorithms, Evolutionary Algorithms (EAs) constitute one of the
most widely used algorithms for the design and optimization of models with desirable
characteristics such as robustness and reliability. The extended trajectory of EAs in the
optimization of ML models provides the exploration of new mechanisms that can be
applied for both the design and enhancement of these models. This thesis presents as
hypothesis the customization for the design of DL models using EAs since the EAs are
capable of better adapting to the problem, improving the performance, while at the same
time fostering other desirable properties such as robustness, diversity, and explainability.
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This thesis addresses the following objectives:

1. The first objective involves a study of the field of MH and, specifically, the spectrum
of bio-inspired algorithms in the literature. This study provides a comprehensive
taxonomy encompassing all categories of bio-inspired algorithms, integrated with a
dual analysis of the biological inspiration and the underlying mathematical model.
The purpose of this survey is to examine potential connections between bio-inspired
concepts and their mathematical representations. Additionally, this text presents
an analysis of the field’s evolution and notable proposals. It provides insight into
the ongoing evolution and includes some notes about future directions.

2. The second objective involves the development of an EA to design DL models with
better performance, but with fewer active neurons to overcome standard pruning
methods. These methods focus on the reduction of the model but at the cost of
worse results. The objective is to use EAs to design improved pruned networks by
removing unnecessary neurons in a compatible way to import previous knowledge.
Additionally, in this study, we conduct experiments to check whether the results are
not caused by the EA’s randomness and to evaluate the models’ adaptation when
new data are introduced.

3. The third objective consists of an extension of the previous study towards the design
and optimization of DL models taking into account three objectives: performance,
complexity, and robustness. For the sake of more interpretable DL models, an
exploration of the most influential neurons and their representation in the original
image is also performed. An ensemble strategy is used to enhance the performance
and robustness of the DL model, by leveraging on the diversity of the initial models.

4. The fourth objective consists of an analysis of the role that Evolutionary Com-
putation can play in the domain of GPAIS. The purpose of this work is to study
the ability of EAs to design and enhance GPAIS. Moreover, this text presents
how EA-based areas can be applied to fulfill the desired GPAIS properties. It
also includes several examples of EAs to improve GPAIS. Lastly, it outlines the
challenges of using EAs in GPAIS and the possible EA-based strategies to design or
enhance GPAIS.

The objectives outlined in the thesis are successfully addressed. The objective related
to the literature review contributes to the innovation of the research field, opening up
several research directions for the usage of these algorithms toward different scopes in AI.
The following two objectives, related to the creation of EA-based models for the design
and enhancement of DL models, are supported by comparative empirical studies. Building
upon the premise of removing unnecessary neurons, we have successfully designed networks
with improved performance and robustness, while simultaneously reducing complexity.
Finally, we present the work that provides an analysis of Evolutionary Computation,
particularly about EAs, within the domain of GPAIS. Specifically, this analysis focuses
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on the capacity of EAs to design and enhance these systems. Moreover, we align several
research areas where EAs have gained a great influence to fulfill GPAIS properties and
illustrate this synergy with several milestones. Also, we discuss the benefits of EAs for
GPAIS and strategies based on EAs for the design and enhancement of GPAIS.
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Resumen

La Inteligencia Artificial (Artificial Intelligence - AI) está llevando a cabo una profunda
revolución en diversos sectores industriales, remodelando el panorama de la innovación
y la productividad con el desarrollo de sistemas de AI de propósito general (General-
Purpose AI Systems - GPAIS). El Aprendizaje Automático (Machine Learning - ML) es
el campo de la AI que se centra en el estudio y desarrollo de algoritmos que permiten a
los ordenadores realizar tareas eficazmente aprendiendo de los datos y mejorando a través
de la experiencia. La creciente repercusión de la AI se hace patente, no solamente en su
capacidad para diseñar sistemas novedosos, sino también para mejorar la eficacia de los
ya existentes. Los modelos de ML se han beneficiado enormemente de esta revolución
gracias a su optimización.

Esta revolución de la AI se ha visto impulsada por la explosión del Aprendizaje
Profundo (Deep Learning - DL), que utiliza redes neuronales para aprender patrones
complejos a partir de datos. Estos modelos se han aplicado para resolver una amplia gama
de problemas, teniendo un gran impacto en la sociedad. La constante evolución de la AI
y la aplicación de nuevos conceptos a subcampos del ML, como el DL, no ha hecho más
que aumentar su importancia en los últimos años. Además, la existencia de modelos de
AI capaces tanto de diseñar como de mejorar otros modelos de AI facilita la realización
de nuevos enfoques.

En este contexto, las metaheurísticas (Metaheuristics - MHs) son algoritmos de
optimización que se utilizan para resolver de forma eficiente problemas complejos de
optimización, concretamente cuando los métodos de optimización exactos resultan poco
prácticos debido al gran espacio de búsqueda o a la complejidad computacional del
problema. Una de las familias del campo de las MH son los algoritmos bioinspirados,
que se basan en la simulación de procesos biológicos para crear estos algoritmos de
optimización.

Dentro de los algoritmos bioinspirados, los Algoritmos Evolutivos (Evolutionary Al-
gorithms - EAs) constituyen uno de los algoritmos más utilizados para el diseño y
optimización de modelos con características deseables como robustez y fiabilidad. La
trayectoria extendida de los EAs en la optimización de modelos de ML proporciona la
exploración de nuevos mecanismos que pueden ser aplicados tanto para el diseño como
para la mejora de estos modelos. Esta tesis presenta como hipótesis la adaptación en el
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diseño de modelos de DL utilizando EAs, puesto que los EAs son capaces de adaptarse
mejor al problema, mejorando el rendimiento, a la vez que fomentan otras propiedades
deseables como la robustez, la diversidad y la explicabilidad.

Esta tesis aborda los siguientes objetivos:

1. El primer objetivo consiste en un estudio del campo de las MH y, en concreto,
del conjunto de algoritmos bioinspirados existentes en la literatura. Este estudio
proporciona una taxonomía completa que abarca todas las categorías de algoritmos
bioinspirados, integrada con un análisis dual tanto de la inspiración biológica
como del modelo matemático subyacente. El propósito de este estudio es examinar
las posibles conexiones entre los conceptos bioinspirados y sus representaciones
matemáticas. Además, este texto presenta un análisis de la evolución del campo y
propuestas notables. Se ofrece una visión de la evolución del campo a lo largo de
estos últimos años e incluye algunas anotaciones sobre líneas de trabajo futuro.

2. El segundo objetivo implica el desarrollo de un EA para diseñar modelos de DL con
mejores resultados, utilizando menos neuronas activas para superar los métodos
de poda estándar. Estos métodos se centran en la reducción del modelo a costa
de ofrecer peores resultados. El objetivo es utilizar los EAs para diseñar redes
podadas mejoradas eliminando neuronas innecesarias de forma compatible para
importar conocimiento previo. Además, en este estudio realizamos experimentos
para confirmar que los resultados no se deben a la aleatoriedad del EA y también
para evaluar la adaptación de los modelos conforme se introducen nuevos datos.

3. El tercer objetivo consiste en una extensión del estudio anterior hacia el diseño
y optimización de modelos de DL teniendo en cuenta tres objetivos: rendimiento,
complejidad y robustez. Además, con el objetivo de conseguir modelos de DL más
interpretables, también se realiza una exploración de las neuronas más influyentes y
su representación en la imagen original. Se utiliza una estrategia de ensemble para
mejorar el rendimiento y la robustez del modelo DL, aprovechando la diversidad de
los modelos iniciales.

4. El cuarto objetivo consiste en un análisis sobre el papel que la Computación
Evolutiva puede jugar en el dominio de GPAIS. El propósito de este trabajo es
estudiar la capacidad de los EAs para el diseño y mejora de los GPAIS. Además, este
texto presenta cómo ciertas áreas basadas en EAs se pueden aplicar para satisfacer
las propiedades deseadas de los GPAIS. También se incluyen varios ejemplos de
EAs que mejoran GPAIS. Por último, se esbozan los retos que plantea el uso de los
EAs en GPAIS y las posibles estrategias basadas en los EAs para diseñar o mejorar
los GPAIS.

La tesis aborda los diferentes objetivos descritos de manera exitosa. El objetivo relacio-
nado con el estudio de la literatura aporta innovación al campo de investigación, mejorando
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la literatura ya existente al mismo tiempo que abre diferentes líneas de investigación
futuras en diferentes ámbitos de la AI. Los siguientes dos objetivos, relacionados con la
creación de modelos basados en los EAs para el diseño y mejora de modelos de DL, están
respaldados por estudios empíricos comparativos. Partiendo de la premisa de eliminar
las neuronas innecesarias, hemos diseñado con éxito redes mejoradas en rendimiento y
robustez, reduciendo al mismo tiempo la complejidad. Por último, presentamos el trabajo
que proporciona el análisis de la Computación Evolutiva, en particular sobre los EAs,
dentro del dominio de los GPAIS. En concreto, se centra en la capacidad de los EAs
para diseñar y mejorar estos sistemas. Además, alineamos varias áreas de investigación en
las que los EAs han adquirido una gran influencia para las propiedades de los GPAIS e
ilustramos esta sinergia con varios hitos. Asimismo, proponemos los beneficios de los EAs
para los GPAIS y las estrategias basadas en estos algoritmos para el diseño y la mejora
de los GPAIS.
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1 Context

Evolutionary Algorithms (EAs) [BFM97] represent a class of Metaheuristics (MHs) that
have significantly impacted the field of computational intelligence [Sim13]. Widely
applicable in real-world scenarios [CWM12], EAs integrate principles from biology with
optimization strategies. They emulate natural selection, genetic variation, and survival
of the fittest to iteratively improve a population of candidate solutions. Although EAs
have a stochastic nature, and they do not guarantee to achieve the optimum value, they
present competitive solutions for optimization problems with limited resources.

Their success has produced an overwhelming growth of these algorithms, reflected in
taxonomies [SEBB20], but has also led to criticisms related to the novelty and application
benefits of recent proposals [CVSD20, TD21]. However, it is undeniably their applicability
in complex optimization problems [Yan10]. From this practical perspective, a very
important advantage is the ability to optimize several objectives at the same time, as in
the case of the Multi-Objective Evolutionary Algorithms (MOEAs) [CLVV+14]. EAs offer
a framework for tackling diverse optimization challenges, leveraging collective intelligence
to foster innovation and problem-solving [DSOM+19].

Machine Learning (ML) is a subfield of the Artificial Intelligence (AI) which aims to
develop models that learn about data and extract patterns from it. Through a longstanding
history of collaboration, EAs are the bio-inspired algorithms that have contributed most
to both the design and optimization of ML models, driving advancements in the field
[ASBC+19, TTBG21, LMX+23]. This collaborative approach, known as AI-powered AI,
involves employing one AI (such as EAs) to design or enhance another AI model. The
concept has garnered considerable attention and research within the ML community
[STÖ19].

Deep Learning (DL) [GBC16] is one of the branches of AI that has led the technological
revolution of the last years. DL is a dynamic field of research, with continuous advance-
ments in model architectures, optimization algorithms, and interpretability techniques
that expand the limits of AI. These models learn to automatically discover relevant
patterns and relationships from large datasets and offer a qualitative improvement to other
existing techniques, as in the case of image classification [RW17]. Despite its immense
practical applications, designing a suitable neural network for the problem to be solved
is a complicated task. For this reason, it is common to use existing architectures for
multiple problems.

There are two relevant aspects about DL that we want to highlight due to their
importance in this thesis. The first one is the Transfer Learning (TL) [PY09]. It involves
using the knowledge gained from solving one or more problems to solve a different but
related problem. As a result of using a pretraining model, the knowledge of the previous
problem can be used for the new one, enabling efficient learning and maintaining model
quality with fewer examples and computational resources. Another relevant feature that
we are going to consider is the robustness of the DL model. To measure it, frameworks
for robustness have been developed such as the Out-of-Distribution Detection (OoD),
where the ability of the model to handle the unknown is tested, specifically, to detect
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whether it has been queried with an example of a not learned distribution, as with
Out-of-DIstribution detector for Neural networks (ODIN) [LLS18].

Since EAs have been used for the design and optimization of ML models, their
application can bring benefits to the field of DL. As a consequence, the increasing
application of EAs in DL has raised the field of Evolutionary Deep Learning (EDL). This
field is an alternative to learn weights and hyper-parameters for the DL models, but also
for the design of the configuration of the layers. Figure 1 shows a scheme of a standard
EDL process. These approaches have been of interest to researchers and hundreds of
works have been developed to design or optimize DL models, as in [ALMR19]. Their
importance has escalated to the point of developing surveys and taxonomies aimed to
guide the design and optimization of these models [MDVR+21, LMY+23].

Figure 1: Schematic representation of an EDL process.

While EAs have historically been associated with optimization tasks, there is growing
evidence to suggest that their design capabilities are equally formidable. Within EDL,
there is a branch called Neural Architecture Search (NAS), which addresses the problem of
finding and adapting the network architecture through a search process. An evolutionary
strategy can be used to guide the search that finds the best configuration of layers or
even the backbone of the network. The majority of developments in these last years
have driven detailed studies of certain aspects of DL related to NAS, such as automatic
network design [ZQGT21, ÜB22, LSX+23].

This thesis considers as hypothesis, grounded in the background of EDL, that the
integration of EAs could design enhanced DL models. Consequently, this thesis aims to
design DL models with superior performance by using EAs. Specifically, we intend to
utilize TL and OoD paradigms to develop networks with enhanced performance metrics,



1 Context 5

while simultaneously preserving lower complexity and other desirable attributes such as
robustness.

The integration of EAs with DL falls within the broader domain of General-Purpose
AI Systems (GPAIS). Various definitions of GPAIS have been proposed [GAU+23, CL23],
with Triguero et al. offering a comprehensive analysis and a dual definition based on their
adaptability to new tasks [TMP+24]. They also introduce a taxonomy grounded in the
concept of AI-powered AI for system design and optimization, which is pertinent to our
use of EAs in designing and enhancing DL models. Many EDL proposals are aligned with
the notion of closed-world GPAIS given in [TMP+24], exemplified by notable works such
as [RLSL20] or [MLM+24b]. On the other hand, the open-world GPAIS are related to
works in which prior knowledge is used to adapt to new tasks in innovative ways, such as
the evolutionary generation of new environments with POET [WLCS19], the generation
of diverse models for learning in zero-shot environments [CCH+23]. These examples
are some of the first EA-based approaches that improve these systems, suggesting the
potential of EAs for GPAIS.
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Contexto

Los Algoritmos Evolutivos (Evolutionary Algorithms - EAs) [BFM97] representan una
clase de Metaheurísticas (Metaheuristics - MHs) que han tenido un impacto significativo
en el campo de la inteligencia computacional. Ampliamente aplicables en escenarios
del mundo real [CWM12], los EAs integran principios de la biología con estrategias de
optimización. Emulan la selección natural, la variación genética y la supervivencia del
más apto para mejorar iterativamente una población de soluciones candidatas. Aunque los
EAs tienen una naturaleza estocástica y no garantizan alcanzar el valor óptimo, presentan
soluciones competitivas para problemas de optimización con recursos limitados.

Su éxito ha producido un crecimiento desmesurado de estos algoritmos que se re-
fleja en las taxonomías [SEBB20], pero también ha dado lugar a críticas relacionadas
con la novedad y las ventajas a la hora de la aplicación de las propuestas recientes
[CVSD20, TD21]. Sin embargo, es innegable su aplicabilidad en problemas complejos
de optimización [Yan10]. Desde esta perspectiva práctica, una ventaja muy importan-
te es la capacidad de optimizar varios objetivos al mismo tiempo, como en el caso de
los Algoritmos Evolutivos Multi-Objetivo (Multi-Objective Evolutionary Algorithms -
MOEAs) [CLVV+14]. Los EAs ofrecen un marco de trabajo para abordar diversos retos
de optimización, aprovechando la inteligencia colectiva para fomentar la innovación y la
resolución de problemas [DSOM+19].

El Aprendizaje Automático (Machine Learning - ML) es un subcampo de la Inteligencia
Artificial (Artificial Intelligence - AI) cuyo objetivo es desarrollar modelos que aprendan
sobre los datos y extraigan patrones de ellos. A través de una larga historia de colaboración,
los algoritmos bioinspirados son los que más han contribuido tanto al diseño como a la
optimización de los modelos de ML, impulsando los avances en este campo [ASBC+19,
TTBG21, LMX+23]. Este enfoque colaborativo, conocido como IA que potencia a otra
IA (AI-powered AI ), implica el uso de una AI (como EAs) para diseñar o mejorar otro
modelo de AI. Este concepto ha suscitado una atención y una labor de investigación
considerables en el seno de la comunidad del ML [STÖ19].

El Aprendizaje Profundo (Deep Learning - DL) [GBC16] es una de las ramas de la
AI que ha liderado la revolución tecnológica de los últimos años. El DL es un campo de
investigación dinámico, con continuos avances en arquitecturas de modelos, algoritmos
de optimización y técnicas de interpretabilidad que amplían los límites de la AI. Estos
modelos aprenden a descubrir automáticamente patrones y relaciones de relevancia a
partir de grandes conjuntos de datos y ofrecen una mejora cualitativa a otras técnicas
existentes, como en el caso de la clasificación de imágenes [RW17]. A pesar de sus inmensas
aplicaciones prácticas, diseñar una red neuronal adecuada para el problema a resolver es
una tarea complicada. Por este motivo, es habitual utilizar arquitecturas ya existentes
para múltiples problemas.

Hay dos aspectos significativos sobre el DL que queremos destacar por su importancia
en esta tesis. El primero es el Aprendizaje por Transferencia (Transfer Learning - TL)
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[PY09]. Consiste en utilizar los conocimientos adquiridos en la resolución de uno o varios
problemas previos para resolver un problema diferente, pero relacionado. Como resultado
del uso de un modelo preentrenado, el conocimiento del problema anterior puede ser
utilizado para el nuevo, permitiendo un aprendizaje eficiente y manteniendo la calidad del
modelo con menos ejemplos y recursos computacionales. Otra característica relevante que
vamos a considerar es la robustez del modelo de DL. Para medirla, se han desarrollado
marcos de trabajo para medir la robustez como la Detección fuera de la Distribución
(Out-of-Distribution Detection - OoD), donde se prueba la capacidad del modelo para
manejar la incógnita, en concreto, para detectar si dicho modelo ha sido consultado con un
ejemplo de una distribución no aprendida, como ocurre con Out-of-DIstribution detector
for Neural networks (ODIN) [LLS18].

Dado que los EAs se han utilizado para el diseño y optimización de modelos ML, su
aplicación puede aportar beneficios al campo del DL. Como consecuencia, la creciente
aplicación de los EAs en el DL ha propiciado el nacimiento del campo del Aprendizaje
Profundo Evolutivo (Evolutionary Deep Learning - EDL). Este campo es una alternativa
para aprender pesos e hiperparámetros para los modelos de DL, pero también para
el diseño de la configuración de las capas. La Figura 2 muestra un esquema de un
proceso de EDL estándar. Estas aproximaciones han sido del interés de los investigadores
y se han desarrollado cientos de trabajos para diseñar u optimizar modelos de DL,
como en [ALMR19]. Su importancia se ha incrementado hasta el punto de desarrollar
estudios y taxonomías orientadas a guiar el diseño y optimización de estos modelos
[MDVR+21, LMY+23].

Figura 2: Representación esquemática de un proceso en EDL.

Aunque los EAs se han asociado históricamente con tareas de optimización, cada vez
hay más indicios que sugieren que sus capacidades de diseño son también formidables.
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Dentro del EDL, existe una rama denominada Búsqueda de Arquitectura Neuronal
(Neural Architecture Search - NAS), que aborda el problema de encontrar y adaptar la
arquitectura de red mediante un proceso de búsqueda. Se puede utilizar una estrategia
evolutiva para dicha búsqueda, que encuentra la mejor configuración de capas o incluso
la columna vertebral de la red. La mayoría de los desarrollos de estos últimos años han
propiciado estudios detallados de ciertos aspectos del DL relacionado con NAS, como el
diseño automático de redes [ZQGT21, ÜB22, LSX+23].

Esta tesis considera como hipótesis, basándose en los antecedentes del EDL, que la
integración de los EAs podría permitir diseñar modelos DL mejorados. En consecuencia,
el objetivo de esta tesis es diseñar modelos DL con prestaciones superiores mediante el
uso de los EAs. En concreto, pretendemos utilizar los paradigmas del TL y del OoD para
desarrollar redes con métricas de rendimiento mejoradas, preservando simultáneamente
una menor complejidad y otros atributos deseables como la robustez.

La integración de los EAs con el DL se enmarca dentro de un ámbito más general,
los sistemas de AI de propósito general (General-Purpose Artificial Intelligence Systems
- GPAIS). Se han propuesto varias definiciones de los GPAIS [GAU+23, CL23], pero
en Triguero et al. se ofrece un análisis exhaustivo y una definición dual basada en su
adaptabilidad a nuevas tareas [TMP+24]. También se introduce una taxonomía basada en
el concepto de AI-powered AI para el diseño y optimización de sistemas, que es coherente
con nuestro uso de los EAs en el diseño y mejora de modelos de DL. Muchas propuestas
del EDL están alineadas con la noción de GPAIS de mundo cerrado (closed-world GPAIS )
dada en [TMP+24], ejemplificada por trabajos notables como [RLSL20] o [MLM+24b].
Por otro lado, los GPAIS de mundo abierto (open-world GPAIS ) están relacionados con
trabajos en los que se utiliza el conocimiento previo para adaptarse a nuevas tareas de
forma innovadora, como la generación evolutiva de nuevos entornos con POET [WLCS19]
o la generación de diversos modelos para el aprendizaje en entornos de few-shot learning
[CCH+23]. Estos son unos de los primeros modelos basados en EAs que permiten la
mejora de estos sistemas, sugiriendo el potencial de los EAs para los GPAIS.
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2 Hypothesis

In the field of ML, EAs have been established as powerful tools for designing and optimizing
models. Despite some drawbacks, such as lack of global optimization guarantees, and
slow convergence rates, they possess several characteristics that make them a compelling
option for solving various problems. These characteristics include easy implementation,
adaptability which allows for dynamic adjustment of search strategies based on problem
landscapes, and versatility in customizing operators to adapt to different problem domains.

EDL has gained significant relevance due to its ability to utilize evolutionary strategies
for optimizing DL models. Additionally, it encompasses various learning paradigms
adaptable to diverse data types and scenarios based on their complexity. Notably, EDL
methods have evolved alongside the rise of DL and have shown promise in tackling
challenging problems. The specific motivations underlying this thesis are outlined below.

• Bio-inspired algorithms have been applied in various domains. Surveys have clas-
sified these algorithms based on their natural or biological inspiration, resulting
in numerous categories. However, the mathematical model of the bio-inspired
algorithm is often overlooked, despite being the most crucial characteristic of the
algorithm. The hypothesis is that the diversity of the mathematical model is
lower than the diversity offered by the biological inspiration. The analysis and
classification from the perspective of a taxonomy could reflect this assumption.

• Many EDL proposals focus on adapting the convolutional phase of the DL model.
We hypothesize that we can design DL models with better performance by adapting
the last layers and eliminating unnecessary connections. By doing so, we can also
leverage previous knowledge from similar problems to enhance the efficiency of
resource utilization.

• MOEAs are known for their robustness and ability to handle diverse scenarios
effectively, often yielding interpretable solutions compared to black-box optimization
methods. For these reasons, our hypothesis is that the utilization of OoD as another
objective of the MOEA can facilitate the design of more interpretable and robust
DL models.

• Recent trends suggest that GPAIS show the need to move towards more open and
robust approaches. Our hypothesis considers that EAs could be relevant in the
scope of GPAIS. The adaptability and robustness of EAs may play a crucial role in
the design and enhancement of GPAIS.

To summarize, the proposed thesis project constitutes a substantiated contribution
to the advancement of EDL. The impact of this thesis is justified by the development
of a comprehensive survey of bio-inspired algorithms based on the mathematical model
which serves as a reference for an analysis of the field, two proposals based on EAs for
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the design of improved, more robust and more explicable DL models, and a study about
the potential of EAs for the design and enhancement of GPAIS.
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3 Objectives

After establishing the hypothesis of this thesis, the following section elaborates on the
objectives that have driven it. The main objective is to use evolutionary strategies
within the scope of DL. Specifically, the objective of this thesis is to develop
EAs for designing improved DL models for image classification in terms of
performance while prioritizing properties like robustness and explainability.

To accomplish this, a comprehensive survey on MHs was created, which presents a
convenient taxonomy to classify bio-inspired algorithms like EAs in terms of natural
inspiration and mathematical model. Then, two more objectives of this thesis are related
to the design and optimization of DL models using EAs. Lastly, the potential of EAs in
GPAIS is also studied. These objectives can be broken down as follows:

Study of the bio-inspired algorithms in the MHs field, resulting in a com-
prehensive survey and taxonomy. To accomplish our first objective, we conduct an
extensive literature review aimed at establishing a comprehensive taxonomy grounded in
the similarities and distinctions among bio-inspired optimization algorithms. Through
this research, we categorize all MHs inspired by biological processes and nature into dis-
tinct categories based on their biological and mathematical characteristics, to determine
whether the diversity offered by mathematical model-based inspiration is similar to that
offered by biological inspiration. We examine the similarities between novel and classical
bio-inspired algorithms and evaluate the strengths, weaknesses, and recent advancements
in the field. We aim to address the limitations of the field by reviewing several studies,
guidelines, overviews, taxonomies, and general approaches to serve as a guide for other
researchers. We highlight the potential research lines of the field.

To develop an evolutionary pruning model to automatically design improved
DL models. The specific design of DL models represents a challenging task. Many exist-
ing evolutionary strategies in the literature demand substantial computational resources
to formulate entire models. Hence, the goal is to develop an EA tailored for designing the
fully-connected layers of DL models. This approach leverages TL to import and apply
knowledge from related problems, followed by pruning to eliminate redundant neurons
within these layers. The objective is to design networks with improved performance while
minimizing, at the same time, complexity. We will study the robustness of the designed
models using the Centered Kernel Alignment (CKA). To evaluate the effectiveness of our
approach, we will implement and compare it against several prominent pruning methods
for fully-connected layers.

To develop a multi-objective evolutionary pruning model to automatically
design improved DL models. Many approaches in DL model design using a MOEA
primarily emphasize optimizing performance and complexity. However, they often overlook
the crucial aspect of robustness. This study aims to create a specialized MOEA for DL
model design that considers performance, complexity, and robustness as concurrent
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objectives. In addition, we will utilize the GradCam, an eXplainable Artificial Intelligence
(XAI) technique to elucidate the regions of original images associated with influential
neurons. We will use an ensemble modeling strategy to capitalize on model diversity
to further improve the performance and robustness of the designed DL models. Lastly,
we will conduct comparative analyses against existing pruning methods to evaluate the
efficacy of our proposed approach.

Study about the role of Evolutionary Computation in the GPAIS field, re-
sulting in a position paper about the potential of EAs in GPAIS. In a position
paper, we analyze the possible role of Evolutionary Computation, specifically EAs, in
the field of GPAIS. We study how EAs can design or improve GPAIS. We describe the
way in which EA-based areas can be applied to fulfill the desired GPAIS properties. The
analysis shows recent milestones on EAs and GPAIS. To discover and encourage future
research directions, we discuss the challenges in exploiting the advantages of using EAs
in GPAIS. Also, we present strategies that can be implemented with EAs to both design
and improve GPAIS, along with EA-based research areas that can help to realize them.
This work can be useful to deal with the recent challenges in the AI about the design and
enhancement of GPAIS.
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4 Methodology

The research conducted throughout this thesis has been carried out following the scientific
method. In this particular case, it requires both practical and theoretical methodologies.
The general guidelines applied in all studies included in this thesis are summarized here:

• Observation: through the study of the EAs task, and focusing on DL. The goal of
this stage is to identify research opportunities, which could result in new, successful
models to address EAs in the realm of DL and extend its applicability.

• Formulation of hypotheses: design of new EAs algorithms for DL, with an
emphasis on their scalability with respect to the amount of constraint-based infor-
mation available. The models designed and developed must fulfill the objectives
described in previous sections.

• Experimental data collection: the designed models are tested on diverse scenarios
to obtain results as representative of their capabilities as possible. These results are
later analyzed using external quality indices.

• Contrasting the hypotheses: the results obtained are compared with repre-
sentative models from the existing literature, to analyze their quality in terms of
efficiency and effectiveness. To this end, a set of representative models is chosen on
the basis of a comprehensive literature review. These models are implemented and
published, for the sake of reproducibility of results.

• Validation of hypotheses: hypotheses formulated in the experiments are proven
or disproven following objective quality indicators and statistical testing. If any
given hypothesis is rejected, it must be modified and the previous steps repeated
from that point on.

• Scientific thesis: relevant conclusions are extracted in view of the outcomes of
the research process. All the results and conclusions obtained must be gathered
and synthesized into a documentary report of the thesis.
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5 Thesis Developments

The body of knowledge compiled in this thesis is found in 4 different studies, three of
them published in scientific journals. This section aims to introduce and summarize both
the purpose and the developments of these studies, whose results will be discussed later
(in Section 6). The publications are listed below:

• Molina, D., Poyatos, J., Del Ser, J., García, S., Hussain, A., & Herrera, F. (2020).
Comprehensive taxonomies of nature-and bio-inspired optimization: Inspiration ver-
sus algorithmic behavior, critical analysis recommendations. Cognitive Computation,
12, 897-939. DOI: https://doi.org/10.1007/s12559-020-09730-8

• Poyatos, J., Molina, D., Martinez, A. D., Del Ser, J., & Herrera, F. (2023). Evo-
PruneDeepTL: An evolutionary pruning model for transfer learning based deep
neural networks. Neural Networks, 158, 59-82. DOI: https://doi.org/10.1016/j.
neunet.2022.10.011

• Poyatos, J., Molina, D., Martínez-Seras, A., Del Ser, J., & Herrera, F. (2023).
Multiobjective evolutionary pruning of Deep Neural Networks with Transfer Learning
for improving their performance and robustness. Applied Soft Computing, 147,
110757. DOI: https://doi.org/10.1016/j.asoc.2023.110757.

The rest of this section is organized according to the publications listed above, and
the objectives described in Section 3. Firstly, Section 5.1 presents a survey on MHs,
including a dual taxonomy based on the biological inspiration and mathematical model,
with an analysis of the most influential algorithms, an evolution of the field in recent
years, and the future challenges of the research area. In Section 5.2, we focus on EAs and
DL to propose a new EAs to design DL models for image classification to improve the
performance. In Section 5.3, we extend the previous evolutionary model using a MOEA
to design and enhance DL models using three objectives. Furthermore, in both cases,
we carry out several experiments to analyze the diversity and robustness of the models.
Lastly, in Section 5.4, we describe the analysis made in the position paper about the
potential of EAs in GPAIS. In Chapter III, this work is deeply described, both in content
and structure.

5.1 Study of the bio-inspired algorithms in the MH field, resulting in
a comprehensive survey and taxonomy

The field of MHs has undergone extensive study over the past few decades, resulting
in a plethora of algorithms that have demonstrated exceptional performance across
various domains. Despite this, existing surveys and taxonomies often focus primarily on
the biological inspiration behind these algorithms, resulting in repetitive classifications
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with limited algorithmic diversity and minimal advancement. Consequently, while both
bio-inspired algorithms and MHs techniques are extensively studied, there remains a
significant gap in the literature for a comprehensive survey that encompasses all possible
bio-inspired algorithms with a taxonomy based on their underlying mathematical models.

This survey comprehensively covers the field of bio-inspired algorithms, beginning
with an overview of the concept and previous surveys in the field. We then introduce two
proposed taxonomies: one based on biological inspiration and the other on the underlying
mathematical models. Each taxonomy is explored in detail, categorizing algorithms
based on their inspiration and solution-creation methods. Additionally, we analyze how
classical algorithms have influenced newer ones. The study includes a critical analysis of
bio-inspired algorithms, evaluating their strengths, weaknesses, and areas for improvement.
Notable papers from recent years, offering guidelines for researchers and future directions,
other taxonomies, overviews, and general approaches are also discussed. Finally, we draw
conclusions based on the insights gained from analyzing more than 500 algorithms.

The publication associated with this study is:

Molina, D., Poyatos, J., Del Ser, J., García, S., Hussain, A., & Herrera, F. (2020).
Comprehensive taxonomies of nature-and bio-inspired optimization: Inspiration
versus algorithmic behavior, critical analysis recommendations. Cognitive Compu-
tation, 12, 897-939. DOI: https://doi.org/10.1007/s12559-020-09730-8

5.2 To develop an evolutionary pruning model to automatically design
improved DL models

The design of DL models is a complicated task due to the vast set of possibilities that
may fit the problem at hand. Various automatic approaches exist for designing these
networks, each with its advantages and drawbacks. One such approach is the pruning
technique, which involves eliminating unnecessary connections in the network to create
a more streamlined version. However, relying solely on pruning may lead to a decrease
in performance. The use of TL can speed up the network design process by leveraging
knowledge from previously studied problems. Therefore, there is a need to develop an EA
capable of evolving pruning patterns for the fully-connected layers to design DL models
with better performance.

In this work, we have developed an evolutionary pruning scheme that refines the TL
process for designing improved DL models. The TL, when applied to the convolutional
phase of the neural network with similar problems, allows the use of EAs in the fully-
connected phase, where the model learns to distinguish between classes. Pruning is
then applied to eliminate unnecessary neurons, resulting in a population of networks
that EAs evolve towards a designed network with an optimized pruning pattern. This
novel workflow breaks from traditional pruning methods by aiming to enhance model
performance rather than degrade it. We also address two crucial aspects of DL: robustness
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and adaptation to new data. The CKA measure provides insights into the robustness of
the designed networks. Additionally, introducing a new class incrementally demonstrates
the approach’s adaptability to different scenarios.

The publication associated with this study is:

Poyatos, J., Molina, D., Martinez, A. D., Del Ser, J., & Herrera, F. (2023).
EvoPruneDeepTL: An evolutionary pruning model for transfer learning based deep
neural networks. Neural Networks, 158, 59-82. DOI: https://doi.org/10.1016/
j.neunet.2022.10.011

5.3 To develop a multi-objective evolutionary pruning model to auto-
matically design improved DL models

The field of EDL primarily focuses on optimizing DL models based on performance and
complexity metrics. However, integrating robustness as an additional objective is a novel
approach. Robustness, often measured through OoD detection, evaluates a model’s ability
to distinguish between known and unknown samples, essential for addressing open-world
problems. To address this, there is a need to develop a MOEA that considers performance,
complexity, and robustness, specifically targeting the evolution of pruning patterns in
fully-connected layers.

In this study, we propose a novel approach based on a MOEA that refines the TL
process to design improved DL models. The MOEA simultaneously enhances performance,
and robustness, and reduces complexity by generating diverse models. Following a similar
workflow to previous work, TL is applied to the convolutional phase while the MOEA,
combined with pruning, operates in the fully-connected phase. This approach yields DL
models exhibiting diversity across all objectives in the Parento Front (PF). Additionally,
we conduct three sets of experiments: (1) comparison against pruning techniques, (2)
analysis of influential neurons using a XAI technique, providing insight into class prediction
regions in images, and (3) utilization of an ensemble to capitalize on the MOEA’s ability
to generate diverse models, aiming to improve performance, robustness, and mitigate
overfitting risks.

The publication associated with this study is:

Poyatos, J., Molina, D., Martínez-Seras, A., Del Ser, J., & Herrera, F. (2023). Mul-
tiobjective evolutionary pruning of Deep Neural Networks with Transfer Learning
for improving their performance and robustness. Applied Soft Computing, 147,
110757. DOI: https://doi.org/10.1016/j.asoc.2023.110757.
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5.4 Study about the role of Evolutionary Computation in the GPAIS
field, resulting in a position paper about the potential of EAs in
GPAIS

In recent years, the optimization of ML models has been a widely studied problem.
Among the various possibilities, EAs have achieved great importance in ML. The latest
advances in AI indicate a shift towards the development of GPAIS, and their optimization
constitutes a challenging task. The utilization of well-proven algorithms such as EAs
in this new field is an opportunity to prove their value. Therefore, there is a need for
a position paper that encompasses the role of EAs in GPAIS and how they design and
enhance these systems and strategies to address advances in the realization of GPAIS
using EAs, to foster more research in this field.

This work briefly explains the historical importance of Evolutionary Computation in
ML, the field of GPAIS in terms of their definition and properties, and a taxonomy based
on AI-powered AI to design and/or enhance GPAIS. By leveraging on this taxonomy but
adapted for EAs (called EA-powered AI ), these algorithms serve as an additional layer
of abstraction. This position paper provides insights about how GPAIS can be designed
and enhanced using EAs. These models are referred to as EA-GPAIS. To underscore the
possible connection between GPAIS and EAs, their properties are matched to EA-based
research areas. Several milestones in EA-GPAIS are shown as a result of the synergy
between them in recent years. This study concludes with a description of the challenges
to harness the benefits of using EAs in GPAIS and with several strategies that can be
implemented using EAs to both design and improve GPAIS. This last analysis serves as
motivating evidence for the present and future development of EA-GPAIS.
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6 Discussion of Results

The first and last objectives of the thesis do not include experimental studies, but for the
other objectives, a large experimental section has been developed to test the performance
of each proposal. We have designed a homogeneous experimental setup that ensures both
research conclusions and robustness in terms of the conclusions of the experiments so
that this setup guarantees a fair comparison between different approaches. We follow the
recommended guidelines through the design of all the experimental setups for the sake
of consistency and validity of the findings among the wider academic community. The
pruning algorithms that have been used in our comparison have been developed following
their recommendations.

This section summarizes the discussion of the results obtained to achieve the objectives
of this thesis and provides the analyses carried out based on the experimental results.
Similarly to Section 5, the rest of this section is summarized according to the publications
and the objectives introduced in Section 3. Section 6.1 provides the recommendations
and conclusions from the study of the literature in MHs. Section 6.2 shows the results
obtained in our first evolutionary pruning model (EvoPruneDeepTL). Section 6.3 displays
the results of the MOEA for the pruning of DL models (MOEvoPruneDeepTL). Lastly,
Section 6.4 presents the conclusions from the position paper about the potential of EAs
and GPAIS.

6.1 Study of the bio-inspired algorithms in the MH field, resulting in
a comprehensive survey and taxonomy

The study related to this objective provides an overview of bio-inspired optimization
algorithms. It starts with an introduction about bio-inspired computation and MHs,
analyzing their strengths and weaknesses. It follows with a review of recent surveys
of bio-inspired algorithms and the dual taxonomy. The first taxonomy is based on
biological inspiration, providing more specialized categories compared to previous surveys.
The second taxonomy, a novel addition, classifies algorithms based on their underlying
mathematical model. Additionally, the study analyzes influential algorithms from the
literature and those closely derived from them. During this study, a total of 500 bio-
inspired algorithms were reviewed.

The study and proposed taxonomies offer valuable insights:

• Provide a comprehensive basis for learning about bio-inspired optimization algo-
rithms and the most promising research directions.

• Categorize all other bio-inspired proposals in each category according to their
characteristics. Almost 25% of the reviewed algorithms are based on the classical
MHs.
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• Identify the most used bio-inspired optimization algorithms and provide several
lessons for the reader to follow to design new bio-inspired algorithms.

• Provide an analysis of the situation of the field, its strengths, weaknesses, and future
prospects. We show a summary of guidelines for complete design and perform a
fair comparison between bio-inspired algorithms.

This study has provided several insights into the shortcomings of bio-inspired optimiza-
tion, as well as its strengths and capabilities for developing innovative algorithms. This
extensive review has contributed to the recognition of several promising research directions
of the fields and lessons learned from the evolution of the bio-inspired optimization field.
These directions are highlighted below:

• Behavior is more relevant than natural inspiration, as the existing literature is
saturated with numerous nature- and bio-inspired algorithms. Our taxonomies show
that algorithms from different sources of inspiration often exhibit similar behavior,
which is a bad and unexpected result, since many — and of various categories
— bio-inspired algorithms present such similarities when they come from totally
different domains. This prevents the field from higher progress due to the high
similarity between proposals.

• Nature-based terminology can make it difficult to understand the proposal because of
the terminology used to describe it. Instead, to make proposals more understandable,
it would be desirable for the description of the algorithm to be defined in an
inspiration-agnostic way.

• Good comparisons are crucial for new proposals since most new proposals are
compared to the same classical algorithms and not to state-of-the-art algorithms.

• A handful of guidelines for the design and comparison of new bio-inspired algorithms,
so that research could easily develop several experiments appropriately to compare
the new algorithm.

• More recent taxonomies, overviews, and general approaches of MHs are also pre-
sented to show the ongoing evolution of the field.

• A present and future abundance of exciting applications where bio-inspired algo-
rithms and other approaches have been used in various domains to address real-world
applications, as well as their application in ML and DL, which also gives insight
into the importance.

6.2 To develop an evolutionary pruning model to automatically design
improved DL models

Our proposal for the evolutionary pruning model which uses TL to import previous
knowledge is called EvoPruneDeepTL. We have created a repository to offer the source
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code for other researchers, following the recommendation of open science1. Although the
same process could be applied to other domains, we have tested it on image classification
problems. We decided to use several datasets of different domains, to check that our pro-
posal behaves correctly. We have used a set of representative datasets in our experiments,
including medical images, vegetal images, and paintings, among others.

We have developed a binary EAs that masks its chromosomes in pruned networks,
and we have tested different networks and scenarios. We considered a standard fully-
connected network with one and two layers and all their possibilities as baselines. We have
also used several pruning methods from the literature with excellent results in pruning
fully-connected layers to compare our proposal. For the evaluation, we use the standard
evaluation metrics based on the performance in terms of accuracy. EvoPruneDeepTL
achieves improved DL models in terms of performance and, although it is not its primary
goal, reduces complexity by eliminating unnecessary neurons.

The study brings to the table the following valuable insights:

• The results indicate that pruned networks evolve to perform better than other
pruning methods that assume lower performance. They outperform all considered
baselines in all experimental settings.

• The best results are achieved when the removed neurons are taken directly from
the learning acquired from the transfer learning, resulting in a feature selection
approach. Additionally, good results are also achieved when the removed neurons are
the connections between layers, which is even better than other pruning approaches.

• The CKA measure indicates that the results of our proposal are not due to the
randomness of the EA, thus giving robustness as a consequence.

• The step-by-step incorporation of new data into the model demonstrates the adapt-
ability of our proposal and improves the performance.

6.3 To develop a multi-objective evolutionary pruning model to auto-
matically design improved DL models

Our work of multi-objective evolutionary pruning addresses the same problem as the
image classification discussed before and the same datasets are used. We also follow the
same recommendations and create a repository to free the code for other researchers 2.
Concerning the multi-objective algorithm, we use a modified version of Nondominated
Sorting Genetic Algorithm II (NSGA-II) in which we have adapted the operators. In
addition, we have implemented an ensemble to take advantage of the diversity of models
generated with the MOEA. We have also used the GradCam to analyze the most influential

1https://github.com/ari-dasci/S-EvoPruneDeepTL
2https://github.com/ari-dasci/S-MOEvoPruneDeepTL
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neurons and their representation in the original images. For the PF of the solutions, we
took the best solutions of all runs of the algorithm. The OoD detection was done with
the ODIN method.

The study offers the following valuable insights:

• The evolution of pruning patterns that eliminate unnecessary neurons enables the
design of networks with improved accuracy, complexity, and robustness.

• Our proposal outperforms other competitive pruning methods based on the accuracy
metric.

• The designed networks exhibit high values of accuracy and robustness, while the
complexity is low.

• We have collected the most influential neurons of the PF and, using the GradCam,
we have displayed the region of the original image associated with these neurons.

• Exploiting the diversity of DL models, the ensemble contributes to improving these
results in terms of accuracy and robustness in all the scenarios studied.

6.4 Study about the role of Evolutionary Computation in the GPAIS
field, resulting in a position paper about the potential of EAs in
GPAIS

This position paper analyzes the important role that EAs can play in the design and
enhancement of GPAIS. It starts with a background of the benefits of Evolutionary
Computation and ML, GPAIS definition and properties, and the importance of the
paradigm of AI-powered AI for GPAIS. Then, by leveraging this paradigm adapted for
EAs, this work shows how EA-powered AI can be used to both design or enhance GPAIS.
It follows with the matching between the core properties of GPAIS and the EA-based
research areas that could be beneficial to realize them. Based on the definition of GPAIS
presented in this position paper, various recent milestones of closed- and open-world
EA-GPAIS are described. Lastly, it concludes with the challenges of harnessing the
benefits of EA-GPAIS and with several strategies that can be implemented with EAs to
address advances for the design and enhancement of GPAIS.

The position paper offers valuable insights:

• Provide a comprehensive work about the role of EAs in the emerging field of GPAIS.

• Identify how EA-powered AI can be used to design or enhance GPAIS.

• Match the potential of EA-based areas to realize GPAIS properties.
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• Indicate strategies to explore promising research areas of EAs that can be useful in
GPAIS.

This study has provided several lessons about the importance of EAs in the design
and enhancement of GPAIS. Next, we highlight the following ones:

• The emerging field of GPAIS needs optimization processes. The incorporation in
GPAIS of ideas and algorithms like EAs, which have contributed to the development
of the field of ML, can be useful.

• The landscape of EAs application is larger, as shown in recent EA-GPAIS. The
ability of MOEAs to explore several objectives allows the incorporation of diversity
measures. This feature facilitates a natural integration into more open-world GPAIS.

• The advancement of GPAIS is the future of AI. These systems hold immense promise
for the field. Hence, tools such as EAs, known for their ease of implementation and
inherent adaptability and robustness, emerge as an excellent choice for the design
and optimization of GPAIS.
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7 Conclusions and Future Work

This section concludes the thesis (Subsection 7.1), gathers all the relevant studies we have
published (Subsection 7.2), and provides notes on future research lines (Subsection 7.3).

7.1 Conclusions

This thesis presents a comprehensive study of EAs that provides both a comprehensive
view of the work already done in the area and innovation in the form of two proposals based
on EAs and a position paper. This thesis aims to expand the knowledge about EAs and
approach the problem from new perspectives. To this end, the most comprehensive survey
on bio-inspired algorithms in the literature has been carried out, extensive experimental
studies have also been conducted to prove the potential of our proposals to achieve higher
standards than the previously published alternatives, and a position paper that explores
the potential of EAs in the field of GPAIS has also been developed.

To achieve the first objective of developing a survey about MHs, an extensive study
about MHs with more than 500 reviewed algorithms has been collected. We introduce all
the necessary concepts about MHs to fully understand all its fundamentals. We propose
a dual taxonomy of both biological inspiration and mathematical behavior, covering the
literature of MHs. This proposal presents two novelties: an extended biological taxonomy
with more categories and a novel taxonomy based on the underlying mathematical model.
We also analyze the influential MHs over the history of the field and the relation of these
MHs with the rest of the proposals of the study. Both analyses lead to several lessons
learned about the situation of the MHs field, which cover better comparisons, natural
inspiration is less relevant than behavior, many proposals with limited influence, and that
nature-based terminology can make it difficult to understand novel MHs. We examine
the present and future situation of the field of MHs, analyzing its shortcomings, benefits,
and potential future applications, revealing promising areas of research like Generative
AI. Finally, we provide a brief explanation of recent taxonomies, overviews, and general
approaches, which could be useful to other researchers.

The second objective has been addressed with the development of EvoPruneDeepTL.
The main contribution of EvoPruneDeepTL is the design of DL models using a binary
EA where unnecessary neurons are removed, together with a refinement process of the
TL paradigm. We have developed an EA capable of designing robust and improved
networks in different domains and also, as a complementary detail, with fewer connections.
Moreover, the comparison with other competitive pruning methods able to reduce as much
as EvoPruneDeepTL the fully connected layers do not reach the same performance level
as our proposal. The experiments to test the generalization ability of EvoPruneDeepTL
also achieved good results. EvoPruneDeepTL establishes a new line of research in the
design of DL models, using pruning to remove unnecessary neurons to adapt the network
to the problem at hand, with the main contribution of improving the performance of such
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a network allowing the use of TL.

The third objective was achieved with the development of MOEvoPruneDeepTL.
To fulfill this objective, we propose a MOEA for the optimization of three objectives:
performance, complexity, and robustness. The generated models are compared in the PF
of the solutions, resulting in diverse solutions that achieve high values of performance and
robustness and low values of complexity. Also, thanks to the diversity of the models, the
ensemble approach can improve the models. The study of the most influential neurons
reveals common neurons between solutions, thus discovering certain patterns. These
neurons are reflected in the region of the original image, so we can identify the region that
is connected to them. Studying the most influential neurons explains the relationship
between the neurons and the original image.

The last objective has been tackled with a position paper about the important role of
EAs in GPAIS. These algorithms are one of the most important families of bio-inspired
algorithms and have achieved great success in ML. Their application to other areas of AI
constitutes a promising avenue. EA-powered AI has shown how EAs can help to design
or enhance GPAIS. The connection of GPAIS properties to EA-based research areas
has unveiled the capability of these algorithms for their fulfillment. Recent milestones
regarding EA-GPAIS have been presented, showing the advancements in the field. The
challenges to obtain the benefits of using EAs in GPAIS scenarios have been revisited.
Finally, strategies that can be implemented with EAs to address advances in GPAIS have
discovered several research areas that can potentially be very beneficial in the forthcoming
years. This objective shows the present and future applications of EAs to innovate and
revolutionize the field of GPAIS and the AI.

Conclusiones

Esta tesis presenta un amplio estudio en MHs que proporciona tanto una visión global de
los trabajos ya realizados en el área como un enfoque más innovador con dos propuestas
basadas en EAs y un trabajo de posicionamiento. El objetivo general de esta tesis es
ampliar el conocimiento actual sobre MHs, en particular sobre EAs, y estudiar este
problema desde diferentes y nuevas perspectivas. Para ello, se han llevado a cabo la
revisión bibliográfica sobre algoritmos bioinspirados más extensa hasta la fecha, estudios
experimentales exhaustivos para demostrar el potencial de nuestras propuestas y superar
los resultados de las alternativas existentes, y un trabajo de posicionamiento que explora
el potencial de los EAs dentro del campo de los GPAIS.

Para realizar el primer objetivo de desarrollar una revisión bibliográfica exhaustiva
sobre las MHs, se ha recopilado y analizado un extenso corpus bibliográfico sobre MHs
con más de 500 propuestas revisadas. Primero, se introducen los conceptos necesarios
sobre las MHs para poder entender sus nociones básicas. Tras ello, se propone una doble
taxonomía que abarca la literatura de MHs basada en la inspiración biológica y en la
matemática del modelo. Esta propuesta ha presentado dos novedades: una taxonomía
biológica con un mayor número de categorías y una nueva taxonomía basada en el modelo
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matemático subyacente. Además, se realiza un análisis sobre las MHs más importantes de
la historia del campo y su relación con el resto de MHs presentadas en este estudio. Ambos
análisis conducen a varias lecciones aprendidas sobre la situación del campo de la MHs,
que abarcan mejores comparaciones, que la inspiración natural es menos relevante que el
comportamiento, que hay muchas propuestas con influencia limitada, y que la terminología
basada en la naturaleza puede dificultar la comprensión de la nueva MHs. Examinamos
la situación actual y futura del campo de la MHs, analizando sus limitaciones, beneficios
y posibles aplicaciones futuras, desvelando áreas de investigación prometedoras como la
Generative AI (IA Generativa). Por último, ofrecemos una breve explicación de varias
guías de trabajo, taxonomías recientes, trabajos de revisión y enfoques generales, que
podrían ser útiles para otros investigadores.

El segundo objetivo se alcanza con el desarrollo de EvoPruneDeepTL. El principal
aporte de EvoPruneDeepTL es el diseño de redes neuronales usando un EA binario con el
que se eliminan neuronas innecesarias, junto con un refinamiento del proceso de TL. Se
ha desarrollado un EA capaz de diseñar redes robustas y mejoras en diferentes problemas
y, a modo complementario, con menos conexiones. La comparación con otros modelos
de poda competitivos capaces de reducir tanto como EvoPruneDeepTL no obtienen un
rendimiento similar que nuestra propuesta. Los experimentos que permiten comprobar
la capacidad de generalización de EvoPruneDeepTL también presentan unos buenos
resultados. EvoPruneDeepTL establece una nueva línea de investigación en el diseño de
modelos DL, utilizando la técnica de la poda para eliminar neuronas innecesarias con el
fin de adaptar la red al problema planteado, con la principal aportación de mejorar el
rendimiento de dicha red permitiendo el uso del TL.

El tercer objetivo se ha alcanzado con el desarrollo de MOEvoPruneDeepTL. La
investigación que se ha llevado a cabo para realizar este objetivo propone un MOEA
para la optimización de tres objetivos: rendimiento, complejidad y robustez. Los modelos
generados se comparan en el frente de Pareto de las mejores soluciones, obteniéndose
soluciones diversas que alcanzan altos valores de rendimiento y robustez y bajos valores de
complejidad. Además, gracias a la diversidad de dichos modelos, el enfoque de ensemble
es capaz de mejorar los modelos. Por último, el estudio de las neuronas más influyentes
permite encontrar neuronas comunes entre las soluciones, descubriendo así ciertos patrones.
Estas neuronas se reflejan en la región de la imagen original, por lo que es posible identificar
la región que está conectada a ellas. Gracias al estudio de las neuronas más influyentes
podemos explicar la representación entre dichas neuronas y la imagen original.

El último objetivo se ha abordado con un trabajo de posicionamiento sobre el papel
de los EAs para los GPAIS. Estos algoritmos son una de las familias más importantes
de algoritmos bioinspirados y han alcanzado un gran éxito en el ML. Su aplicación a
otras áreas de la AI constituye una línea de trabajo prometedora. El EA-powered AI ha
mostrado cómo los EAs pueden ayudar a diseñar o mejorar los GPAIS. La conexión de las
propiedades de los GPAIS con las áreas de investigación basadas en EA ha desvelado la
capacidad de estos algoritmos para su cumplimiento. Se han presentado hitos recientes en
relación con EA-GPAIS, mostrando los avances en el campo. Finalmente, las estrategias
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que pueden ser implementadas con los EAs para abordar los avances en los GPAIS han
descubierto varias áreas de investigación que potencialmente pueden ser muy beneficiosas
en los próximos años. Este objetivo muestra las aplicaciones presentes y futuras de los
EAs para innovar y revolucionar el campo de los GPAIS y de la AI.

7.2 Publications

This section lists the journal papers published during the PhD study period, ordered by
publishing date. For each publication, we show the DOI, the number of citations, and the
Field-Weighted Citation Impact (FWCI) given by Scopus, which shows how well-cited
this document is when compared to similar documents. A value greater than 1 means
the document is more cited than expected according to the average. This metric takes
into account (1) the year of publication, (2) the document type, and (3) the disciplines
associated with its source. The list of papers is listed as follows:

• Journal papers:

1. Molina, D., Poyatos, J., Del Ser, J., García, S., Hussain, A., & Herrera, F.
(2020). Comprehensive taxonomies of nature-and bio-inspired optimization: In-
spiration versus algorithmic behavior, critical analysis recommendations. Cog-
nitive Computation, 12, 897-939. DOI: https://doi.org/10.1007/s12559-
020-09730-8. CITED BY: 108. FWCI: 6.41.

2. Poyatos, J., Molina, D., Martinez, A. D., Del Ser, J., & Herrera, F. (2023).
EvoPruneDeepTL: An evolutionary pruning model for transfer learning based
deep neural networks. Neural Networks, 158, 59-82. DOI: https://doi.org/
10.1016/j.neunet.2022.10.011. CITED BY: 9. FWCI: 4.03.

3. Poyatos, J., Molina, D., Martínez-Seras, A., Del Ser, J., & Herrera, F. (2023).
Multiobjective evolutionary pruning of Deep Neural Networks with Transfer
Learning for improving their performance and robustness. Applied Soft Com-
puting, 147, 110757. DOI: https://doi.org/10.1016/j.asoc.2023.110757.
CITED BY: 3. FWCI: 1.36.

7.3 Future work

The results of this PhD thesis open new lines of research, including the identification of
new challenges in the field of EAs. This last section presents future work and lines of
research that emerge from the studies and conclusions of this thesis:

Extending the evolutionary search to higher layers of the neural hierarchy.
This future work follows naturally from the work presented in EvoPruneDeepTL. Our
study focuses on the specialization of the final layers using TL for the convolutional
layer weights, but it is also possible to proceed at the level of the convolutional layer
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configuration. Once the weights have been determined using TL, it might be useful to
use a EAs to evolve the initial weights for each layer towards the optimal set of weights.
The TL would serve as a warm start of the algorithm, and local search could even be
incorporated to improve these weights in each layer.

Optimization of new objectives. EAs are search algorithms designed to optimize a
fitness function. Most proposals focus exclusively on performance and, at most, incorporate
another objective in multi-objective cases. However, recent research has shown a growing
interest in combining EAs with metrics that measure diversity and robustness, such as
OoD detection. This thesis asserts the benefits of combining these techniques. Therefore,
this future work will focus on using metrics to measure the desirable properties of the
models and will guide the process of finding the best models for the problem at hand. This
work would complement other approaches discussed in this section, and their combination
could lead to innovative solutions for the field.

Application of distributed co-evolutionary algorithms. In both practical proposals,
we have designed and improved the fully-connected layers of the model. However,
optimizing the entire model is a major challenge. For this, we could optimize the different
parts of the neural network with a distributed approach, using distributed co-evolutionary
EAs, so that we could have different populations to optimize the network in a distributed
way, thus being able to reduce the optimization time.

Updating MHs libraries for more engagement. The availability of software is impor-
tant for making comparisons between algorithms efficiently, effectively, and reproducibly,
as we have freed the software of our two practical proposals, following the recommen-
dations of open science. Nowadays, a wide variety of tools are available, ranging from
data manipulation to statistical tests. However, few studies provide the code associated
with the results related to their MH, allowing subsequent comparison with other similar
proposals in terms of their biological nature or mathematical behavior. Although there are
remarkable MHs libraries that gather a wide range of algorithms 3 4, a great contribution
could be the update of them with the reviewed algorithms of our survey. In this scenario,
these libraries could benefit researchers by providing them with more possible algorithms
to compare. Our survey will serve as a guide to compare algorithms based on their
biological and mathematical characteristics of the algorithm. This would facilitate both
the research and development of new algorithms as well as a fair comparison between
them, making them more accessible to researchers in the field.

Trustworthiness, robustness, security, and safe systems. The design of any system
should aim to achieve certain properties to ensure correct operation. This thesis illustrates
how to achieve robustness in the two practical works. Achieving the remaining properties
for the different models developed presents a double challenge. These challenges involve,
in the first instance, recognizing the scenarios where the model needs to detect possible

3https://github.com/thieu1995/mealpy
4http://esa.github.io/pygmo/index.html
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failures and, in the second phase, exploring the feasibility of evolutionary strategies to
address these failures.

Development of an open-world GPAIS. Within the DL field, a variety of closed-world
GPAIS have been created, but in recent years new proposals based on open-world ideas
have appeared [WLCS19, MLW+23]. Some of those ideas, such as knowledge transfer,
robustness based on new samples (OoD), and ensemble learning, have been used in this
thesis. This new research line would aim to continue the use of EAs taking into account
the different ways to generate diversity and to develop an open-world system so that the
system would focus not only on knowing how to perform the tasks it knows, but also on
adapting to perform new ones.
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Abstract

In recent years, bio-inspired optimization has garnered significant attention in the literature. This algorithmic family
mimics various biological processes observed in nature to effectively tackle complex optimization problems. The proliferation
of nature- and bio-inspired algorithms, accompanied by a plethora of applications, tools, and guidelines, underscores the
growing interest in this field. However, the exponential rise in the number of bio-inspired algorithms poses a challenge to
the future trajectory of this research domain. Along the five versions of this document, the number of approaches grows
incessantly, and where having a new biological description takes precedence over real problem-solving. This document, in its
fifth revision since the original published version in [1], presents two comprehensive taxonomies. One is based on principles
of biological similarity, and the other one is based on operational aspects associated with the iteration of population models
that initially have a biological inspiration. Therefore, these taxonomies enable researchers to categorize existing algorithmic
developments into well-defined classes, considering two criteria: the source of inspiration and the behavior exhibited by each
algorithm. Using these taxonomies, we classify 518 algorithms based on nature-inspired and bio-inspired principles. Each
algorithm within these categories is thoroughly examined, allowing for a critical synthesis of design trends and similarities, and
identifying the most analogous classical algorithm for each proposal. From our analysis, we conclude that a poor relationship
is often found between the natural inspiration of an algorithm and its behavior. Furthermore, similarities in terms of behavior
between different algorithms are greater than what is claimed in their public disclosure: specifically, we show that more than
one-fourth of the reviewed bio-inspired solvers are versions of classical algorithms. The conclusions from the analysis of the
algorithms lead to several learned lessons.

Moreover, in this new update we have decided to take a brief tour of literature towards three broad directions, providing a
more extensive approach to the original document:

• First, we offer a critical perspective on the field following our insights in [2], highlighting the good (a present and future
plenty of exciting applications), the bad (novel metaphors not leading to innovative solvers), and the ugly (poor methodological
practices) in metaheuristic optimization, with an expansion of these perspectives.

• Second, we revisit evolutionary and bio-inspired algorithms from a threefold approach: i) where we stand and what’s
next in evolutionary algorithms and population-based nature and bio-inspired optimization, based on a structured proposal
of challenges that were discussed in 2020, but still exist today [3]; ii) a prescription of methodological guidelines for
comparing bio-inspired optimization algorithms [4]; and iii) a tutorial on the design, experimentation, and application of
metaheuristic algorithms to real-world optimization problems [5].

• Third, we perform a brief review of recent studies that propose good practices for designing metaheuristic algorithms,
alongside a few highlighted taxonomies, overviews, and general approaches that, far from without attempting to be exhaustive
with the literature, showcase the rich activity and attention received by this field in recent years.

This updated study ends with an analysis that exposes the double vision of the wide range of proposals that contributed
to the field of metaheuristic optimization after five years of analysis: on one hand, we note a lack of analysis of the real
optimization challenges and useful proposals instead of new metaheuristics only focused on a basic comparison with very
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classical problems versus algorithms. On the other hand, we offer a positive vision of the crucial role that population-based
optimization models can take in the design of modern Artificial Intelligence algorithms.

This document is an update as of April 2024, and contains 518 algorithms as opposed to the originally published version
which amounted to 323 revised metaheuristics. This arXiv document corresponds with an extension (already mentioned) of
the 2 following papers, with references:

• Molina, D., Poyatos, J., Del Ser, J., García, S., Hussain, A., & Herrera, F. (2020). Comprehensive taxonomies of nature-and
bio-inspired optimization: Inspiration versus algorithmic behavior, critical analysis recommendations. Cognitive Computation,
12, 897-939. DOI: https://doi.org/10.1007/s12559-020-09730-8

• Molina-Cabrera, D., Poyatos, J., Osaba, E., Del Ser, J., Herrera, F. (2022). Nature- and Bio-inspired Optimization: the
Good, the Bad, the Ugly and the Hopeful. DYNA, 97(2). 114-117. DOI: https://doi.org/10.6036/10331

Keywords – Nature-inspired algorithms, bio-inspired optimization, taxonomy, critical analysis.

1 Introduction
Traditional optimization techniques are motivated by the complexity of the problem and the mathematical properties of its

fitness function and constraints. However, in many real-world optimization problems, no exact solver can be applied to solve
them at an affordable computational cost or within a reasonable time. Moreover, in some cases, there is no analytical form for
the problem’s objective and constraints. Under such circumstances, the use of traditional techniques has been widely proven
to be unsuccessful, thereby calling for the consideration of alternative optimization approaches.

In this context, complexity is not unusual in Nature: a plethora of complex systems, processes and behaviors have evinced
a surprising performance to efficiently address intricate optimization tasks. The most clear example can be found in the
different animal species, which have developed over generations very specialized capabilities by evolutionary mechanisms.
Indeed, evolution has allowed animals to adapt to harsh environments, foraging, very difficult tasks of orientation, and to
resiliently withstand radical climatic changes, among other threats. Animals, when organized in independent systems, groups
or swarms or colonies (systems quite complex on their own) have managed to colonize the Earth completely, and eventually
achieve a global equilibrium that has permitted them to endure for thousands of years. This renowned success of biological
organisms has inspired all kinds of solvers for optimization problems, which have been so far referred to as bio-inspired
optimization algorithms. This family of optimization methods simulates biological processes such as natural evolution, where
solutions are represented by individuals that reproduce and mutate to generate new, potentially improved candidate solutions
for the problem at hand.

Disregarding their source of inspiration, there is clear evidence of the increasing popularity and notoriety gained by
nature- and bio-inspired optimization algorithms in the last two decades. This momentum finds its reason in the capability
of these algorithms to learn, adapt, and provide good solutions to complex problems that otherwise would have remained
unsolved. Many overviews have capitalized on this spectrum of algorithms applied to a wide range of problem casuistry, from
combinatorial problems [6] to large-scale optimization [7], evolutionary deep learning [8] and other alike. As a result, almost
all business sectors have leveraged this success in recent times.

From a design perspective, nature- and bio-inspired optimization algorithms are usually conceived after observing a
natural process or the behavioral patterns of biological organisms, which are then converted into a computational optimization
algorithm. New discoveries in Nature and the undoubted increase of worldwide investigation efforts have ignited the interest
of the research community in biological processes and their extrapolation to computational problems. As a result, many new
bio-inspired meta-heuristics have appeared in the literature, increasing the outbreak of proposals and applications every year.
Nowadays, every natural process can be thought to be adaptable and emulated to produce a new meta-heuristic approach, yet
with different capabilities of reaching global optimum solutions to optimization problems.

The above statement is quantitatively supported by Figure 1, which depicts the increasing number of papers/book chapters
published in the last years with bio-inspired optimization and nature-inspired optimization in their title, abstract and/or
keywords. We have considered both bio-inspired and nature-inspired optimization because sometimes both terms are confused
and indistinctly used, although nature-inspiration includes bio-inspired inspiration and complements it with other sources
of inspirations (like physics-based optimization, chemistry-based optimization, ...). A major fraction of the publications
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Figure 1: Number of papers with bio-inspired optimization and nature-inspired optimization in the title, abstract and/or
keywords, over the period 2005–April 2024 (Scopus database).

comprising this plot proposed new bio-inspired algorithms at their time. From this rising number of nature and bio-inspired
algorithms, one can easily conclude that it would be convenient to organize them into a taxonomy with well-defined criteria
where to classify both the existing bio-inspired algorithms and new proposals to appear in the future. Unfortunately, the
majority of such publications do not include any type of taxonomy, nor do they perform an exhaustive analysis of the similarity
of their proposed algorithms concerning other counterparts. Instead, they only focus on the nature or biological metaphor
motivating the design of their meta-heuristic.

This metaphor-driven research trend has been already underscored in several contributions [9, 10], which have unleashed
hot debates around specific meta-heuristic schemes that remain unresolved to date [11, 12]. This problem gets exacerbated
when important challenges are overseen and if more and more biological inspirations are used as the primary driver for
research, as we can observe in 2024 with more than 500 proposals. It is our firm belief that this controversy could be lessened
by a comprehensive taxonomy of nature and bio-inspired optimization algorithms that settled the criteria to justify the novelty
and true contributions of current and future advances in the field.

In this fifth version of the original study published in [1], we have classified 518 works proposing different types of
meta-heuristic algorithms. Building upon this knowledge, we herein propose two different taxonomies for nature- and
bio-inspired optimization algorithms:

• The first taxonomy classifies algorithms based on their natural or biological inspiration so that given a specific algorithm,
we can find its category quickly and without any ambiguity. The goal of this first taxonomy is to allow easy grouping the
upsurge of solvers published in the literature.

• The second taxonomy classifies the reviewed algorithms based exclusively on their behavior, i.e., how they generate new
candidate solutions for the function to be optimized. Our aim is to group together algorithms with similar behavior, without
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considering its inspirational metaphor.

We believe that this dual criterion can be very useful for researchers. The first one helps classify the different proposals
by their origin of inspiration, whereas the second one provides valuable information about their algorithmic similarities and
differences. This double classification allows researchers to identify each new proposal in an adequate context. To the best of
our knowledge, there has been no previous attempt as ambitious as the one presented in this overview to organize the existing
literature on nature- and bio-inspired optimization.

Considering the classifications obtained in our study, we have critically examined the reviewed literature classification
in the different taxonomies proposed in this work. The goal is to analyze if there is a relationship between the algorithms
classified in the same category in one taxonomy and their classification in the other taxonomy. Next, similarities detected
among algorithms will allow discovering the most influential meta-heuristic algorithms, whose behavior has inspired many
other nature- and bio-inspired proposals.

These previous research tasks provide several insights to conduct a comprehensive two-fold analysis of the field:

• The first analysis focuses on taxonomies. Specifically, we provide several recommendations to improve research practices
in this area. The growing number of nature-inspired proposals could be seen as a symptom of the active status of this field;
however, its sharp evolution suggests that research efforts should be also invested towards new behavioral differences and
verifiable performance evidence in practical problems.

• The second analysis delves into a critical perspective on bio-inspired optimization. It discusses the strengths, weaknesses,
and challenges that have been identified in the field in recent years, while it also highlights the potential held for future
developments in bio-inspired optimization.

Both taxonomies and the analysis provide a full overview of the situation of the bio-inspired optimization field. However,
Figure 1 reflects the interest of research in this field, as the number of papers is in continuous growth of interest. We believe
that it is essential to highlight and reflect on what is expected from this field in the coming years, in terms of where it is
currently being used and how researchers are proposing methodologies to properly design and apply bio-inspired algorithms
not in real-world applications, but also in other emerging areas of Artificial Intelligence (AI). As a consequence, an analysis
of the field in terms of Bio-inspired Optimization, Evolutionary Computation, Guidelines, Comparison Methodology and
Benchmarking are found in this report.

As we have mentioned in the abstract, in this final version of the report we have decided to take a brief tour of literature
from three broad perspectives with a more extensive approach to the document:

In Section 7, we pay attention from a triple critical position as it was pointed out in [2], highlighting the good (a present and
future plenty of exciting applications), the bad (novel metaphors not leading to innovative solvers, going deeper into the group
of works that criticize the lack of novelty of the new proposals [13, 9, 11, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]),
and the ugly (poor methodological practices) as it was pointed out in [2], with an expansion of these analyses. As we have
mentioned, we must emphasize that in these new algorithms, there exists a lack of justification together with the lack of
comparison with the state of the art and of real interest in achieving reasonable levels of quality from the point of view of the
optimization of well-known problems in recent competitions. Good methodological practices must be followed in forthcoming
studies when designing, describing, and comparing new algorithms.

The analysis of the issues undergone by the field enables us to provide potential solutions and an analysis toward best
practices. Hence, in Section 8, we introduce three previous works, outlined as follows:

• Bio-inspired computation: Where we stand and what’s next [3].

• A prescription of methodological guidelines for comparing bio-inspired optimization algorithms [4].

• A tutorial on the design, experimentation, and application of metaheuristic algorithms to real-world optimization problems
[5].

Lastly, Section 9 presents an analysis of metaheuristics based on studies, guidelines, and other works of a more theoretical
nature that help to solve the problems of the field. We perform a brief review of recent studies that address good practices for
designing metaheuristics and discussions from this perspective, and a short review of references – without attempting to be
exhaustive – that address taxonomies, overviews, and general approaches in bio-inspired optimization. Therefore, this section
considers such studies from a double vision:
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• Good practices for designing metaheuristics: It gathers several works that are guidelines for good practices related to
research orientation to measure novelty [26], to measure similarity in metaheuristics [27], Metaheuristics “In the Large”
(to support the development, analysis, and comparison of new approaches) [28], to design manual or automatic new
metaheuristics [29], to guide the learning strategy in design and improvement of metaheuristics [30], to use statistical
test in metaheuristics [31], and to detect the novelties in metaphor-based algorithms [32].

• Latest metaheuristics based studies which include, non-exhaustively, a dozen of recent studies about taxonomies [33, 34, 35],
overviews [15, 36, 37, 38, 39, 40] and general approaches [41].

This work has been updated almost every year with several improvements, as shown in the trace of changes shown in Table
1. The latest version includes both novel bio-inspired proposals up to April 2024 and several analyses of the field, ranging
from the situation of the field to the vision towards the future of this field.

Table 1: Updates of the manuscript via arXiv.

Update Date Contribution

Version # 1 Feb. 2020 Initial version of the manuscript with 323 reviewed algorithms.
Version # 2 Feb. 2020 Changes in title and figures for better quality.
Version # 3 Apr. 2021 Update with +31 new algorithms (up to 361), figures and tables changed.
Version # 4 May 2022 Update with +51 new algorithms (up to 412), figures and tables changed.
Version # 5 Apr. 2024 Update with +88 new algorithms (up to 518); figures and tables changed, and

three analyses included as Sections 7, 8 and 9.

As we have mentioned in the abstract, this fifth and last version of this series of documents ends with an analysis that
addresses the double vision of a wide range of proposals, which after five years of analysis must be indicated that they border
on a lack of analysis of the real problems and useful proposals, and on the other hand, a positive vision of the role that
population-based optimization models can contribute in the design of AI systems, in a new scenario of continuous emergence
of AI.

The rest of this paper is organized as follows. In Section 2, we examine previous surveys, taxonomies, and reviews of
nature- and bio-inspired algorithms reported so far in the literature. Section 3 delves into the taxonomy based on the inspiration
of the algorithms. In Section 4, we present and populate the taxonomy based on the behavior of the algorithm. In Section 5,
we analyze similarities and differences found between both taxonomies, ultimately identifying the most influential algorithms
in our reviewed papers. In Section 6, we report several lessons learned and recommendations as the result of the previous
analysis. In addition, as novel contributions of this version over its preceding ones, Section 7 provides an extended critical
analysis of the state of the art in the field, highlighting the aforementioned good, the bad, and the ugly in the metaheuristic
landscape [2]. In Section 8, we discuss future directions in bio-inspired optimization algorithms, and prescribe potential
solutions and analysis toward ensuring good practices and correct experimental procedures with these algorithms. Section 9
shows studies and guidelines for good practices, together with recent studies including taxonomies, overviews, and general
approaches related to metaheuristics. Finally, in Section 10, we summarize our current main conclusions and reflections on
the field, with builds upon a five-year reflection and literature study.

2 Related Literature Studies (before 2020 according to the first version of this
report, Feb. 2020)

The diversity of bio-inspired algorithms and their flexibility to tackle optimization problems for many research fields have
inspired several surveys and overviews to date. Most of them have focused on different types of problems [42, 43], including
continuous [44], combinatorial [6], or multi-objective optimization problems [45]. For specific real-world problems, the
prolific literature about nature- and bio-inspired algorithms has sparked specific state-of-the-art studies revolving around their
application to different fields, such as Telecommunications [46], Robotics [47], Data Mining [48], Structural Engineering [45]
or Transportation [49]. Even specific real-world problems have been dedicated exclusive overviews due to the vast research
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reported around the topic, like power systems [50], the design of computer networks [51], automatic clustering [52], face
recognition [53], molecular docking [54], or intrusion detection [55], to mention a few.

Seen from the algorithmic perspective, many particular bio-inspired solvers have been modified over the years to yield
different versions analyzed in surveys devoted to that type of algorithms, from classical approaches such as PSO [56] and DE
[57, 58, 59] to more modern ones, e.g., ABC [60, 61], Bacterial Foraging Optimization Algorithm (BFOA, [62]) or the Bat
Algorithm [63]. From a more general albeit still algorithmic point of view, [9] explains how the metaphor and the biological
idea are used to create a bio-inspired meta-heuristic optimization algorithm. In this study, the reader is also provided with some
examples and characteristics of this design process. Books like [64] or [65] show many nature-inspired algorithms. However,
they are more focused on describing the different algorithms available in the literature than on classifying and analyzing them
in depth.

Several comparison studies among bio-inspired algorithms with very different behaviors can be found in the current
literature, which mostly aims at deciding which approach to use for solving a problem. In [66], the popular PSO and DE
versions are compared. This research line is followed by [67], which compared the performance of different bio-inspired
algorithms, again with prescribing which one to use as its primary goal. More recently, [68] examined the features of
several recent bio-inspired algorithms, suggesting, on a concluding note, to which type of problem each of the examined
algorithms should be applied. More specific is the work in [69], which compares several different algorithms considering
its parallel implementation on GPU devices. More recently, the focus has shifted towards comparing groups of algorithms
instead of making a comparison between individual solvers: this is the case of [70], which compares Swarm Intelligence and
Evolutionary Computation methods in order to assess their properties and behavior (e.g., their convergence speed). Once
again, the main purpose of this recent literature strand is to compare bio-inspired algorithms, not to classify them nor to find
similarities and design patterns among them. In [71], foraging algorithms (such as the aforementioned BFOA) are compared
against other evolutionary algorithms. In that paper, algorithms are classified into two large groups: algorithms with and
without cooperation. In [72, 73], PSO was proven to outperform other bio-inspired approaches (namely, DE, GA and ABC)
when used for efficiently training and configuring Echo State Networks.

It has not been until relatively recent times that the community has embraced the need for arranging the myriad of existing
bio-inspired algorithms and classifying them under principled, coherent criteria. In 2013, [74] presented a classification of
meta-heuristic algorithms as per their biological inspiration that discerned categories with similar approaches in this regard:
Swarm Intelligence, Physics and Chemistry Based, Bio-inspired algorithms (not SI-based), and an Other algorithms category.
However, the classification given in this paper is not actually hierarchical, so it can not be regarded as a true taxonomy.
Another classification was proposed in [75, 76], composed by Evolution Based Methods, Physics Based Methods, Swarm
Based Methods, and Human-Based Methods. With respect to the preceding classification, a new Human-Based category is
proposed, which collectively refers to algorithms inspired by human behavior. The classification criteria underneath these
categories are used to build up a catalog of more than 50 algorithmic proposals, obtaining similar groups in size. In this case,
there is no miscellaneous category as in the previous classification. Similarly to [74], categories are disjoint groups without
subcategories.

Recently, [77] offers a review of meta-heuristics from the 1970s until 2015, i.e., from the development of neural networks
to novel algorithms like Cuckoo Search. Specifically, a broad view of new proposals is given, but without proposing any
category. The most recent survey to date is that in [78], in which nature-inspired algorithms are classified not in terms of their
source of inspiration, but rather by their behavior. Consequently, algorithms are classified as per three different principles.
The first one is learning behavior, namely, how solutions are learned from others preceding them. The learning behavior
can be individual, local (i.e., only inside a neighborhood), global (between all individuals), and none (no learning). The
second principle is interaction-collective behavior, denoting whether individuals cooperate or compete between them. The
third principle is referred to as diversification-population control, by which algorithms are classified based on whether the
population has a converging tendency, a diffuse tendency, or no specific tendency. Then, 29 bio-inspired algorithms are
classified by each of these principles, and approaches grouped by each principle are experimentally compared.

The prior related work reviewed above indicates that the community widely acknowledges (with more emphasis in recent
times) the need for properly organizing the plethora of bio- and nature-inspired algorithms in a coherent taxonomy. However,
the majority of them are only focused on the natural inspiration of the algorithms for creating the taxonomy, not giving any
attention to their behavior. This aspect is considered in [78], but does not propose a real taxonomy, but rather different
independent design principles. On the contrary, as will be next described, our proposed taxonomies consider 1) the source of
inspiration; and 2) the procedure by which new solutions are produced over the search process of every algorithm (behavior).
Furthermore, we note that efforts invested in this regard to date are not up to the level of ambition and thoroughness pursued
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in our study. In addition, no study published so far has been specifically devoted to unveiling structural similarities between
classical and modern meta-heuristics. There lies the novelty and core contribution of our study, along with the aforementioned
novel behavior-based taxonomy.

3 Taxonomy by Source of Inspiration
In this section, we propose a novel taxonomy based on the inspirational source in which nature- and bio-inspired algorithms

are claimed to find their design rationale in the literature. This allows classifying the great amount and variety of contributions
reported in related fora.

The proposed taxonomy presented in what follows was developed reviewing 518 papers over different years, starting
from the most classical proposals in the late 80’s (such as Simulated Annealing [79] or PSO [80]) to more novel techniques
appearing in the literature until 2024 [81]. Thus, to our knowledge, this exercise can be considered the most exhaustive review
in the area to date.

Taking into account all the reviewed papers, we group the proposals therein in a hierarchy of categories. In the hierarchy,
not all proposals of a category must fit in one of its subcategories. In our classification, categories lying at the same level are
disjoint sets, which means that each proposed algorithm can be only a member of one of these categories. To this end, for
each algorithm, we select the category considered to be most suitable considering the nuances of the algorithm that allow us
to differentiate it from its remaining counterparts.

Methodologically, a classification of all nature- and bio-inspired algorithms that can be found in the literature can become
complicated, considering the different sources of inspiration as biological, physical, human-being, ... In some papers, authors
suggest a possible categorization of more well-established groups, but not in all of them. Also, its classification could not be
more appropriate and become eventually obsolete, since the number of proposals – and thereby, the diversity of sources of
inspiration motivating them – increases over time. Algorithms within each proposed category were selected by their relative
importance in the field, considering the number of citations, the number of algorithmic variants that were inspired by that
algorithm, and other similar factors.

When establishing a hierarchical classification, it is important to achieve a good trade-off between information and
simplicity by the following criteria:

• When to establish a new division of a category into subcategories: a coarse split criterion for the taxonomy can imply
categories of little utility for the subsequent analysis, since in that case, the same category would group very different
algorithms. On the other hand, a fine-grained taxonomy can produce very complex hierarchies and, therefore, with little
usefulness. To keep the taxonomy simple yet informative for our analytical purposes, we decided that a category should
have at least four algorithms in order to be kept in the taxonomy. Thus, a category is only decomposed into subcategories if
each of them has coherence and a minimum representativeness (as per the number of algorithms it contains).

• Which number of subcategories into which to divide a category: the criterion followed in this regard must produce meaningful
subcategories. In order to ensure a reduced number of subcategories, we consider that not all algorithms inside one category
must be a member of one of its subcategories. In that way, we avoid introducing mess categories that lack cohesion.

Figure 2 depicts the classification we have reached, indicating, for the 518 reviewed algorithms, the number and ratio of
proposals classified in each category and subcategory. It can be observed that the largest group of all is Swarm Intelligence
category (more than a half of the proposed, 53%), inspired in the Swarm Intelligence concept [64], followed by the Physics
and Chemistry category, inspired by different physical behaviors or chemical reactions (almost 15% of proposals). Other
relevant categories are Social Human Behavior Algorithms (11%), inspired by human aspects, and Breeding-based Evolution
(near 7%), inspired by the Theory of Evolution over a population of individuals, that includes very renowned algorithms such
as Genetic Algorithms. A new category emerges from our study – Plants Based – which has not been included in other
taxonomies. Nearly 10% of the proposals are so different between them that they cannot be grouped in new categories. The
percentage of classification of each category is visually displayed in Figure 3.

For the sake of clarity regarding the classification criteria, in the next subsections, we provide a brief description of the
different categories in this first taxonomy, including their main characteristics, an example, and a table listing the algorithms
belonging to each category.
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Nature and population -based
Meta-heuristics (518: 100%)

Miscellaneous
(52: 10.04%)

Plants Based (23: 4.44%)

Social Human Behavior
Algorithms (57: 11.00%)

Physics and Chemistry
Based (76: 14.67%)

Chemistry Based
(14: 2.70%)

Physics Based
(62: 11.97%)

Swarm Intelligence
(277: 53.48% )

Others (36: 6.95%)

Microorganisms
(21: 4.05%)

Flying animals
(85: 16.41%)

Terrestrial animals
(95: 18.35%)

Aquatic animals
(40: 7.72%)

Breeding-based Evolution
(33: 6.37%)

Figure 2: Classification of the reviewed papers using the inspiration source based taxonomy.
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Figure 3: Ratio of reviewed algorithms by its category (first taxonomy).

3.1 Breeding-based Evolutionary Algorithms
This category comprises population-based algorithms inspired by the principles of Natural Evolution. Each individual

in the population represents a solution of the problem and has an associated fitness value (namely, the value of the problem
objective function for that solution). In these algorithms, a process of reproduction (also referred to breeding or crossover) and
survival iterated over successive generations makes the population of solutions potentially evolve towards regions of higher
optimality (as told by the best solution in the population). Thus, this category is characterized by the fact of being inspired
by the concept of breeding-based evolution, without considering other operators performed on individuals than reproduction
(e.g., mutation).

More in detail, in these algorithms we have a population with individuals that have the ability to breed and produce new
offspring. Therefore, from the parents, we get children, which introduces some variety with respect to their parents. These
characteristics allow them to adapt to the environment which, translated to the optimization realm, permits them to search more
efficiently over the solution space of the problem at hand. By virtue of this mechanism, we have a population that evolves
through generations and, when combined with a selection (survival) and – possibly – other operators, results are improved.
Nevertheless, the breeding characteristic is what makes algorithms within this category unique with respect to those in other
categories.

Table 2 compiles all reviewed algorithms that fall within this category. As could have been a priori expected, well-known
classical Evolutionary Computation algorithms can be observed in this list, such as Genetic Algorithm (GA), Evolution
Strategies (ES), and Differential Evolution (DE). However, other algorithms based on the reproduction of different biological
organisms are also notable, such as queen bees and weeds.

3.2 Swarm Intelligence based Algorithms
Swarm Intelligence (SI) is already a consolidated term in the community, which was first introduced by Gerardo Beni and

Jing Wang in 1989 [47]. It can be defined as the collective behavior of decentralized, self-organized systems, in either natural
or artificial environments. The expression was proposed in the context of robotic systems, but has generalized over the years
to denote the emergence of collective intelligence from a group of simple agents, governed by simple behavioral rules. Thus,
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Table 2: Nature- and bio-inspired meta-heuristics within the Breeding-based Evolution category.

Breeding-based Evolution
Algorithm Name Acronym Year Reference

Artificial Ecosystem Algorithm AEA 2014 [82]
Artificial Ecosystem Optimizer AEO 2020 [83]
Artificial Infections Disease Optimization AIDO 2016 [84]
Asexual Reproduction Optimization ARO 2010 [85]
Biogeography Based Optimization BBO 2008 [86]
Bird Mating Optimization BMO 2014 [87]
Bean Optimization Algorithm BOA 2011 [88]
Coronavirus Mask Protection Algorithm CMPA 2023 [89]
Coronavirus Disease Optimization Algorithm COVIDOA 2022 [90]
Coral Reefs Optimization CRO 2014 [91]
Dendritic Cells Algorithm DCA 2005 [92]
Differential Evolution DE 1997 [93]
Ecogeography-Based Optimization EBO 2014 [94]
Eco-Inspired Evolutionary Algorithm EEA 2011 [95]
Earthworm Optimization Algorithm EOA 2018 [96]
Evolution Strategies ES 2002 [97]
Genetic Algorithms GA 1989 [98]
Gene Expression GE 2001 [99]
Hybrid Rice Optimization HRO 2016 [100]
Immune-Inspired Computational Intelligence ICI 2008 [101]
Improved Genetic Immune Algorithm IGIA 2017 [102]
Weed Colonization Optimization IWO 2006 [103]
Marriage In Honey Bees Optimization MHBO 2001 [104]
Mushroom Reproduction Optimization MRO 2018 [105]
Queen-Bee Evolution QBE 2003 [106]
SuperBug Algorithm SuA 2012 [107]
Stem Cells Algorithm SCA 2011 [108]
Sheep Flock Heredity Model SFHM 2001 [109]
Swine Influenza Models Based Optimization SIMBO 2013 [110]
Self-Organizing Migrating Algorithm SOMA 2004 [111]
T-Cell Immune Algorithm TCIA 2023 [112]
Variable Mesh Optimization VMO 2012 [113]
Virulence Optimization Algorithm VOA 2016 [114]
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bio-inspired meta-heuristics based on Swarm Intelligence are those inspired by the collective behavior of animal societies,
such as insect colonies or bird flocks, wherein the collective intelligence emerging from the swarm permits to efficiently
undertake optimization problems. The seminal bio-inspired algorithm relying on SI concepts was PSO [80], followed shortly
thereafter by ACO [115]. These early findings around SI concepts applied to optimization spurred many SI-based algorithms
in subsequent years, such as ABC [116] and more recently, Firefly Algorithm (FA, [117]) and Grasshopper Optimization
Algorithm (GOA, [118]).

Reviewed algorithms that fall under the Swarm Intelligence umbrella are shown in Tables 3, 4, 5, 6, 7 and 8. This is
the most populated category of all our study, characterized by a first category that relates to the type of animal that has
inspired each algorithm: as such, we find i) flying animals, namely, algorithms inspired in the flying movement of birds
and flying animals like insects; ii) terrestrial animals, inspired by the foraging and hunter mechanisms of land animals; iii)
aquatic animals, whose inspiration emerges from the movement of fish schools or other aquatic animals like dolphins; and iv)
microorganisms, inspired by virus, bacteria, algae and others alike.

Inside each subcategory, we have also distinguished whether they are inspired by the foraging action of the inspired
living creature – Foraging-inspired is in fact another popular term related to this type of inspiration [119] – or, instead, by
its movement patterns in general. When the behavior of the algorithm is inspired by both the movement and the foraging
behavior of the animal, it is cataloged as foraging inside our first taxonomy. We will next examine in depth each of these
subcategories.

3.2.1 Subcategories of SI based algorithms by the environment

As mentioned previously, the global set of Swarm Intelligence algorithms can be divided as a function of the type of
animals. Between the possible categories stemming from this criteria, we have grouped them according to the environmental
medium inhibited by the inspiring animal (aquatic, terrestrial or aerial). This criterion is not only very intuitive since it inherits
a criterion already applied in animal taxonomies, but it also relies on the fact that these environments condition the movement
and hunting mode of the different species. As such, the following subcategories have been established:

• Flying animals: This category comprises meta-heuristics based on the concept of Swarm Intelligence in which the trajectory
of agents is inspired by flying movements, as those observed in birds, bats, or other flying insects. The most well-known
algorithms in this subcategory are PSO [80] and ABC [116].

• Terrestrial animals: Meta-heuristics in this category are inspired by foraging or movements in terrestrial animals. The
most renowned approach within this category is the classical ACO meta-heuristic [115], which replicates the stigmergic
mechanism used by ants to locate food sources and inform of the existence of their counterparts in the colony. This
category also includes other popular algorithms like Grey Wolf Optimization (GWO, [240]), inspired in the wild wolf
hunting strategy, Lion Optimization Algorithm (LOA, [267]), which imitates hunting methods used by these animals, or
the more recent Grasshopper Optimization Algorithm (GOA, [118]), which finds its motivation in the jumping motion of
grasshoppers.

• Aquatic animals: This type of meta-heuristic algorithm focuses on aquatic animals. The aquatic ecosystem in which
they live has inspired different exploration mechanisms. It contains popular algorithms such as Krill Herd (KH, [259]),
Whale Optimization Algorithm (WOA, [380]), and algorithms based on the echolocation used by dolphins to detect fish like
Dolphin Partner Optimization (DPO, [201]) and Dolphin Echolocation [195].

• Microorganisms: Meta-heuristics based on microorganisms are related with the food search performed by bacteria. A
bacteria colony performs a movement to search for food. Once they have found and taken it, they split to search again
in the environment. Other types of meta-heuristics that can be part of this category are the ones related with virus, which
usually replicate the infection process of the cell by virus. The most known algorithm of this category is Bacterial Foraging
Optimization Algorithm (BFOA, [148]).

3.2.2 Subcategories of SI based algorithms by the inspirational behavior

Another criterion to group SI based algorithms is the specific behavior of the animal that captured the attention of
researchers and inspired the algorithm. This second criterion is also reflected in Tables 3-6, classifying each algorithm as
belonging to one of the following behavioral patterns:
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Table 3: Nature- and bio-inspired meta-heuristics within the Swarm Intelligence category (I).

Swarm Intelligence (I)
Algorithm Name Acronym Subcategory Type Year Reference

Artificial Algae Algorithm AAA Micro Movement 2015 [120]
Artificial Beehive Algorithm ABA Flying Foraging 2009 [121]
Artificial Bee Colony ABC Flying Foraging 2007 [116]
Animal Behavior Hunting ABH Other Foraging 2014 [122]
African Buffalo Optimization ABO Terrestrial Foraging 2016 [123]
Andean Condor Algorithm ACA Flying Foraging 2019 [124]
Ant Colony Optimization ACO Terrestrial Foraging 1996 [115]
Artificial Feeding Birds AFB Flying Movement 2018 [125]
Artificial Hummingbird Algorithm AHA Flying Foraging 2022 [126]
Archerfish Hunting Optimizer AHO Aquatic Foraging 2022 [127]
Animal Migration Optimization AMO Other Movement 2014 [128]
Aphid Metaheuristic Optimization AMO.1 Micro Movement 2022 [129]
Ant Lion Optimizer ALO Terrestrial Foraging 2015 [130]
Aquila Optimizer AO Flying Foraging 2021 [131]
Anglerfish Algorithm AOA Aquatic Movement 2019 [132]
Arithmetic Optimization Algorithm AOA.2 Other Movement 2021 [133]
Artificial Rabbits Optimization ARO.1 Terrestrial Foraging 2022 [134]
Artificial Searching Swarm Algorithm ASSA Other Movement 2009 [135]
Artificial Tribe Algorithm ATA Other Movement 2009 [136]
African Wild Dog Algorithm AWDA Terrestrial Foraging 2013 [137]
American Zebra Optimization Algorithm AZOA Terrestrial Movement 2023 [138]
Bald Eagle Search BES Flying Foraging 2019 [139]
Bees Algorithm BA Flying Foraging 2006 [140]
Bumblebees BB Flying Foraging 2009 [141]
Bison Behavior Algorithm BBA Terrestrial Movement 2019 [142]
Bee Colony-Inspired Algorithm BCIA Flying Foraging 2009 [143]
Bee Colony Optimization BCO Flying Foraging 2005 [144]
Bacterial Colony Optimization BCO.1 Micro Foraging 2012 [145]
Bacterial Chemotaxis Optimization BCO.2 Micro Foraging 2002 [146]
Border Collie Optimization BCO.3 Terrestrial Movement 2020 [147]
Biomimicry Of Social Foraging Bacteria for
Distributed Optimization

BFOA Micro Foraging 2002 [148]

Bacterial Foraging Optimization BFOA.1 Micro Foraging 2009 [62]
Bacterial-GA Foraging BGAF Micro Foraging 2007 [149]
BeeHive Algorithm BHA Flying Foraging 2004 [150]
Bees Life Algorithm BLA Flying Foraging 2018 [151]
Bat Intelligence BI Flying Foraging 2012 [152]
Bat Inspired Algorithm BIA Flying Foraging 2010 [153]
Biology Migration Algorithm BMA Other Movement 2019 [154]
Barnacles Mating Optimizer BMO.1 Micro Movement 2019 [155]
Blind, Naked Mole-Rats Algorithm BNMR Terrestrial Foraging 2013 [156]
Butterfly Optimizer BO Flying Movement 2015 [157]
Bonobo Optimizer BO.1 Terrestrial Movement 2019 [158]
Bull Optimization Algorithm BOA.1 Terrestrial Movement 2015 [159]
Bee System BS Flying Foraging 1997 [160]
Bee System BS.1 Flying Foraging 2002 [161]
Bird Swarm Algorithm BSA Flying Movement 2016 [162]
Bee Swarm Optimization BSO Flying Foraging 2010 [163]
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Table 4: Nature- and bio-inspired meta-heuristics within the Swarm Intelligence category (II).

Swarm Intelligence (II)
Algorithm Name Acronym Subcategory Type Year Reference

Bioluminiscent Swarm Optimization
Algorithm

BSO.1 Flying Foraging 2011 [164]

Biological Survival Optimizer BSO.4 Other Movement 2023 [165]
Bees Swarm Optimization Algorithm BSOA Flying Foraging 2005 [166]
Buzzard Optimization Algorithm BUZOA Flying Foraging 2019 [167]
Black Widow Optimization Algorithm BWO Terrestrial Movement 2020 [168]
Beluga Whale Optimization BWO.1 Aquatic Foraging 2022 [169]
Binary Whale Optimization Algorithm BWOA Aquatic Foraging 2019 [170]
Collective Animal Behavior CAB Other Foraging 2012 [171]
Cheetah Based Algorithm CBA Terrestrial Movement 2018 [172]
Catfish Optimization Algorithm CAO Aquatic Movement 2011 [173]
Cricket Behavior-Based Algorithm CBBE Terrestrial Movement 2016 [174]
Cultural Coyote Optimization Algorithm CCOA Terrestrial Movement 2019 [175]
Chaotic Crow Search Algorithm CCSA Flying Foraging 2018 [176]
Chaotic Dragonfly Algorithm CDA Flying Foraging 2018 [177]
Cuttlefish Algorithm CFA Aquatic Movement 2013 [178]
Consultant Guide Search CGS Other Movement 2010 [179]
Camel Herd Algorithm CHA Terrestrial Foraging 2017 [180]
Chimp Optimization Algorithm ChOA Terrestrial Foraging 2020 [181]
Cuckoo Optimization Algorithm COA Flying Foraging 2011 [182]
Camel Travelling Behavior COA.1 Terrestrial Movement 2016 [183]
Coyote Optimization Algorithm COA.2 Terrestrial Movement 2018 [184]
COOT Optimization Algorithm COA.5 Flying Movement 2021 [185]
Coati Optimization Algorithm COA.6 Terrestrial Foraging 2023 [186]
Crested Porcupine Optimizer CPO Terrestrial Movement 2024 [187]
Cuckoo Search CS Flying Foraging 2009 [188]
Crow Search Algorithm CSA Flying Movement 2016 [189]
Chameleon Swarm Algorithm CSA.2 Terrestrial Foraging 2021 [81]
Circle Search Algorithm CSA.3 Other Movement 2022 [190]
Cat Swarm Optimization CSO Terrestrial Movement 2006 [191]
Chicken Swarm Optimization CSO.1 Terrestrial Movement 2014 [192]
Dragonfly Algorithm DA Flying Foraging 2016 [193]
Dragonfly Swarm Algorithm DA.1 Flying Foraging 2020 [194]
Dolphin Echolocation DE.1 Aquatic Foraging 2013 [195]
Dynamic Hunting Leadership DHL Other Foraging 2023 [196]
Deer Hunting Optimization Algorithm DHOA Terrestrial Foraging 2019 [197]
Dwarf Mongoose Optimization DMO Terrestrial Foraging 2022 [198]
Dandelion Optimizer DO Other Movement 2022 [199]
Dingo Optimizer DOX Terrestrial Foraging 2021 [200]
Dolphin Partner Optimization DPO Aquatic Movement 2009 [201]
Donkey Theorem Optimization DTO Terrestrial Foraging 2019 [202]
Enriched Coati Osprey Algorithm ECOA Other Foraging 2024 [203]
Electric Eel Foraging Optimization EEFO Aquatic Foraging 2024 [204]
Electric Fish Optimization EFO.1 Aquatic Foraging 2020 [205]
Elephant Herding Optimization EHO Terrestrial Movement 2016 [206]
Elk Herd Optimizer EHO.1 Terrestrial Movement 2024 [207]
Ebola Optimization Search Algorithm EOSA Micro Movement 2022 [208]
Emperor Penguins Colony EPC Terrestrial Movement 2019 [209]
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Table 5: Nature- and bio-inspired meta-heuristics within the Swarm Intelligence category (III).

Swarm Intelligence (III)
Algorithm Name Acronym Subcategory Type Year Reference

Emperor Penguin Optimizer EPO Terrestrial Movement 2018 [210]
Eagle Strategy ES.1 Flying Foraging 2010 [211]
Elephant Search Algorithm ESA Terrestrial Foraging 2015 [212]
Elephant Swarm Water Search Algorithm ESWSA Terrestrial Movement 2018 [213]
Egyptian Vulture Optimization Algorithm EV Flying Foraging 2013 [214]
Firefly Algorithm FA Flying Foraging 2009 [117]
Flocking Base Algorithms FBA Flying Movement 2006 [215]
Fast Bacterial Swarming Algorithm FBSA Micro Foraging 2008 [216]
Frog Call Inspired Algorithm FCA Terrestrial Movement 2009 [217]
Fire Hawk Optimizer FHO Flying Foraging 2023 [218]
Flock by Leader FL Flying Movement 2012 [219]
Frilled Lizard Optimization FLO Terrestrial Foraging 2024 [220]
Fruit Fly Optimization Algorithm FOA Flying Foraging 2012 [221]
Falcon Optimization Algorithm FOA.2 Flying Foraging 2019 [222]
FOX-inspired Optimization Algorithm FOX Terrestrial Foraging 2023 [223]
Fish-Swarm Algorithm FSA Aquatic Foraging 2002 [224]
Fish Swarm Algorithm FSA.1 Aquatic Foraging 2011 [225]
Fish School Search FSS Aquatic Foraging 2008 [226]
Green Anaconda Optimization GAO Terrestrial Foraging 2023 [227]
Giant Armadillo Optimization GAO.1 Terrestrial Foraging 2023 [228]
Group Escape Behavior GEB Aquatic Movement 2011 [229]
Golden Eagle Optimizer GEO Flying Foraging 2021 [230]
Golden Jackal Optimization Algorithm GJO Terrestrial Foraging 2023 [231]
Genghis Khan Shark Optimizer GKSO Aquatic Foraging 2023 [232]
Good Lattice Swarm Optimization GLSO Other Movement 2007 [233]
Grasshopper Optimisation Algorithm GOA Terrestrial Foraging 2017 [118]
Gazelle Optimization Algorithm GOA.1 Terrestrial Movement 2023 [234]
Goat Search Algorithms GSA.2 Terrestrial Movement 2022 [235]
Glowworm Swarm Optimization GSO Micro Movement 2013 [236]
Group Search Optimizer GSO.1 Other Movement 2009 [237]
Goose Team Optimization GTO Flying Movement 2008 [238]
Gorilla Troops Optimizer GTO.1 Terrestrial Movement 2021 [239]
Grey Wolf Optimizer GWO Terrestrial Foraging 2014 [240]
Hitchcock Birds-Inspired Algorithm HBIA Flying Movement 2020 [241]
Honey-Bees Mating Optimization Algorithm HBMO Flying Movement 2006 [242]
Hunger Games Search HGS Other Foraging 2021 [243]
Harry’s Hawk Optimization Algorithm HHO Flying Foraging 2019 [244]
Hoopoe Heuristic Optimization HHO.1 Flying Foraging 2012 [245]
Horned Lizard Optimization Algorithm HLOA Terrestrial Movement 2024 [246]
Horse Optimization Algorithm HOA Terrestrial Movement 2020 [247]
Hunting Search HuS Other Foraging 2010 [248]
Honeybee Social Foraging HSF Flying Foraging 2007 [249]
Hierarchical Swarm Model HSM Other Movement 2010 [250]
Hammerhead Shark Optimization Algorithm HSOA Aquatic Foraging 2019 [251]
Humboldt Squid Optimization Algorithm HSOA.1 Aquatic Foraging 2023 [252]
Hypercube Natural Aggregation Algorithm HYNAA Other Movement 2019 [253]
Improved Raven Roosting Algorithm IRRO Flying Movement 2018 [254]
Invasive Tumor Optimization Algorithm ITGO Micro Movement 2015 [255]
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Table 6: Nature- and bio-inspired meta-heuristics within the Swarm Intelligence category (IV).

Swarm Intelligence (IV)
Algorithm Name Acronym Subcategory Type Year Reference

Jaguar Algorithm JA Terrestrial Foraging 2015 [256]
Jellyfish Search JS Aquatic Movement 2021 [257]
Japanese Tree Frogs Calling Algorithm JTFCA Terrestrial Movement 2012 [258]
Krill Herd KH Aquatic Foraging 2012 [259]
Kookaburra Optimization Algorithm KOA Flying Foraging 2023 [260]
Krestrel Search Algorithm KSA Flying Foraging 2016 [261]
Killer Whale Algorithm KWA Aquatic Foraging 2017 [262]
Lion Algorithm LA Terrestrial Foraging 2012 [263]
Seven-Spot Labybird Optimization LBO Flying Foraging 2013 [264]
Lyrebird Optimization Algorithm LBO.1 Flying Movement 2023 [265]
Laying Chicken Algorithm LCA Terrestrial Movement 2017 [266]
Lion Optimization Algorithm LOA Terrestrial Foraging 2016 [267]
Lion Pride Optimizer LPO Terrestrial Movement 2012 [268]
Locust Swarms Optimization LSO Aquatic Foraging 2009 [269]
Leopard Seal Optimization LSO.1 Terrestrial Foraging 2023 [270]
Locust Swarms Search LSS Aquatic Movement 2015 [271]
Mayfly Optimization Algorithm MA.1 Flying Movement 2020 [272]
Magnetotactic Bacteria Optimization
Algorithm

MBO Micro Movement 2013 [273]

Monarch Butterfly Optimization MBO.1 Flying Movement 2017 [274]
Migrating Birds Optimization MBO.2 Flying Movement 2012 [275]
Mouth Breeding Fish Algorithm MBF Aquatic Foraging 2018 [276]
Migration-Crossover Algorithm MCA Other Movement 2024 [277]
Modified Cuckoo Search MCS Flying Foraging 2009 [278]
Modified Cockroach Swarm Optimization MCSO Terrestrial Foraging 2011 [279]
Moth Flame Optimization Algorithm MFO Flying Movement 2015 [280]
Mosquito Flying Optimization MFO.1 Flying Foraging 2016 [281]
Meerkats Inspired Algorithm MIA Terrestrial Movement 2018 [282]
Mycorrhiza Optimization Algorithm MOA Micro Movement 2023 [283]
Mox Optimization Algorithm MOX Flying Movement 2011 [284]
Marine Predators Algorithm MPA Aquatic Foraging 2020 [285]
Monkey Search MS Terrestrial Foraging 2007 [286]
Moth Search Algorithm MS.2 Flying Movement 2018 [287]
Mantis Search Algorithm MSA Terrestrial Foraging 2023 [288]
Natural Aggregation Algorithm NAA Other Movement 2016 [289]
Naked Moled Rat NMR Terrestrial Movement 2019 [290]
Nutcracker Optimization Algorithm NOA Flying Movement 2023 [291]
Nomadic People Optimizer NPO Other Movement 2019 [292]
Orcas Intelligence Algorithm OA Aquatic Foraging 2020 [293]
OptBees OB Flying Foraging 2012 [294]
Optimal Foraging Algorithm OFA Other Foraging 2017 [295]
Owls Optimization Algorithm OOA Flying Movement 2019 [296]
Osprey Optimization Algorithm OOA.1 Flying Foraging 2023 [297]
Orca Predation Algorithm OPA Aquatic Foraging 2022 [298]
Pity Beetle Algorithm PBA Terrestrial Foraging 2018 [299]
Polar Bear Optimization Algorithm PBOA Terrestrial Foraging 2017 [300]
Physarum-inspired Competition Algorithm PCA.1 Micro Movement 2023 [301]
Prairie Dog Optimization Algorithm PDO Terrestrial Foraging 2022 [302]
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Table 7: Nature- and bio-inspired meta-heuristics within the Swarm Intelligence category (V).

Swarm Intelligence (V)
Algorithm Name Acronym Subcategory Type Year Reference

Pigeon Inspired Optimization PIO Flying Movement 2014 [303]
Population Migration Algorithm PMA Other Movement 2009 [304]
Puma Optimizer PO.1 Terrestrial Movement 2024 [305]
Pelican Optimization Algorithm POA.1 Flying Foraging 2022 [306]
Pufferfish Optimization Algorithm POA.2 Aquatic Movement 2024 [307]
Prey Predator Algorithm PPA Other Foraging 2015 [308]
Particle Swarm Optimization PSO Flying Movement 1995 [80]
Penguins Search Optimization Algorithm PSOA Aquatic Foraging 2013 [309]
Regular Butterfly Optimization Algorithm RBOA Flying Foraging 2019 [310]
Red Deer Algorithm RDA Terrestrial Movement 2016 [311]
Red Fox Optimization Algorithm RFO Terrestrial Foraging 2021 [312]
Rhino Herd Behavior RHB Terrestrial Movement 2018 [313]
Rock Hyraxes Swarm Optimization RHSO Terrestrial Foraging 2021 [314]
Roach Infestation Problem RIO Terrestrial Foraging 2008 [315]
Raccoon Optimization Algorithm ROA Terrestrial Foraging 2018 [316]
Reincarnation Concept Optimization
Algorithm

ROA.1 Other Movement 2010 [317]

Red Piranha Optimization RPO Aquatic Foraging 2023 [318]
Red Panda Optimization Algorithm RPO.1 Terrestrial Foraging 2023 [319]
Raven Roosting Optimization Algorithm RROA Flying Foraging 2015 [320]
Red-tailed Hawk Algorithm RTH Flying Foraging 2023 [321]
Reptile Search Algorithm RSA Terrestrial Foraging 2022 [322]
Rat Swarm Optimizer RSO Terrestrial Foraging 2021 [323]
Ringed Seal Search RSS Aquatic Movement 2015 [324]
Shark Search Algorithm SA Aquatic Foraging 1998 [325]
Swarm Bipolar Algorithm SBA Other Movement 2024 [326]
Simulated Bee Colony SBC Flying Foraging 2009 [327]
Satin Bowerbird Optimizer SBO Flying Movement 2017 [328]
Sine Cosine Algorithm SCA.2 Other Movement 2016 [329]
Sand Cat Swarm Optimization SCSO Terrestrial Movement 2023 [330]
Snap-Drift Cuckoo Search SDCS Flying Foraging 2016 [331]
Shuffled Frog-Leaping Algorithm SFLA Terrestrial Movement 2006 [332]
Spotted Hyena Optimizer SHO Terrestrial Foraging 2017 [333]
Selfish Herds Optimizer SHO.1 Terrestrial Movement 2017 [334]
Sea-horse Optimizer SHO.2 Aquatic Movement 2023 [335]
Swarm Inspired Projection Algorithm SIP Flying Foraging 2009 [336]
Slime Mould Algorithm SMA Micro Foraging 2008 [337]
Sperm Motility Algorithm SMA.1 Other Movement 2017 [338]
Spider Monkey Optimization SMO Terrestrial Foraging 2014 [339]
Starling Murmuration Optimizer SMO.1 Flying Movement 2022 [340]
Seeker Optimization Algorithm SOA Other Movement 2007 [341]
Seagull Optimization Algorithm SOA.1 Flying Foraging 2019 [342]
Sandpiper Optimization Algorithm SOA.2 Flying Foraging 2020 [343]
Sailfish Optimizer Algorithm SOA.3 Aquatic Foraging 2019 [344]
Serval Optimization Algorithm SOA.4 Terrestrial Foraging 2022 [345]
Symbiosis Organisms Search SOS Other Movement 2014 [346]
Sooty Tern Optimization Algorithm STOA Flying Movement 2019 [347]
Social Spider Algorithm SSA Terrestrial Foraging 2015 [348]
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Table 8: Nature- and bio-inspired meta-heuristics within the Swarm Intelligence category (VI).

Swarm Intelligence (VI)
Algorithm Name Acronym Subcategory Type Year Reference

Squirrel Search Algorithm SSA.1 Flying Movement 2019 [349]
Salp Swarm Algorithm SSA.2 Aquatic Foraging 2017 [350]
Sparrow Search Algorithm SSA.3 Flying Foraging 2020 [351]
Sling-shot Spider Optimization S2SO Terrestrial Foraging 2023 [352]
Shark Smell Optimization SSO Aquatic Foraging 2016 [353]
Swallow Swarm Optimization SSO.1 Flying Foraging 2013 [354]
Social Spider Optimization SSO.2 Terrestrial Foraging 2013 [355]
Sperm Swarm Optimization Algorithm SSOA Other Movement 2018 [356]
See-See Partidge Chicks Optimization SSPCO Flying Movement 2015 [357]
Surface-Simplex Swarm Evolution
Algorithm

SSSE Other Movement 2017 [358]

Siberian Tiger Optimization STO Terrestrial Foraging 2022 [359]
Sperm Whale Algorithm SWA Aquatic Movement 2016 [360]
Spider Wasp Optimizer SWO.1 Terrestrial Foraging 2023 [361]
Termite Hill Algorithm TA Terrestrial Foraging 2012 [362]
Termite Alate Optimization Algorithm TAOA Terrestrial Movement 2023 [363]
Termite Colony Optimization TCO Terrestrial Foraging 2010 [364]
Tasmanian Devil Optimization TDO Terrestrial Foraging 2022 [365]
Tomtit Flock Optimization Algorithm TFOA Flying Foraging 2022 [366]
The Great Salmon Run Algorithm TGSR Aquatic Movement 2013 [367]
Termite Life Cycle Optimizer TLCO Terrestrial Movement 2023 [368]
Tyrannosaurus Optimization Algorithm TROA Terrestrial Foraging 2023 [369]
Tunicate Swarm Algorithm TSA.1 Micro Foraging 2020 [370]
Tangent Search Algorithm TSA.2 Other Movement 2022 [371]
Virtual Ants Algorithm VAA Flying Foraging 2006 [372]
Virtual Bees Algorithm VBA Flying Foraging 2005 [373]
Virus Colony Search VCS Micro Movement 2016 [374]
Virus Optimization Algorithm VOA.1 Micro Movement 2009 [375]
Viral Systems Optimization VSO Micro Movement 2008 [376]
Wasp Colonies Algorithm WCA Flying Foraging 1991 [377]
Wolf Colony Algorithm WCA.1 Terrestrial Foraging 2011 [378]
Worm Optimization WO Micro Foraging 2014 [379]
Whale Optimization Algorithm WOA Aquatic Foraging 2016 [380]
Walruses Optimization Algorithm WaOA Terrestrial Movement 2023 [381]
Wolf Pack Search WPS Terrestrial Foraging 2007 [382]
Weightless Swarm Algorithm WSA Other Movement 2012 [383]
Wolf Search Algorithm WSA.1 Terrestrial Foraging 2012 [384]
Wasp Swarm Optimization WSO Flying Foraging 2005 [385]
White Shark Optimizer WSO.1 Aquatic Foraging 2022 [386]
Yellow Saddle Goldfish YSGA Aquatic Foraging 2018 [387]
Zebra Optimization Algorithm ZOA Terrestrial Foraging 2022 [388]
Zombie Survival Optimization ZSO Other Foraging 2012 [389]
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• Movement: We have considered that an algorithm belongs to the movement inspiration subcategory if the biological
inspiration resides mainly in the way the animal inspiring the algorithm regularly moves around its environment. As such,
the differential aspect of the movement could hinge on the dynamics of the movement itself (e.g. the flying movement of
birds in PSO [80], jumping actions as in Shuffled Frog-Leaping Algorithm, SFLA [332], or by aquatic movements as in
DPO [201]), or by the movement of the population (correspondingly, swarming movements as in Bird Swarm Algorithm,
BSA [162], the migration of populations like Population Migration Algorithm, PMA [304], or the migration of particular
animals like salmon [367], among others).

• Foraging: Rather than the movement strategy, in some other algorithmic variants it is the mechanism used to obtain their
food what drives the behavior of the animal and, ultimately, the design of the meta-heuristic algorithm. This foraging
behavior can in turn be observed in many flavors, from the tactics used by the animal at hand to surround its food source (as
in the aforementioned GWO [240] and LA [263]), inspired in breeding nutrition (as Cuckoo Search [188, 390]), inspired
in hunting techniques observed in grey wolves and lions, respectively), particular mechanisms to locate food sources and
communicate its existence to the rest of the swarm (as in ACO [115]), or other exploration strategies such as the echolocation
in dolphins [195], or the flashing attraction between partners observed in fireflies [117]. Sometimes, the movement of
the animal also obeys to food search and retrieval. In this case, we consider that the algorithm belongs to the foraging
inspiration type, rather than to the movement type. Nowadays, inspiration by foraging mechanisms is becoming more and
more consolidated in the research community, appearing explicitly in the name of several bio-inspired algorithms.

3.3 Physics/Chemistry based Algorithms
Algorithms under this category are characterized by the fact that they imitate the behavior of physical or chemical

phenomena, such as gravitational forces, electromagnetism, electric charges and water movement (in relation to physics-based
approaches), and chemical reactions and gases particles movement as for chemistry-based optimization algorithms.

The complete list of reviewed algorithms in this category is provided in Tables 9 and 10 (physics-based algorithms) and
Table 11 (chemistry-based methods). In this category we can find some well-known algorithms reported in the last century
such as Simulated Annealing [79], or one of the most important algorithms in physics-based meta-heuristic optimization,
Gravitational Search Algorithm, GSA [391]. Interestingly, a variety of space-based algorithms are rooted in GSA, such as
Black Hole optimization (BH, [392]) or Galaxy Based Search Algorithm (GBSA, [393]). Other algorithms such as Harmony
Search (HS, [394]) relate to the music composition process, a human invention that has more in common with other physical
algorithms in what refers to the usage of sound waves than with Social Human Behavior based algorithms, the category
discussed in what follows.

3.4 Social Human Behavior based Algorithms
Algorithms falling in this category are inspired by human social concepts, such as decision-making and ideas related to the

expansion/competition of ideologies inside the society as ideology (Ideology Algorithm, IA, [466]), or political concepts such
as the Imperialist Colony Algorithm (ICA, [467]). This category also includes algorithms that emulate sports competitions
such as the Soccer League Competition Algorithm (SLC, [468]). Brainstorming processes have also laid the inspirational
foundations of several algorithms such as Brain Storm Optimization algorithm (BSO.2, [469]) and Global-Best Brain Storm
Optimization algorithm (GBSO, [470]). The complete list of algorithms in this category is given in Table 12 and in Table 13.

3.5 Plants based Algorithms
This category essentially gathers all optimization algorithms whose search process is inspired by plants. In this case, as

opposed to other methods within the Swarm Intelligence category, there is no communication between agents. One of the
most well-known is Forest Optimization Algorithms (FOA.1, [523]), inspired by the process of plant reproduction. Table 14
details the specific algorithms classified in this category.

3.6 Algorithms with Miscellaneous Sources of Inspiration
In this category there are included the algorithms that do not fit in any of the previous categories, i.e., we can find

algorithms of diverse characteristics such as the Ying-Yang Pair Optimization (YYOP, [546]). Although this defined category
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Table 9: Nature- and bio-inspired meta-heuristics within the Physics based category (I).

Physics based (I)
Algorithm Name Acronym Year Reference

Artificial Electric Field Algorithm AEFA 2019 [395]
Archimedes Optimization Algorithm AOA.1 2021 [396]
Artificial Physics Optimization APO 2009 [397]
Atom Search Optimization ASO.1 2019 [398]
Big Bang Big Crunch BBBC 2006 [399]
Black Hole Optimization BH 2013 [392]
Colliding Bodies Optimization CBO 2014 [400]
Crystal Energy Optimization Algorithm CEO 2016 [401]
Central Force Optimization CFO 2008 [402]
Charged Systems Search CSS 2010 [403]
Electromagnetic Field Optimization EFO 2016 [404]
Electromagnetism Mechanism Optimization EMO 2003 [405]
Electimize Optimization Algorithm EOA.1 2011 [406]
Electron Radar Search Algorithm ERSA 2020 [407]
Galaxy Based Search Algorithm GBSA 2011 [393]
Gravitational Clustering Algorithm GCA 1999 [408]
Gravitational Emulation Local Search GELS 2009 [409]
Gravitational Field Algorithm GFA 2010 [410]
Geyser Inspired Algorithm GIA 2023 [411]
Gravitational Interactions Algorithm GIO 2011 [412]
General Relativity Search Algorithm GRSA 2015 [413]
Gravitational Search Algorithm GSA 2009 [391]
Galactic Swarm Optimization GSO.2 2016 [414]
Hydrological Cycle Algorithm HCA 2017 [415]
Harmony Elements Algorithm HEA 2009 [416]
Hysteresis for Optimization HO 2002 [417]
Hurricane Based Optimization Algorithm HO.2 2014 [418]
Harmony Search HS 2005 [394]
Intelligent Gravitational Search Algorithm IGSA 2012 [419]
Intelligence Water Drops Algorithm IWD 2009 [420]
Light Ray Optimization LRO 2010 [421]
Lightning Search Algorithm LSA 2015 [422]
Magnetic Optimization Algorithm MFO.2 2008 [423]
Method of Musical Composition MMC 2014 [424]
Melody Search MS.1 2011 [425]
Multi-Verse Optimizer MVO 2016 [426]
Newton-Raphson-Based Optimizer NRBO 2024 [427]
Optics Inspired Optimization OIO 2015 [428]
Particle Collision Algorithm PCA 2007 [429]
PopMusic Algorithm PopMusic 2002 [430]
Quantum Superposition Algorithm QSA 2015 [431]
Rain-Fall Optimization Algorithm RFOA 2017 [432]
Rain Water Algorithm RWA 2017 [433]
River Formation Dynamics RFD 2007 [434]
Radial Movement Optimization RMO 2014 [435]
Ray Optimization RO 2012 [436]
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Table 10: Nature- and bio-inspired meta-heuristics within the Physics based category (II).

Physics based (II)
Algorithm Name Acronym Year Reference

Snow Ablation Optimizer SAO 2023 [437]
Space Gravitational Algorithm SGA 2005 [438]
Sonar Inspired Optimization SIO 2017 [439]
States Matter Optimization Algorithm SMS 2014 [440]
Spiral Dynamics Optimization SO 2011 [441]
Spiral Optimization Algorithm SPOA 2010 [442]
Self-Driven Particles SPP 1995 [443]
Solar System Algorithm SSA.4 2021 [444]
Turbulent Flow of Water-based Optimization TFWO 2020 [445]
Vibrating Particle Systems Algorithm VPO 2017 [446]
Vortex Search Algorithm VS 2015 [447]
Water Cycle Algorithm WCA.2 2012 [448]
Water Evaporation Optimization WEO 2016 [449]
Water Flow-Like Algorithms WFA 2007 [450]
Water Flow Algorithm WFA.1 2007 [451]
Water-Flow Algorithm Optimization WFO 2011 [452]
Water Wave Optimization Algorithm WWA 2015 [453]

Table 11: Nature- and bio-inspired meta-heuristics within the Chemistry based category.

Chemistry based
Algorithm Name Acronym Year Reference
Artificial Chemical Process ACP 2005 [454]
Artificial Chemical Reaction Optimization Algorithm ACROA 2011 [455]
Artificial Reaction Algorithm ARA 2013 [456]
Chemical Reaction Optimization Algorithm CRO.1 2010 [457]
Gases Brownian Motion Optimization GBMO 2013 [458]
Heat Transfer Search Algorithm HTS 2015 [459]
Ions Motion Optimization Algorithm IMO 2015 [460]
Integrated Radiation Optimization IRO 2007 [461]
Kinetic Gas Molecules Optimization KGMO 2014 [462]
Photosynthetic Algorithm PA 1999 [463]
Simulated Annealing SA.1 1989 [79]
Synergistic Fibroblast Optimization SFO 2017 [464]
Thermal Exchange Optimization TEO 2017 [465]
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Table 12: Nature- and bio-inspired meta-heuristics within the Social Human Behavior based category.

Social Human Behavior (I)
Algorithm Name Acronym Year Reference

Adolescent Identity Search Algorithm AISA 2020 [471]
Anarchic Society Optimization ASO 2012 [472]
Alpine Skiing Optimization ASO.2 2022 [473]
Brain Storm Optimization Algorithm BSO.2 2011 [469]
Bus Transportation Behavior BTA 2019 [474]
Collective Decision Optimization Algorithm CDOA 2017 [475]
Cognitive Behavior Optimization Algorithm COA.3 2016 [476]
Competitive Optimization Algorithm COOA 2016 [477]
Community of Scientist Optimization Algorithm CSOA 2012 [478]
Cultural Algorithms CA 1999 [479]
Duelist Optimization Algorithm DOA 2016 [480]
Election Algorithm EA 2015 [481]
Football Game Inspired Algorithms FCA.1 2009 [482]
FIFA World Cup Competitions FIFAAO 2016 [483]
Golden Ball Algorithm GBA 2014 [484]
Global-Best Brain Storm Optimization Algorithm GBSO 2017 [470]
Group Counseling Optimization GCO 2010 [485]
Group Leaders Optimization Algorithm GLOA 2011 [486]
Greedy Politics Optimization Algorithm GPO 2014 [487]
Gaining-sharing Knowledge GSK 2023 [488]
Group Teaching Optimization Algorithm GTOA 2020 [489]
Human Evolutionary Model HEM 2007 [490]
Human Group Formation HGF 2010 [491]
Human-Inspired Algorithms HIA 2009 [492]
Human Urbanization Algorithm HUA 2020 [493]
Ideology Algorithm IA 2016 [466]
Imperialist Competitive Algorithm ICA 2007 [467]
Kho-Kho optimization Algorithm KKOA 2020 [494]
League Championship Algorithm LCA.1 2014 [495]
Life Choice Based Optimizer LCBO 2020 [496]
Leaders and Followers Algorithm LFA 2015 [497]
Old Bachelor Acceptance OBA 1995 [498]
Oriented Search Algorithm OSA 2008 [499]
Political Optimizer PO 2020 [500]
Parliamentary Optimization Algorithm POA 2008 [501]
Poor and Rich Optimization Algorithm PRO 2019 [502]
Queuing Search Algorithm QSA.1 2018 [503]
Search and Rescue Algorithm SAR 2019 [504]
Social Behavior Optimization Algorithm SBO.1 2003 [505]
Social Cognitive Optimization SCO 2002 [506]
Social Cognitive Optimization Algorithm SCOA 2010 [507]
Social Emotional Optimization Algorithm SEA 2010 [508]
Stock Exchange Trading Optimization SETO 2022 [509]
Stochastic Focusing Search SFS 2008 [510]
Soccer Game Optimization SGO 2012 [511]
Soccer League Competition SLC 2014 [468]
Student Psychology Optimization Algorithm SPBO 2020 [512]
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Table 13: Nature- and bio-inspired meta-heuristics within the Social Human Behavior based category.

Social Human Behavior (II)
Algorithm Name Acronym Year Reference

Stadium Spectators Optimizer SSO.3 2024 [513]
Tiki-Taka Algorithm TTA 2020 [514]
Team Game Algorithm TGA 2018 [515]
Teaching-Learning Based Optimization Algorithm TLBO 2011 [516]
Thieves and Police Optimization Algorithm TPOA 2021 [517]
Tactical Unit Algorithm TUA 2024 [518]
Tug Of War Optimization TWO 2016 [519]
Unconscious Search US 2012 [520]
Volleyball Premier League Algorithm VPL 2017 [521]
Wisdom of Artificial Crowds WAC 2011 [522]

Table 14: Nature- and bio-inspired meta-heuristics within the Plants based category.

Plants based
Algorithm Name Acronym Year Reference

Artificial Flora Optimization Algorithm AFO 2018 [524]
Artificial Plants Optimization Algorithm APO.1 2013 [525]
BrunsVigia Flower Optimization Algorithm BVOA 2018 [526]
Carnivorous Plant Algorithm CPA 2021 [527]
Discrete Mother Tree Optimization DMTO 2020 [528]
Forest Optimization Algorithm FOA.1 2014 [523]
Flower Pollination Algorithm FPA 2012 [529]
Lotus Effect Algorithm LEA 2023 [530]
Natural Forest Regeneration Algorithm NFR 2016 [531]
Plant Growth Optimization PGO 2008 [532]
Plant Propagation Algorithm PPA.1 2009 [533]
Paddy Field Algorithm PFA 2009 [534]
Root Growth Optimizer RGO 2015 [535]
Root Tree Optimization Algorithm RTOA 2016 [536]
Runner Root Algorithm RRA 2015 [537]
Saplings Growing Up Algorithm SGA.1 2007 [538]
Self-Defense Mechanism Of The Plants Algorithm SDMA 2018 [539]
Seasons Optimization SO.1 2022 [540]
Strawberry Plant Algorithm SPA 2014 [541]
Smart Root Search SRS 2020 [542]
Tree Growth Algorithm TGA.1 2019 [543]
Tree Physiology Optimization TPO 2018 [544]
Tree Seed Algorithm TSA 2015 [545]
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is heterogeneous and does not exhibit any uniformity among the algorithms it represents, its inclusion in the taxonomy serves
as an exemplifying fact of the very different sources of inspiration existing in the literature. The ultimate goal of reflecting this
miscellaneous set of algorithms is to spawn new categories once more algorithms are created by recreating similar inspirational
concepts that the assorted ones already present in this category.

The complete list of algorithms in this category is in Tables 15 and 16. In this regard, we stress this pressing need for
grouping assorted algorithms in years to come to give rise to new categories. Otherwise, if we just stockpile new algorithms
without a clear correspondence to the aforementioned categories in this miscellaneous group, the overall taxonomy will
not evolve and will eventually lack its main purpose: to systematically sort and ease the analysis of future advances and
achievements in the field.

Table 15: Nature- and bio-inspired meta-heuristics within the Miscellaneous category.

Miscellaneous (II)
Algorithm Name Acronym Year Reference

Scientifics Algorithms SA.2 2014 [547]
Social Engineering Optimization SEO 2017 [548]
Stochastic Fractal Search SFS.1 2015 [549]
Snow Flake Optimization Algorithm SFO.1 2023 [550]
Search Group Algorithm SGA.2 2015 [551]
Simple Optimization SOPT 2012 [552]
Ship Rescue Optimization SRO 2024 [553]
Small World Optimization SWO 2006 [554]
The Great Deluge Algorithm TGD 1993 [555]
Wind Driven Optimization WDO 2010 [556]
Ying-Yang Pair Optimization YYOP 2016 [546]
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Table 16: Nature- and bio-inspired meta-heuristics within the Miscellaneous category.

Miscellaneous (I)
Algorithm Name Acronym Year Reference

Atmosphere Clouds Model ACM 2013 [557]
Artificial Cooperative Search ACS 2012 [558]
Innovative Gunner Algorithm AIG 2019 [559]
Across Neighbourhood Search ANS 2016 [560]
Botox Optimization Algorithm BOA.2 2024 [561]
Battle Royale Optimization Algorithm BRO 2020 [562]
Bar Systems BS.2 2008 [563]
Backtracking Search Optimization BSO.3 2012 [564]
Cloud Model-Based Algorithm CMBDE 2012 [565]
Chaos Optimization Algorithm COA.4 1998 [566]
Clonal Selection Algorithm CSA.1 2000 [567]
COVID-19 Optimizer Algorithm CVA 2020 [568]
Dice Game Optimizer DGO 2019 [569]
Dialectic Search DS 2009 [570]
Differential Search Algorithm DSA 2012 [571]
Exchange Market Algorithm EMA 2014 [572]
Extremal Optimization EO 2000 [573]
Equilibrium Optimizer EO.1 2020 [574]
Fireworks Algorithm Optimization FAO 2010 [575]
Farmland Fertility Algorithm FFA 2018 [576]
Grenade Explosion Method GEM 2010 [577]
Golden Sine Algorithm GSA.1 2017 [578]
Golf Sport Inspired Search GSIS 2024 [579]
Heart Optimization HO.1 2014 [580]
Hyper-parameter Dialectic Search HDS 2020 [581]
Ideological Sublations IS 2017 [582]
Interior Search Algorithm ISA 2014 [583]
Keshtel Algorithm KA 2014 [584]
Kidney-Inspired Algorithm KA.1 2017 [585]
Kaizen Programming KP 2014 [586]
Liver Cancer Algorithm LCA.2 2023 [587]
Literature Research Optimizer LRO.1 2024 [588]
Membrane Algorithms MA 2005 [589]
Mine Blast Algorithm MBA 2013 [590]
Neuronal Communication Algorithm NCA 2017 [591]
Nizar Optimization Algorithm NOA.1 2024 [592]
Plasma Generation Optimization PGO.1 2020 [593]
Pearl Hunting Algorithm PHA 2012 [594]
Passing Vehicle Search PVS 2016 [595]
Artificial Raindrop Algorithm RDA.1 2014 [596]
Reactive Dialectic Search RDS 2017 [597]
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4 Taxonomy by Behavior for Population based Nature- and Bio-inspired Optimization
We now proceed with our second proposed taxonomy for population-based metaheuristics. In this case, we sort the

different algorithmic proposals reported by the community by their behavior, without any regard to their source of inspiration.
To this end, a clear sorting criterion is needed that, while keeping itself agnostic with respect to its inspiration, could summarize
as much as possible the different behavioral procedures characterizing the algorithms under review. The criterion adopted for
this purpose is the mechanisms used for creating new solutions, or for changing existing solutions to the optimization problem.
These are the main features that define the search process of each algorithm.

First, we have divided the reviewed optimization algorithms into two categories:

• Differential Vector Movement, in which new solutions are produced by a shift or a mutation performed onto a previous
solution. The newly generated solution could compete against previous ones, or against other solutions in the population
to achieve a space and remain therein in subsequent search iterations. This solution generation scheme implies selecting
a solution as the reference, which is changed to explore the space of variables and, effectively, produce the search for
the solution to the problem at hand. The most representative method of this category is arguably PSO [80], in which
each solution evolves with a velocity vector to explore the search domain. Another popular algorithm with differential
movement at its core is DE [59], in which new solutions are produced by adding differential vectors to existing solutions
in the population. Once a solution is selected as the reference one, it is perturbed by adding the difference between other
solutions. The decision as to which solutions from the population are influential in the movement is a decision that has an
enormous influence on the behavior of the overall search. Consequently, we further divide this category by that decision.
The movement – thus, the search – can be guided by i) all the population (Figure 4.a); ii) only the significant/relevant
solutions, e.g., the best and/or the worst candidates in the population (Figure 4.b); or iii) a small group, which could stand
for the neighborhood around each solution or, in algorithms with subpopulations, only the subpopulation to which each
solution belongs (Figure 4.c).

• Solution creation, in which new solutions are not generated by mutation/movement of a single reference solution, but
instead by combining several solutions (so there is not only a single parent solution), or other similar mechanism. Two
approaches can be utilized for creating new solutions. The first one is by combination, or crossover of several solutions
(Figure 4.d). The classical GA [98] is the most straightforward example of this type. Another approach is by stigmergy
(Figure 4.e), in which there is indirect coordination between the different solutions or agents, usually using an intermediate
structure, to generate better ones. A classical example of stigmergy for creating solutions is ACO [598], in which new
solutions are generated by the trace of pheromones left by different agents on a graph representing the solution space of the
problem under analysis.

Bearing the above criteria in mind, Figure 5 shows the classification reached after our literature analysis. The plot indicates,
for the 518 reviewed algorithms, the number and ratio of proposals classified in each category and subcategory. It can be
observed that in most nature- and bio-inspired algorithms, new solutions are generated by differential vector movement over
existing ones (69% vs 31%). Among them, the search process is mainly guided by representative solutions (almost 60% in
global, 86% from this category), mainly the so-called current best solution (in a very similar fashion to the naive version of
the PSO solver). Thus, the creation of new solutions by movement vectors oriented towards the best solution is the search
mechanism found in more than half (almost 60%) of all the 518 reviewed proposals.

25



xB

xC

Replacement

Population
C
o
m

b
in

a
t
io

nxA

f(xC )

Agent

Medium (search space)

A
Agent
B

Agent
C

(d) (e)

E
v
a
lu

a
t
io

n

x′
A

Replacement

Population

M
o
v
e
m

e
n
t

xA

f(x′
A)

(a)
E
v
a
lu

a
t
io

n

ω

ω

ω

ω

ω

ω

+

ω

x′
A

Replacement

Population

M
o
v
e
m

e
n
t

xA

f(x′
A)

(b)

E
v
a
lu

a
t
io

nω

+

ω

xcbest

xcbest = argmax
x∈Pop

f(x)

x′
A

Replacement

Population

M
o
v
e
m

e
n
t

f(x′
A)

(c)

E
v
a
lu

a
t
io

n

+

ω

d(x,x′)

xA

ω

ω
xgbest

ω

Figure 4: Schematic diagrams of the different algorithmic behaviors on which our second taxonomy relies. The upper plots
illustrate the process of generating new solutions by Differential Vector Movement from a given solution xA, using (a) the
entire population; (b) relevant individuals (in the example, the movement results from a weighted combination – ω– of the
current best solution in the population and the best solution found so far by the algorithm); and (c) neighboring solutions in
the population to the reference individual. The lower plots show the same process using solution creation by (d) combination;
and (e) stigmergy.

Nature and population-based
Meta-heuristics (518: 100%)

Solution creation
Based (158: 30.50%)

Combination
(149: 28.76%)

Stigmergy
(9: 1.74%)

Differential vector
movement (360: 69.50%)

All Population
(17: 3.28%)

Groups Based
(33: 6.37%)

Subpopulation
(27: 5.21%)

Neighbourhood
(6: 1.16%)

Representative
Based (310: 59.85%)

Figure 5: Classification of the reviewed papers using the behavior taxonomy.

The following subsections provide a brief global view of the different categories introduced above. For each category, we
describe its main characteristics, an example, and a table with the algorithms belonging to that category.
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4.1 Differential Vector Movement
This category of our behavior-based taxonomy amounts up to 69% of the analyzed algorithms. In all of them, new

solutions are obtained by a movement departing from existing solutions. By using a solution as the reference, a differential
vector is used to move from the reference towards a new candidate, that could replace the previous one or instead compete to
be included into the population.

The crucial decision in differential vector movement is how the differential vector (namely, the intensity and direction
of the movement) is calculated. This differential vector could be calculated so as to move the reference solution to another
solution (usually a better one), or as a lineal combination of other different solutions, allowing the combination of attraction
vectors (toward the best solutions) with repulsion vectors (away from worse ones, or from other solutions, to enforce diversity).
The mathematical nature of this operation usually restricts the domain of the representation to a numerical, usually real-valued
representation.

This category is further divided into subcategories as a function of the above decision, i.e. which solutions are considered
to create the movement vector. It should be noted that some algorithms can be classified into more than one subcategory. For
instance, a particle’s update in the PSO solver is affected by the global best particle behavior and certain local best particle(s)
behavior. The local best behavior can be either dependent on the particle’s previous behavior or the behavior of some particles
in its neighborhood. This makes PSO a possible member of two of the subcategories, namely, Differential Vector as a Function
of Representative Solutions and Differential Vector as a Function of a Group of Solutions. Nevertheless, we have considered
the classical PSO as a member of Representative Solutions because the influence of the best algorithm is stronger than the
influence of the neighborhood. In any case, following the above rationale, other PSO variants could fall within any other
subcategory. We now describe each of such subcategories.

4.1.1 Differential Vector as a Function of the Entire Population

One possible criterion is to use all the individuals in the population to generate the movement of each solution. In these
algorithms, all individuals have a degree of influence on the movement of the other solutions. Such a degree is usually
weighted according to the fitness difference and/or distance between solutions. A significant example is FA [117], in which
a solution suffers a moving force towards better solutions as a function of their distance. Consequently, solutions closer to
the reference solution will have a stronger influence than more distant counterparts. As shown in Table 17, algorithms in this
subcategory belong to different categories in the previous inspiration source based taxonomy.

4.1.2 Differential Vector as a Function of Representative Solutions

In this group (the most populated in this second taxonomy), the different movement of each solution is only influenced
by a small group of representative solutions. It is often the case that these representative solutions are selected to be the best
solutions found by the algorithm (as per the objective of the problem at hand), being able to be guided only by e.g. the current
best individual of the population.

Tables 18, 19, 20, 21, 22, 23 and 24 show the different algorithms in this subcategory. An exemplary algorithm of this
category that has been a major meta-heuristic solver in the history of the field is PSO [80]. In this solver, each solution
or particle is guided by the global current best solution and the best solution obtained by that particle during the search.
Another classical algorithm in this category is the majority of the family of DE approaches [59]. In most of the variants
of this evolutionary algorithm, the influence of the best solution(s) is hybridized with a differential vector that perturbs the
new solution toward random individuals for the sake of increased diversity along the search. However, this subcategory
also includes many other algorithms with differences in considering nearly better solutions (as in the Bat Inspired Algorithm
[153] or the Brain Storm Optimization Algorithm [469]) or the worse solutions (to avoid less promising regions), as in the
Grasshopper Optimization Algorithm (GOA, [118]). More than half of all algorithmic proposals dwell in this subcategory,
with a prominence of Swarm Intelligence solvers due to their behavioral inspiration in PSO and DE. We will revolve around
these identified similarities in Section 5.

4.1.3 Differential Vector as a Function of a Group of Solutions

Algorithms within this category do not resort to representative solutions of the entire population (such as the current best),
but they only consider solutions of a subset or group of the solutions in the population. When the differential movement
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Table 17: Nature- and bio-inspired meta-heuristics within the Differential Vector Movement category, wherein the differential
vector is influenced by the entire population.

Influenced by the entire population
Algorithm Name Acronym Year Reference

Artificial Electric Field Algorithm AEFA 2019 [395]
Artificial Plants Optimization Algorithm APO.1 2013 [525]
Botox Optimization Algorithm BOA.2 2024 [561]
Chaotic Dragonfly Algorithm CDA 2018 [177]
Central Force Optimization CFO 2008 [402]
Charged Systems Search CSS 2010 [403]
Dwarf Mongoose Optimization DMO 2022 [198]
Electromagnetism Mechanism Optimization EMO 2003 [405]
Firefly Algorithm FA 2009 [117]
Gravitational Clustering Algorithm GCA 1999 [408]
Group Counseling Optimization GCO 2010 [485]
Gravitational Search Algorithm GSA 2009 [391]
Human Group Formation HGF 2010 [491]
Hoopoe Heuristic Optimization HHO.1 2012 [245]
Intelligent Gravitational Search Algorithm IGSA 2012 [419]
Integrated Radiation Optimization IRO 2007 [461]
Locust Swarms Search LSS 2015 [271]

considers both a group and a representative of all the population, the algorithm under analysis is considered to belong
to the previous subcategory, because the representative has usually the strongest influence over the search. Two different
subcategories hold when a group of solutions is used for computing the differential movement vector:

• Subpopulation based differential vector: In algorithms belonging to this subcategory (listed in Table 25) the population
is divided in several subpopulations, such that the movement of each solution is only affected by the other solutions in
the same subpopulation. Examples of algorithms in this subcategory are LA [263] or the Monarch Butterfly Optimization
algorithm (MBO, [274]).

• Neighborhood based differential vector: In this subcategory, each solution is affected only by solutions in its local
neighborhood. Table 26 compiles all algorithms that are classified in this subcategory. A notable example in this list is
BFOA [148], in which all solutions in the neighborhood impact on the computation of the movement vector, either by
attracting the solution (if the neighboring solution has better fitness than the reference solution) or in a repulsive way (when
the neighboring solution is worse than the one to be moved).

4.2 Solution Creation
This category is composed of algorithms that explore the domain search by generating new solutions, not by moving

existing ones. This group is a significant ratio (almost 31%) of all proposals, and includes many classical algorithms like
GA [98]. A very widely exploited advantage of these methods is the possibility to adapt the generation method to the
particular problem, hence allowing for different possible representations and, therefore, easing its application to a wider
range of problems. In the following, we describe the different subcategories that result from the diverse mechanisms by which
solutions can be created.

4.2.1 Creation by Combination

The most common option to generate a new solution is to combine existing ones. In these algorithms, different solutions
are selected and combined using a crossover operator or combining method to give rise to new solutions. The underlying idea

28



Table 18: Nature- and bio-inspired meta-heuristics within the Differential Vector Movement category, wherein the differential
vector is influenced by representative solutions (I).

Influenced by representative solutions (I)
Algorithm Name Acronym Year Reference

Artificial Algae Algorithm AAA 2015 [120]
Artificial Bee Colony ABC 2007 [116]
Animal Behavior Hunting ABH 2014 [122]
African Buffalo Optimization ABO 2016 [123]
Atmosphere Clouds Model ACM 2013 [557]
Artificial Ecosystem Optimizer AEO 2020 [83]
Artificial Feeding Birds AFB 2018 [125]
Artificial Hummingbird Algorithm AHA 2022 [126]
Archerfish Hunting Optimizer AHO 2022 [127]
Adolescent Identity Search Algorithm AISA 2020 [471]
Ant Lion Optimizer ALO 2015 [130]
Animal Migration Optimization AMO 2014 [128]
Aphid Metaheuristic Optimization AMO.1 2022 [129]
Across Neighbourhood Search ANS 2016 [560]
Aquila Optimizer AO 2021 [131]
Archimedes Optimization Algorithm AOA.1 2021 [396]
Arithmetic Optimization Algorithm AOA.2 2021 [133]
Artificial Rabbits Optimization ARO.1 2022 [134]
Anarchic Society Optimization ASO 2012 [472]
Atom Search Optimization ASO.1 2019 [398]
Alpine Skiing Optimization ASO.2 2022 [473]
Artificial Searching Swarm Algorithm ASSA 2009 [135]
Artificial Tribe Algorithm ATA 2009 [136]
African Wild Dog Algorithm AWDA 2013 [137]
Bison Behavior Algorithm BBA 2019 [142]
Big Bang Big Crunch BBBC 2006 [399]
Bacterial Chemotaxis Optimization BCO.2 2002 [146]
Bacterial Colony Optimization BCO.1 2012 [145]
Border Collie Optimization BCO.3 2020 [147]
Bald Eagle Search Optimization BES 2019 [139]
Black Hole Optimization BH 2013 [392]
Bat Intelligence BI 2012 [152]
Bat Inspired Algorithm BIA 2010 [153]
Biology Migration Algorithm BMA 2019 [154]
Blind, Naked Mole-Rats Algorithm BNMR 2013 [156]
Butterfly Optimizer BO 2015 [157]
Bonobo Optimizer BO.1 2019 [158]
Battle Royale Optimization Algorithm BRO 2020 [562]
Bird Swarm Algorithm BSA 2016 [162]
Bee Swarm Optimization BSO 2010 [163]
Bioluminiscent Swarm Optimization Algorithm BSO.1 2011 [164]
Brain Storm Optimization Algorithm BSO.2 2011 [469]
Biological Survival Optimizer BSO.4 2023 [165]
Buzzard Optimization Algorithm BUZOA 2019 [167]
Beluga Whale Optimization BWO.1 2022 [169]
Binary Whale Optimization Algorithm BWOA 2019 [170]
Collective Animal Behavior CAB 2012 [171]
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Table 19: Nature- and bio-inspired meta-heuristics within the Differential Vector Movement category, wherein the differential
vector is influenced by representative solutions (II).

Influenced by representative solutions (II)
Algorithm Name Acronym Year Reference

Catfish Optimization Algorithm CAO 2011 [173]
Cheetah Based Algorithm CBA 2018 [172]
Cricket Behavior-Based Algorithm CBBE 2016 [174]
Chaotic Crow Search Algorithm CCSA 2018 [176]
Collective Decision Optimization Algorithm CDOA 2017 [475]
Camel Herd Algorithm CHA 2017 [180]
Chimp Optimization Algorithm ChOA 2020 [181]
Cloud Model-Based Algorithm CMBDE 2012 [565]
Camel Traveling Behavior COA.1 2016 [183]
Coyote Optimization Algorithm COA.2 2018 [184]
Cognitive Behavior Optimization Algorithm COA.3 2016 [476]
Chaos Optimization Algorithm COA.4 1998 [566]
COOT Optimization Algorithm COA.5 2021 [185]
Coati Optimization Algorithm COA.6 2023 [186]
Competitive Optimization Algorithm COOA 2016 [477]
Crested Porcupine Optimizer CPO 2024 [187]
Crow Search Algorithm CSA 2016 [189]
Chameleon Swarm Algorithm CSA.2 2021 [81]
Circle Search Algorithm CSA.3 2022 [190]
Cat Swarm Optimization CSO 2006 [191]
Community of Scientist Optimization Algorithm CSOA 2012 [478]
Dragonfly Algorithm DA 2016 [193]
Differential Evolution DE 1997 [93]
Dynamic Hunting Leadership DHL 2023 [196]
Deer Hunting Optimization Algorithm DHOA 2019 [197]
Dandelion Optimizer DO 2022 [199]
Dingo Optimizer DOX 2021 [200]
Dolphin Partner Optimization DPO 2009 [201]
Differential Search Algorithm DSA 2012 [571]
Donkey Theorem Optimization DTO 2019 [202]
Enriched Coati Osprey Algorithm ECOA 2024 [203]
Electric Eel Foraging Optimization EEFO 2024 [204]
Elephant Herding Optimization EHO 2016 [206]
Elk Herd Optimizer EHO.1 2024 [207]
Ebola Optimization Search Algorithm EOSA 2022 [208]
Emperor Penguin Optimizer EPO 2018 [210]
Electron Radar Search Algorithm ERSA 2020 [407]
Elephant Search Algorithm ESA 2015 [212]
Eagle Strategy ES.1 2010 [211]
Elephant Swarm Water Search Algorithm ESWSA 2018 [213]
Fireworks Algorithm Optimization FAO 2010 [575]
Flocking Base Algorithms FBA 2006 [215]
Fast Bacterial Swarming Algorithm FBSA 2008 [216]
Football Game Inspired Algorithms FCA.1 2009 [482]
Farmland Fertility Algorithm FFA 2018 [576]
Fire Hawk Optimizer FHO 2023 [218]
FIFA World Cup Competitions FIFAAO 2016 [483]
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Table 20: Nature- and bio-inspired meta-heuristics within the Differential Vector Movement category, wherein the differential
vector is influenced by representative solutions (III).

Influenced by representative solutions (III)
Algorithm Name Acronym Year Reference

Flock by Leader FL 2012 [219]
Frilled Lizard Optimization FLO 2024 [220]
Fruit Fly Optimization Algorithm FOA 2012 [221]
Falcon Optimization Algorithm FOA.2 2019 [222]
Flower Pollination Algorithm FPA 2012 [529]
Fish-Swarm Algorithm FSA 2002 [224]
Fish Swarm Algorithm FSA.1 2011 [225]
Fish School Search FSS 2008 [226]
Green Anaconda Optimization GAO 2023 [227]
Giant Armadillo Optimization GAO.1 2023 [228]
Gases Brownian Motion Optimization GBMO 2013 [458]
Global-Best Brain Storm Optimization Algorithm GBSO 2017 [470]
Group Escape Behavior GEB 2011 [229]
Golden Eagle Optimizer GEO 2021 [230]
Grenade Explosion Method GEM 2010 [577]
Gravitational Field Algorithm GFA 2010 [410]
Geyser Inspired Algorithm GIA 2023 [411]
Gravitational Interactions Algorithm GIO 2011 [412]
Golden Jackal Optimization Algorithm GJO 2023 [231]
Genghis Khan Shark Optimizer GKSO 2023 [232]
Good Lattice Swarm Optimization GLSO 2007 [233]
Grasshopper Optimisation Algorithm GOA 2017 [118]
Gazelle Optimization Algorithm GOA.1 2023 [234]
General Relativity Search Algorithm GRSA 2015 [413]
Golden Sine Algorithm GSA.1 2017 [578]
Glowworm Swarm Optimization GSO 2013 [236]
Galactic Swarm Optimization GSO.2 2016 [414]
Goose Team Optimization GTO 2008 [238]
Gorilla Troops Optimizer GTO.1 2021 [239]
Group Teaching Optimization Algorithm GTOA 2020 [489]
Grey Wolf Optimizer GWO 2014 [240]
Hitchcock Birds-Inspired Algorithm HBIA 2020 [241]
Hydrological Cycle Algorithm HCA 2017 [415]
Hunger Games Search HGS 2021 [243]
Harry’s Hawk Optimization Algorithm HHO 2019 [244]
Horned Lizard Optimization Algorithm HLOA 2024 [246]
Heart Optimization HO.1 2014 [580]
Hurricane Based Optimization Algorithm HO.2 2014 [418]
Hybrid Rice Optimization HRO 2016 [100]
Hunting Search HuS 2010 [248]
Honeybee Social Foraging HSF 2007 [249]
Humboldt Squid Optimization Algorithm HSOA.1 2023 [252]
Heat Transfer Search Algorithm HTS 2015 [459]
Human Urbanization Algorithm HUA 2020 [493]
Ideology Algorithm IA 2016 [466]
Imperialist Competitive Algorithm ICA 2007 [467]
Ideological Sublations IS 2017 [582]
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Table 21: Nature- and bio-inspired meta-heuristics within the Differential Vector Movement category, wherein the differential
vector is influenced by representative solutions (IV).

Influenced by representative solutions (IV)
Algorithm Name Acronym Year Reference

Interior Search Algorithm ISA 2014 [583]
Jaguar Algorithm JA 2015 [256]
Jellyfish Search JS 2021 [257]
Kidney-Inspired Algorithm KA.1 2017 [585]
Kinetic Gas Molecules Optimization KGMO 2014 [462]
Krill Herd KH 2012 [259]
Kho-Kho optimization Algorithm KKOA 2020 [494]
Kookaburra Optimization Algorithm KOA 2023 [260]
Krestrel Search Algorithm KSA 2016 [261]
Killer Whale Algorithm KWA 2017 [262]
Seven-Spot Ladybird Optimization LBO 2013 [264]
Lyrebird Optimization Algorithm LBO.1 2023 [265]
League Championship Algorithm LCA.1 2014 [495]
Lotus Effect Algorithm LEA 2023 [530]
Leaders and Followers Algorithm LFA 2015 [497]
Literature Research Optimizer LRO.1 2024 [588]
Lightning Search Algorithm LSA 2015 [422]
Locust Swarms Optimization LSO 2009 [269]
Leopard Seal Optimization LSO.1 2023 [270]
Membrane Algorithms MA 2005 [589]
Mayfly Optimization Algorithm MA.1 2020 [272]
Mine Blast Algorithm MBA 2013 [590]
Magnetotactic Bacteria Optimization Algorithm MBO 2013 [273]
Mouth Breeding Fish Algorithm MBF 2018 [276]
Modified Cuckoo Search MCS 2009 [278]
Modified Cockroach Swarm Optimization MCSO 2011 [279]
Moth Flame Optimization Algorithm MFO 2015 [280]
Magnetic Optimization Algorithm MFO.2 2008 [423]
Meerkats Inspired Algorithm MIA 2018 [282]
Marine Predators Algorithm MPA 2020 [285]
Mushroom Reproduction Optimization MRO 2018 [105]
Monkey Search MS 2007 [286]
Moth Search Algorithm MS.2 2018 [287]
Mantis Search Algorithm MSA 2023 [288]
Multi-Verse Optimizer MVO 2016 [426]
Naked Moled Rat NMR 2019 [290]
Nutcracker Optimization Algorithm NOA 2023 [291]
Nizar Optimization Algorithm NOA.1 2024 [592]
Nomadic People Optimizer NPO 2019 [292]
Newton-Raphson-Based Optimizer NRBO 2024 [427]
Orcas Intelligence Algorithm OA 2020 [293]
OptBees OB 2012 [294]
Optimal Foraging Algorithm OFA 2017 [295]
Optics Inspired Optimization OIO 2015 [428]
Owls Optimization Algorithm OOA 2019 [296]
Osprey Optimization Algorithm OOA.1 2023 [297]
Orca Predation Algorithm OPA 2022 [298]
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Table 22: Nature- and bio-inspired meta-heuristics within the Differential Vector Movement category, wherein the differential
vector is influenced by representative solutions (V).

Influenced by representative solutions (V)
Algorithm Name Acronym Year Reference

Oriented Search Algorithm OSA 2008 [499]
Prairie Dog Optimization Algorithm PDO 2022 [302]
Paddy Field Algorithm PFA 2009 [534]
Pigeon Inspired Optimization PIO 2014 [303]
Population Migration Algorithm PMA 2009 [304]
Political Optimizer PO 2020 [500]
Puma Optimizer PO.1 2024 [305]
Parliamentary Optimization Algorithm POA 2008 [501]
Pelican Optimization Algorithm POA.1 2022 [306]
Pufferfish Optimization Algorithm POA.2 2024 [307]
Prey Predator Algorithm PPA 2015 [308]
Plant Propagation Algorithm PPA.1 2009 [533]
Poor and Rich Optimization Algorithm PRO 2019 [502]
Particle Swarm Optimization PSO 1995 [80]
Penguins Search Optimization Algorithm PSOA 2013 [309]
Passing Vehicle Search PVS 2016 [595]
Queuing Search Algorithm QSA.1 2018 [503]
Regular Butterfly Optimization Algorithm RBOA 2019 [310]
Artificial Raindrop Algorithm RDA.1 2014 [596]
Red Fox Optimization Algorithm RFO 2021 [312]
Root Growth Optimizer RGO 2015 [535]
Roach Infestation Problem RIO 2008 [315]
Radial Movement Optimization RMO 2014 [435]
Ray Optimization RO 2012 [436]
Red Piranha Optimization RPO 2023 [318]
Red Panda Optimization Algorithm RPO.1 2023 [319]
Runner Root Algorithm RRA 2015 [537]
Raven Roosting Optimization Algorithm RROA 2015 [320]
Red-tailed Hawk Algorithm RTH 2023 [321]
Reptile Search Algorithm RSA 2022 [322]
Rat Swarm Optimizer RSO 2021 [323]
Root Tree Optimization Algorithm RTOA 2016 [536]
Rain Water Algorithm RWA 2017 [433]
Snow Ablation Optimizer SAO 2023 [437]
Search and Rescue Algorithm SAR 2019 [504]
Swarm Bipolar Algorithm SBA 2024 [326]
Satin Bowerbird Optimizer SBO 2017 [328]
Stem Cells Algorithm SCA 2011 [108]
Sine Cosine Algorithm SCA.2 2016 [329]
Social Cognitive Optimization SCO 2002 [506]
Social Cognitive Optimization Algorithm SCOA 2010 [507]
Sand Cat Swarm Optimization SCSO 2023 [330]
Social Emotional Optimization Algorithm SEA 2010 [508]
Stock Exchange Trading Optimization SETO 2022 [509]
Synergistic Fibroblast Optimization SFO 2017 [464]
Stochastic Focusing Search SFS 2008 [510]
Stochastic Fractal Search SFS.1 2015 [549]
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Table 23: Nature- and bio-inspired meta-heuristics within the Differential Vector Movement category, wherein the differential
vector is influenced by representative solutions (VI).

Influenced by representative solutions (VI)
Algorithm Name Acronym Year Reference

Space Gravitational Algorithm SGA 2005 [438]
Soccer Game Optimization SGO 2012 [511]
Spotted Hyena Optimizer SHO 2017 [333]
Selfish Herds Optimizer SHO.1 2017 [334]
Sea-horse Optimizer SHO.2 2023 [335]
Swarm Inspired Projection Algorithm SIP 2009 [336]
Soccer League Competition SLC 2014 [468]
Slime Mould Algorithm SMA 2008 [337]
Sperm Motility Algorithm SMA.1 2017 [338]
Spider Monkey Optimization SMO 2014 [339]
Starling Murmuration Optimizer SMO.1 2022 [340]
States Matter Optimization Algorithm SMS 2014 [440]
Spiral Dynamics Optimization SO 2011 [441]
Student Psychology Optimization Algorithm SPBO 2020 [512]
Spiral Optimization Algorithm SPOA 2010 [442]
Self-Driven Particles SPP 1995 [443]
Seeker Optimization Algorithm SOA 2007 [341]
Seagull Optimization Algorithm SOA.1 2019 [342]
Sandpiper Optimization Algorithm SOA.2 2020 [343]
Sailfish Optimizer Algorithm SOA.3 2019 [344]
Serval Optimization Algorithm SOA.4 2022 [345]
Symbiosis Organisms Search SOS 2014 [346]
Ship Rescue Optimization SRO 2024 [553]
Siberian Tiger Optimization STO 2022 [359]
Sooty Tern Optimization Algorithm STOA 2019 [347]
Social Spider Algorithm SSA 2015 [348]
Squirrel Search Algorithm SSA.1 2019 [349]
Sparrow Search Algorithm SSA.3 2020 [351]
Solar System Algorithm SSA.4 2021 [444]
Shark Smell Optimization SSO 2016 [353]
Swallow Swarm Optimization SSO.1 2013 [354]
Social Spider Optimization SSO.2 2013 [355]
Stadium Spectators Optimizer SSO.3 2024 [513]
Sperm Swarm Optimization Algorithm SSOA 2018 [356]
See-See Partridge Chicks Optimization SSPCO 2015 [357]
Surface-Simplex Swarm Evolution Algorithm SSSE 2017 [358]
Spider Wasp Optimizer SWO.1 2023 [361]
Termite Alate Optimization Algorithm TAOA 2023 [363]
T-Cell Immune Algorithm TCIA 2023 [112]
Termite Colony Optimization TCO 2010 [364]
Tasmanian Devil Optimization TDO 2022 [365]
Tomtit Flock Optimization Algorithm TFOA 2022 [366]
Team Game Algorithm TGA 2018 [515]
The Great Salmon Run Algorithm TGSR 2013 [367]
Teaching-Leaning Based Optimization Algorithm TLBO 2011 [516]
Termite Life Cycle Optimizer TLCO 2023 [368]
Tree Physiology Optimization TPO 2018 [544]
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Table 24: Nature- and bio-inspired meta-heuristics within the Differential Vector Movement category, wherein the differential
vector is influenced by representative solutions (VII).

Influenced by representative solutions (VII)
Algorithm Name Acronym Year Reference

Thieves and Police Optimization Algorithm TPOA 2021 [517]
Tyrannosaurus Optimization Algorithm TROA 2023 [369]
Tree Seed Algorithm TSA 2015 [545]
Tunicate Swarm Algorithm TSA.1 2020 [370]
Tangent Search Algorithm TSA.2 2022 [371]
Tiki-Taka Algorithm TTA 2020 [514]
Tactical Unit Algorithm TUA 2024 [518]
Tug Of War Optimization TWO 2016 [519]
Unconscious Search US 2012 [520]
Virus Colony Search VCS 2016 [374]
Variable Mesh Optimization VMO 2012 [113]
Volleyball Premier League Algorithm VPL 2017 [521]
Vibrating Particle Systems Algorithm VPO 2017 [446]
Vortex Search Algorithm VS 2015 [447]
Wolf Colony Algorithm WCA.1 2011 [378]
Water Cycle Algorithm WCA.2 2012 [448]
Wind Driven Optimization WDO 2010 [556]
Water Evaporation Optimization WEO 2016 [449]
Whale Optimization Algorithm WOA 2016 [380]
Walruses Optimization Algorithm WaOA 2023 [381]
Wolf Pack Search WPS 2007 [382]
Weightless Swarm Algorithm WSA 2012 [383]
Wolf Search Algorithm WSA.1 2012 [384]
White Shark Optimizer WSO.1 2022 [386]
Water Wave Optimization Algorithm WWA 2015 [453]
Yellow Saddle Goldfish YSGA 2018 [387]
Zebra Optimization Algorithm ZOA 2022 [388]
Zombie Survival Optimization ZSO 2012 [389]
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Table 25: Nature- and bio-inspired meta-heuristics within the Differential Vector Movement category, wherein the differential
vector is influenced by subpopulations.

Influenced by subpopulations
Algorithm Name Acronym Year Reference

Artificial Chemical Process ACP 2005 [454]
Artificial Cooperative Search ACS 2012 [558]
Artificial Physics Optimization APO 2009 [397]
Bee Colony-Inspired Algorithm BCIA 2009 [143]
Colliding Bodies Optimization CBO 2014 [400]
Cuttlefish Algorithm CFA 2013 [178]
Cuckoo Optimization Algorithm COA 2011 [182]
Carnivorous Plant Algorithm CPA 2021 [527]
Chicken Swarm Optimization CSO.1 2014 [192]
COVID-19 Optimizer Algorithm CVA 2020 [568]
Dice Game Optimizer DGO 2019 [569]
Exchange Market Algorithm EMA 2014 [572]
Greedy Politics Optimization Algorithm GPO 2014 [487]
Gaining-sharing Knowledge GSK 2023 [488]
Group Search Optimizer GSO.1 2009 [237]
Horse Optimization Algorithm HOA 2020 [247]
Hierarchical Swarm Model HSM 2010 [250]
Ions Motion Optimization Algorithm IMO 2015 [460]
Life Choice Based Optimizer LCBO 2020 [496]
Lion Optimization Algorithm LOA 2016 [267]
Monarch Butterfly Optimization MBO.1 2017 [274]
Social Behavior Optimization Algorithm SBO.1 2003 [505]
Sperm Whale Algorithm SWA 2016 [360]
Thermal Exchange Optimization TEO 2017 [465]
Turbulent Flow of Water-based Optimization TFWO 2020 [445]
Wisdom of Artificial Crowds WAC 2011 [522]
Worm Optimization WO 2014 [379]

Table 26: Nature- and bio-inspired meta-heuristics within the Differential Vector Movement category, wherein the differential
vector is influenced by neighborhoods.

Influenced by neighbourhoods
Algorithm Name Acronym Year Reference

Bees Algorithm BA 2006 [140]
Biomimicry Of Social Foraging Bacteria for Distributed Optimization BFOA 2002 [148]
Bacterial Foraging Optimization BFOA.1 2009 [62]
Gravitational Emulation Local Search GELS 2009 [409]
Neuronal Communication Algorithm NCA 2017 [591]
Physarum-inspired Competition Algorithm PCA.1 2023 [301]
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is that by combining good solutions, even better solutions can be eventually generated.
The combining method can be specific for the problem to be solved or instead, be conceived for a more general family

of problems. In fact, combining methods are usually devised to be adaptable to many different solution representations. As
mentioned before, the most popular algorithm in this category is GA [98]. However, many other bio-inspired algorithms
exhibit a similar behavior when creating solutions, yet they are inspired by other phenomena, such as Cultural Optimization
(CA, [479]) (in the Social Human Behavior category), LA [267] (in the Swarm Intelligence category), Particle Collision
Algorithm (PCA, [429], in the chemistry-based category) or Light Ray Optimization (LRO, [421], in the physics-based
category). Tables 27, 28, 29, and 30 show the algorithms that rely on combination when creating new solutions along their
search.

4.2.2 Creation by Stigmergy

Another popular option of creating new solutions relies on stigmergy, namely, an indirect communication and coordination
between the different solutions or agents used to create new solutions. This communication is usually done using an intermediate
structure, with information obtained from the different solutions, used to generate new solutions oriented towards more
promising areas of the search space. This is indeed the search mechanism used in the most representative algorithm of
this category, ACO [598], which is inspired by the foraging mechanism of ant colonies. Each ant of the colony describes
a trajectory over a graph representation of the search space of the problem at hand, and leaves a trace of pheromone along
its way whose intensity depends, in part, on the fitness value corresponding to the solution encoded by the trajectory of the
ant. In subsequent iterations, new solutions are generated, dimension by dimension, considering the pheromones trail left by
preceding ants, enforcing the search around the most promising values for each dimension.

Table 31 lists the reviewed algorithms that employ stigmergy when creating new solutions. This is a reduced list when
comparing with preceding categories, with the majority of the algorithms relying on Swarm Intelligence among insects
(similarly to ACO). However, other algorithms inspired in physics have also a stigmertic behavior when producing new
solutions, such as methods inspired by water flow dynamics [452] and the natural formation of rivers [434].

5 Taxonomies Analysis: Comparison and More Influential Algorithms
We now proceed by critically examining the reviewed literature as per the different taxonomies proposed in this overview.

First, we are going to study the similarities between the results of the classifications following each taxonomy. Later, we
identify the most influential algorithms over the rest, based on the behavior of the algorithms.

5.1 Comparison Between both Taxonomies
Comparing the two taxonomies to each other and the algorithms falling into each of their categories, it can be observed that

there is not a strong relationship between them. Interestingly, this unveils that features characterizing one algorithm are loosely
associated with its inspirational model. For instance, algorithms inspired by very different concepts such as the gravitational
forces (GFA, [410]) or animal evolution (ABO, [123]) exhibit a significant similarity with PSO [80]. This statement is
supported by the fact that, in the second taxonomy, each category is composed by algorithms that, as per the first taxonomy,
are inspired by diverse phenomena. The contrary also holds in general: proposals with very similar natural inspiration fall in
the same category of the first taxonomy (as expected), but their search procedures differ significantly from each other, thereby
being classified in different categories of the second taxonomy. An illustrative example is the Delphi Echolocation algorithm
(DE, [195]) and the Dolphin Partner Optimization [201]. Both are inspired by the same animal (dolphin) and its mechanism to
detect fishes (echolocation), but they are very different algorithms: the former creates new solutions by combination, whereas
the latter resembles closely the movement performed in the PSO solver, mainly guided by the best solution.

In this same line of reasoning, the largest subcategory of the second taxonomy (Differential Vector Movements guided
by representative solutions) not only contains more than half of the reviewed algorithms (almost 60%), but it also comprises
algorithms from all the different categories in the first taxonomy: Social Human Behavior (as Anarchic Society Optimization,
ASO, [472]), microorganisms (Bacterial Colony Optimization, [145]), Physics/Chemistry category (correspondingly, Fireworks
Algorithm Optimization, FAO, [575]), Breeding-based Evolution (as Variable Mesh Optimization, VMO [113]), or even
Plants-Based (such as Flower Pollination Algorithm, FPA [529]). This inspirational diversity is not exclusive to this subcategory.
Others, such as Solution Creation, also include algorithms relying on the heterogeneity of natural concepts.

37



Table 27: Nature- and bio-inspired meta-heuristics within the Solution Creation - Combination category (I).

Creation-Combination category (I)
Algorithm Name Acronym Year Reference

Artificial Beehive Algorithm ABA 2009 [121]
Andean Condor Algorithm ACA 2019 [124]
Artificial Chemical Reaction Optimization Algorithm ACROA 2011 [455]
Artificial Ecosystem Algorithm AEA 2014 [82]
Artificial Flora Optimization Algorithm AFO 2018 [524]
Artificial Infections Disease Optimization AIDO 2016 [84]
Innovative Gunner Algorithm AIG 2019 [559]
Anglerfish Algorithm AOA 2019 [132]
Artificial Reaction Algorithm ARA 2013 [456]
Asexual Reproduction Optimization ARO 2010 [85]
American Zebra Optimization Algorithm AZOA 2023 [138]
Bacterial-GA Foraging BGAF 2007 [149]
Bumblebees BB 2009 [141]
Biogeography Based Optimization BBO 2008 [86]
Bee Colony Optimization BCO 2005 [144]
BeeHive Algorithm BHA 2004 [150]
Bees Life Algorithm BLA 2018 [151]
Bird Mating Optimization BMO 2014 [87]
Barnacles Mating Optimizer BMO.1 2019 [155]
Bean Optimization Algorithm BOA 2011 [88]
Bull Optimization Algorithm BOA.1 2015 [159]
Bee System BS 1997 [160]
Bar Systems BS.2 2008 [563]
Backtracking Search Optimization BSO.3 2012 [564]
Bees Swarm Optimization Algorithm BSOA 2005 [166]
Bus Transportation Behavior BTA 2019 [474]
BrunsVigia Flower Optimization Algorithm BVOA 2018 [526]
Black Widow Optimization Algorithm BWO 2020 [168]
Cultural Algorithms CA 1999 [479]
Cultural Coyote Optimization Algorithm CCOA 2019 [175]
Crystal Energy Optimization Algorithm CEO 2016 [401]
Consultant Guide Search CGS 2010 [179]
Coronavirus Mask Protection Algorithm CMPA 2023 [89]
Coronavirus Disease Optimization Algorithm COVIDOA 2022 [90]
Coral Reefs Optimization CRO 2014 [91]
Chemical Reaction Optimization Algorithm CRO.1 2010 [457]
Cuckoo Search CS 2009 [188]
Clonal Selection Algorithm CSA.1 2000 [567]
Dragonfly Swarm Algorithm DA.1 2020 [194]
Dendritic Cells Algorithm DCA 2005 [92]
Dolphin Echolocation DE.1 2013 [195]
Discrete Mother Tree Optimization DMTO 2020 [528]
Duelist Optimization Algorithm DOA 2016 [480]
Dialectic Search DS 2009 [570]
Election Algorithm EA 2015 [481]
Ecogeography-Based Optimization EBO 2014 [94]
Eco-Inspired Evolutionary Algorithm EEA 2011 [95]
Electromagnetic Field Optimization EFO 2016 [404]
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Table 28: Nature- and bio-inspired meta-heuristics within the Solution Creation - Combination category (II).

Creation-Combination category (II)
Algorithm Name Acronym Year Reference

Electric Fish Optimization EFO.1 2020 [205]
Extremal Optimization EO 2000 [573]
Equilibrium Optimizer EO.1 2020 [574]
Earthworm Optimization Algorithm EOA 2018 [96]
Electimize Optimization Algorithm EOA.1 2011 [406]
Emperor Penguins Colony EPC 2019 [209]
Evolution Strategies ES 2002 [97]
Egyptian Vulture Optimization Algorithm EV 2013 [214]
Frog Call Inspired Algorithm FCA 2009 [217]
Forest Optimization Algorithm FOA.1 2014 [523]
FOX-inspired Optimization Algorithm FOX 2023 [223]
Genetic Algorithms GA 1989 [98]
Golden Ball Algorithm GBA 2014 [484]
Galaxy Based Search Algorithm GBSA 2011 [393]
Gene Expression GE 2001 [99]
Group Leaders Optimization Algorithm GLOA 2011 [486]
Goat Search Algorithms GSA.2 2022 [235]
Golf Sport Inspired Search GSIS 2024 [579]
Honey-Bees Mating Optimization Algorithm HBMO 2006 [242]
Hyper-parameter Dialectic Search HDS 2020 [581]
Harmony Elements Algorithm HEA 2009 [416]
Human Evolutionary Model HEM 2007 [490]
Human-Inspired Algorithms HIA 2009 [492]
Hysteresis for Optimization HO 2002 [417]
Harmony Search HS 2005 [394]
Hypercube Natural Aggregation Algorithm HYNAA 2019 [253]
Japanese Tree Frogs Calling Algorithm JTFCA 2012 [258]
Immune-Inspired Computational Intelligence ICI 2008 [101]
Improved Genetic Immune Algorithm IGIA 2017 [102]
Improved Raven Roosting Algorithm IRRO 2018 [254]
Invasive Tumor Optimization Algorithm ITGO 2015 [255]
Weed Colonization Optimization IWO 2006 [103]
Keshtel Algorithm KA 2014 [584]
Kaizen Programming KP 2014 [586]
Lion Algorithm LA 2012 [263]
Laying Chicken Algorithm LCA 2017 [266]
Liver Cancer Algorithm LCA.2 2023 [587]
Lion Pride Optimizer LPO 2012 [268]
Light Ray Optimization LRO 2010 [421]
Migrating Birds Optimization MBO.2 2012 [275]
Migration-Crossover Algorithm MCA 2024 [277]
Mosquito Flying Optimization MFO.1 2016 [281]
Marriage In Honey Bees Optimization MHBO 2001 [104]
Method of Musical Composition MMC 2014 [424]
Mycorrhiza Optimization Algorithm MOA 2023 [283]
Mox Optimization Algorithm MOX 2011 [284]
Melody Search MS.1 2011 [425]
Natural Aggregation Algorithm NAA 2016 [289]
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Table 29: Nature- and bio-inspired meta-heuristics within the Solution Creation - Combination category (III).

Creation-Combination category (III)
Algorithm Name Acronym Year Reference

Natural Forest Regeneration Algorithm NFR 2016 [531]
Old Bachelor Acceptance OBA 1995 [498]
Photosynthetic Algorithm PA 1999 [463]
Pity Beetle Algorithm PBA 2018 [299]
Polar Bear Optimization Algorithm PBOA 2017 [300]
Particle Collision Algorithm PCA 2007 [429]
Plant Growth Optimization PGO 2008 [532]
Plasma Generation Optimization PGO.1 2020 [593]
Pearl Hunting Algorithm PHA 2012 [594]
PopMusic Algorithm PopMusic 2002 [430]
Queen-Bee Evolution QBE 2003 [106]
Quantum Superposition Algorithm QSA 2015 [431]
Red Deer Algorithm RDA 2016 [311]
Reactive Dialectic Search RDS 2017 [597]
Rain-Fall Optimization Algorithm RFOA 2017 [432]
Rhino Herd Behavior RHB 2018 [313]
Rock Hyraxes Swarm Optimization RHSO 2021 [314]
Raccoon Optimization Algorithm ROA 2018 [316]
Reincarnation Concept Optimization Algorithm ROA.1 2010 [317]
Ringed Seal Search RSS 2015 [324]
Shark Search Algorithm SA 1998 [325]
Simulated Annealing SA.1 1989 [79]
Scientifics Algorithms SA.2 2014 [547]
SuperBug Algorithm SuA 2012 [107]
Simulated Bee Colony SBC 2009 [327]
Snap-Drift Cuckoo Search SDCS 2016 [331]
Self-Defense Mechanism Of The Plants Algorithm SDMA 2018 [539]
Social Engineering Optimization SEO 2017 [548]
Sheep Flock Heredity Model SFHM 2001 [109]
Shuffled Frog-Leaping Algorithm SFLA 2006 [332]
Snow Flake Optimization Algorithm SFO.1 2023 [550]
Saplings Growing Up Algorithm SGA.1 2007 [538]
Search Group Algorithm SGA.2 2015 [551]
Swine Influenza Models Based Optimization SIMBO 2013 [110]
Sonar Inspired Optimization SIO 2017 [439]
Seasons Optimization SO.1 2022 [540]
Self-Organizing Migrating Algorithm SOMA 2004 [111]
Simple Optimization SOPT 2012 [552]
Strawberry Plant Algorithm SPA 2014 [541]
Smart Root Search SRS 2020 [542]
Salp Swarm Algorithm SSA.2 2017 [350]
Sling-shot Spider Optimization S2SO 2023 [352]
Tree Growth Algorithm TGA.1 2019 [543]
The Great Deluge Algorithm TGD 1993 [555]
Small World Optimization SWO 2006 [554]
Virulence Optimization Algorithm VOA 2016 [114]
Virus Optimization Algorithm VOA.1 2009 [375]
Viral Systems Optimization VSO 2008 [376]
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Table 30: Nature- and bio-inspired meta-heuristics within the Solution Creation - Combination category (IV).

Creation-Combination category (IV)
Algorithm Name Acronym Year Reference

Wasp Colonies Algorithm WCA 1991 [377]
Water Flow-Like Algorithms WFA 2007 [450]
Water Flow Algorithm WFA.1 2007 [451]
Wasp Swarm Optimization WSO 2005 [385]
Ying-Yang Pair Optimization YYOP 2016 [546]

Table 31: Nature- and bio-inspired meta-heuristics within the Solution Creation - Stigmergy category.

Solution Creation - Stigmergy
Algorithm Name Acronym Year Reference

Ant Colony Optimization ACO 1996 [115]
Bee System BS.1 2002 [161]
Hammerhead Shark Optimization Algorithm HSOA 2019 [251]
Intelligence Water Drops Algorithm IWD 2009 [420]
River Formation Dynamics RFD 2007 [434]
Termite Hill Algorithm TA 2012 [362]
Virtual Ants Algorithm VAA 2006 [372]
Virtual Bees Algorithm VBA 2005 [373]
Water-Flow Algorithm Optimization WFO 2011 [452]
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Considering the previous examples, it is clear that the real behavior of the algorithm is much more informative than its
natural or biological inspiration. Even more, we have observed that in our first proposed taxonomy, built upon the review of
518 proposals, the huge diversity of inspirational sources does not correspond with the lower number of algorithmic behaviors
on which our second taxonomy is based. This observation is in accordance with previous works in the literature, which have
put to question whether the novelty in the natural inspiration of the algorithm actually yields different algorithms that could
produce competitive results [599, 600].

We further elaborate on the above statement: our literature analysis revealed that the majority of proposals (more than
a half, 60%) generate new solutions based on differential vector forces over existing ones, as in the classical PSO or DE.
A complementary analysis can be done by departing from this observation towards discriminating which of the classical
algorithms (PSO, DE, GA, ACO, ABC or SA) can be declared to be most similar to modern approaches. The results of
this analysis are conclusive: 23% of all reviewed algorithms (122 out of 518) were found to be so influenced by classical
algorithms that, without their biological inspiration, they could be regarded as incremental variants. The other 396 solvers
(about 77%) have enough differences to be considered a new proposal by themselves, instead of another version of existing
classical algorithms. But, we must emphasize that in these new algorithms there exists a lack of originality or justification in
a significant percentage of cases. We must emphasize that in these new algorithms there exists a lack of justification due to
the lack of comparison with the state of the art and the lack of real interest in achieving reasonable levels of quality from the
perspective of the optimization of well-known problems in recent competitions.

Table 32: Percentages of similar algorithms in the reviewed literature.

Classical algorithm Number of papers with similar algorithms Percentage over the total

PSO 57 11.00%
DE 24 4.63%
GA 24 4.63%
ACO 7 1.35%
ABC 7 1.35%
SA 3 0.59%

Total 122 23.55%

5.2 Identification of the Most Influential Algorithms
In order to know which are the most influential reference algorithms used to design other bio-inspired algorithms, we have

grouped together reviewed proposals that could be considered to be versions of the same classical algorithm. Figure 5.2 shows
the classification of each algorithm based on its behavior, and the number of proposals in each classification are summarized
in Table 32.

Very insightful conclusions can be drawn from this grouping. To begin with, in Table 32 the most influential algorithm was
identified to be PSO, appearing in 11% of the reviewed literature (which corresponds to almost 47% of the proposals that were
clearly based on a previous algorithm). This bio-inspired solver is one of the most prominent and historically acknowledged
algorithms in the Swarm Intelligence category and is the reference of many bio-inspired algorithms contributed since its
inception. The simplicity of this algorithm and its ability to reach an optimum quickly – as has been comparatively assessed
in many application scenarios, see e.g. [72, 73] – have inspired many authors to create new metaheuristics characterized by
similar solution movement dynamics to those defined by PSO. Thus, many algorithms whose authors claim to simulate the
behavior of a biological system eventually perform their search process through movements strongly influenced by PSO (in
some cases, without any significant difference).

The second and third most influential algorithms are GA, a very classic algorithm, and DE, a well-known algorithm
whose natural inspiration resides only in the evolution of a population. Both have been used by around 5% of all reviewed
nature-inspired algorithms, and they are the most representative approach in the Evolutionary Algorithms category. The
search mechanism of GA is solution creation by combination, and the search mechanism of DE is to create new solutions with
a linear combination of existing ones in the population, which is used by 5% of all reviewed proposals, maybe by its superior
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Figure 6: Classification of proposals by its original algorithm.
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performance reported for many optimization problems [44].
When inspecting the influential approaches from a higher perspective, two are the categories whose algorithms have

been more frequently used to create new nature-based algorithms. The first one is Swarm Intelligence: about 14% of all
studied nature-inspired algorithms are variations of SI algorithms (PSO, ACO, and ABC). The second one is shared between
Evolutionary Algorithms and GA, whose represented algorithms are both used in almost 5% of the reviewed cases. It is
noteworthy to highlight that it appears that the influence of more classic algorithms like GA and SA is declining when
compared to other algorithms, such as DE and PSO.

In summary, although in the last years many nature-inspired algorithms have been proposed by the community and their
number grows steadily every year, more than half of the proposals reviewed in our work are incremental, minor versions of
only three very classical algorithms (PSO, DE, and GA). We, therefore, conclude that a huge number of natural and biological
sources of inspiration used so far to justify the design of new optimization solvers have not led to significantly disruptive
algorithmic behaviors. This closing note will be at the heart of our critical analysis exposed in the next section.

6 Learned Lessons and Recommendations from the Analysis of the Evolution of
Bio-Inspired Optimization

After reviewing the algorithms and both taxonomies, we have identified several key learned lessons which serve as
recommendations to deal with in forthcoming years for that is working on nature- and bio-inspired optimization. The learned
lessons gained from the taxonomies and research outlined in [1] form the foundation of this section. In the subsequent sections,
we will further expand upon them to provide a more extended analysis. We next outline them in no particular order:

1. The behavior is more relevant than the natural inspiration: As was exposed in Section 5, the current literature is flooded
with a huge number of nature- and bio-inspired algorithms. However, as has been spotted by our proposed taxonomies,
several algorithms belonging to categories with different sources of inspiration results are very similar in terms of behavior.
This disparity is a controversial topic in recent years [3, 599]. Therefore, we call for more research efforts around the design
of optimization algorithms that focus on their behavior and properties (e.g., good performance, simplicity, ability to run it
in parallel or their suitability to a specific type of problems) rather than on new inspiration sources.

2. Nature-based terminology can make it more difficult to understand the proposal: A great deal of papers presenting
new bio-inspired solvers are difficult to understand and replicate due to the extended usage of vocabulary related to the
natural source of inspiration. It is logical to use the semantic of the biological or natural domain, but to an extent. It
would be desirable that the description of the algorithm could be defined in an inspiration-agnostic fashion, resorting
to mathematical terms to describe each component, agent and/or phase of the optimization process (e.g. optimum/a,
individuals, or solutions). Excessive usage of the domain terminology (without explicitly indicating the correspondences)
could make it difficult to follow the details of the algorithm for researchers not acquainted with such a terminology. To
overcome this issue, the correspondence between the domain terminology and the optimization terminology should be
explicitly indicated.

3. Good comparisons are crucial for new proposals: The lack of fair comparisons is another important drawback of many
proposals published to date. When new algorithms are proposed, unfortunately, many of them are only compared to very
basic and classical algorithms (such as GA or PSO). These algorithms have been widely surpassed by more advanced
versions over the years which, so obtaining better performance than naive version of classical algorithms is relatively easy
to achieve, and it does not imply a competitive performance [600]. In some cases, the proposed algorithm is compared
to similar algorithms but not with competitive algorithms outside that semantic niche [600, 601]. This methodological
practice must be regarded as a very serious barrier for their application to real-world problems. We encourage researchers
to increase the algorithms used in their experimental section, including more competitive or state-of-the-art algorithms:
until they are proven to be competitive in respect to the state of the art, new nature- and bio-inspired solvers will not be
used in practice either will attract enough attention of the research community.

4. Many proposals have a very limited influence: By examining in depth the historical trajectory followed by each reviewed
algorithm, an intriguing trend is revealed: a fraction of the proposals have a very limited influence in new papers after the
original publication. For them, there are almost no new papers with improved versions, or applying it to new problems.
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Fortunately, other algorithms have a stronger influence. In view of this dichotomy, the researchers should evaluate their
proposals for diverse problems, including widely acknowledged benchmark functions and real-world practical problems,
to grasp the interest of the community in considering their proposed algorithms for tackling other applications.

5. The interest of making source code available: Related to the previous one, it is very interesting, in order to gain more
visibility, to make the source code of the proposed algorithm available for the community. It is true that the paper
presenting the new algorithm should be detailed enough to allow for a clean implementation of the proposal from the
provided specification. However, it is widely acknowledged that, in many occasions, there are important details that even
though they have a strong influence on the results, are not remarked in the description [602, 603]. A publicly available
reference implementation could not only improve its visibility, but could also offer other researchers the chance to undertake
more thorough performance comparisons. In addition, there are a huge number of software frameworks for Evolutionary
Computation and Swarm Intelligence programmed in different languages (such as C++, Java, Matlab, or Python), some
of them very popular in the current research landscape. To cite a few: Evolutionary Computation Framework (ECF)1 and
ParadisEO [604] in C++; jMetal [605] and MOEA 2 in Java; NiaPy[606], jMetalPy [607] and PyGMO3 in Python; or
PlatEMO [608] in Matlab, among others. Each of them implements the most popular algorithms (GA, DE, PSO, ABC,
...). A reference implementation could also favor the inclusion of the proposal in frameworks as the ones exemplified
previously. Otherwise, different implementations of the allegedly same algorithm could produce diverging results from the
original proposal (in part due to the ambiguity of the description).

6. The role of bio-inspired algorithms in competitions: Finally, we also stress on the fact that metaheuristic algorithms
that have scored best in many competitions are far from being biologically inspired, although some of them retain their
nature-inspired roots (mostly, DE) [44]. This fact was expected for the lack of good methodological practices when
comparing nature- and bio-inspired algorithms, which was pointed out previously in our analysis. This issue has not
encouraged participants in competitions to embrace them as reference algorithms to design better solvers. The rising trend
of the community to generate an ever-growing number of bio-inspired proposals can be counterproductive and deviate
efforts towards the development of a reduced number of proposals but with a better performance.

7 A Short Reflection on The Good, the Bad and the Ugly
This section corresponds to the integration and extension of Section 3 of the article published in [2] within this report.

In Section 7.1, we extend the original analysis on the importance of applications, stressing on the numerous applications
that leverage results from this research area (the good). In section 7.2, we have also extended the original content to more
studies based on the recent problems of the area, namely, the lack of algorithmic innovation in algorithms inspired by novel
metaphors and good comparisons between algorithms (the bad). Section 7.3 remains as in the original work, underscoring the
poor practices experienced by the area in recent times (the ugly).

7.1 The Good: A Present and Future Plenty of Exciting Applications
An undeniable fact is that nature- and bio-inspired optimization algorithms have been applied to a great variety of

optimization problems emerging in different disciplines. We distinguish among three different horizons of applications,
without being exhaustive, nor entering into the recent horizons of general-purpose AI that we will mention in the conclusions.
They are outlined shortly as follows:

• Real-world engineering applications: We can find many examples regarding the usage of bio-inspired techniques to solve
real-world engineering processes [609]. Furthermore, structural design and civil engineering have also largely embraced
the benefits of nature and bio-inspired solvers to assorted problems, including the multi-criteria design of structures [610],
logistics and supply chain management [611], to cite a few. The application of Evolutionary Algorithms (EAs) has reached
many areas, including works from these human competitions for the design of breakwaters [612], the evolution of antennas
for Space Mission of the NASA [613], and also the discovery of new formulas in the field of physics [614], among many
other important applications.
1http://ecf.zemris.fer.hr/
2http://moeaframework.org/
3http://esa.github.io/pygmo/index.html
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• Academic competitions: From the research perspective, several worldwide competitions have developed over the years
to test new proposals in an unbiased and replicable way. In such competitions, DE has created a great impact as the core
meta-heuristic algorithm of winning competitors in the global optimization competitions held in renowned conferences
(GECCO and CEC) over the last decade [44]. The family of EAs has attracted the interest of researchers by participating
in genetic and evolutionary competitions with prizes 4 (Annual "Humies" Awards For Human-Competitive Results), and
others such as GECCO and CEC previously annotated [600].

• Going deeper into the creation of Machine Learning (ML) and Deep Learning (DL) models: Although most algorithms
have been developed in recent years, the impact of EAs, a classical family of algorithms, has risen in the last few years.
Their use in ML has been widely studied both for the design of models [615] and also as a support for the optimization of
those models [616]. These algorithms have gained momentum under the evidence reported around their usage to evolve and
improve other AI techniques: most notably, the optimization of the structure and training parameters of deep neural networks
[8], or the creation of new data-based models from scratch (i.e. by evolving very essential data processing primitives) that
has been presented in the groundbreaking work by Google [617]. With this ongoing development, the research trend of
Neural Architecture Search has emerged as another important area full of EAs applications [618], which mainly focuses
on the construction of the DL model via the evolution of block of layers [619, 14, 620]. Recently, we have witnessed the
use of EAs to model more AI models, as in the case of POET [621] where more environments are generated to learn from
the diversity created, with the merging of EAs with Large Language Model (LLM) [622], and with other areas such as
Automated Machine Learning [623], Reinforcement Learning and robotics [624], and Multi-task Learning [625]. In recent
years, an interesting synergy between bio-inspired optimization and modern ML systems has been observed in the literature,
in particular General-Purpose Artificial Intelligence Systems (GPAIS), as we will highlight later in the report.

7.2 The Bad: Novel Metaphors Not Leading to Innovative Solvers
As previously mentioned, an ever-growing amount of new bio-inspired optimization techniques has been proposed in

recent decades (see Figure 1). This overwhelming number of alternatives could make it difficult to choose an appropriate
option for a given optimization problem. The vast number of proposals not only casts doubt on the convenience of choosing
one or another algorithm but has also produced solvers that, even if relying on different metaphors, are mathematically too
similar to already existing optimization algorithms. In other words, despite the diversity of methods considering their natural
inspiration, such diversity does not hold as far as mathematical differences are concerned, as exposed by recent studies
[13]. As we have mentioned in the introduction, this metaphor-driven research trend has been already denounced in several
contributions [9, 10], which have unleashed hot debates around specific meta-heuristic schemes that remain unresolved to
date [11, 12], and with a growing problem when important challenges are not addressed and if more and more biological
inspirations are maintained as we can observe in 2024 with more than 500 proposals.

Particular reasons aside, some algorithms are not created to solve problems and provide a practical advantage, but mainly
to be published and gain notoriety without any consideration for their lack of algorithmic novelty and innovation. Examples
of this controversy can be found in [14], as authors state this problem even in the title of the work. In the previous work,
authors “provide compelling evidence that the grey wolf, the firefly, and the bat algorithms are not novel, but a reiteration of
ideas introduced first for particle swarm optimization and reintroduced years later using new natural metaphors”. Then, they
rewrite these highly cited papers in terms of PSO, and conclude that “they create confusion because they hide their strong
similarities with existing PSO algorithms ... these three algorithms are unnecessary since they do not add anything new to the
tools that can be used to tackle optimization problems”.

More and more works lack variety in the field, as it was discussed in [15] (“Nature inspired optimization algorithms or
simply variations of metaheuristics?”), authors discussed several matters listed as follows:

• Does the physical analogue exist?: The inspiration of several bio-inspired algorithms does not strictly follow the rules of
a phenomenon. An example is Cat Swarm Optimization, in which cats form a swarm, but in real life, they do not seem
to cooperate in any way. Authors show more examples (Coyote Optimization Algorithm, Dolphin Swarm Optimization
Algorithm, among others), and claim that “ a significant number of these algorithms are very similar to other already
existing ones”.

4https://human-competitive.org/
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• Similar inspiration or duplicate methods?: Authors analyze several classes of bio-inspired algorithms such as those
based on gravitational forces, water phenomena, bees, penguins, wolves, and bacteria, and conclude that not all the different
variations are real contributions.

• Do authors propose multiple techniques based on the same idea?: Authors discuss the fact that “ several cases can be
found where the same authors propose multiple algorithms, which are based on the same nature-inspired idea.” They show
various examples in which a research group has almost a dozen “novel” algorithms, with the same researchers at the front.
Also, a relevant group of algorithms that are based and attraction and repulsion is full of works under the same researcher’s
name.

• When should a new nature-inspired algorithm be introduced?: The authors analyze the cases in which it is necessary
to create novel algorithms. In their words, “They could be used as global optimizers, while a heuristic algorithm could be
added for acting as local search technique for the solutions provided by the nature-inspired method.” They also annotate the
ability of these algorithms as optimizers for Artificial Neural Networks and Support Vector Machines.

Due to “useless metaphors”, “lack of novelty” and “poor experimental validation and comparison”, in [16] authors took
the decision in this letter to “call upon all editors-in-chief in the field to adapt their editorial policies” to reject the publication
of novel metaphor-based metaheuristics. More than 80 important researchers in the area signed this letter, and accept the
publication of novel bio-inspired algorithms if and only if (1) present their method using the normal, standard optimization
terminology; (2) show that the new method brings useful and novel concepts to the field; (3) motivate the use of the metaphor
on a sound, scientific basis; and (4) present a fair comparison with other state-of-the-art methods using state-of-the-art practices
for benchmarking algorithms.

In the following, we shortly describe the critical analysis that has recently been published in several articles that address
this problem “not leading to innovative solvers”:

• In [17], the authors argue that metaheuristics should be simplified by eliminating the unneeded elements as in the case of
two winners of the CEC2016 competition, L-SHADE-EpSin and UMOEA-II. The authors conclude that these algorithms
“contain operators that structurally bias their search by favouring sampling from some parts of the decision space” and “other
metaheuristics should be simplified as they contain unneeded or even harmful operators”. By doing so, metaheuristics will
be easier to understand for other researchers. The authors simplify both algorithms by removing operators that are the main
cause of structural bias and the experiments when testing against other metaheuristics reveal “ that simplification of some
metaheuristics may not only make them more transparent and easier to use, but also improve their performance.”

• In [18, 19], the authors analyze the algorithm called Intelligent Water Drops, providing several proofs that “ all main
algorithmic components of Intelligent Water Drops are simplifications or special cases of ant colony optimization (ACO)”.
They also examine the natural metaphor of “water drops flowing in rivers removing the soil from the riverbed”, which is the
source of inspiration for this algorithm. Authors conclude that it “is unnecessary, misleading and based on unconvincing
assumptions of river dynamics and soil erosion that lack a real scientific rationale”.

• In [20], authors present an analysis of the Cuckoo Search, one of the most well-known algorithms in the literature. Their
review of this algorithm based on its usefulness, novelty and sound motivation allow them to “conclude that neither the
metaphor nor the algorithm can be considered as part of the set of useful techniques in stochastic optimization”. The
Cuckoo Search is just an evolutionary strategy with some parts of DE, algorithms from the last century.

• In [21], authors perform a comparison between seven bio-inspired algorithms with various benchmarks and discovered that
“these (algorithms) contain a centre-bias operator that lets them find optima in the centre of the benchmark set with ease”.
The conclusion is that making more “comparison with other methods (that do not have a centre-bias) is meaningless”.
This problem is similar to the appearance of harmful operators, which has already been discussed in [17]. Authors carry
out experimentation with these algorithms against DE and PSO on shifted problems and encounter that “the worst one
performed barely better than a random search”, which is a very serious problem.

• In [22], authors discuss the possible causes of the exponential growth of nature-inspired algorithms and the negative
consequences for the field. One cause is the pressure to “publish or perish,” and authors argue that the “publishing
metaphor-based method is perceived as a low-effort, low-risk process with high potential rewards” because there are authors
that have built professional careers out of creating not one but often multiple metaphor-based methods. The other cause
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reflected by the authors is “the lack of a well-established statistical tradition in the field compounds the problem, leading
to generally poor practices by authors and, in many cases, an inability of reviewers to pick up on the main methodological
problems of some papers”.

• In [23], authors aim to present some nature-inspired methods that contribute to achieving lifelike features of computing
systems such as open-ended evolution, intelligence, emergence, resilience, and social awareness. In this work, authors select
the algorithms of Big Bang–Big Crunch, Mine Blast Algorithm, Lightning Search Algorithm, Water Wave Optimization,
Gravitational Search Algorithm, Cat Swarm Optimization, Chicken Swarm Optimization, and Roach Infestation Optimization
to “investigate if the mechanisms being part of the algorithms produce qualities found in evolutionary, physical, or chemical
analogues.” The conclusion is that most nature-inspired algorithms “do not contribute to achieving lifelike features” and
that “the recent algorithms do not remain accurate to the behavior or the phenomenon on which they are based.”

• In [24], the authors claim that grey wolf, moth-flame, whale, firefly, bat, and antlion algorithms are not novel algorithms, and
their inspiration has been in the literature for years. To assert this, the authors present a rigorous, component-based analysis
of each algorithm that reveals evidences about them: these algorithms are variants of PSO and evolutionary strategies.

• In [25], authors discuss the problem of centre-bias. 47 of 90 algorithms that were compared presented a centre-bias. Also,
the authors conclude that Harmony Search (HS), Cuckoo Search Algorithm, Firefly Algorithm, Moth Flame Optimization,
Ant Lion Optimizer (ALO) should not be used, due to similarities to other algorithms.

7.3 The Ugly: Poor Methodological Practices (Questionable Reproducibility and Comparability)
An alarming issue that prevails in the area besides the number of metaphor-based proposals is the lack of a fair experimental

study to prove their competitiveness when compared to existing solvers. In many research contributions, the newly introduced
bio-inspired optimization algorithms are not compared to relevant techniques, but only to classical solvers already surpassed
by more recent approaches. Therefore, improving their performance in a benchmark is not a reliable proof of performance
competitiveness, but rather a convenient choice of comparison counterparts. Moreover, the experimental design is often not
right: for example, the optima of the tested functions is often at the center of the domain search, which favors solvers that focus
their search over this region of the solution space. In addition, the statistical significance of the performance gaps reported
among algorithms is also frequently overlooked, despite the variability of the results imprinted by the stochastic nature of
these algorithms. In this regard, in [25] the same controversy as shown in [21] is followed: several algorithms contain a
centre-bias operator that makes them more suitable for certain fitness functions. As a result of such bias, these algorithms
achieve better results than other algorithms in the appearance of this condition. Thus, they should not be recommended for
real-world problems, because the experiments that showed their good performance are biased.

Another important concern in the area is the questionable reproducibility of published studies: the only proof that a
proposal is competitive is done experimentally, so it is of utmost importance that results can be reproduced, checked, and
verified by third parties, ideally by a different team to that proposing the new algorithm. Unfortunately, in the majority of
cases, this is not possible because the implementation of the algorithms is not available, or because important information for
the replicability of the experiments is missing or not reported whatsoever [626].

More and more researchers are advocating that a novel metaphor is not enough for a new bio-inspired algorithm to be
considered a step beyond the state of the art. Instead, several factors should be proven with empirical evidence, such as superior
performance to the state of the art, innovation in the design of its mathematical components and operators, or non-functional
benefits that make them more appropriate for real-world optimization problems when compared to other alternatives, e.g. less
computational complexity, smaller memory footprint, or faster convergence properties [5].

We strongly urge interested readers to embrace the methodological practices recommended in [4], considering proposals
that have been tested against modern techniques, using standard benchmarks, and with adequate statistical testing to shed light
on the relevance of performance gaps. Unfortunately, many recent proposals do not follow these guidelines, remaining as
evidence of the ugly side that still prevails in this research area.

8 Three Propositional Discussions about Nature- and Bio-Inspired Optimization
As we have mentioned in the introduction, we revisit a triple study of evolutionary and bio-inspired algorithms from

a triple perspective, where we stand and what’s next from a perspective published in 2020, but still valid in terms of the

48



need to address important problems and challenges in optimization for EAs and population-based optimization models, a
prescription of methodological guidelines for comparing bio-inspired optimization algorithms, and a tutorial on the design,
experimentation, and application of metaheuristic algorithms to real-world optimization problems.

8.1 Bio-inspired computation: Where we stand and what’s next
We should pause and reflect on which research directions should be pursued in the future in regard to bio-inspired

optimization and related areas, as there are other remarkable fields to be noted as direct applications for bio-inspired optimization.
In [3], the authors show a full discussion of the status of the field from both descriptive (where we stand) and prescriptive
(what’s next) points of view. Here, we describe the areas in which bio-inspired optimization algorithms are used, and research
niches related to them, as shown in Figure 7. The areas and their main aspects that can be studied as promising research lines
are:

• Theoretical studies: By the hand of the fitness landscape for a better understanding of how a search algorithm can
perform on a family of problem instances, of multidisciplinary theories to study the role of diversity and the balance of
local search and global search required to undertake a certain problem efficiently, and of convergence, studies to identify
the conditions for the convergence of the algorithm, its speed, fitness stability, and other characteristics.

• Dynamic and stochastic optimization: These areas need reliable modeling of real optimization scenarios where the
characteristics of several of these problems hold (diversity control), and the development of change detection mechanisms
relying on characteristics of the optimization algorithm (change detection).

• Multi/Many-objective optimization: These areas need new ideas regarding the design of multiobjective solvers because
they usually use the main multi-objective solver (radically new approaches) or even the combination of different solvers
to create new ones (hybridization of techniques). Another problem to be addressed is the scalability, as solvers do not
scale properly with many objectives.

• Multimodal optimization: The incorporation of new bio-inspired multimodal solvers and the hybridization of new
bio-inspired techniques with traditional strategies can contribute to the progress of this area.

• Topologies: A promising research direction is to jointly consider topologies and ensemble strategies to leverage the
superior explorative/exploitative powers of ensembles and also topologies for population-based metaheuristics to achieve
better solutions than other solvers.

• Surrogate model-assisted optimization: This area has promising research lines of investigation with highly dimensional
search spaces and DL models, where there is a need to alleviate high computational efforts, with evaluation times that
range from hours to days per experiment.

• Distributed EAs: These algorithms are needed in large-scale data mining to deal with expensive objective functions,
which are common in real-world applications comprising multiple criteria, and also in large-scale multi-objective
optimization for the development of asynchronous parallel multi-objective solvers.

• Ensemble methods and hyper-heuristics: Both areas have promising challenges in large-scale optimization to address
problems such as the encoding strategy, the exploration capabilities of the algorithms, and the computational complexity
of the proper ensembles. In real applications, these areas need to address the challenge of the appropriate selection of
their low-level composing pieces.

• Memetic algorithms: Although these algorithms have shown great results, researchers need to investigate their hybridization
with other bio-inspired optimization algorithms for the design of new algorithms, and also the derivation of self-adaptive
mechanisms to tune the balance between exploration and exploitation

• Large-scale global optimization: For this area, it will be interesting to develop new techniques that automatically
infer relationships among variables (grouping variables) that could be optimized in isolation with the minimum loss
of efficiency and to study new approaches of memetic computing with this area, due to the great results of DE and
large-scale global optimization.
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• Parameter tuning: The assignation of proper values to the parameters of bio-inspired algorithms is crucial for obtaining
the best possible results for a given problem, so the development of parametric sensitivity analysis, or robustness studies,
can be very useful to identify the relevant parameters to tune. Also, when an algorithm is compared to another, it will
be necessary to perform a similar parameter-tuning process to make fair comparisons.

• Parameter adaptation: Further research about self-adaptation mechanisms for very sensible parameters is necessary, as
it reduces the parameters to tune, but can also yield great improvements.

• Benchmarks and comparison methodologies: The development of a novel bio-inspired solver includes the comparison
to other techniques with several fitness functions. To encourage better comparison methodologies, the most promising
avenues are the use of existing benchmarks and also the creation of new ones based on real-world problems. Moreover,
better comparison methodologies, including more attention to scalability and new statistical testing approaches such as
the use of Bayesian tests, are needed. We delve deeper into this in Subsection 8.2.

Figure 7: Bio-inspired optimization areas and promising research lines. Image taken from [3].

8.2 Separating the Wheat from the Chaff: Fair and Right Comparisons
One of the problems identified in this manuscript is the abundance of proposals with limited impact. A key aspect for

these algorithms to show their strengths is the development of comparative best practices against more competitive algorithms
and the state of the art.

To clarify and provide guidelines for a fair and effective comparison between bio-inspired proposals, an extended discussion
of the various guidelines to be followed is presented in [4] and here it is summarized as follows:

50



1. Benchmarks: The choice of benchmarking in algorithm evaluation can vary between real-world scenarios and comparisons
against existing algorithms. Selecting the right benchmark is crucial, as study conclusions heavily rely on the test
environment. However, chosen benchmarks often exhibit biases that can unfairly advantage certain algorithms. Consequently,
it is essential to analyze results considering the diverse characteristics of the test problems within the chosen benchmark
to ensure fairness in subsequent comparisons.

2. Validation of the results: Today, simply presenting raw results in extensive tables falls short. Validating results
statistically is imperative, complementing tables with proper statistical analyses. It is crucial to not just employ statistical
tests, but to ensure they are appropriate for the data at hand. Often, parametric tests are used without verifying if the
underlying assumptions are met by the results. Moreover, the use of visualization techniques in comparative analysis is
crucial, as these methods condense vast amounts of data into easily comprehensible representations, also aiding quick
interpretation for readers.

3. Components analysis and parameter tuning of the proposal: The hypotheses of the proposal should be explicitly
outlined at the paper’s outset and revisited upon validation of results. Furthermore, authors ought to undertake a
comprehensive analysis of results, addressing key aspects such as search phase identification (balancing exploration
and exploitation), component analysis (individually assessing each method component and its complexity), algorithm
parameter tuning, and statistical comparison with state-of-the-art algorithms. This thorough examination ensures a
robust evaluation of the proposed method and its performance relative to existing approaches.

4. Why is my algorithm useful?: Prospective contributors must articulate why their proposed algorithm merits attention
within the community. Several reasons are proposed to show why a new proposal constitutes an advancement in
knowledge, such as its competitiveness against state-of-the-art methods or methodological contributions that foster
additional research. This clarity aids in understanding the significance of the proposed algorithm and its potential
impact on the field.

These four guidelines form the basis of their work and are discussed in more detail inside the paper published in [4].
Finally, these guidelines are further detailed in Figure 8.

Figure 8: Summary of the guidelines for goods comparisons between bio-inspired optimization algorithms. Image taken
from [4].
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8.3 Bridging Theory and Practice in Bio-inspired Optimization: Application to real-world Problems
The correct design of a bio-inspired algorithm involves the execution of a series of steps in a conscientious and organized

manner, both at the time of algorithm development and during subsequent experimentation and application to real-world
optimization problems. In [5], a complete tutorial on the design of new bio-inspired algorithms is presented, and in this work,
we make a brief introduction to the phases that are necessary for quality research.

In such work, an analysis is conducted from a critical yet constructive point of view, aiming to correct misconceptions and
bad methodological habits. Each phase of the analysis includes the prescription of application guidelines and recommendations
intended for adoption by the community. These guidelines are intended to promote actionable metaheuristics designed and
tested in a principled manner, to achieve valuable research results and ensure their practical use in real-world applications.

Other studies have standardized key optimization concepts, though often focusing narrowly on specific phases or domains.
However, this tutorial addresses this gap by offering a comprehensive approach, covering all steps from problem modeling
to algorithm validation and implementation. This analysis sheds light on different issues to be solved while designing new
bio-inspired algorithms and, to prevent this difficulty, a list of the steps to be performed during the creation of the algorithm is
presented, ranging from the early phase of problem modeling to the validation of the developed algorithm, as follows:

• Problem Modeling and Mathematical Formulation: Leading by a previous conceptualization of the problem, this phase
entails the modeling and mathematical formulation of the optimization problem.

• Algorithmic Design, Solution Encoding and Search Operators: The goal of this phase is to design and implement the
bio-inspired algorithm. In order to do so, we have to avoid the metaphor and align the design of the algorithm according to
the constraints of the problem at hand.

• Performance Assessment, Comparison and Replicability: Certain aspects of correct evaluation, applicability, and consistency
of the research are studied in this phase. It should be based on good practices as he published in [4] which are resumed in
the previous subsection.

• Algorithmic Deployment for Real-World Applications: This phase is focused on the study of the deployment of the
algorithm in a real environment.

These phases are described in depth in the manuscript, but here we show in Figure 9 a summary of the main recommendations
for every phase of the proposed methodology for the design of new bio-inspired optimization algorithms.

Figure 9: Summary of the recommendations in the four stages of the proposed methodology for the design of new bio-inspired
algorithms. Image taken from [5].
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9 A Short Recent Literature Analysis: Good Practices, Taxonomies, Overviews,
and General Approaches

Since the initial version of this paper in 2020, the field of nature and bio-inspired optimization algorithms has continuously
evolved. During these last years, the lack of novelty, and bad comparisons, among others, are described as problems that
have to be solved to keep the field in progress. As a result, in Subsection 9.1, we show several studies and guidelines as
good practices for designing metaheuristics. At the same time, researchers continue to work on new ways of classifying
metaheuristics and publishing general studies on the topic. That is why in Subsection 9.2 we consider, without the intention of
being exhaustive with all the studies, a summary of almost a dozen of recent studies about taxonomies [33, 34, 35], overviews
[15, 36, 37, 38, 39, 40], and general approaches [41]. For each paper cited in both subsections, we provide its title, year of
publication, and a very short summary of its main contents.

9.1 Good Practices for Designing Metaheuristics
The constant evolution of the field leads to a significant issue: the lack of novelty in metaheuristics. However, researchers

recognize the need to address this problem and have proposed methods to evaluate the novelty of new algorithms. This
section shows different studies and guidelines to measure novelty, to design new metaheuristics, and to perform statistical
tests between metaheuristics. We list these approaches as follows:

• On detecting the novelties in metaphor-based algorithms - 2021 [32]: This work studies the comparison at the conceptual
level using a mathematical formulation based on Markov’s chains, and also at the experiment level using the Spearman
correlation coefficient between the objective and the population diversity of the algorithms.

• Similarity in metaheuristics: A gentle step towards a comparison methodology - 2022 [27]: This paper uses a pool
template as a framework for decomposing and analyzing metaheuristics, inspired by another previous work. This template
works as a framework for decomposing and analyzing metaheuristics based on these concepts explained in such work:
generation method, pool of solutions, archive of solutions, selected pool of solutions, updating mechanism, updated pool,
and the archiving and output functions. The authors provide some measures and methodologies to identify their similarities
and novelties based on the updating mechanism component, similar to our second taxonomy. They review 15 metaheuristics
and their insights confirm that many metaheuristics are special cases of others.

• Metaheuristics “In the Large” - 2022 [28]: The objective of this work is to provide a useful tool for researchers. To
address the lack of novelty, the authors propose a new infrastructure to support the development, analysis, and comparison
of new approaches. This framework is based on (1) the use of algorithm templates for reuse without modification, (2) white
box problem descriptions that provide generic support for the injection of domain-specific knowledge, and (3) remotely
accessible frameworks, components, and problems. This can be considered as a step towards the improvement of the
reproducibility of results.

• Designing new metaheuristics: Manual versus automatic approaches - 2023 [29]: This study discusses two methods for
the design of new metaheuristics, manual or automatic. Although authors give credit to the manual design of metaheuristics
because this development is based on the designer’s intuition and often involves looking for inspiration in other fields of
knowledge, which is a positive aspect. However, they remark that this method could involve finding a good algorithm design
in a large set of options through trial and error, possibly leading to eliminating designs that, based on their knowledge, they
believe would not work for the problem at hand. For this reason, the authors assure the benefits of automatic design,
which seeks to reduce human involvement in the design process by harnessing recent advances in automatic algorithm
configuration methods. In this work, several automatic configuration methods and metaheuristic software frameworks from
the literature are presented and analyzed, some of them already mentioned in section 6, as steps towards better design of
metaheuristics.

• Research orientation and novelty discriminant for new metaheuristic algorithms - 2024 [26]: This work proposes a
discriminant method based on a mathematical formulation. It provides the division into root and homologous algorithms so
that the former represent strongly innovative proposals due to the novelty of their reproduction operators, and the latter
does not show any new combinatorial structure about their reproduction operator. This method shows that Harmony
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Search, Backtracking Search Optimization Algorithm, Grey Prediction Evolution algorithm, Grey Wolf Optimizer, and
Gaining-sharing Knowledge-based algorithm are homologous to several classical algorithms. As a consequence, they
develop a research orientation for homologous algorithms to transform the nature metaphor into new structures.

• Guided learning strategy: A novel update mechanism for metaheuristic algorithms design and improvement - 2024
[30]: This work provides guidelines for improving the performance of metaheuristics. The authors have developed a strategy
for recalling the algorithm’s requirements based on the current population. Authors annotate that this novel mechanism is
capable of checking that if the algorithm is biased towards exploration, it will shift towards exploitation in subsequent
iterations and vice versa. This strategy obtains the dispersion degree of the population by calculating the standard deviation
of the historical locations of individuals in recent generations and infers what guidance the algorithm currently needs. This
method has been tested with nearly 60 algorithms, validating its effectiveness in improving performance.

• A Simple statistical test against origin-biased metaheuristics - 2024 [31]: The authors have developed a test to determine
algorithm bias. The test is based on the idea that an unbiased algorithm can choose either direction for one of two different
local optima in a function. If there is a difference in behavior between independent runs, then the algorithm is likely biased.
Algorithms that are biased in terms of the fitness function can lead to undesired behavior. This paper develops and applies
a test to known algorithms, including Grey Wolf Optimizer, Whale Optimization, and Harris Hawk, which fail this test.
However, algorithms such as DE, GA, and PSO pass the test. This test is a useful tool to solve the centre-bias problem that
has already been studied in [25].

9.2 Latest Metaheuristics based Taxonomies, Overviews, and General Approaches
This section aims to briefly analyze a summary of almost a dozen other taxonomies, overviews, and global approaches

developed during these years. Sorted by year of publication, each work is shortly explained to summarize their messages and
contribution to the community:

• A new taxonomy of global optimization algorithms - 2020 [33]: This work analyzes the four characteristic elements
of optimization algorithms: how they initialize, generate, and select solutions, how these solutions are evaluated, and
lastly, how these algorithms can be parametrized and controlled. By leveraging these elements, a generalized view of
optimization algorithms can be created, just by identifying their specific components. The algorithms, according to those
specific components, are classified in a taxonomy based on five categories: hill-climbing, trajectory, population-based,
surrogate, or hybrid algorithms. Moreover, the study concludes that most algorithms and algorithm classes have a close
connection and share similar components, operators, and a large part of their search strategies, which is the basis for the
automated design of new algorithms. Lastly, this work provides a guide for algorithm selection, offering best practices for
advanced practitioners when choosing optimization algorithms for new problems.

• Nature inspired optimization algorithms or simply variations of metaheuristics? - 2021 [15]: This overview focuses
on the study of the frequency of new proposals that are no more than variations of old ones. The authors critique a large
set of algorithms based on three criteria: (1) whether there is a physical analogy that follows the metaheuristic, (2) whether
most algorithms are duplicates or similarly inspired, and (3) whether the authors propose different techniques based on the
same idea. They then specify their criteria for introducing a new metaheuristic.

• An exhaustive review of the metaheuristic algorithms for search and optimization: taxonomy, applications, and open
challenges - 2023 [34]: This taxonomy provides a large classification of metaheuristics based on the number of control
parameters of the algorithm. In this work, the authors question the novelty of new proposals and discuss the fact that calling
an algorithm new is often based on relatively minor modifications to existing methods. They highlight the limitations of
metaheuristics, open challenges, and potential future research directions in the field.

• Metaheuristics in a nutshell - 2023 [36]: The purpose of this overview is to define the main terms related to the concept
of metaheuristic. The text does not provide an extensive taxonomy, but it clearly distinguishes between two classes of
metaheuristics: trajectory and population algorithms. It describes the most well-known algorithms for both classes and for
single and multi-objective problems. Finally, quality indicators and statistical analysis are explained as good practices. This
overview serves as an introduction to the main concepts, algorithms, and methodologies that every metaheuristics researcher
should know.
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• Initialization of metaheuristics: comprehensive review, critical analysis, and research directions - 2023 [35]: This
review addresses a gap in the literature by developing a taxonomy of initialization methods for metaheuristics. This
classification is based on the initialization of metaheuristics according to random techniques, learning methods (supervised
learning, Markov models, opposition- and diversification-based learning), and other generic methods based on sampling,
clustering, and cooperation. The review also examines the initialization of metaheuristics with local search approaches,
offers guidance on designing a diverse and informative sequence of initial solutions, and provides insights that will help
research in constrained and discrete optimization problems.

• Metaheuristic optimization algorithms: a comprehensive overview and classification of benchmark test functions -
2024 [37]: This work focuses on the practical scenario of developing a new metaheuristic. It reviews over 200 mathematical
test functions and more than 50 real-world engineering design problems. For each function, it is described its variables
and value range. Due to the design of a metaheuristic should be accompanied by a set of experiments, this paper provides
researchers with a wide range of options to test the quality of their new developments.

• A literature review and critical analysis of metaheuristics recently developed - 2024 [38]: This review focuses on
algorithms with titles containing words such as ‘new’, ‘hybrid’, or ‘improved’, in response to the growing trend of nature-based
approaches. After analyzing over 100 algorithms, it was found that a significant percentage of these algorithms outperform
previous techniques. From the several analyses made in this review, it is noted that most new algorithms are an improved
version of some established algorithm, which reveals that the trend is no longer to propose metaheuristics based on new
analogies. Moreover, they compare Black Widow Optimization and Coral Reef Optimization, which are considered new
frameworks. By analyzing the components of both metaheuristics, authors evident the lack of innovation, as the operators
of such algorithms are merely a combination of other evolutionary operators.

• Metaheuristic optimization algorithms: an overview - 2024 [39]: This paper focuses on studying the main components
and concepts of optimization. More specifically, the overview provides the advantages (agnostic to the problem being solved,
gradient independence, global search capability, the capability of dealing with multi-objective optimization problems,
balanced exploration and exploitation, configurability and tuning, practical problem-solving, and innovation) and the limitations
(absence of global optimality guarantee, convergence speed, parameter tuning, and black-box nature) of metaheuristics.
The authors specifically focus on the references used by the algorithms to guide the search, and on how to achieve a good
balance between exploration and exploitation. Visual representations accompany the text to illustrate the behavior of a set
of metaheuristics.

• 50 years of metaheuristics - 2024 [40]: This overview traces the last 50 years of the field, starting from the roots of the area
to the latest proposals to hybridize metaheuristics with machine learning. The revision encompasses constructive (GRASP
and ACO), local search (iterated local search, Tabu search, variable neighborhood search), and population-based heuristics
(memetic algorithms, biased random-key genetic algorithms, scatter search, and path relinking). Each category presents
its core characteristics and the description of the mentioned algorithms. This review presents metaheuristic frameworks to
guide the design of heuristic optimization algorithms during the last 50 years. It discusses the role of the journal in which it
is published in introducing solid heuristic papers. This work also recalls the maturity of the field, which leads to solving very
complex problems, with a growing number of researchers applying them, as shown in the numerous conferences and related
events. Also, they criticize the fragmentation as each group of research usually applies the same methods regardless of the
type of problem being solved, the lack of theoretical foundations, the limited analytical understanding of novel proposals,
the problem-specific tuning of metaheuristics, the lack of standardized benchmarking protocols and the absence of general
guidelines. Several research directions are also annotated for researchers to be applied in the future.

• Learn to optimize – A brief overview - 2024 [41]: This paper discusses the concept of Learn to Optimize (L2O) and
its application in accelerating the configuration process to obtain a good solver for unseen instances. The studies can be
categorized into three main types: training a solver performance prediction model, training a single solver, and training
a portfolio of solvers. The first category aims to connect problem instance features with solver performance, resulting in
the selection of the best solver, as seen in Automated Algorithm Selection (AAS). The second category, training a single
solver, involves finding the best solver for overall performance on the training instances, known as Automatic Algorithm
Configuration (AAC). The last category, training a portfolio of solvers, is a more general case of the second category in
which a set of solvers is trained, introducing a higher degree of freedom. L2O has achieved importance in general-purpose
approaches and other problems like adversarial attacks.
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10 Conclusions
Nature and biological organisms have been a source of inspiration for many optimization algorithms. During the last

few years, this family of solvers has grown considerably in size, achieving unseen levels of diversity about their source of
inspiration. This explosion of literature has made it difficult for the community to appraise the general trajectory followed by
the field, which is a necessary step towards identifying research trends and challenges of scientific value and practical impact.
Some efforts have been dedicated so far towards classifying the state of the art on nature- and bio-inspired optimization in a
taxonomy with well-defined criteria, allowing researchers to classify existing algorithms and newly proposed schemes.

We have reviewed 518 nature- and bio-inspired algorithms and grouped them into two taxonomies. The first taxonomy has
considered the source of inspiration, while the second has discriminated algorithms based on their behavior in generating new
candidate solutions. We have provided clear descriptions, examples, and an enumeration of the reviewed approaches within
each taxonomy category. Our study has critically examined the reviewed literature and found that many algorithms claiming
to be inspired by different natural and biological phenomena exhibit algorithmic similarities. Additionally, a significant
percentage (24%) of the reviewed proposals have been identified as versions of classical algorithms such as PSO, DE, or GA.
These findings shed light on the ongoing debate within the nature- and bio-inspired community regarding the algorithmic
contributions of recent advances in the field.

A critical point of reflection associated with this explosion of proposals has been that novel metaphors do not lead to new
solvers, and that comparisons undergo serious methodological problems. Although there are increasingly more bio-inspired
algorithms, many of them rely on so-claimed novel metaphors that do not create any innovative bio-inspired solvers. In
addition, comparisons have been often inadequate, leading to problems of reproducibility and applicability. This problem has
captured the interest of other researchers, leading to several papers on various aspects related to bad comparisons and the
increasing number of unoriginal proposals, even to the point of not accepting completely new proposals with quality marks.
As we have mentioned, we emphasize that in these new algorithms there exists a lack of justification together with the lack of
comparison with the state of the art and the lack of real interest in achieving reasonable levels of quality from the perspective
of the optimization of well-known problems in recent competitions. Good methodological practices must be followed in
forthcoming studies when designing, describing, and comparing new algorithms.

From a positive vision, bio-inspired algorithms have been regularly used in AI and real-world applications. These
algorithms hold potential in new scientific avenues, contributing to recent advances in DL evolution [8], the design of large
language models (LLM) [627], and more recently, the design and enrichment of GPAIS [628]. GPAIS (including DL evolution
and generative AI, such as LLM) are capable of performing tasks beyond those for which they were originally designed. In
this context, the paradigm of AI-powered AI, which involves utilizing AI algorithms to enhance other AI systems, assumes
paramount importance. In this thrilling era of AI explosion and advancement, we are already witnessing the significant impact
of bio-inspired algorithms on the improvement of AI systems through examples like POET [621], EUREKA [624], EvoPrompt
[629], and EGANs [630], among others.

In the last update of this report, which is herein released 4 years after its original version, we note that there has been
an evolution within the nature and bio-inspired optimization field. There is an excessive use of the biological approach as
opposed to the real problem-solving approach to tackle real and complex optimization goals, as those discussed in Section
8.1. This issue needs to be addressed in the future by following guidelines that will allow for the definition of metaheuristics
in a way that is appropriate to current challenges. This is important for the constructive design and development of proposals
in response to emerging problems. For this reason, the potential impact the emerging problems and GPAIS, population-based
metaheuristics as nature and bio-inspired optimization algorithms are poised to shape the future of AI, contributing to the
design of continuously emerging AI systems, and serving as an inspiration for the new era of innovation and progress in AI.
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[359] Trojovskỳ P, Dehghani M, Hanuš P. Siberian Tiger Optimization: A New Bio-Inspired Metaheuristic Algorithm for
Solving Engineering Optimization Problems. IEEE Access. 2022;10; p. 132396–132431.

[360] Ebrahimi A, Khamehchi E. Sperm whale algorithm: An effective metaheuristic algorithm for production optimization
problems. Journal of Natural Gas Science and Engineering. 2016;29; p. 211–222.

[361] Abdel-Basset M, Mohamed R, Jameel M, Abouhawwash M. Spider wasp optimizer: A novel meta-heuristic
optimization algorithm. Artificial Intelligence Review. 2023;56; p. 11675––11738.

[362] Zungeru AM, Ang LM, Seng KP. Termite-hill: Performance optimized swarm intelligence based routing algorithm for
wireless sensor networks. Journal of Network and Computer Applications. 2012;35(6); p. 1901–1917.

[363] Majumder A. Termite alate optimization algorithm: a swarm-based nature inspired algorithm for optimization
problems. Evolutionary Intelligence. 2023;16(3); p. 997–1017.

[364] Hedayatzadeh R, Akhavan Salmassi F, Keshtgari M, Akbari R, Ziarati K. Termite colony optimization: A novel
approach for optimizing continuous problems. In: 2010 18th Iranian Conference on Electrical Engineering; 2010. p.
553–558.
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[381] Trojovskỳ P, Dehghani M. A new bio-inspired metaheuristic algorithm for solving optimization problems based on
walruses behavior. Scientific Reports. 2023;13; p. 8775.

[382] Yang C, Tu X, Chen J. Algorithm of Marriage in Honey Bees Optimization Based on the Wolf Pack Search. In:
Proceedings of the The 2007 International Conference on Intelligent Pervasive Computing; 2007. p. 462–467.

[383] Ting TO, Man KL, Guan SU, Nayel M, Wan K. Weightless Swarm Algorithm (WSA) for Dynamic Optimization
Problems. In: Network and Parallel Computing, IFIP International Conference on Network and Parallel Computing;
2012. p. 508–515.

[384] Tang R, Fong S, Yang XS, Deb S. Wolf search algorithm with ephemeral memory. In: Seventh International Conference
on Digital Information Management (ICDIM 2012); 2012. p. 165–172.

[385] Pinto P, Runkler TA, Sousa JM. Wasp swarm optimization of logistic systems. In: Adaptive and Natural Computing
Algorithms; 2005. p. 264–267.

[386] Braik M, Hammouri A, Atwan J, Al-Betar MA, Awadallah MA. White Shark Optimizer: A novel bio-inspired
meta-heuristic algorithm for global optimization problems. Knowledge-Based Systems. 2022;243; p. 108457.

[387] Zaldívar D, Morales B, Rodríguez A, Valdivia-G A, Cuevas E, Pérez-Cisneros M. A novel bio-inspired optimization
model based on Yellow Saddle Goatfish behavior. Biosystems. 2018;174; p. 1–21.
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Abstract
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are focused on reducing the complexity of the network, assuming an expected performance penalty of
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using an optimization algorithm to identify and eventually remove unnecessary connections among neurons.
This work proposes EvoPruneDeepTL, an evolutionary pruning model for Transfer Learning based Deep
Neural Networks which replaces the last fully-connected layers with sparse layers optimized by a genetic
algorithm. Depending on its solution encoding strategy, our proposed model can either perform optimized
pruning or feature selection over the densely connected part of the neural network. We carry out different
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active neurons in the final layers.

Keywords- Deep Learning, Evolutionary Algorithms, Pruning, Feature Selection, Transfer Learning

∗Corresponding author
Email addresses: jpoyatosamador@ugr.es (Javier Poyatos), dmolina@decsai.ugr.es (Daniel Molina),

aritz.martinez@tecnalia.com (Aritz D. Martinez), javier.delser@tecnalia.com (Javier Del Ser), herrera@decsai.ugr.es
(Francisco Herrera)



1. Introduction

Deep Learning (DL) (Goodfellow et al., 2016) is one of the most attractive research areas in machine
learning in recent times, due to the great results offered by such models in a plethora of applications. DL
architectures are successfully used in many problems, like audio classification (Lee et al., 2009, December),
audio recognition (Noda et al., 2015), object detection (Zhou et al., 2017, May), image classification for
medical analysis (Muhammad et al., 2021) or vehicular perception (Muhammad et al., 2020).

Convolutional Neural Networks (CNNs) (Lecun et al., 1998) constitute the state-of-the art in image
classification (Sultana et al., 2018, November). CNNs include two parts, the first part is actually a feature
extractor based on convolution and pooling operations. The second part usually contains one or more fully
connected layers. In these fully-connected layers, the neuron of each layer is connected to all the neurons of
the previous layer, which generates a large number of weights to be trained. The design of an appropriate
network for each problem is a requirement in order to obtain a good performance. The training process of
a DL architecture is frequently time-consuming. Complexity reduction maintaining the performance is an
important challenge in DL, currently attracting significant attention in the community. Transfer Learning
(TL) (Weiss et al., 2016) is usually considered the alternative. It is very common to use a DL model with
fixed and pre-trained weights in the convolutional layers with a dataset (like ImageNet (Krizhevsky et al.,
2012, December)) and then add and train several layers, named fully-connected layers, to adapt the network
to a different classification problem (Shin et al., 2016; Khan et al., 2019; [dataset] Gómez-Ŕıos et al., 2019).

The architecture of fully-connected layers used for the problem is a critical decision, and its design is still
an open issue in terms of the number of layers and neurons per layer (Liu et al., 2017). There are general
guidelines based on the experience working with these layers, rather than rules to follow for the configuration
of them. Therefore, any kind of optimization in them could provide a benefit in terms of model complexity
and performance. The pruning approaches follow the key idea of reducing the complexity of the model,
which creates new networks with less computational cost for training. This idea is followed in (Frankle &
Carbin, 2019, May), which also shows that, in the end, the accuracy can also improve as a result of pruning.

Pruning is interpreted as removing unnecessary connections from the model, but learning which connec-
tions are the fittest to improve the performance of the model is the key point. In fact, the selection of the
best features for the problem is known as Feature Selection (FS) (Iguyon & Elisseeff, 2003). In our case,
TL allows the extraction of the features of the input data of the DL model. These features are the input of
the fully-connected layers that will be trained and, as a result of that, will largely affect the performance of
the network. Nonetheless, in many cases, the problem that is formulated to learn these features is usually
different, sometimes more complex, than the one at hand and, therefore, not all the learned patterns would
be required. For that reason, FS gives rise to an interesting option to select and retain the subset of all
features that lead to an improved performance of the model (Yildirim et al., 2018).

In pruning scenarios, the main aim of most of the traditional pruning techniques mainly aim at reducing
the number of trainable parameters of the network, at the cost of a lower performance. They seek to control
the performance degradation resulting from the process, but it is not their priority. Furthermore, they
locally optimize parts of the network rather than searching for globally optimal pruning policies, yielding
usually suboptimal pruned subnetworks with a lower performance. Another disadvantage of these pruning
proposals is the fact that, as the pruning affect all layers, the complete network must be trained again,
hence obtaining no advantages from the TL process. It could be useful to have a pruning technique that
prioritizes results over complexity reduction, targeting a global performance improvement of the network
while reducing its complexity.

Transforming the fully-connected layers into a sparse representation, in which each connection could
be active or inactive, could be used to prune neural networks. Following this approach, both pruning and
FS can be seen as optimization problems, in which the target is to obtain the active set of connections
that produce the best performance. This optimization problem can be globally tackled by optimization
algorithms like Evolutionary Algorithms (Back et al., 1997) (EAs). They have been successfully applied to
many complex optimization problems. Even though they cannot guarantee the achievement of the optimum
for the problem at hand, they obtain good results with limited resources and reasonable processing time.
Another advantage is their versatility: several of them, like genetic algorithms (Goldberg, 1989) (GAs) allow
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optimizing solutions with different representations (Chambers, 2000). The spectrum of problems in which
EAs can be used is very wide. EAs have been traditionally applied to optimize neural networks (Iba, 2018),
but their usage in DL networks to improve DL networks (Martinez et al., 2021), to train them (Mohapatra
et al., 2022), and to create new DL networks from scratch (Elsken et al., 2019) is more recent. The use of
EA’s is mainly oriented towards optimizing a complete network. However, in this paper, our aim is to adapt
the fully-connected layers (the only trained for the problem to solve using TL) to improve the accuracy in
the predictions, together with the complexity reduction. Our main hypothesis is the convenience of use of
EAs to prune the fully-connected layers via a sparse representation.

We propose an evolutionary pruning model based on TL for deep neural networks, Evolutionary Pruning
for Deep Transfer Learning (EvoPruneDeepTL). EvoPruneDeepTL can be applied to a DL model that
resorts to TL to tackle a new task. EvoPruneDeepTL combines sparse layers and EA, consequently, neurons
in such layers are pruned to adapt their sparsity pattern to the addressed problem. EvoPruneDeepTL is
able to efficiently explore the neuron search space (to discover coarsely grained solutions) or, alternatively,
in the connection search domain (fine-grained solutions).

An important aspect to analyze in EvoPruneDeepTL is that one of its solution encoding schemes ef-
fectively leads to a feature selection mechanism, in which we deactivate the extracted features and the EA
evolves these features to learn which ones fit best as predictors for the given problem.

EvoPruneDeepTL’ goals include flexibility and adaptability. EvoPruneDeepTL has been designed to be
flexible, and the automatic configuration of the network can be applied to different pre-trained networks,
used as feature extractors, and different fully-connected layers. This make our proposal capable of tackling
different problems. The removal of connections that EvoPruneDeepTL performs allows the model to be
adaptable to the specific dataset to be modeled. Thus, when the dataset suffers a change, the resultant
configuration will also be adapted to the new circumstances.

To assess the performance of EvoPruneDeepTL, we have conducted an extensive experimentation that
leads to several valuable insights. To begin with, experimental results showcase the behavior and effectiveness
of EvoPruneDeepTL in terms of precision and in terms of reduction of the complexity of the network. Thanks
to the flexibility of EvoPruneDeepTL, it is applied to perform either pruning or FS. Both cases improve the
accuracy of the network when the comparison is made against reference models and CNN pruning methods
from the literature. Moreover, in most cases, the FS scheme achieves a better performance than the pruning
scheme in terms of the accuracy of the network. Furthermore, the network pruned by the FS scheme
also achieves a significantly reduced number of connections in its fully connected part, contributing to the
computational efficiency of the network. We have also included several experiments showing the flexibility of
the model, both changing the feature extractor and showing how changes in the dataset implies a modification
in the final configuration obtained by EvoPruneDeepTL. In short, this extensive experimentation is used to
provide answer to the following six questions as the thread running through this experimental study:

(RQ1) Which is the performance of EvoPruneDeepTL against fully-connected models?

(RQ2) Which would be better, to remove neurons or connections?

(RQ3) Which is the performance of EvoPruneDeepTL when compared to other efficient pruning methods?

(RQ4) Which would be better, the use of pruning of fully-connected layers or Feature Selection?

(RQ5) How does EvoPruneDeepTL perform when applied to different pre-trained networks?

(RQ6) Can EvoPruneDeepTL adapt efficiently their pruned knowledge to changes in the modeling task,
showing robustness?

The rest of the article is structured as follows: Section 2 exposes related work to our proposal present in
the literature. Section 3 shows the details of the proposed EvoPruneDeepTL model. Section 4 presents our
experimental framework. In Section 5, we show and discuss the EvoPruneDeepTL’s results of the experi-
ments of pruning, feature selection and against efficient CNN pruning methods of the literature. Moreover,
EvoPruneDeepTL is tested with different extractor features and with different variations of datasets in this

3



section. Section 6 follows by summarizing the advantages and drawbacks of our proposal when compared
to other pruning approaches. Finally, Section 7 draws the main conclusions stemming from our work, and
outlines future work departing from our findings.

2. Related work

The purpose of this section is to make a brief review of contributions to the literature that link to the
key elements of our study: Transfer Learning (Subsection 2.1), Neural Architecture Search (Subsection 2.2),
CNN pruning (Subsection 2.3), Evolutionary Algorithms (Subsection 2.4) and Feature Selection with Deep
Learning (Subsection 2.5).

2.1. Transfer Learning

TL (Pan & Yang, 2010) is a DL mechanism encompassing a broad family of techniques (Tan et al.,
2018, October). Arguably, the most straightforward method when dealing with neural networks is Network-
based deep transfer learning, in which a previous network structure with pre-trained parameters in a similar
problem is used. It offers good results by the behavior of DL models, in which first layers detect useful
features on the images, and later layers strongly depend on the chosen dataset and task. As finding these
standard features on the first layers seems very common regardless of the natural image datasets, its trained
values can be used for different problems (Yosinski et al., 2014, December). Training DL models from scratch
is usually time-consuming due to the great amount of data in most cases. TL gives some benefits which
make it a good option for DL: reduction of time needed for training (Sa et al., 2016), better performance of
the model and less need of data.

TL has been applied to several real-world applications, such as sound detection (Jung et al., 2019, May)
or coral reef classification (Gómez-Ŕıos et al., 2019). Moreover, in (Tajbakhsh et al., 2016) two different
approaches for TL are discussed: fine-tuning or full training. They demonstrated that, for medical reasons, a
pre-trained CNN with adequate fine-tuning performed better in terms of accuracy than a CNN trained from
scratch. Another approach of TL is presented in (Mehdipour Ghazi et al., 2017), in which an optimization
of TL parameters for plant identification is proposed.

There are different deep neural networks proposed in the literature. One of the most popular is ResNet,
which uses residual learning to improve the training process, obtaining better performance than other
models (He et al., 2016, June). ResNet models are characterized by the use of deeper neural networks
without loss of information due to their architecture. Different ResNet models with TL have been used in
several applications (Scott et al., 2017), such as medical classification like pulmonary nodule (Nibali et al.,
2017) and diabetic retinopathy classification(Wan et al., 2018). Moreover, other networks have shown
great performance when used with TL, such as DenseNet (Huang et al., 2017, July) and VGG (Simonyan &
Zisserman, 2015, May). An example of DenseNet with TL is presented in (Aneja & Aneja, 2019, July), which
shows that this network architecture is able to achieve a great result for the task at hand when combined
with TL. Lastly, VGG has also shown an outstanding performance when it is used in combination with TL.
An example is presented in (Wen et al., 2019, May) in which a pre-trained VGG-19 network is used to solve
a fault diagnosis problem.

2.2. Neural Architecture Search

The appropriate design of a neural network is a key point to solve DL problems. Nevertheless, finding
the best architecture that optimally fits the data and, as a result of that, gives the best outcome for the
problem is extremely difficult. Recently, the term Neural Architecture Search, NAS, has obtained a great
importance in this field. The objective of NAS is the automatic search for the best design of a NN to solve
the problem at hand.

The first work in this field is presented in (Stanley & Miikkulainen, 2002) in the beginning of this century,
in which they demonstrate the effectiveness of a GA to evolve topologies of NN.

In (Zoph et al., 2018, June), the authors design the NASNet architecture, a new search space to look for
the best topology for the tackled problem. Moreover, in (Liu et al., 2018, September) the authors propose
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to search for structures in increasing order of their level of complexity, while learning a surrogate model to
guide the search through structure space.

NAS methods usually rely on Reinforcement Learning, RL, and EA, like (Zoph et al., 2018, June) or (Liu
et al., 2018, April), in which the authors explore the search space using a hierarchical genetic representation.
Another example of RL for NAS is shown in (Kokiopoulou et al., 2020, August). The authors propose a
novel method that, by sharing information on multiple tasks, is able to efficiently search for architectures.

NAS can also be viewed as a multi-objective problem. Among these methods, one of them is presented
in (Elsken et al., 2019, May), in which the authors propose a multi-objective for NAS that allows approxi-
mating the entire Pareto-front of architectures. Another example is Neural Architecture Transfer (Lu et al.,
2021), that allows to overcome a common limitation of NAS, that is requiring one complete search for each
deployment specification of hardware or objective. They use an integrated online transfer learning and a
many-objective evolutionary search procedure.

Recently, one of the most well-known multi-objective EA, NSGA-II, has been used for NAS (Lu et al.,
2019, July), called NSGA-Net. This novel proposal looks for the best architecture through a three-step
search: an initialization step from hand-crafted architectures, an exploration step that performs the EA
operators to create new architectures, and finally an exploitation step that utilizes the knowledge stored in
the history of all the evaluated architectures in the form of a Bayesian Network.

Lastly, there are more advanced techniques of NAS and EA given by (Real et al., 2019, January), in
which a new model for evolving a classifier is presented, and by (Real et al., 2020, July), in which the authors
propose AutoML-Zero, an evolutionary search to build a model from scratch (with low-level primitives for
feature combination and neuron training) which is able to get a great performance over the addressed
problem.

2.3. CNN Pruning

The main reason to optimize the architecture of a deep neural network is to reduce its complexity.
That reduction can be done in different ways (Long et al., 2019a). One of them is by designing compact
models from scratch instead of resorting to architectures comprising multiple layers. Another strategy is via
weights-sharing (Ullrich et al., 2017, April). An alternative method to reduce the complexity of DL models
is low-rank factorization (Long et al., 2019b), based on a matrix decomposition to convolutional layers to
estimate parameters. However, one of the most popular is Network Pruning. The objective of pruning is
to remove unnecessary parameters from a neural network, so that they do not participate during training
and/or inference. It can be done in the convolutional phase on the channels, kernels and weights or even
in the fully connected phase on the neurons. In (Masson et al., 2021) they show a classification of pruning
methods for channels. They categorize the pruning methods for channel reduction, and they also specify
the criteria used to select these channels: based on weights or based on feature maps.

We have seen that network pruning has achieved a great importance in the literature as many researchers
have applied different techniques to simplify a CNN using a pruning scheme. In (Liu et al., 2019, May) they
classify the pruning methods in unstructured and structured pruning, and make a review of all the state-
of-art structured pruning methods. Unstructured pruning methods remove weights without following any
order. For the structured methods, there are some rules or even constraints which define how the pruning
is done (Anwar et al., 2017). Typically, the pruned layers appertain to the convolutional phase (Luo et al.,
2017, October). In our proposal, we instead apply a structured pruning scheme to the fully-connected layers.

Among pruning methods, the value-based weight pruning (Han et al., 2015, Dececember) and neuron
pruning (Srinivas & Babu, 2015, September) have arisen as the most used, particularly due to their simplicity.
The logic behind this pruning methods is straightforward: a certain amount (%) of the weights or neurons
that contribute less to the final trained model are removed from the architecture. This makes the network
quicker to perform inference and endows it with better generalization capabilities. However, multiple pruning
and retraining steps demonstrated that it is possible to recover fully or partially the knowledge lost in the
pruning phase. Further along the series of pruning approaches published to date, Polynomial Decay (Zhu
& Gupta, 2018, April) is a scheduled pruning method that considers that a higher amount of weights can
be pruned in early stages of pruning, while systematically less amount of weights should be pruned in late
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stages. Between pruning steps, the network is retrained for some epochs. An implementation of the discussed
methods can be found for Tensorflow. 1

Pruning a CNN model reduces its complexity, but sometimes leads to a decrease of the performance
of the model, although there are some proposals that reduce the complexity of the model with no loss of
accuracy (Han et al., 2016, May).

Pruning a neural network can be conceived as an optimization method in which we start from the
original vector, and connections/neurons are decision variables whose value is evolved towards optimizing
a given objective. In this context of evolution of neural networks, evolutionary algorithms for evolving DL
architectures have been applied (Iba, 2018). While this combination of EA and DL models seemed to be
a great scheme for the optimization of DL models, especially for CNN network, the optimization of DL
models is still an open problem (Liu et al., 2017). Many proposals have been published about this problem
like in (Martinez et al., 2021), where they make a review of proposals using EAs for optimizing DL models,
prescribing challenges and future trends to effectively leverage the synergy between these two areas.

Researchers have presented a great variety of proposals about the optimization of DL models using EA,
most commonly for CNN. In (Mart́ın et al., 2018), the authors developed EvoDeep, an EA with specific
mutation and crossover operators to automatically create DL models from scratch. Moreover, in (Real
et al., 2017, August) a novel evolution approach to evolve CNN models using a GA was proposed. Another
example of the optimization of CNN was developed in (Assunção et al., 2019), in which a GA was presented
for the optimization of the topology and parameters of the CNN.

In our proposal, we improve the performance of the models using a TL approach to extract the features
of the images and apply a reduction of the fully-connected layer using a GA to optimize a sparse layer.

2.4. Evolutionary Algorithms for CNN Pruning

In the previous section, several works of CNN pruning have been presented, but none of them use an
EA to prune. In this section, we mention some studies present in the literature which have used an EA
in order to prune a CNN model. To begin with, in (Liu et al., 2017, February), the authors propose a
sparse approach to reduce CNN complexity. EAs are also a good way to prune CNN. In (Mantzaris et al.,
2011), a first attempt of pruning and GA is proposed for a medical application. They use a GA to search
for redundancy factors in a neural network. Moreover, in (Samala et al., 2018) another EA is presented to
prune deep CNN for breast cancer diagnosis in digital breast tomosynthesis. A combined approach of EA
and sparse is proposed by Wang et al. (Wang et al., 2020), in which a GA and sparse learning are applied
to a scheme of network channel pruning in the convolutional scheme of the CNN. For pruning CNN, not
only GAs but also other algorithms are used, like Differential Evolution (DE). In (Salehinejad & Valaee,
2021) the authors propose to use a Differential Evolution algorithm to prune the convolutional phase and
the fully-connected phase of some Deep CNN, obtaining a reduction of the model but a small decrease of
its performance.

However, all previous works are focused on reducing the complexity, using the EA to reduce the accuracy
loss of the pruned network. Also, many of them try to reduce the whole model, changing the complete archi-
tecture and making the pre-trained values unusable. The re-training of the network may be a time-consuming
task, so we assume that TL is useful in this context. We therefore maintain the original architecture with
pre-trained values. Our model focuses on improving the performance of the model by pruning connections
of the fully-connected layers using a GA to evolve the connections. In this environment, the search space of
the GA is narrower and a faster convergence of the algorithm may be reached.

In addition to that, in the field of neural architecture search, more advanced techniques have been
developed. Among them, in Section 2.2, either (Real et al., 2019, January) and (Real et al., 2020, July)
have been commented. Nonetheless, they also have a great relevance in this section. The first one evolves
a classifier, whereas in the second one, the authors develop an evolutionary search to build a model from
scratch.

1https://www.tensorflow.org/model optimization/guide/pruning, Tensorflow Pruning. Last access: 28/01/2022
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2.5. Feature Selection and Deep Learning

One of the advantages of using TL is reducing the required time to train a DL architecture. Nonetheless,
the result of this process may lead to recognize patterns that are not useful to address the problem at
hand. For that reason, once TL is applied, a FS process to obtain the best features might lead to a better
performance of the neural network (Roy et al., 2015, July).

An example of this process is presented in an arrhythmia detection task addressed in (Yildirim et al.,
2018), in which the authors propose a mechanism based on feature extraction and selection to improve and
ultimately obtain one of the best results for this problem. In relation to medical problems, the combination
of FS and DL is also used in cancer diagnosis and digital breast tomosynthesis. In (Samala et al., 2018) they
use a TL approach and then a FS process followed by an evolution through a GA that leads to a reduced
network with the same performance. Another example is described for remote sensing scene classification,
in which the FS makes an impact to improve the performance of the neural network models (Zou et al.,
2015), as the authors formulate the FS problem as a feature reconstruction problem. Their iterative method
selects the best features to solve this problem as the discriminative features.

In our proposal, if we assume that TL is applied and we only have one fully-connected layer, then the
pruning is made in relation to the extracted features of the network and, therefore, we are making a selection
of the features that adjust at best to the tackled problem.

3. Evolutionary Pruning for Deep Transfer Learning

This section describes EvoPruneDeepTL, which is a model that replaces fully-connected layers with
sparse layers which are being evolved using a genetic algorithm in a TL approach. Subsection 3.1 gives a
notion of the concept of sparse layer and the description of EvoPruneDeepTL. In Subsection 3.2, we define
the evolutionary components of EvoPruneDeepTL. The description of the process of creating the network
and how the pruning is made is shown in Subsection 3.3.

3.1. Global scheme of Evolutionary Pruning for Deep Transfer Learning

In a fully-connected layer, all neurons of each side are connected. Sometimes, all these connections may
not be necessary, and the learning process can be reduced. For that reason, the fully-connected layer can
be replaced by a sparse layer, in which some connections are eliminated.

In this work, our goal is to improve the performance of the neural network and, at the same time, to
decrease the maximum number of connections or neurons. To this end, we use a sparse layer, which is
composed of a subset of all connections of a fully-connected layer.

Fig. 1a shows the fully-connected network architecture, while Fig. 1b represents the sparsely connected
architecture with a connection matrix of 4× 3 because we have 3 classes (blue circles) and 4 neurons of the
previous layer.

(a) Fully-Connected
Layer

(b) Sparse Layer

Figure 1: Representation of both architectures
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In this section, we discuss the basic notions of pruning and sparse layers. Moreover, the encoding
strategies of EvoPruneDeepTL are described, together with the decoding process of the chromosome encoding
the pruning pattern (genotype) that yields the pruned sparse layer(s) (phenotype). Nonetheless, for the sake
of a clear vision of EvoPruneDeepTL, Fig. 2 shows a diagram that exposes its general components. We next
complement the detailed description provided in the following subsections with a short, albeit illustrative
introduction to the key parts and overall workflow of EvoPruneDeepTL:
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Figure 2: Diagram of EvoPruneDeepTL.

First, the TL process departs from a source dataset modeled by a CNN model, which adjusts the value
of its coefficients by means of its learning algorithm. Then, those parameters are transferred to another
network aimed to model a target task. This implicitly assumes that both tasks are correlated with each
other, such that the knowledge delivered from the source to the target task via the transferred network
weights can positively contribute to the learning process of the target task. These weights are kept fixed,
frozen, in this study. Then, EvoPruneDeepTL specializes the fully-connected part of the neural network
of the target task by resorting to a GA. This metaheuristic wrapper prunes unnecessary neurons of these
layers driven by the improvement of a performance measure (e.g. accuracy). The outcome of the process is
a pruned network with a potentially improved accuracy by virtue of an evolved pruning mask.

In this study, we propose a novel method to prune the neurons, that considers the removal of both single
connections and groups of connections of the input connections of a specific neuron, as can be observed in
Fig. 3. Fig 3b shows a sparse layer that leads to the encoding strategy used in this work. This encoding,
which is represented by the chromosome of the GA, is required to know exactly which connections are
removed.

EvoPruneDeepTL model utilizes a GA designed to evolve the connections of a sparse layer. The GA
takes each individual as a mask for the neural network and creates a sparse layer activating from the mask.
This evolved mask gives rise to a pruned neural network suitable for the problem under consideration.

The evolution of the connections is performed using both methods, either by groups of connections or by
single connections. The genome representation of each chromosome of the GA is binary-coded and represents
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the active neurons or the active connections. The GA evolves the configuration of the network towards its
best pruned variant in terms of accuracy. Next, we describe both encoding strategies:

• Neurons: each gene of the chromosome represents the number of active neurons. A value 1 in position
i means that the neuron i is active, and a 0 that is inactive. A non-active neuron implies that all the
input connections are removed both in training and inference times. The length of the chromosome in
this case is the number of neurons of the sparse model.

• Connections: each gene represents the connection between the layers. The interpretation of the
binary values is as follows: if a gene is 1, the connection between the corresponding layers exists,
otherwise, that connection does not exist. Therefore, the length of the chromosome is the maximum
number of connections, noted as D = D1 × D2, where D1 is the number of neurons in the previous
layer, and D2 is the number of neurons in that layer.

An example of both encoding strategies is shown in Fig. 3. In both cases, the pruned connections are
from the input on the layer, i.e. the right layer. The left image shows a representation of neuron-wise
encoding, in which a group of neurons is selected to be active and the rest are pruned. The right image
depicts how single connections are pruned.

(a) Neuron Encoding (b) Single Connection
Encoding

Figure 3: Representation of encoding strategies

3.2. Evolutionary components of EvoPruneDeepTL

In this subsection, we introduce the evolutionary components of EvoPruneDeepTL. It is a steady-state
genetic algorithm, which means that two new individuals, called offsprings, are created in each generation,
for the previous mentioned encoding strategies (neuron encoding vs single connection encoding, Fig 3): in
each iteration two individuals are selected and crossed, producing two offsprings that could also be mutated.
The offspring candidates are introduced in the population only if they improve the worst candidates in the
population, replacing them.

As previously mentioned, in EvoPruneDeepTL each chromosome is a binary array and each gene repre-
sents a connection between two layers. Each generation follows the classical scheme of selection, crossover,
mutation and replacement. The best solutions found during the evolutionary search are kept in a population
of individuals. Next, we describe the different components:

Selection: the implemented selection operator is Negative Assorting Mating (NAM) (Fernandes & Rosa,
2001, May). The first parent is picked uniformly at random, while the second parent is selected between
three possible candidates. These candidates are also picked uniformly at random from the population.
The candidate with higher Hamming distance from the first parent is chosen as the second parent, thereby
ensuring that the recombined parents are diverse. This selection method allows for a higher degree of
exploration of the search space.
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Crossover : EvoPruneDeepTL uses the uniform crossover operator shown in Expression 1. Given two
parents P and Q, where P = {pi}Di=1 and Q = {qi}Di=1. Then two offsprings P’ = {p′i}Di=1 and Q’ = {q′i}Di=1

are created following the equations:

pi′ =

{
pi if r ≤ 0.5
qi otherwise

q′i =

{
qi if r ≤ 0.5
pi otherwise

(1)

where r is the realization of a continuous random variable with support over the range [0.0, 1.0]. This
operator takes two parents P and Q of length D and creates two new offspring P’ and Q’ of the same size.
Each new offspring is composed of the parents genes. Each gene (position of the new array) is set equal to
the gene of the first or second parent. This process is repeated until the whole offspring is composed.

Mutation: EvoPruneDeepTL adopts the so-called single point mutation. A mutation probability for
each individual is defined by pmut. Then, a gene of that individual is uniformly randomly selected and its
bit is flipped, i.e., if the mutation is performed, then that neuron or connection changes its value, which
implies that the connection or the neurons is activated or deactivated. In this operator, pmut is the value
that establishes the probability that a mutation is performed.

Replacement Strategy : at the end of every generation, the two offsprings resulting from the crossover and
mutation operators compete against the worst two elements. As a result, the population is updated with
the best two individuals among them, i.e. those whose fitness value is better. EvoPruneDeepTL maintains
a pool of four individuals: two offsprings and the two worst individuals selected from the population. Then,
the best two of them are in the new population. The criterion to select the best two is based on the fitness as
the best of them are selected. In case of same values, the individuals with fewer active neurons/connections
are those selected to be retained in the new population.

Initialization: the genes composing the individuals are initialized to 0 or 1 as per the following proba-
bilistic condition with a pone probability:

Ii =

{
1 if r ≤ pone
0 otherwise

(2)

where r is the realization of a uniform continuous random variable with support [0.0, 1.0].
Evaluation of individuals: the fitness value of every individual is given by the accuracy over a test dataset

of the neural network pruned as per the decoded individual, and trained over the training dataset of the
task at hand. Each individual, named p, is decoded to yield a sparse neural network, which we hereafter
refer to SparseNetp. Then this network is trained as previously commented over the train dataset, giving
the TrainedSparseNetp network. Lastly, the test dataset is evaluated in this network, producing the fitness
of the individual, which we call ChildFitnessp.

Algorithm 1 shows the pseudocode of EvoPruneDeepTL. First, we need to understand what Evo-
PruneDeepTL requires to start its evolution process, and what results from this process. The input of
EvoPruneDeepTL is determined by:

• Dataset and task to be modeled.

• Configuration of the GA: parameters needed for the algorithm.

• Configuration of the network: parameters needed for the network.

• Feature extractor: a pre-trained neural network used for feature extraction and TL, e.g., ResNet-50
trained over Imagenet or any other available architecture alike.

The algorithm starts by initializing the individuals of the population (line 1) using the previous operator
and then evaluating them (line 2). The evolutionary process is performed in lines 3-15. Two parents are
selected using the NAM operator (line 4) and then the two offsprings are generated using the crossover
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operator (line 5). If the mutation condition is met, then mutation is performed (lines 6-8). The child
population is now evaluated (lines 9-14). The evaluation is held over three steps, in which each individual
is decoded (variable SparseNetp in line 10), and then the network created with its configuration is trained
(named TrainedSparseNetp in line 11) using the train dataset and then evaluated (called ChildFitnessp in
line 12) over the test dataset. Lastly, the replacement strategy is triggered (line 15). The stopping criterion
is the evaluation of a maximum number of networks.

Algorithm 1: EvoPruneDeepTL

Input : Dataset, configuration of the GA, configuration of the network and feature extractor
Output: Evolved pruned network

1 Initialization of individuals of the population using the initialization operator;
2 Evaluation of the initial population (see lines 9-14);
3 while evaluations < max evals do
4 Parent selection using NAM operator;
5 Generate offsprings using crossover operator;
6 if rand() < p mut then
7 Perform mutation using mutation operator;
8 end
9 for each child p in children population do

10 SparseNetp ← Create sparse network using the decoded individual of the population;
11 TrainedSparseNetp ← Train SparseNetp using train dataset ;
12 ChildFitnessp ← Accuracy of TrainedSparseNetp evaluated in test dataset ;
13 evaluations+=1;

14 end
15 Replacement Strategy: child population vs worst individuals of population;

16 end

3.3. EvoPruneDeepTL Network

This subsection is devised to fully understand the components associated with the networks that involve
EvoPruneDeepTL. EvoPruneDeepTL stands for the usage of transfer learning, which means that the convo-
lutional phase before the fully-connected layers is imported from other pre-trained model. Thus, the chosen
CNN works as a feature extractor, i.e, obtains the main feature or characteristics for the task at hand. In
our study, we have chosen ResNet-50 as feature extractor, although others can also be used, such as VGG
or DenseNet. In Section 5, a comparison between these three extractors is made to analyze the goodness of
EvoPruneDeepTL with them.

These features are used as the input for the fully-connected layers. We introduce two different composi-
tions of these fully-connected layers:

• Single fully-connected layer: it is composed of a single layer with 512 neurons, followed by the output
layer.

• Two fully-connected layers: this architecture has two layers of 512 each, and the output layer con-
necting the output of the last fully connected layer to as many neurons as the number of classes to be
discriminated in the dataset.

Moreover, activations of each fully connected layer are selected to be Rectifier Linear Unit (ReLU)
functions. The output layer resorts to a SoftMax activation, which renders a probability distribution over
the classes that compose the task at hand. The output neuron with the highest SoftMax probability leads
to the predicted class of the input image.

EvoPruneDeepTL stands for the usage of sparse layers. By definition, a sparse layer has few active
connections. A key object in this environment is the adjacency matrix. This matrix is key in our study

11



because it is used to create a sparse layer from it. It allows decoding an individual evolved via the GA to yield,
as a result, a neural network with a sparse layer. Taking a look about this matrix, EvoPruneDeepTL performs
the pruning in relation to the connections/neurons that compose the input of the neuron. Consequently,
there may be some neurons of the second layer which have no connection from the previous layer.

Based on the two network architectures described above, we consider different scenarios where Evo-
PruneDeepTL can be applied. We present these scenarios in the following figures, in which the red-dashed
lines indicate the effects of the pruning. In addition to that, we have grouped the models in terms of the
number of the last layers. The first model is the application of the EvoPruneDeepTL to prune model with
one layer, which is shown in Fig. 4a. Moreover, when the pruning is made with networks with two layers,
three cases come up: pruning the first layer (see Fig. 5a), pruning the second layer (see Fig. 5b for these
cases), or both at the same time, which is the combination of the last two cases. Lastly, EvoPruneDeepTL
is also able to prune the characteristics that are extracted from the network. This approximation is called
Feature Selection because EvoPruneDeepTL prunes the features that are less important to enhance the
accuracy of the network. Fig. 4b illustrates how pruning in this last scenario reduces to a selection of
features.

(a) Pruning one layer (b) Pruning extracted features

Figure 4: Visualization of pruning architectures with one layer

(a) Pruning the first layer (b) Pruning the second layer

Figure 5: Visualization of pruning architectures with two layers

4. Experimental Framework

In this section, we describe the experimental framework followed in our study. First, we give a brief
description of the analyzed datasets. Then, the training setup is presented, emphasizing the parameters of
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EvoPruneDeepTL and the experimental conditions.

4.1. Datasets

In our study, we have chosen several diverse and representative datasets that are suitable for TL due
to their size, as they require less training and inference time. Therefore, these datasets are suitable for
population metaheuristics, as many individuals are evaluated. The selected data sets are shown in Table 1,
which portrays their main characteristics for our experiments.

Table 1: Datasets used in the experiments.

Dataset Image Size # classes
# Instances
(train / test)

SRSMAS (299, 299) 14 333 / 76
RPS (300, 300) 3 2520 / 372
LEAVES (256, 256) 4 476 / 120
PAINTING (256, 256) 5 7721 / 856
CATARACT (256, 256) 4 480 / 121
PLANTS (100, 100) 27 2340 / 236

These datasets are diverse and taken from the literature:

• SRSMAS ([dataset] Gómez-Ŕıos et al., 2019) is a dataset to classify coral reef types with different
classes and high distinction difficulty.

• RPS ([dataset]Laurence Moroney, 2019) is a dataset to identify the gesture of the hands in the popular
Rock Paper Scissors game from images that have different positions and different skin colors.

• LEAVES is composed of images of healthy and unhealthy citrus leaves, with different shades of green
([dataset]Hafiz Tayyab Rauf et al., 2019).

• PLANTS is another dataset from the natural environment ([dataset] Singh et al., 2020, May), in which
the task is to differentiate between leaves of different plants such as tomato, apple or corn, among
others.

• CATARACT comes from the medical domain ([dataset]Sungjoon Choi, 2020), whose purpose is to
classify different types of eye diseases.

• PAINTING is related to the painting world ([dataset]Virtual Russian Museum, 2018). The images in
this dataset have been taken from a museum and the task is to recognize different types of paintings.

Examples for several of the above datasets are shown in Fig. 6.

4.2. Training setup

The evaluation of EvoPruneDeepTL requires splitting the images of the datasets in train and test subsets.
As the results could strongly depend on the train and test sets, we have applied in SRSMAS and LEAVES
a 5-fold cross-validation 2

For the remaining datasets, the train and test had already been defined beforehand, so we have used
them for the sake of replicability.

The training is done using SGD as optimizer, a batch size of 32 images, and maximum 600 epochs, but
the training stops when no improvement of loss is obtained in ten consecutive epochs. The model with the
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Figure 6: Images of datasets. Top: SRSMAS examples. Middle: RPS examples. Bottom: LEAVES examples.

Table 2: Parameters of EvoPruneDeepTL.

Parameter Value

Maximum Evals
200 (one layer)
300 (both layer)

# Runs 5
Population size 30

NAM 3
pmut 0.07

Batch Size 32

greater accuracy on the training set is saved. As we apply TL, only the last layers are trained, whereas the
remaining ones are frozen with the parameter values imported from the pre-trained ResNet-50 network.

The parameters of EvoPruneDeepTL are indicated in Table 2. We have set the maximum evaluations to
two different values, 200 and 300, because there are some experiments we carry out to analyze the behavior
of EvoPruneDeepTL that need an adaptation of this value because the search space in these experiments is
wider. The size of the population of networks that our model evolves at each generation is set to 30, the
mutation probability is pmut and the NAM operator chooses the second parent among 3 candidates. The
best solution found in terms of accuracy is returned. We note that in case of several solutions with the
same accuracy, the returned solution is the configuration with the lowest percentage of active neurons. Note
that the number of runs and total function evaluations is kept low to meet a computationally affordable
balance between performance and the high execution times required for simulation. This is shown in Table
3, in which the average time per execution of the models with two layers is indicated. Unfortunately, this
limited number of runs per experiment impedes the application of statistical tests to assess the significance
of the reported differences, as tests conventionally used for this purpose require larger sample sizes to reach
meaningful conclusions.

2Sets for 5 fold CV for SRSMAS and LEAVES:
https://drive.google.com/drive/folders/1Xf7OeZyWDDG- Y4VX nnAdfz3Kwhy8LU?usp=sharing. Last Access: 28/01/2022
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Table 3: Average time per run of EvoPruneDeepTL.

Dataset First Layer Second Layer Both Layers

SRSMAS 9h 41min 10h 45min 15h 27min
RPS 4h 23min 5h 13min 8h 00min

LEAVES 10h 26min 16h 01min 17h 45min
PAINTING 13h 1min 15h 24min 22h 45min
CATARACT 2h 3min 2h 22min 3h 26min
PLANTS 6h 3min 6h 11min 10h 00min

All the following experiments have been carried out using Python 3.6 and a Keras/Tensorflow imple-
mentation deployed and running on a Tesla V100-SXM2 GPU. The code is published in a open repository
in GitHub.3

5. Results and Discussion

In this section, we analyze the behavior of EvoPruneDeepTL. In order to show the benefits of using
EvoPruneDeepTL, we propose four research questions (RQ) that they are going to be answered with different
and diverse experiments over several datasets are carried out. We will show tables with the results of these
experiments and we will analyze them to ensure the benefits of EvoPruneDeepTL. These RQ are the following
ones:

(RQ1) Which is the performance of EvoPruneDeepTL against fully-connected models?

We compare EvoPruneDeepTL against non-pruned models comprising fully-connected layers to study
which model obtains a better performance in the experiments. Moreover, we remark the flexibility of
EvoPruneDeepTL applying it with one and several layers.

(RQ2) Which would be better, to remove neurons or connections?

We compare EvoPruneDeepTL using the two alternatives explained in the previous section: 1) pruning
the neurons or 2) each individual represents exact connections between neurons, allowing for a more
finely grained evolution of the connections. The goal of this section is to check which representation
obtains the best results. On the one hand, the neuron representation of the length of chromosomes is
shorter, so the domain search is smaller. On the other hand, the connections representation is a more
fine-detail representation, so it could potentially allow the algorithm to obtain better results.

(RQ3) Which is the performance of EvoPruneDeepTL when compared to efficient pruning methods?

We compare the performance of EvoPruneDeepTL against several efficient pruning methods published
in the literature for compressing CNN networks: Polynomial Decay (Zhu & Gupta, 2018, April),
Weight Pruning (Han et al., 2015, Dececember) and Neuron Pruning (Srinivas & Babu, 2015, Septem-
ber). This comparison of EvoPruneDeepTL and the CNN models is made in terms of accuracy and
model compression.

(RQ4) Which would be better, pruning fully-connected layers or performing Feature Selection?

A particular case of EvoPruneDeepTL stands when the optimization of the network is done with
one fully-connected layer and features are evolved towards the fittest for the problem at hand. Our

3EvoPruneDeepTL repository: https://github.com/ari-dasci/S-EvoDeepTLPruning.
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aim is to check if this scheme improves the overall performance of the model over a dataset in terms
of the accuracy of the models.

(RQ5) How does EvoPruneDeepTL perform when applied to different pre-trained networks?

We compare EvoPruneDeepTL with different feature extractors. From RQ1 to RQ4, ResNet-50 is
used to extract the features or characteristics for the considered datasets. Experiments devised for
this RQ aim to examine whether EvoPruneDeepTL adapts suitably to other feature extractors such as
DenseNet-121 and VGG-19, so that better-performing pruned networks are produced by our proposal
also for these feature extractors.

(RQ6) Can EvoPruneDeepTL adapt efficiently their pruned knowledge to changes in the modeling task, show-
ing robustness?

We analyze the behavior of EvoPruneDeepTL when the datasets change. In this case, we have selected
some datasets from our study, and we have done several modifications, removing partially or totally a
class. Within these changes, we want to show both the robustness of the EvoPruneDeepTL in different
situations and that the pruning models obtained by the GA of EvoPruneDeepTL have been adapted
to each one of these situations.

This section is divided in Section 5.1, where the comparison of the diverse representations of pruning
that EvoPruneDeepTL makes against the reference models is presented to answer RQ1. Next, Section 5.2
discusses whether EvoPruneDeepTL should operate over neurons or connections to analyze RQ2. Section
5.3 provides a complete comparison among EvoPruneDeepTL and other efficient pruning methods in order
to solve RQ3. Section 5.4 explains the approximation of Feature Selection. A whole comparison against all
the previous models is made to assess the importance of the Feature Selection to answer RQ4. Section 5.5
shows the comparison of the best two models of EvoPruneDeepTL with different feature extractors. Lastly,
in Section 5.6, EvoPruneDeepTL is challenged, with several modifications of the used datasets, to grasp the
relevant features of these datasets and to analyze the robustness of our proposal.

5.1. Answering RQ1: Pruning

In this section, we assess the performance gaps between the proposed EvoPruneDeepTL against other
reference models to answer RQ1. In each subsection, several and diverse experiments are carried out to
present results that assure the quality of EvoPruneDeepTL when it is compared to other models. This
pruning section is composed of Section 5.1.1, in which we compare EvoPruneDeepTL against reference
models with only one layer; of Section 5.1.2 we make the same experiments but with two layers and the
evolution of one of them, and of Section 5.1.3, that shows the evolution of two consecutive layers at the
same time.

In the following, we describe the different reference models:

• The first reference is composed of fully-connected layers of 512 units and the output layer. That is
equivalent to the model with all neurons in active mode (all gens to 1). This model is the one with all
active neurons, we call it Not Pruned.

• A grid search scheme is compared to EvoPruneDeepTL to check whether the improvement made by
EvoPruneDeepTL could be obtained with a simple search over the percentage of neurons of the fully-
connected layer. We have tested the fully-connected model with different number of neurons: 10%
to 90% of its total units increasing this percentage by 10% (including both), and for each dataset we
have identified the number of neurons which gives the best accuracy.

• The best result of the above models is also noted and it is called Best Fixed. When implemented over
both layers, pruning is referred to as Best Fixed Both.
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5.1.1. Pruning neurons of one fully-connected layer

This section introduces the results of pruning models with only one fully-connected layer. Table 4 shows
the comparison of EvoPruneDeepTL against the reference models. In this case, the reference model only
has one fully-connected layer composed by 512 units and the output layer.

For each dataset, the first row shows the obtained average accuracy by the models over the test set,
whereas the second row informs about the average percentage of active neurons.

Table 4: Average results of EvoPruneDeepTL against not pruned models with one fully-connected layer.

Dataset Measure
Not Best EvoPrune

Pruned Fixed DeepTL

SRSMAS
Accuracy 0.832 0.866 0.885

% Active neur. 100 20 25

RPS
Accuracy 0.938 0.938 0.954

% Active neur. 100 40 46

LEAVES
Accuracy 0.923 0.927 0.935

% Active neur. 100 80 38

PAINTING
Accuracy 0.939 0.945 0.951

% Active neur. 100 60 46

CATARACT
Accuracy 0.703 0.719 0.732

% Active neur. 100 70 39

PLANTS
Accuracy 0.432 0.432 0.480

% Active neur. 100 10 49

These results show how EvoPruneDeepTL is capable of distinguishing the pruning configurations that
lead towards an improvement of performance of the models, as it obtains a greater accuracy in all the
datasets for every reference model. Moreover, in most datasets, a higher compression ratio than the best
fully-connected model is also achieved.

5.1.2. Pruning neurons of two fully-connected layers

In this section, our challenge is to improve the performance of a two fully-connected layer network. For
that reason, EvoPruneDeepTL is applied to each layer individually.

The results of applying EvoPruneDeepTL to each layer individually are shown in Table 5, where First
Layer indicates the case of the evolution of the first layer, and Second Layer describes the other case. In
this case, Both Not Pruned and Best Fixed are the reference models with two fully-connected layer.

In this case, results follow the same path as the previous one: in all the datasets, EvoPruneDeepTL
achieves an improvement of the accuracy over the reference models. Moreover, the Second Layer case
obtains more compressed networks than the First Layer option.

Comparing the results of the scheme of one and two layers, both have similar results, only in RPS and
CATARACT the difference in terms of accuracy is higher. Thus, these experiments have shown the ability
of EvoPruneDeepTL of improving the overall performance of networks and, at the same time, reducing their
complexity.

5.1.3. Pruning neurons of both layers

In the previous sections, we have tested EvoPruneDeepTL to solve problems via the evolution of a
single layer. In this section we increase the difficulty of the problem: the evolution of two consecutive
fully-connected layers.

From the previous experiments, we have run EvoPruneDeepTL with 200 evaluations, but we have noticed
that this number of evaluations might not be enough. This is due to the fact that we have now individuals
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Table 5: Average results of EvoPruneDeepTL against not pruned models with two fully-connected layers.

First Layer Second Layer

Dataset Measure
Not Best EvoPrune Not Best EvoPrune

Pruned Fixed DeepTL Pruned Fixed DeepTL

SRSMAS
Accuracy 0.858 0.858 0.883 0.858 0.860 0.884
% Active neur. 100 100 46 100 80 47

RPS
Accuracy 0.922 0.938 0.959 0.922 0.949 0.969
% Active neur. 100 30 37 100 30 16

LEAVES
Accuracy 0.919 0.926 0.937 0.919 0.929 0.935
% Active neur. 100 40 28 100 60 12

PAINTING
Accuracy 0.939 0.944 0.950 0.939 0.941 0.951
% Active neur. 100 60 53 100 90 53

CATARACT
Accuracy 0.703 0.711 0.740 0.703 0.703 0.735
% Active neur. 100 70 63 100 100 59

PLANTS
Accuracy 0.402 0.448 0.479 0.402 0.441 0.483
% Active neur. 100 10 45 100 50 37

of size 1024, 512 for each layer, and the search space is larger than in the rest of experiments. We have
therefore also carried out the experiments with 300 function evaluations.

In Table 6, we show the results for reference models and EvoPruneDeepTL with 300 evaluations. The
reference models stand the same as in the previous cases, but as they are implemented over both layers, the
pruning is now referred to as Best Fixed Both.

In some cases, the percentage of remaining active neurons is higher than in the first and second layer
models, but that is due to the complexity of this new problem. However, the performance of the network in
these experiments indicates that the best option for pruning is achieved when the evolution is done to two
consecutive layers.

Table 6: Average results of EvoPruneDeepTL against not pruned methods evolving two consecutive layers.

Dataset Measure
Not Best Fixed EvoPrune

Pruned Both DeepTL

SRSMAS
Accuracy 0.858 0.863 0.885

% Active neur. 100 50 64

RPS
Accuracy 0.922 0.946 0.978

% Active neur. 100 90 12

LEAVES
Accuracy 0.919 0.934 0.936

% Active neur. 100 15 34

PAINTING
Accuracy 0.939 0.949 0.953

% Active neur. 100 40 51

CATARACT
Accuracy 0.703 0.735 0.746

% Active neur. 100 85 63

PLANTS
Accuracy 0.402 0.466 0.491

% Active neur. 100 55 41
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These results prove the attainment of a sequential process to make pruning of DL models by adding
layers and then, evolving their neurons to achieve a reduced configuration of the network. This process rises
the performance of the models in terms of accuracy.

5.2. Answering RQ2: which would be better, to remove neurons or connections?

This section is devised to formally answer the RQ2, which is to decide if it is better to perform prun-
ing of whole neurons or either single connections, by comparing different EvoPruneDeepTL chromosome
representations: neurons and connections, as we described in Section 3. Two representations are shown
in this section: the neuron representation, in which a gen represents the connections of a neuron, and the
connections representation, in which a gene represents a specific connection in the sparse layer. Neuron
representation obtains shorter chromosomes than the connections one. Meanwhile, the connection represen-
tation leads to a more detailed representation and a larger domain search.

Table 7: Average results of EvoPruneDeepTL against edges models.

One Layer Two Layers

Dataset Measure Edges EvoPruneDeepTL Edges
EvoPruneDeepTL EvoPruneDeepTL

Layer 1 Layer 2

SRSMAS
Accuracy 0.875 0.885 0.875 0.883 0.884
% Active neur. 43 25 46 46 47

RPS
Accuracy 0.952 0.954 0.952 0.959 0.969
% Active neur. 29 46 37 37 16

LEAVES
Accuracy 0.932 0.935 0.933 0.937 0.935
% Active neur. 45 38 45 28 12

PAINTING
Accuracy 0.949 0.951 0.950 0.950 0.951
% Active neur. 48 46 53 48 53

CATARACT
Accuracy 0.729 0.732 0.737 0.740 0.735
% Active neur. 69 49 66 63 59

PLANTS
Accuracy 0.457 0.480 0.463 0.479 0.483
% Active neur. 64 49 45 45 37

Table 7 shows for each dataset and representation the mean accuracy and % of active connections for
both pruning methods. The connection strategy is named Edges. The results show that even though there
are some cases in which the edges evolution achieves a similar performance of the network, the evolution of
the neurons presents more robust results. The models working at the neuron level are even able to further
reduce the number of active neurons in some datasets.

As a conclusion of this experiment, we can confirm that using the neuron approach is the best represen-
tation and that the second layer model gives us more consistent results than the first layer pruning model,
both in accuracy and in reduction of the model.

5.3. Answering RQ3: Comparing EvoPruneDeepTL with efficient methods for CNN pruning

This section is devised to analyze the RQ3 comparing EvoPruneDeepTL to other well known network
pruning methods to present results that measure the performance of our model against these methods. This
comparison is conducted in terms of quality and computational complexity, aimed to prove the potential
of EvoPruneDeepTL with respect to other pruning counterparts. To this end, we implement two different
pruning methods, namely, weight pruning and neuron pruning. These methods have a parameter in common,
Sf ∈ R(0, 1), which denotes the target pruning percentage. It is set to the same percentage of reduction
that EvoPruneDeepTL has obtained in the experiments discussed previously. Next, we briefly describe each
of such methods:
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• weight (Han et al., 2015, Dececember): Parameters with lower values are pruned at once. This method
operates over the whole parameter set in the layer to be optimized. (Parameters: Sf )

• polynomial decay (Zhu & Gupta, 2018, April): Parameters are pruned guided by a Polynomial Decay
schedule to the specified sparsity value. Between pruning steps, the network is allowed to fine tune
for 5 epochs. This model is also applied over the whole parameter set in the layer to be optimized.
Parameters used in the experimentation are listed in Table 8.

• neuron (Srinivas & Babu, 2015, September): Neurons with lower mean input connection values are
pruned. (Parameters: Sf ) as in Figs. 4 and 5. (Parameters: Sf )

Table 8 summarizes the value of the parameters of Polynomial Decay algorithm, which have been adapted
to our experiments. Then, given a desired sparsity value of S, the sparsity is updated over a span of k pruning
steps following the next equation

Sk = Sf + (Si − Sf ) ·
(
1− Kk −Ki

Kf −Ki

)α

if Kk mod F = 0 (3)

wherein parameters are described as follows:

• Si,f ∈ R(0, 1) are the initial and final sparsity percentages.

• Sf depends on the experiment. It is the percentage of pruning that EvoPruneDeepTL has achieved
and the end of the generations.

• Ki,f ∈ N configures at what training step the pruning algorithm starts and ends.

• Kk ∈ N(Ki,Kf ) is the current step.

• nb is the number of batches. It is calculated as the length of the training set divided by the batch size.

• F configures the frequency at which Equation 3 is computed.

Table 8: Parameter values of Polynomial Decay.

Parameter Value

Si 0.1
Ki 0
Kf nb · 25
F nb · 5
α 3.0

Parameters of the Polynomial Decay model are chosen to achieve a tradeoff between network recovery
and the number of training epochs. Given the nature of this model, Polynomial Decay implies more training
epochs than the implemented neuron and weight pruning methods. This fact could make the comparison
between such methods unfair if the additional training epochs introduced by the Polynomial Decay model
are high compared to the initial training epochs (i.e. 600). To avoid this situation, Polynomial Decay is
configured so that it sufficiently guarantees network recovery for all datasets while a minimal amount of
extra training epochs are carried out, just an extra 4% from the initial 600 epochs (i.e. 25 extra epochs).

Our analysis aims to verify whether the performance of the above efficient pruning methods are compa-
rable to EvoPruneDeepTL in terms of solution quality (accuracy) when they are configured to prune the
same amount of parameters. Thus, the experimentation is carried out for the previously four cases discussed,
selecting the average outcomes from the experimentation conducted in this point.

First, we show the results of this comparison when only a fully-connected layer is evolved. Table 9 shows
the results for this case. EvoPruneDeepTL outperforms the CNN models in five out of the six cases, but
only in PAINTING these results are better for the Polynomial Decay or Weight models.
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Table 9: Average results of EvoPruneDeepTL against efficient CNN for one layer models.

One Layer

Dataset Measure Weight
Poly.

Neuron
EvoPrune

Decay DeepTL

SRSMAS
Accuracy 0.805 0.823 0.745 0.885
% Active neur. 25 25 25 25

RPS
Accuracy 0.917 0.927 0.869 0.954
% Active neur. 46 46 46 46

LEAVES
Accuracy 0.918 0.920 0.886 0.935
% Active neur. 38 38 38 38

PAINTING
Accuracy 0.993 0.994 0.874 0.951
% Active neur. 46 46 46 46

CATARACT
Accuracy 0.678 0.679 0.658 0.732
% Active neur. 39 39 39 39

PLANTS
Accuracy 0.406 0.411 0.365 0.480
% Active neur. 49 49 49 49

Table 10: Average results of EvoPruneDeepTL against efficient CNN pruning methods for two layers models.

First Layer Second Layer Both Layers

Dataset Measure Weight
Poly.

Neuron
EvoPrune

Weight
Poly.

Neuron
EvoPrune

Weight
Poly.

Neuron
EvoPrune

Decay DeepTL Decay DeepTL Decay DeepTL

SRSMAS
Accuracy 0.795 0.815 0.775 0.883 0.834 0.837 0.779 0.884 0.845 0.847 0.647 0.885
% Active neur. 46 46 46 46 47 47 47 47 64 64 64 64

RPS
Accuracy 0.886 0.911 0.803 0.959 0.845 0.911 0.696 0.969 0.694 0.899 0.490 0.978
% Active neur. 37 37 37 37 16 16 16 16 12 12 12 12

LEAVES
Accuracy 0.913 0.918 0.812 0.937 0.904 0.919 0.712 0.935 0.911 0.925 0.747 0.936
% Active neur. 28 28 28 28 12 12 12 12 34 34 34 34

PAINTING
Accuracy 0.995 0.993 0.850 0.950 0.937 0.938 0.920 0.951 0.934 0.940 0.853 0.953
% Active neur. 53 53 53 53 53 53 53 53 51 51 51 51

CATARACT
Accuracy 0.668 0.684 0.673 0.740 0.694 0.689 0.648 0.737 0.686 0.696 0.611 0.746
% Active neur. 63 63 63 63 59 59 59 59 63 63 63 63

PLANTS
Accuracy 0.408 0.403 0.343 0.479 0.392 0.420 0.313 0.482 0.393 0.411 0.278 0.491
% Active neur. 45 45 45 45 37 37 37 37 41 41 41 41

Second, Table 10 shows the results for the evolution of models with two layers, where First Layer
indicates the cases of the evolution of the first layer and Second Layer describes the cases of the second
layer. Results point out that EvoPruneDeepTL outperforms most of the methods in all the models and
datasets. This case presents similar results as the one layer case because only in the PAINTING dataset
EvoPruneDeepTL has a lower performance in relation to the literature methods. As a result of that,
EvoPruneDeepTL’s robustness in performance over the literature methods has been shown in one-layer and
two-layer networks.

Lastly, we compare the execution times for all the models. Evolutionary approaches are known to
converge slowly in highly-dimensional search spaces, as the one tackled in this paper. For that reason,
in this section, we also want to compare the required time of EvoPruneDeepTL and the other traditional
approaches. Table 11 shows the time in seconds for each model. From these results, in terms of computational
efficiency, our method suffers from the convergence slowness derived from the exploration of large search
spaces.

To summarize, in this section we have fairly compared EvoPruneDeepTL to other well-known prun-
ing methods, such as weight pruning and neuron pruning, guided by different pruning techniques. Evo-

21



PruneDeepTL is distinguished from other pruning methods due to the fact that they are advocate for
shrinking the through their pruning process, but with an admissible decrease of the accuracy. Although our
model is slower in terms of execution time, it scores higher accuracy levels than those of traditional pruning
counterparts. Therefore, we conclude that EvoPruneDeepTL excels at determining which parameters to
tune in neural networks with imported knowledge from other related tasks.

Table 11: Times in seconds per run of EvoPruneDeepTL against efficient CNN pruning methods with one and two layers
models.

One Layer Two Layers

Dataset Weight
Poly.

Neuron EvoPruneDeepTL Weight
Poly.

Neuron
EvoPruneDeepTL EvoPruneDeepTL EvoPruneDeepTL

Decay Decay Layer 1 Layer 2 Both Layers

SRSMAS 1,995 2125 1,995 34,510 2,395 2,545 2,398 34,856 38,731 55,596
RPS 1,674 1,893 1,674 19,851 1,229 1,379 1,229 15,758 18,790 28,774

LEAVES 2,425 2,560 2,425 35,243 2,430 2,565 2,430 37,561 57,695 63,897
PAINTING 1,386 1,508 1,386 61,734 2,903 3,243 2,903 46,856 55,414 81,913
CATARACT 594 627 584 6,768 449 473 449 7,392 8,529 12,350
PLANTS 298 407 298 28,456 270 370 270 21,788 22,235 35,998

5.4. Answering RQ4: Feature Selection

The RQ4 establishes the dichotomy of choosing pruning or feature selection for the given problem. For
that reason, in this section we analyze the FS model by conducting the same group of experiments of the
previous sections, to compare it against EvoPruneDeepTL to decide which one scores best among them.
The FS scheme is a particular case of EvoPruneDeepTL if only one fully-connected layer composes the
configuration of the network and the pruning and GA are focused on the extracted features of the ResNet-
50 model.

Table 12 shows the results for this model against the reference methods. This case follows the same
similarities of the previous ones, as FS obtains the best average results for all the datasets.

Table 12: Average results for Fetaure Selection against non pruning methods.

Dataset Measure
Not Best Feature

Pruned Fixed Selection

SRSMAS
Accuracy 0.832 0.866 0.884

% Active neur. 100 20 60

RPS
Accuracy 0.938 0.938 0.985

% Active neur. 100 40 45

LEAVES
Accuracy 0.923 0.927 0.943

% Active neur. 100 80 59

PAINTING
Accuracy 0.939 0.945 0.958

% Active neur. 100 60 55

CATARACT
Accuracy 0.703 0.719 0.747

% Active neur. 100 70 55

PLANTS
Accuracy 0.432 0.432 0.472

% Active neur. 100 10 68

Similarly to the previous sections, we have also compared this model with the CNN pruning methods
with only one layer, as shown in Table 13. In this case, in four out of six datasets the Feature Selection
outperforms these methods, but in LEAVES and PAINTING Weight and Polynomial Decay perform better
than our model.
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Table 13: Average results of Feature Selection against efficient CNN pruning methods.

Feature Selection

Dataset Measure Weight
Poly.

Neuron
Feature

Decay Selection

SRSMAS
Accuracy 0.841 0.878 0.802 0.884
% Active neur. 60 60 60 60

RPS
Accuracy 0.913 0.926 0.869 0.985
% Active neur. 45 45 45 45

LEAVES
Accuracy 0.947 0.940 0.946 0.943
% Active neur. 59 59 59 59

PAINTING
Accuracy 0.962 0.968 0.883 0.958
% Active neur. 55 55 55 55

CATARACT
Accuracy 0.696 0.689 0.687 0.747
% Active neur. 55 55 55 55

PLANTS
Accuracy 0.421 0.317 0.402 0.472
% Active neur. 68 68 68 68

In this section, we have compared our FS scheme against reference models and efficient pruning methods
published in the literature. The results shed light over the benefits of this model as it is also able to achieve
a great performance over the reference models and also, in most cases, against the CNN pruning methods.

The global results for EvoPruneDeepTL and its different versions are presented in Table 14. The rows
show the achieved accuracy and the percentage of improvement in relation to the best reference models for
each model.

Table 14: Results and percentage of improvement for each version of EvoPruneDeepTL in relation to each reference model.

Dataset Measure
Pruning Model Pruning Model Feature

One Layer Both Layers Selection

SRSMAS
Accuracy 0.885 0.885 0.884

% Improvement 1.9 2.2 1.8

RPS
Accuracy 0.954 0.978 0.985

% Improvement 1.6 3.2 4.7

LEAVES
Accuracy 0.935 0.936 0.943

% Improvement 0.8 0.2 1.6

PAINTING
Accuracy 0.951 0.953 0.958

% Improvement 0.6 0.4 1.3

CATARACT
Accuracy 0.732 0.746 0.747

% Improvement 1.3 1.1 2.8

PLANTS
Accuracy 0.480 0.491 0.472

% Improvement 4.8 2.5 4.0

Reviewing the results of EvoPruneDeepTL and FS, we confirm that FS is the best model , as it obtains
the best accuracy levels in four out of six datasets. Furthermore, the pruning of both layers carried out by
EvoPruneDeepTL also attains very notable performance levels.
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Moreover, if we consider the evolution using the pruning model, the evolution of both layers yields the
best results in terms of mean accuracy for each dataset. However, when comparing pruning and FS, the
latter has more robust models: it achieves the best performance in four datasets, and it is also shown in the
improvement percentage for each dataset.

In conclusion, it is shown with empirical evidence that pruning can be done by evolving the fully-
connected layers, specifically, by evolving their neurons to get the fittest configuration that reports an
improvement of the network performance. An evolutionary feature selection based on the extracted features
also achieves a great network performance, both in improving the accuracy and in reducing its complexity.

5.5. Answering RQ5: Comparing different EvoPruneDeepTL with different feature extractors

This section is devised to formally compare EvoPruneDeepTL with different networks that serve as
feature extractor for each dataset to analyze. CNNs have shown their capability to overcome different and
diverse classification problems by learning visual features that best correlate with the target variable of the
task at hand. Transferring this knowledge to other problems with a similar domain, which is what TL stands
for, also helps to the capability of generalization of the model that is devised for the target task, specially
when the volume of data for that task is low.

In previous sections, we have observed that the combination of EvoPruneDeepTL with ResNet-50 has
improved both reference models and pruning methods of the literature. However, in this section, we explore
two other feature extractors and assess whether such performance gaps prevail. To determine performance
gains of EvoPruneDeepTL when using these alternative feature extractors, both are tested over the two best
performing scenarios of EvoPruneDeepTL, namely pruning both layers and feature selection. Moreover, we
also include in the comparison these feature extractors with pruning algorithms from the literature, following
the same experimental procedure described in preceding sections.

The chosen feature extractors are DenseNet-121 and VGG-19. The experiments with these networks
have been carried out in the same conditions that the previous ones have been done. Table 15 shows the
comparison of these networks against the reference models based on fully-connected layers.

Table 15: Average results of EvoPruneDeepTL with different networks evolving two consecutive layers against non pruning
methods.

ResNet-50 DenseNet-121 VGG19

Dataset Measure
Not Best Fixed EvoPrune Not Best Fixed EvoPrune Not Best Fixed EvoPrune

Pruned Both DeepTL Pruned Both DeepTL Pruned Both DeepTL

SRSMAS
Accuracy 0.858 0.863 0.885 0.861 0.881 0.890 0.837 0.853 0.885
% Active neur. 100 50 64 100 50 72 100 85 55

RPS
Accuracy 0.922 0.946 0.978 0.704 0.723 0.754 0.814 0.879 0.922
% Active neur. 100 90 12 100 70 43 100 40 50

LEAVES
Accuracy 0.919 0.934 0.936 0.896 0.904 0.915 0.903 0.911 0.917
% Active neur. 100 15 34 100 60 39 100 50 68

PAINTING
Accuracy 0.939 0.949 0.953 0.940 0.943 0.947 0.923 0.938 0.945
% Active neur. 100 40 51 100 40 67 100 70 34

CATARACT
Accuracy 0.703 0.735 0.746 0.694 0.727 0.741 0.661 0.727 0.759
% Active neur. 100 85 63 100 55 51 100 45 42

PLANTS
Accuracy 0.402 0.466 0.491 0.411 0.428 0.456 0.292 0.364 0.374
% Active neur. 100 55 41 100 55 78 100 50 64

The results from the previous table show the ability of EvoPruneDeepTL to adapt itself to several feature
extractors. For both DenseNet-121 and VGG-19, it improves the reference models. Taking a deep look at
the three networks, ResNet-50 is the best of them, as it has the best improvement over several datasets.
Nonetheless, the straight conclusion which is derived from these experiments is that EvoPruneDeepTL is
able to adapt to different feature extractors and datasets.

Once we have seen that EvoPruneDeepTL has achieved better results than the reference models, now
we inspect the performance of different pruning methods from the literature. For that reason, we compare
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the model which prunes two consecutive layers against its similar models from the pruning methods. Table
16 shows the comparison of the three networks against these methods. Note that, for this comparison, we
have used the best to models of the CNN pruning methods: Weights and Polynomial Decay. This holds for
the rest of this section.

Table 16: Average results of EvoPruneDeepTL against efficient CNN pruning methods for pruning consecutive layers.

Both Layers - ResNet50 Both Layers - DenseNet-121 Both Layers - VGG19

Dataset Measure Weight
Poly. EvoPrune

Weight
Poly. EvoPrune

Weight
Poly. EvoPrune

Decay DeepTL Decay DeepTL Decay DeepTL

SRSMAS
Accuracy 0.845 0.847 0.885 0.862 0.865 0.890 0.933 0.869 0.885
% Active neur. 64 64 64 72 72 72 55 55 55

RPS
Accuracy 0.694 0.899 0.978 0.815 0.817 0.754 0.803 0.842 0.922
% Active neur. 12 12 12 43 43 43 50 50 50

LEAVES
Accuracy 0.911 0.925 0.936 1.000 0.907 0.915 1.000 0.916 0.917
% Active neur. 34 34 34 39 39 39 68 68 68

PAINTING
Accuracy 0.934 0.940 0.953 0.897 0.901 0.947 0.923 0.922 0.945
% Active neur. 51 51 51 67 67 67 34 34 34

CATARACT
Accuracy 0.686 0.696 0.746 0.587 0.593 0.741 0.661 0.686 0.759
% Active neur. 63 63 63 51 51 51 42 42 42

PLANTS
Accuracy 0.393 0.411 0.491 0.251 0.249 0.456 0.284 0.292 0.374
% Active neur. 41 41 41 78 78 78 64 64 64

The results shown in Table 16 give rise to interesting insights. To begin with, the first three columns are
related to ResNet-50, which have a great performance over these reference models, and we know it from the
previous sections. However, DenseNet and VGG are totally new in this kind of experiments. The reality is
that both of these networks improve the CNN pruning methods when they are applied to fully-connected
layers in most cases. Only in a few experiments are better than obtained by our proposal.

A global vision of these experiments suggests that DenseNet and VGG, just like ResNet, contribute to
the discovery of pruned neural networks that maximize accuracy and reduce the number of active neurons.
Moreover, these results verify that EvoPruneDeepTL is able to achieve for different networks better results
than reference and efficient CNN pruning methods when the pruning is made in two consecutive layers.
Thus, we have shown the adaption ability of EvoPruneDeepTL for this case using several networks (ResNet,
DenseNet, and VGG).

The following scenario is the feature selection model which derives from EvoPruneDeepTL. This scenario,
which encourages the pruning of the features extracted by the pre-trained network, has yielded the best
results so far. Next, Table 17 shows the comparison of these networks when feature selection is performed.

In the previous sections, we have shown that EvoPruneDeepTL is able to prune the extracted features
derived from the network, and this model has reached the best results of EvoPruneDeepTL. Table 17 shows
that the pruning of the features that they have been extracted using different networks (DenseNet and VGG)
also increases the performance of the networks, which is shown in the accuracy of these networks over the
datasets. There are some cases in which non pruning methods have less active neurons, but their accuracy
is lower than the models of EvoPruneDeepTL. For that reason, the feature selection keeps being the best of
EvoPruneDeepTL models, as it has the best results so far.

The next, and final, step is to check the performance of this feature selection model against efficient
CNN pruning methods from the literature. In this section, we have checked that, for models which prune
two consecutive layers, EvoPruneDeepTL performs better than the pruning methods. Consequently, now
we focus on this comparison, but in terms of the models which prune the extracted features. Table 18 shows
the results of this comparison for the different networks.

The results show, not only that ResNet-50 has a great performance (same results as previous sections),
that both DenseNet and VGG outperform the pruning methods when applied to prune the features extracted
from the networks. Both new networks show a better performance in all the datasets than the reference
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Table 17: Average results for Feature Selection with different networks against non-pruning methods.

ResNet-50 DenseNet-121 VGG19

Dataset Measure
Not Best Feature Not Best Feature Not Best Feature

Pruned Fixed Selection Pruned Fixed Selection Pruned Fixed Selection

SRSMAS
Accuracy 0.832 0.866 0.884 0.858 0.881 0.896 0.753 0.766 0.869
% Active neur. 100 20 60 100 60 68 100 40 87

RPS
Accuracy 0.938 0.938 0.985 0.720 0.720 0.839 0.887 0.890 0.982
% Active neur. 100 40 45 100 100 48 100 60 53

LEAVES
Accuracy 0.923 0.927 0.943 0.896 0.902 0.921 0.852 0.876 0.924
% Active neur. 100 80 59 100 10 60 100 10 68

PAINTING
Accuracy 0.939 0.945 0.958 0.934 0.941 0.956 0.924 0.924 0.943
% Active neur. 100 60 55 100 90 63 100 100 77

CATARACT
Accuracy 0.703 0.719 0.747 0.669 0.702 0.787 0.628 0.661 0.765
% Active neur. 100 70 55 100 30 57 100 10 66

PLANTS
Accuracy 0.432 0.432 0.472 0.394 0.415 0.464 0.335 0.352 0.376
% Active neur. 100 10 68 100 90 67 100 40 66

Table 18: Average results of EvoPruneDeepTL with different networks against efficient CNN pruning methods for feature
selection models.

Feature Selection - ResNet50 Feature Selection - DenseNet-121 Feature Selection - VGG19

Dataset Measure Weight
Poly. Feature

Weight
Poly. Feature

Weight
Poly. Feature

Decay Selection Decay Selection Decay Selection

SRSMAS
Accuracy 0.841 0.878 0.884 0.869 0.868 0.896 0.826 0.825 0.869
% Active neur. 60 60 60 68 68 68 87 87 87

RPS
Accuracy 0.913 0.926 0.985 0.675 0.699 0.839 0.981 0.834 0.982
% Active neur. 45 45 45 48 48 48 53 53 53

LEAVES
Accuracy 0.947 0.940 0.943 0.858 0.891 0.921 0.904 0.843 0.924
% Active neur. 59 59 59 60 60 60 68 68 68

PAINTING
Accuracy 0.962 0.968 0.958 0.937 0.934 0.956 0.928 0.928 0.943
% Active neur. 55 55 55 63 63 63 77 77 77

CATARACT
Accuracy 0.696 0.689 0.747 0.676 0.682 0.787 0.666 0.688 0.765
% Active neur. 55 55 55 57 57 57 66 66 66

PLANTS
Accuracy 0.421 0.317 0.472 0.387 0.394 0.464 0.322 0.311 0.376
% Active neur. 68 68 68 67 67 67 66 66 66

methods. For that reason, we conclude that the usage of EvoPruneDeepTL with these three networks has
proven the capability to perform better than the pruning methods.

In this section, we have compared ResNet-50 with other two networks in two different scenarios: pruning
consecutive layers and pruning the extracted features from the networks. The experiments show that
EvoPruneDeepTL has proven its ability to adapt to other networks in both cases and has improved both
reference models and pruning methods of the literature. For that reason, and in light of the results from
the previous sections, we conclude that EvoPruneDeepTL has shown the ability of facing diverse tasks, as
EvoPruneDeepTL has achieved a great performance when different networks are used either for pruning
consecutive layer or pruning the features extracted from the network.

5.6. Answering RQ6: Analyzing the ability of EvoPruneDeepTL to adapt to relevant classes and robustness.

The purpose of this section is twofold. First, we want to analyze the goodness of EvoPruneDeepTL when
modeling varying problems. In this case, we want to see how it adapts to the different classes that make up
the datasets so that it captures the relevance of each of them. For a given dataset, we analyze each of its
classes to determine if EvoPruneDeepTL is also able to have a good performance over it, and then, compare
these results with the whole dataset.
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The second objective of this section is the analysis of these results. Once EvoPruneDeepTL has modelled
each of the classes for a dataset at hand, we check the quality of the obtained results. For that reason, we
must check that results are not affected by the stochasticity induced by the usage of a genetic algorithm at
the core of the proposed EvoPruneDeepTL. Recall that stochasticity implies that the output of the algorithm
may not be the same, even with the same input. For that reason, our second objective is related to this
factor, and we want to show that the effect of randomness has a low impact on EvoPruneDeepTL, i.e., the
good results do not depend on the randomness.

In order to measure the effect of randomness in the pruned networks evolved by EvoPruneDeepTL, we
resort to a similarity measure called Centered Kernel Alignment, CKA (Kornblith et al., 2019, June). CKA
measures the similarity of trained neural networks, in compliance with several invariance properties that
must be met for these particular computing structures (namely invariance to invertible linear transforma-
tion, invariance to orthogonal transformation and invariance to isotropic scaling). We compare the trained
networks as a result of the application of EvoPruneDeepTL. This comparison answers the question about
the robustness of EvoPruneDeepTL.

CKA is based on the Hilbert-Schmidt Independence Criterion, HSIC (Gretton et al., 2005, October). It
compares two matrices (K and L) and determines the level of independence between them, as it is shown
in 4. In our case, these matrices are the structures that contain the weights of the trained neural networks.
CKA takes a maximum value of 1 when the two inputs of CKA are the same matrix. The range of this
measure is [0, 1]. This means that both matrix are very similar (in that case because they are identical).
Thus, if the CKA value is high, then both matrix are similar.

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
(4)

CKA is a measure which allows us make a double comparison. Note that this measure helps us to compare
the genotype (chromosomes of the GA) against the phenotype (pruned networks of EvoPruneDeepTL). The
interpretation of this measure follows that if the similarity of the chromosomes is high, then the CKA value
should be also high (close to one, which is its maximum). Five independent executions have been made of
EvoPruneDeepTL, so we have taken the output of each of them, and we have performed a double comparison
based on this trained neural network, which is explained next:

1. Comparison against the closest element (CKAClosest): we have the Output element as the best one
for an execution. Then, we calculate the Hamming distance of the best element with respect to
all the elements evaluated in the evolutionary process of EvoPruneDeepTL. The element with the
smallest Hamming distance to the best one is denoted as Closest. Then, Output is compared against
Closest. The robustness of EvoPruneDeepTL is tested in this comparison because high values of CKA
when similar chromosomes are compared is essential, as it will show that the results are not due to
randomness, but to the process that EvoPruneDeepTL performs.

2. Comparison against fully-connected, reference models (CKARef ): in this case, we compare Output
against a fully-connected network with all the neurons activated. This comparison sheds light on the
ability of EvoPruneDeepTL to learn which neurons are the best to solve the problem at hand. It
also permits to explain the difference in terms of accuracy between the models that EvoPruneDeepTL
develops against the reference models. This value of CKA quantifies the differences in accuracy between
our models and the reference models, as EvoPruneDeepTL searches for the best neurons to remove
the unnecessary ones, while reference models simply train the models without taking into account the
neurons which should be removed.

In this section, we select the best two models of EvoPruneDeepTL for these experiments: pruning consec-
utive layers (both case) and pruning the features extracted from the networks (feature selection). Moreover,
three datasets are considered in the experiments designed for this section: CATARACT, PAINTING and
RPS. Lastly, we show different tables with the following structure: DATASET-Class. This means that the
mentioned DATASET is analyzed without the class called Class.
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For the CKA comparison, we will show two groups of tables, one per each type of model (pruning
consecutive layer and feature selection). Moreover, each table is composed of the problem at hand and
the mean values of the Hamming distance and CKA averaged over five executions of EvoPruneDeepTL.
The rows of each table correspond to each DATASET-Class and the four columns represent in pairs the
previously explained comparisons, CKAClosest and CKARef , as we show the mean Hamming distance and
its corresponding CKA mean value for each of the comparisons.

5.6.1. Analyzing the relevance of each class for a given dataset

Given a dataset of n classes, this approach performs a procedure that removes a whole class of the dataset
and then, EvoPruneDeepTL is applied with that remaining data both in pruning consecutive layers and in
feature selection. As a result of that process, n experiments are done for each dataset.

The structure of the these tables correspond with the usual structure of the rest of the paper, but now we
show four columns. These columns represent, in pairs based on the model, the results of EvoPruneDeepTL
versus the reference model without pruning. The difference between the pairs of columns is the model at
hand: pruning consecutive layers or feature selection. We note that for the first two columns, the evolution
process which lies in EvoPruneDeepTL is made with 300 evaluations and two-layers networks, meanwhile
for the last columns, the process of pruning the extracted features is made with only one-layer networks and
200 evaluations, i.e., under the same conditions as the experiments in the previous sections.

The first results show the CATARACT dataset under these conditions. Table 19 shows these results. We
conclude from these results that Cataract class is the easiest class in the dataset, as both models struggle
with that class (third row of the table), but they improve their results with it. However, the results of
EvoPruneDeepTL are better than the reference model. The number of active neurons at the end of the
evolutionary process are reduced, in most cases, nearly by half. Moreover, the feature selection model is
also able to decrease this number from its previous results (55% of remaining active neurons) in some cases.
The same conclusion can be drawn in relation to pruning consecutive layers, as the full dataset has a mean
percentage of active neurons of 63% and in three of fours cases this number is reduced. The results show
that the pruning of the extracted features of the network, i.e., the feature selection which derives from
EvoPruneDeepTL, is the best approximation for this dataset.

Table 19: Average results of CATARACT-Class with pruning consecutive layers and feature selection.

Dataset Measure
EvoPruneDeepTL No Pruning EvoPruneDeepTL No Pruning

Both Both Feature Selection Feature Selection

CATARACT - Accuracy 0.844 0.801 0.871 0.697
Retina % Active neur. 43 100 54 100

CATARACT - Accuracy 0.846 0.789 0.857 0.554
Glaucoma % Active neur. 44 100 63 100

CATARACT - Accuracy 0.735 0.732 0.761 0.614
Cataract % Active neur. 76 100 49 100

CATARACT - Accuracy 0.833 0.805 0.843 0.655
Normal % Active neur. 53 100 57 100

CATARACT - Accuracy 0.746 0.703 0.747 0.703
Full % Active neur. 63 100 55 100

We focus now on the following dataset, RPS. Table 20 shows the results of these experiments. Results
show that the Paper class makes an easier dataset, as all the approaches reach the maximum accuracy. The
other two experiments show that EvoPruneDeepTL achieves a better performance to the reference models.
For pruning consecutive layers, the number of remaining active neurons is higher in comparison with the
full dataset, but in the feature selection model this number is very similar or even for RPS-Scissors is lower.
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Table 20: Average results of general RPS pruning consecutive layers and feature selection.

Dataset Measure
EvoPruneDeepTL No Pruning EvoPruneDeepTL No Pruning

Both Both Feature Selection Feature Selection

RPS - Accuracy 1.000 1.000 1.000 1.000
Paper % Active neur. 51 100 51 100

RPS - Accuracy 0.985 0.979 1.000 0.996
Rock % Active neur. 51 100 49 100

RPS - Accuracy 0.994 0.955 1.000 0.955
Scissors % Active neur. 33 100 23 100

RPS Accuracy 0.978 0.922 0.985 0.938
Full % Active neur. 12 100 45 100

The last considered dataset is PAINTING. Table 21 shows the results for each of the experiments which
have been made for this dataset. The table shows that both of EvoPruneDeepTL models are constantly
achieving better results than the reference models. However, the difference between the accuracy is higher
in the feature selection models than the pruning consecutive layers. Taking into consideration the remaining
active neurons, the feature selection has a similar degree of pruning in relation with the experiments which
have been carried out for the full dataset experiments (55%). Similar conclusion can be drawn for the other
model, as the mean percentage of active neuron for pruning consecutive layers is 51% and we have models
with fewer active neurons, but also with higher percentage.

Table 21: Average results of general PAINTING pruning consecutive layers and feature selection.

Dataset Measure
EvoPruneDeepTL No Pruning EvoPruneDeepTL No Pruning

Both Both Feature Selection Feature Selection

PAINTING - Accuracy 0.942 0.932 0.947 0.857
Sculpture % Active neur. 64 100 53 100

PAINTING - Accuracy 0.959 0.946 0.961 0.820
Painting % Active neur. 42 100 50 100

PAINTING - Accuracy 0.942 0.920 0.949 0.835
Iconography % Active neur. 30 100 57 100

PAINTING - Accuracy 0.979 0.974 0.979 0.883
Engraving % Active neur. 74 100 56 100

PAINTING - Accuracy 0.994 0.989 0.996 0.944
Drawings % Active neur. 57 100 57 100

PAINTING Accuracy 0.953 0.939 0.958 0.939
Full % Active neur. 51 100 55 100

These experiments shed light on a conclusion that it is not far from the previous sections. The feature
selection model, which performs the pruning of the extracted features of the network, constitutes the best
model for all the experiments, as it has the most difference between EvoPruneDeepTL and reference models.
Nonetheless, the effect of pruning consecutive layers is also positive, as it is shown in the results of the
previous tables.

The next part of this section is crucial to determine the robustness of EvoPruneDeepTL. Moreover, the
differences in accuracy of the previous tables are going to be explained in the following tables. The key
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element of the comparison is the CKA measure and the Hamming distance of the solutions. The combination
of these values determine the key points that we have discussed at the beginning of this section.

Therefore, we are showing the CKA tables for each experiment to perform the commented double com-
parison in this section. These tables have a different structure from the last tables, so we explain how to
interpret them. Both of them present a similar structure, but the table which shows the results for pruning
consecutive layers has another column. This column shows the value of the CKA measure for the layer at
hand. In the case of the prune of the extracted feature of the network (feature selection), as they only has
one layer, this column is not required.

We show this pair of tables for each DATASET-Class. The first table shows the results of the feature
selection model, and the second one presents the results of the pruning of consecutive layers.

The composition of the tables for feature selection models is the following one. After the first column
which show the dataset at hand, the next two columns represent the comparison among the phenotype and
genotype of EvoPruneDeepTL, i.e, chromosomes and pruned networks. Both mean Hamming distance of the
five executions and CKAClosest are shown. The following group of two columns shows the other explained
comparison of the reference models, which have all the neurons active. The metrics are the same as the
previous case, but now the CKA (CKARef ) corresponds to the mean value from the best model to this
reference model.

The composition of the table for the pruning of consecutive layers is similar to the previous case. However,
another column is required for a more detailed explanation. This column gives information about the CKA
value for the layer at hand. Due to the fact that we are comparing the whole chromosome, both Hamming
distance values are common to both layers, but the CKA value is layer dependent. Then, in this table, we
want to highlight that the best chromosome EvoPruneDeepTL obtains good values of the CKA measure for
each of the layers of the model.

First, we show the CKA values for the CATARACT dataset in its four different cases of DATASET-Class.
Table 22 and Table 23 show the results for feature selection and pruning consecutive layers, respectively.
The results show for both models the robustness of EvoPruneDeepTL because the mean CKA of the best
versus its closest chromosome in the history is a value extremely close to 1, which is the maximum value
(this value is reached when the best solution is compared to itself).

Taking a more deep look at the results of the feature selection, we see that the Hamming distance is
very low, which is a good result and also proves the robustness of EvoPruneDeepTL. The second group of
columns, in which the comparison is made against a model with all neurons active, we see that the Hamming
distance is higher and this has an impact on the CKA value, which is higher. The conclusion which derives
from these experiments is that EvoPruneDeepTL learns to distinguish the valuable neurons which have an
impact on the model. This CKA value is the explanation of the difference in accuracy in the previous
experiments of this dataset between EvoPruneDeepTL models and reference models.

Table 22: Comparison of the CKA measure for feature selection in CATARACT-Class.

Feature Selection

Dataset
Hamming Distance

CKAClosest
Hamming Distance

CKARefEvoPruneDeepTL No Pruned Model

CATARACT -
0.005 0.981 0.457 0.283

Retina

CATARACT -
0.002 0.991 0.372 0.376

Glaucoma

CATARACT -
0.001 0.994 0.514 0.200

Cataract

CATARACT -
0.011 0.961 0.423 0.250

Normal
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The results that they are shown in Table 23 confirm the robustness of EvoPruneDeepTL. This insight
is the same as in the previous table: low values of Hamming distance in the best chromosomes of Evo-
PruneDeepTL implies high values of CKA in the closest element. Moreover, the Hamming distance from
the elements of pruning consecutive layers is higher than in the other case, but the CKA values are also
higher. This is a fair result because the difference in accuracy between EvoPruneDeepTL and the reference
models is lower than in the other case. Note that the class Cataract from this dataset is the class with the
fewest gap in accuracy, and this is shown in its CKA value. The Glaucoma class is the opposite of Cataract,
and the CKA value is lower. In all the cases, EvoPruneDeepTL confirms the ability to learn the neurons
that they are indispensable to achieve a greater performance, and that is the main difference between the
reference models.

Table 23: Comparison of the CKA measure for pruning consecutive layers in CATARACT-Class.

Pruning consecutive layers

Dataset # Layer
Hamming Distance

CKAClosest
Hamming Distance

CKARefEvoPruneDeepTL No Pruned Model

CATARACT - Layer 1
0.020

0.980
0.567

0.685
Retina Layer 2 0.983 0.769

CATARACT - Layer 1
0.001

0.996
0.556

0.680
Glaucoma Layer 2 0.997 0.745

CATARACT - Layer 1
0.001

0.998
0.240

0.891
Cataract Layer 2 0.998 0.916

CATARACT - Layer 1
0.027

0.975
0.469

0.784
Normal Layer 2 0.979 0.843

The second dataset under analysis is RPS. Table 24 shows the results of the feature selection models for
RPS-Class. We see that the pair Hamming distance and CKA of the closest have a great result in two of
the three cases. Moreover, the results of the other metrics achieve a great results, similarly to CATARACT-
Class with this model. For that reason, we confirm that, for this model, EvoPruneDeepTL is also able to
learn the neurons that maximize the accuracy for the problem.

A special case is RPS-Paper. When RPS does not have this class, the problem seems to be a very easy
task, because all the models in the previous experiments for this dataset achieve the maximum accuracy.
This is the only case in which the CKA for the best and its closest element is lower in comparison with the
others. This is due to the fact that the problem at hand can be solved with many chromosomes, as they
all have the maximum accuracy value, so the chromosomes might not be very similar, because the range of
possible solutions is wide.
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Table 24: Comparison of the CKA measure for feature selection in RPS-Class.

Feature Selection

Dataset
Hamming Distance

CKAClosest
Hamming Distance

CKARefEvoPruneDeepTL No Pruned Model

RPS -
0.199 0.416 0.485 0.224

Paper

RPS -
0.020 0.926 0.507 0.195

Rock

RPS -
0.040 0.863 0.766 0.104

Scissors

Table 25 shows the pruning of consecutive layers that it is performed by EvoPruneDeepTL. Similar
conclusions are obtained from these results. First, we see that the Paper class has the same problem which
appears in the previous table. However, the other two groups of experiments are harder to solve and this
have been drawn in the CKA of the closest element, because both layers have a great value of this measure.
In the counterpart, the CKA values for the reference also has a similar understanding, which belongs to the
fact that EvoPruneDeepTL pruning of consecutive layers learns the best neurons for both layers.

In overall, EvoPruneDeepTL is also a robust model for this dataset both in feature selection and pruning
consecutive layers, and it also proves that the difference in accuracy between our models and the reference
models is stated in the CKARef .

Table 25: Comparison of the CKA measure for pruning consecutive layers in RPS-Class.

Pruning consecutive layers

Dataset # Layer
Hamming Distance

CKAClosest
Hamming Distance

CKARefEvoPruneDeepTL No Pruned Model

RPS - Layer 1
0.217

0.725
0.486

0.764
Paper Layer 2 0.761 0.825

RPS - Layer 1
0.032

0.977
0.492

0.757
Rock Layer 2 0.983 0.852

RPS - Layer 1
0.010

0.982
0.667

0.597
Scissors Layer 2 0.974 0.668

The last dataset in this section is PAINTING. The first table relates to the feature selection model of
EvoPruneDeepTL. Table 26, once more, shows that the lowest Hamming distance of the best chromosome
when it is compared with its closest, brings high values of CKA. The conclusion is clear, EvoPruneDeepTL
is robust. Moreover, the values of CKARef are also a good estimation of how EvoPruneDeepTL looks for
the best neurons. Both CATARACT and PAINTING have lots of similarities in the feature selection model.
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Table 26: Comparison of the CKA measure for feature selection in PAINTING-Class.

Feature Selection

Dataset
Hamming Distance

CKAClosest
Hamming Distance

CKARefEvoPruneDeepTL No Pruned Model

PAINTING -
0.002 0.992 0.471 0.259

Sculpture

PAINTING -
0.003 0.986 0.502 0.202

Painting

PAINTING -
0.002 0.993 0.433 0.236

Iconography

PAINTING -
0.006 0.984 0.441 0.291

Engraving

PAINTING -
0.021 0.925 0.432 0.236

Drawings

Table 27 shows the results for pruning consecutive layers in the dataset PAINTING. These results, again,
prove that the closest and best elements of EvoPruneDeepTL achieve a great value of CKA given a low value
of Hamming distance, which is the best output that we can have. Moreover, the CKA values for the reference
models are high, but this is due to the fact that the difference in accuracy between the models is lower.
However, this also proves that EvoPruneDeepTL also learns the best neurons for this problem.

Table 27: Comparison of the CKA measure for pruning consecutive layers in PAINTING-Class.

Pruning consecutive layers

Dataset # Layer
Hamming Distance

CKAClosest
Hamming Distance

CKARefEvoPruneDeepTL No Pruned Model

PAINTING - Layer 1
0.001

0.998
0.359

0.832
Sculpture Layer 2 0.999 0.879

PAINTING - Layer 1
0.004

0.998
0.578

0.701
Painting Layer 2 0.998 0.777

PAINTING - Layer 1
0.001

0.998
0.701

0,593
Iconography Layer 2 0.998 0.672

PAINTING - Layer 1
0.001

0.999
0.255

0.895
Engraving Layer 2 0.999 0.931

PAINTING - Layer 1
0.003

0.998
0.427

0.797
Drawings Layer 2 0.998 0.874

In this section, we have shown that EvoPruneDeepTL is able to capture the relevance of the diverse classes
and datasets that they are shown. Thanks to that adaption, EvoPruneDeepTL has shown its robustness
and its ability to search for the best neurons to tackle the problem at hand.

5.6.2. Effects of a gradual aggregation of a class in the problem at hand

This section is devised to analyze the impact of a class when it appears as a new class in a dataset, and it
increases its number of examples over time. We have selected the class Iconography of PAINTING for these
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experiments. The reason lies in the fact that the class with a low percentage of examples is a minority class
of this dataset, but it becomes the majority class of PAINTING when all the examples are used. Adding
more examples of this class lets us check how EvoPruneDeepTL is able to adapt to different scenarios for
the same dataset when a class is gradually growing on its importance in the dataset.

This section has a similar structure to the previous one. First, we show the results of the experiments for
pruning consecutive layers and feature selection models of EvoPruneDeepTL. Then, the CKA values is also
presented to perform the same double comparison as it has been done in the last section. For this section,
the notation for the dataset is PAINTING-Iconography we talk about the dataset resulting from adding
more examples, and in the tables this is shown as PAINTING-Pct%, where Pct = 20, 40, 60 and 80.

The first experiments we show are in Table 28. These experiments have been carried out with the dataset
PAINTING with the different percentage, as we have previously explained. The results show that, as the
percentage of data increases, the models tend to become better. If we compare these results with those
obtained with the full data set, we see that the model with 80% of the data (and with 60% of the data also
for feature selection) is the closest to the full model (see Table 6 and Table 12).

Reviewing the results tables with the full dataset and comparing them with these results, we observe
that for the consecutive layer pruning model, the number of active neurons is lower in these experiments.
The same phenomenon occurs in most of the feature selection cases, except when 40% of the data is used,
where this number increases as the model improves the accuracy for that dataset at the cost of increasing
the percentage of active neurons.

Table 28: Average results for PAINTING-Iconography with pruning consecutive layers and feature selection.

Dataset Measure
EvoPruneDeepTL No Pruning EvoPruneDeepTL No Pruning

Both Both Feature Selection Feature Selection

PAINTING - Accuracy 0.944 0.931 0.945 0.826
20% % Active neur. 47 100 56 100

PAINTING - Accuracy 0.945 0.929 0.950 0.826
40% % Active neur. 39 100 65 100

PAINTING - Accuracy 0.946 0.931 0.954 0.839
60% % Active neur. 53 100 51 100

PAINTING - Accuracy 0.947 0.927 0.953 0.839
80% % Active neur. 41 100 47 100

PAINTING Accuracy 0.953 0.939 0.958 0.939
Full % Active neur. 51 100 55 100

Next, we follow the same process as for the previous section, in which the different classes of various
data sets were analyzed. We show the value of CKA for the feature selection model and for the pruning
consecutive layers model. Table 29 shows the results for the different feature selection models applied to the
various data percentage options of the Iconography class. The CKA value, which compares the best with
its closest element in the history of the execution, is very high. This implies that EvoPruneDeepTL is a
robust model, since the phenotype obtained from the genotype is very similar. In addition, the other CKA
value reported by the reference model indicates that EvoPruneDeepTL is capable of the neurons important
for the model, thus explaining the difference in accuracy between the two approaches.
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Table 29: Comparison of the CKA measure for feature selection in PAINTING-Iconography.

Feature Selection

Dataset
Hamming Distance

CKAClosest
Hamming Distance

CKARefEvoPruneDeepTL No Pruned Model

PAINTING -
0.001 0.995 0.442 0.277

20%

PAINTING -
0.007 0.976 0.352 0.461

40%

PAINTING -
0.019 0.934 0.484 0.205

60%

PAINTING -
0.001 0.998 0.530 0.177

80%

The following table, Table 30. The robustness of the proposal becomes evident when comparing the best
element with its closest element in each of the runs, which has also occurred in the previous case. CKA
values are extremely high when these elements are compared.

The comparison with respect to the reference models shows results similar to those of other cases of
consecutive layer pruning. The difference in accuracy is reflected in the CKA, which is higher than in the
feature selection cases, because this difference is larger when it comes to the pruning of the extracted features
of the network.

Table 30: Comparison of the CKA measure for pruning consecutive layers in PAINTING-Iconography.

Pruning consecutive layers

Dataset # Layer
Hamming Distance

CKAClosest
Hamming Distance

CKARefEvoPruneDeepTL No Pruned Model

PAINTING - Layer 1
0.001

0.999
0.529

0.732
20% Layer 2 0.998 0.794

PAINTING - Layer 1
0.001

0.998
0.607

0.677
40% Layer 2 0.999 0.755

PAINTING - Layer 1
0.001

0.999
0.466

0.758
60% Layer 2 0.999 0.828

PAINTING - Layer 1
0.001

0.998
0.594

0.694
80% Layer 2 0.998 0.762

This section has allowed us to see EvoPruneDeepTL in different situations it has had to face. From
data sets with fewer classes so that our proposal is able to adapt to all the subclasses that compose it (first
subsection), to the gradual increase of a class from being the minority to the majority (second subsection).
The study which has been performed in this section relies on a measure which allows us to study the
robustness of EvoPruneDeepTL and, in addition, allows us to see the differences in accuracy of the models
that they have been developed.

The results in both sets of experiments show that the stochasticity that might be present in the proposal
is not influential. The results of the CKA measure when comparing the best trained network found by
EvoPruneDeepTL and its closest trained network for each of the runs show the high degree of robustness of
EvoPruneDeepTL.
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The comparison of EvoPruneDeepTL with networks with all neurons active (CKARef ) shows us a twofold
conclusion. When we are dealing with the feature selection models, those that performed the pruning of
the extracted features of the network, the difference in accuracy is reflected in the value of CKA, which
is very low and that means that the models are very different On the other hand, for the case of pruning
consecutive layers, the CKARef value reflects models with less difference in comparison to the previous case.
However, both in feature selection and pruning consecutive layers it is observed that EvoPruneDeepTL is
able to search for the neurons that best approximate the problem to be solved.

6. Advantages and disadvantages of EvoPruneDeepTL

This section is devised to discuss the advantages and disadvantages of EvoPruneDeepTL, considering
the diverse and large experimentation which has been done in the manuscript. The advantages of Evo-
PruneDeepTL can be summarized as follows:

• Specialization of the last layers of networks.

An important element of EvoPruneDeepTL is the transfer learning. This is one of the most commonly
used techniques. We have refined its process, which is the extraction of pre-trained features and then,
the specialization of the fully-connected layers. In this context, EvoPruneDeepTL, and specifically the
GA which is composed of, when applied to these layers does not limit the network learning compared
to other evolutionary models in the literature that require high computational time to evaluate the
datasets, as they train the whole network. For that reason, EvoPruneDeepTL can be applied to more
complex datasets.

• Performance over reference models and efficient pruning methods from the literature.

The usage of an evolutionary model that focuses on pruning neurons of the fully-connected layers
achieves a better performance than other pruning methods when applied under the same conditions of
EvoPruneDeepTL. The positive effect of the genetic algorithm is the selection of the best neurons of
these layers, so that the evolution towards the best configuration for the networks is obtained thanks
to EvoPruneDeepTL.

• Constructive modeling over the last layers of the networks.

In the different experiments that have been carried out in the sections, we have observed that perform-
ing the pruning constructively based on the number of layers achieves good results. Pruning one-layer
networks achieves good results, but when the number of layer increases, it is shown that performing
the pruning over a single layer of two-layer networks improves the one-layer networks. Nonetheless,
the simultaneous pruning of the both layers achieves a better modeling of the datasets than all the
previous pruning models.

• Pruning the extracted features of the network against pruning fully-connected layers.

EvoPruneDeepTL obtains better results by pruning the self-generated features resulting from transfer
learning versus pruning the fully-connected layers. This is an intuitive idea because the learned patterns
or features are different for each problem, and the learned features for the original problem may not
be useful for the target problem. Knowing which characteristics matter is crucial to the problem at
hand. The evolutionary process allows pruning these features and selecting those that best solve the
modeling problem under consideration.

• Generalization of EvoPruneDeepTL to other feature extractors.

One of the advantages of EvoPruneDeepTL is that the model is generalizable to diverse feature extrac-
tors. This is an important advantage because EvoPruneDeepTL is able to achieve a great performance
over different datasets and with diverse networks. These are used to extract the features of the dataset,
thanks to the transfer learning technique. EvoPruneDeepTL has improved the reference models and
pruning models from the literature in both the pruning of two consecutive layers and the pruning of
the features extracted by the networks.
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• Adaptation to relevant classes and gradual aggregation of data for the problem at hand.

EvoPruneDeepTL has achieved a great performance in different situations. However, it is also impor-
tant to see how it adapts to different situations within the datasets themselves. EvoPruneDeepTL has
improved the performance of the reference models, but a measure is needed to support the quality of
these models. However, this increase in performance has been proven by CKA not to be the result of
chance, so EvoPruneDeepTL models are able to search for the best neurons to maximize the accuracy
of the problem.

• The good results of EvoPruneDeepTL do not depend on randomness.

The evolutionary algorithm in which EvoPruneDeepTL lies in is a stochastic algorithm and the results
may be affected by randomness. This is a risk about the model, so it is required to check if the good
results are biased by the randomness. For that reason, we have introduced a new measure, CKA.
This measure compares the differences between the pruned networks, and it is a way to measure the
robustness of EvoPruneDeepTL. The values of the CKA for the various experiments of the previous
section shed light on the fact that EvoPruneDeepTL results do not depend on the randomness.

The main disadvantage of EvoPruneDeepTL is:

• Execution time of EvoPruneDeepTL.

The main drawback of EvoPruneDeepTL it is the time that is required to execute the model. In
comparison with the pruning methods from the literature and the reference models, the table of
execution times (see Table 11) shows the speed of the other models, but EvoPruneDeepTL is slower
than these models. The time difference is made up by improved network performance, thanks to the
usage of EvoPruneDeepTL. Nonetheless, there are some practical cases in which the training time is
not a problem, like in medical diagnosis, because the main objective is obtaining a better percentage
of the models in terms of accuracy.

7. Conclusions

This paper has introduced EvoPruneDeepTL, a novel model that sparsifies the architecture of the last
layers of a DL model initialized using TL. EvoPruneDeepTL is a combination of sparse layers and EA, so
that the neurons of these layers are pruned using the EA, in order to adapt them to the problem to tackle
and deciding which neurons/connections to leave active or inactive.

EvoPruneDeepTL is a flexible model that evolves models with one and two layers and even two layers at
the same time. Our results show that the pruning over complete neurons is better than pruning connections
individually, establishing the last one as the best encoding strategy. The evolution of the sparse layer
improves these models in terms of accuracy and also in terms of complexity of the network. In comparison
with compared reference models and pruning methods from the literature, EvoPruneDeepTL achieves a
better performance than all of them. The choice of one among the pruning models or feature selection has
been answered and informed with experimental evidence: the FS scheme derived from EvoPruneDeepTL
has shown a better performance, in most cases, than the pruning methods. The ability of adaptation of
EvoPruneDeepTL to other feature extractors has been tested. Lastly, EvoPruneDeepTL has also shown its
capability to adapt to the relevance of diverse problems and it has also achieved an outstanding level of
robustness, which implies that the results do not depend on random nature of the search operators used by
the GA that lies at the core of the proposed evolutionary pruning method.

From an overarching perspective, this work aligns with a growing strand of contributions where evolu-
tionary computation and DL have synergized together to yield evolved models that attain better levels of
performance and/or an increased computational efficiency. Indeed, this fusion of concepts (forged as Evolu-
tionary Deep Learning) has been used for other evolution processes, including hyperparameter or structural
tuning. Another recent case of the symbiosis of EA’s and DL are represented in AutoML-Zero that use an
evolutionary search to automatically search the best DL structure. AutoML-Zero and EvoPruneDeepTL
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are two great examples of the benefits of combining EA’s and DL that outline the potential and promising
path of successes envisioned for this research area.

Future research work stemming from the results reported in this study is planned from a two-fold
perspective. To begin with, we plan to achieve larger gains from the combination of DL and EA by extending
the evolutionary search over higher layers of the neural hierarchy, increasing the number of evolved layers
and neurons per layer. To this end, we envision that exploiting the layered arrangement in which neurons are
deployed along the neural architecture will be essential to ensure an efficient search. The second research line
relates to this last thought, aiming to improve the search algorithm itself by resorting to advanced concepts
in evolutionary computation (e.g. niching methods or co-evolutionary algorithms).

Finally, a third research path arising from this work is the reformulation of the pruning problem and
the adaptation of EvoPruneDeepTL to select which activation functions to be used in the fully connected
part of the neural network. Our hypothesis is that the pruning problem can be reformulated so that every
decision variable represents which activation function to utilize in every neuron. Efforts will be invested in
this direction, adapting operators within EvoPruneDeepTL to efficiently explore the combinatorial search
space of the reformulated optimization problem.
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Abstract

Evolutionary Computation algorithms have been used to solve optimization problems in relation with
architectural, hyper-parameter or training configuration, forging the field known today as Neural

Architecture Search. These algorithms have been combined with other techniques such as the pruning of
Neural Networks, which reduces the complexity of the network, and the Transfer Learning, which lets the
import of knowledge from another problem related to the one at hand. The usage of several criteria to
evaluate the quality of the evolutionary proposals is also a common case, in which the performance and
complexity of the network are the most used criteria. This work proposes MO-EvoPruneDeepTL, a

multi-objective evolutionary pruning algorithm. MO-EvoPruneDeepTL uses Transfer Learning to adapt
the last layers of Deep Neural Networks, by replacing them with sparse layers evolved by a genetic

algorithm, which guides the evolution based in the performance, complexity and robustness of the network,
being the robustness a great quality indicator for the evolved models. We carry out different experiments

with several datasets to assess the benefits of our proposal. Results show that our proposal achieves
promising results in all the objectives, and direct relation are presented among them. The experiments
also show that the most influential neurons help us explain which parts of the input images are the most
relevant for the prediction of the pruned neural network. Lastly, by virtue of the diversity within the
Pareto front of pruning patterns produced by the proposal, it is shown that an ensemble of differently
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1. Introduction

Evolutionary Computation (EC) refers to a family of global optimization algorithms inspired by biological
evolution (Back & Schwefel, 1996, May). EC algorithms such as Evolutionary Algorithms (EA) (Back et al.,
1997) have been used to solve several complex optimization problems which cannot be analytically solved
in polynomial time. In many real-world optimization problems, there is not only one criterion or objective
to improve, but several objectives to consider. Multi-Objective Evolutionary Algorithms (MOEAs) are an
family of EAs capable of efficiently tackle optimization problems comprising several goals (Deb, 2011).

Structural search and, in particular, Neural Architecture Search (NAS), is one of the non-polynomial
problems which has been approached with EAs over the years (Martinez et al., 2021). This problem consists
of looking for neural network configurations that fit better one dataset by optimizing the performance or
loss of the network in function of the selected evaluation metric (Stanley & Miikkulainen, 2002). There have
been several Neural Networks (NN), and particularly when integrated with Deep Learning (DL) called as
Deep Neural Network (DNN), to which NAS has been applied are well-known networks with one or more
objectives (Pham et al., 2018, July; Yang et al., 2020, June).

Among other decision variables considered in NAS, this area has also approached the improvement of
a NN by optimally pruning their neural connections. Pruning techniques seek to reduce the number of
parameters of the network, targeting network architectures with less complexity. Usually this comes at the
cost of a lower performance of the network. When a new learning task is present, a manner to compensate the
lack of quality of data is the usage of the Transfer Learning (TL), whose most straightforward approximation
is the usage of pre-trained network in very large datasets (Krizhevsky et al., 2017) for the extraction of
features, followed by a specialization of the last layers of the network. Due to the fact that the number of
trainable parameters of these last layers is lower, it is possible to avoid an early overfitting of the network,
which can happen if there are few examples for large models. For those cases, the search of optimal pruning
patters using evolutionary NAS is done for these last layers (Poyatos et al., 2023).

Robustness is one of the unavoidable requirements to ensure proper performance in scenarios where
risks must be controlled and certain guarantees are needed to ensure the proper performance of the models
(ISO, 2021a,b). The combination of EAs together with techniques that allow evaluating the robustness
of the models paves the way towards the creation of better models for all types of problems. It could
be useful to incorporate robustness as a target, but unfortunately, robustness has been rarely considered
an objective (Wang et al., 2021). Robustness can be measured in several ways for a DNN model, one
being the performance in Out-of-Distribution (OoD) detection problems (Hendrycks & Gimpel, 2016). This
problem consists of detecting whether a new test instance queried to the model belongs to the distribution
underneath the learning dataset i.e., the In-Distribution (InD) dataset or, instead, it belongs to another
different distribution (correspondingly, the Out-Distribution dataset, OoD).

The natural extension of NAS is the development of proposals with several objectives. In this scenario, the
MOEAs can take place, as they evolve the networks meanwhile an optimization of several objectives is made
(Lu et al., 2022b; Elsken et al., 2019). The MONAS term arises as the union of MO algorithms which are
used for NAS problems (MONAS). MONAS algorithms usually rely in several objectives, being a standard
objective the performance of the network. The complexity of the network is a common second objective,
which can be modeled as the number of parameters pruned form the network, network compression or other
alternatives. More sophisticated proposals consider another objective based on the energy consumption or
hardware device in use, among others (Chitty-Venkata & Somani, 2022; Wei et al., 2022). The addition of
the robustness, with a OoD detection technique applied to the DL model being optimized, as an additional
objective unleashes a new vision for the MONAS proposals.

The main hypothesis is the convenience of using a MOEA to evolve the pruning patterns of the fully-
connected layers of a neural network via a sparse representation, simultaneously according to the general-
ization performance of the network, its complexity and the robustness of a OoD detection technique relying
on the activation signals inside the network against samples that may or may not belong to the distribution
of the training data.

This work finds its inspiration in the recent work in (Poyatos et al., 2023), in which dense layers are
pruned using a configuration that define the active neurons. In the previous work, that configuration is

2



evolved by using a binary genetic algorithm guided by the performance of the network. In this manuscript,
the previous problem is reformulated to optimize the pruning patterns with a MOEA, in which the search
is guided by the three previously mentioned objectives. Intuitively, a highly-pruned network may reduce its
performance and the robustness of an OoD detection method that relies on the activations of the pruned
network. For that reason, a minimum fraction of neurons must be active (i.e. non-pruned) to achieve
balanced models with good balance (in the Pareto sense) between performance and robustness.

In this context, OoD detection falls within the umbrella of the Open-World Learning (OWL) paradigm
(Parmar et al., 2022; Zhou, 2022). OWL pursues models that are capable of learning in non-controlled
environments, so that models become increasingly knowledgeable as they are queried with new data. How-
ever, OWL can also be considered one of the technologies supporting General Purpose Artificial Intelligence
(GPAI), which is largely enabled by AI generating AI models (Clune, 2019; Real et al., 2020, July). Since
this work proposes a MOEA to optimize DL models, it can be regarded as an example of AI enhancing AI.

In detail, this work proposes an approach based on the evolution of the pruning patterns of fully-
connected layers using a MOEA, which we hereafter refer to as Multi-Objective Evolutionary Pruning for
Deep Transfer Learning (MO-EvoPruneDeepTL). The goal of MO-EvoPruneDeepTL is to search for the
best pruning patterns in the last layers of the NN to adapt them to the problem at hand. To accomplish
this task, MO-EvoPruneDeepTL utilizes several techniques. To begin with, TL allows for the extraction of
features by leveraging pretrained neural models, so that the specialization of the target NN takes place in
the last fully-connected layers of the network hierarchy. At this point of the network pruning is as suitable
mechanism to prune non-important features that do not contribute to the flow of information throughout the
last part of the NN, which connects pretrained features to the output to be predicted. MOEA then emerges
as an efficient method to solve the problem of finding good pruning patterns according to the aforementioned
different objectives: performance, complexity and, robustness of the network. To measure the robustness
of a model, an OoD detection technique is used, which is based on the capability of the model to detect
unseen data in the training step. Ideally, robust models with good performance and low complexity should
be desirable. However, the fact that pruning affects the activations throughout the last stage of the network
causes that performance and robustness can be affected by the pruning intensity imposed by any given
pruning pattern. This conflicting nature of the objectives under consideration is the rationale for seeking
the optimal set of pruning patterns that best balance between them by using a MOEA. Finally, we will
show that a byproduct of the estimated Pareto front is that NNs pruned by patterns belonging to the front
can be combined together, yielding an ensemble model with increased performance and/or robustness with
respect to any of its compounding NNs. This exposes that the pruning solutions give rise to NN models
that present a sufficient diversity to improve their performance in accuracy and robustness over different
value ranges of the objectives driving the search.

To assess the quality of MO-EvoPruneDeepTL, different experiments have been designed that allow
inspecting several aspects of the performance of MO-EvoPruneDeepTL from different perspectives. To that
end, the main purpose of the experimental setup is to provide an informed answer to the following research
questions (RQ):

(RQ1) How are the approximated Pareto fronts produced by the proposal in each of the considered datasets?

(RQ2) Is there any remarkable pruning pattern that appears in all the solutions of the Pareto front?

(RQ3) Do our models achieve an overall improvement in performance when combined through ensemble
modeling?

A general insight about these experiments is the the achievement of optimized networks in these objec-
tives, but also that the evolutionary process gives rise to pruning patterns that maintain relevant neurons
with information about the input of the model, and leads to the use of ensembles to further improve modeling
performance in terms of generalization and robustness to OoD.

The rest of the article is structured as follows: Section 2 briefly overviews background literature related to
the proposal. Section 3 shows the details of the proposed MO-EvoPruneDeepTL model. Section 4 presents
the experimental framework designed to thoroughly examine the behavior of MO-EvoPruneDeepTL with
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respect to the RQ formulated above. In Section 5, we show and discuss in depth the results obtained by
MO-EvoPruneDeepTL in the different experiments. Several indicators are presented to show the quality
of MO-EvoPruneDeepTL. Finally, Section 6 draws the main conclusions from this study, as well as future
research lines stimulated by our findings.

2. Related work

The aim of this section is to make a review of contributions to the literature about the key elements of
this study: Neural Architecture Search (Subsection 2.1), Transfer Learning and Pruning of Convolutional
Neural Networks (CNN, Subsection 2.2) and OoD detection (Subsection 2.3). The last paragraph of this
section resumes the benefits of MO-EvoPruneDeepTL.

2.1. Neural architecture search

The design of the NN that best fits for the problem at hand is a challenging task. The search for the best
design of the network is also considered as another problem, as it is necessary to find the best architecture
that optimally fits the data. In this context, NAS has achieved a great importance in this area. The main
purpose of NAS proposals is the search for the best design of the NN to solve the considered problem.

First NAS-based proposals started to emerge in the beginning of this century. NEAT, presented in
(Stanley &Miikkulainen, 2002) was a pioneering proposal about how EAs— specifically, a Genetic Algorithm
(GA) – can be used to evolve NNs. They showed that a constructive modeling of the NN with the benefits
of the GA can lead to optimized NN topologies. The natural extension of this seminal work allowing for
the evolution of DNN was presented years after in (Miikkulainen et al., 2019), in which the authors use a
co-evolutionary algorithm based on the co-operation scheme to evolve DNN.

In the last years, more NAS proposals have been developed. One of them is EvoDeep (Mart́ın et al.,
2018), in which the authors create an EA with specific operators to create and evolve DL models from
scratch. More examples of the importance of NAS come with the next proposals. In (Dufourq & Bassett,
2017, November), authors propose another EA to perform the evolution of NN, similarly to the previous
proposal, but with a difference in relation to the fitness function, which is influenced by the accuracy and
complexity of the network. The other example is presented in (Assunção et al., 2019). In this case, the
evolution comes in two different ways: topology and parameters of the Convolutional Neural Networks
(CNN). In (Trivedi et al., 2018), the authors propose a GA that evolves the weights of the softmax layer
to improve the performance of the NN. Suganuma et al. propose in (Suganuma et al., 2020) a (1 + λ)
evolutionary strategy to evolve DNN. In 2020, (Real et al., 2020, July) presents an advanced technique that
automatically searches for the best model, operating from scratch and obtaining a good performance with
the problems at hand. The use of NAS has been applied in other areas like the Reinforcement Learning
(RL). In that area, there is a great example of NAS (Zoph & Le, 2016). In that work, authors use a recurrent
network (RNN) to generate the model descriptions of NN and train this RNN with RL to maximize the
expected accuracy of the generated architectures on a validation set.

There are more examples of NAS in the literature like the NAS algorithm which comprises of two
surrogates through a supernet, with the objective of improving the gradient descent training efficiency (Lu
et al., 2020, August). Another NAS comes in (Lu et al., 2022a), in which the authors propose a pipeline
with also a surrogate NAS applied to real-time semantic segmentation. They manage to convert the original
NAS task into an ordinary MO optimization problem.

Lastly, there are more advanced techniques of NAS and EA given by (Real et al., 2019, January), in
which a new model for evolving a classifier is presented, and by (Real et al., 2020, July), in which the authors
propose AutoML-Zero, an evolutionary search to build a model from scratch (with low-level primitives for
feature combination and neuron training) which is able to get a great performance over the addressed
problem.

The main characteristic of the previous NAS proposals is the evolution of the DL model guided by a single
objective, usually the accuracy or another that measures the performance of the network. The following
proposals share a common aspect: the evolution of the model is done using more than one objective. This
leads to the algorithms in the field of MONAS.

4



We can find several approaches of MONAS that have been applied to diverse fields with great results. One
of them is presented in (Elsken et al., 2019, May). This work proposes a MONAS that lets the approximation
of the Pareto-front of all the architectures. In relation to medical images area, in (Baldeon-Calisto & Lai-
Yuen, 2020) a MONAS that evolves both accuracy and model size is proposed. Moreover, following this
research in medical images, in (Baldeon Calisto & Lai-Yuen, 2020), the authors use a MO evolutionary based
algorithm that minimizes both the expected segmentation error and number of parameters in the network.
Another interesting work is presented in (Calisto & Lai-Yuen, 2020), in which they have created a pipeline
for the automatic design of neural architectures while optimizing the network’s accuracy and size.

Typically, MONAS evaluate two or three objectives. A common objective is usually the performance of
the network. The others objectives are related with the complexity of the network and other empirical and
measurable objectives. In (Lu et al., 2021), the authors propose a MOEA for the design of DNN for image
classification, adopting the classification performance and the number of floating-point operations as its
objectives. Another example is DeepMaker, (Loni et al., 2020), which is a MOEA approach that considers
both the accuracy of the network and its size to evolve robust DNN architectures for embedded devices.

There are some well-known MOEAs in the literature. One of them is NSGA-II. A new version of it has
been developed to use it for NAS (Lu et al., 2019, July), called NSGA-Net. This proposal looks for the
best architecture through a three-step search based on an initialization step, followed by an exploration step
that performs the EA operators to create new architectures, and an exploitation step that uses the previous
knowledge of all the evaluated architectures.

2.2. Transfer learning and pruning

One of the objectives that EAs used for NAS usually aim to optimize is the complexity of the network.
NN are structures with a great amount of parameters. These networks are composed of two main parts.
The first one extracts the main features of the problem, i.e., learns to distinguish the patterns of the images
(when working with image classification) and the second part is responsible to classify these patterns into
several classes.

In this context, TL appears as a figure that helps in the learning process when there are few data, i.e.,
prevents the overfitting when the input examples is not large (Pan & Yang, 2010). TL is a DL mechanism
encompassing a broad family of techniques. The most common method of TL with DL is the usage of
a previous network structure with pre-trained parameters in a similar problem to the related task, being
trained with huge datasets like (Krizhevsky et al., 2017). This fact involves the usage of a DL model with
fixed and pre-trained weights in the convolutional layers with a dataset and then add and train several layers
to adapt the network to a different classification problem (Khan et al., 2019).

Another technique to reduce the complexity of the networks is pruning. Pruning a CNN model consists
of reducing the parameters of the model, but it may lead into a decrease of the performance of the model.
Several approaches to prune networks have been developed over the years, such as (Han et al., 2015, De-
cember; Srinivas & Babu, 2015, September). These methods have been already used in several problems,
rendering great performance.

An example of the fusion of EAs, DNN and pruning is shown in (Wang et al., 2020), which proposes
a novel approach based on a combination of pruning CNN of sparse layers (layer with fewer connections
between neurons) guided by a GA. The main consequence of this study is the reduction of a great fraction
of the network, but at the penalty of a lower generalization performance of the network.

Following the idea of EAs and DNN, in (Poyatos et al., 2023) the authors propose also propose a
combination of sparse layers and a GA. They have shown that pruning can be done in a TL scheme with
sparse layers and EAs. Their proposal is only guided by the performance of the model, but they also achieve
a great reduction in the optimized sparse layers.

2.3. Out of distribution detection

Robustness is a term that has been used with related yet different meanings among the literature of the
Machine Learning (ML) community. In this work, we refer to the model’s ability to handle the unknown, to
detect whether it has been queried with an example of a not learned distribution, therefore refusing to make
the classification it has been trained to do. This is precisely what the OoD detection framework measures.
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In this problem, a model learns to classify instances in the different classes from a training dataset
that is sampled from a distribution, namely the InD. After the process, the model is asked to correctly
distinguish between test examples that are drawn equally from either the InD or from a semantically different
distribution, the OoD dataset (Yang et al., 2021). The term semantically different refers to the fact that
the classes contained in this foreign distribution are distinct from the ones present in the InD. As ML and
DNN model are not natively prepared for this task, an OoD detection technique is wrapped around the
model to allow this behavior. Typically, these techniques are based on creating a score for every example
processed by the model, such that the score obtained by an OoD instance is significantly different from the
one obtained by a InD example. Then, by simply defining a threshold on this score, the model can decide
whether an instance is from the in or out distribution.

A great variety of methods exist in the literature, which was started by Hendrycks & Gimpel (2016),
where the so-called baseline method was introduced. It relies on the simple observation that InD instances
tend to have greater Maximum Softmax Probability, the softmax probability of the predicted class. By
simply applying a threshold to this score, they achieved acceptable performance on many classification
problems. In Liang et al. (2018, Aprila), this idea was refined by applying temperature scaling to the
softmax probabilities, what further separates apart from each other the distributions of the scores of the in-
and out- distribution samples probabilities. Authors also implemented an input preprocessing pipeline that
enhanced a bit the performance by adding a small quantity of gradient and softmax dependent noise. The
paper presented in Lee et al. (2018), instead of using the softmax probabilities, exploits the feature space
of the layer right before softmax and assumes that it follows a multivariate Gaussian distribution, enabling
the calculation of its mean and variance for every sample. After creating a class-conditional distribution
utilizing the training samples, the score for every test sample is the closest Mahalanobis distance between
the sample and the calculated Gaussian class-conditional distributions.

The technique proposed in (Hendrycks et al., 2019, May), in contrast to previous works, focuses on
modifying model’s training by adding a term to the loss function (that depends on the classification of
the task, density estimation, etc.), helping the model learn heuristics that will improve the performance
of other OoD methods applied afterwards. This new term needs to be trained with OoD data, which can
be obtained by leveraging the large amount of data publicly available on the internet. Authors prove that
the learned heuristics for arbitrary OoD datasets generalize well to other unseen OoD data. Thereafter,
(Liu et al., 2020) based its detector in what they called the free energy function, that combines concepts
of the energy-based models with modern neural networks and their capability of assigning a scalar to every
instance fed to the model without changing its parametrization. Specifically, the free energy function is
based on the logits of the network, and the work empirically demonstrates that OoD instances tend to have
higher energy, enabling the distinction between InD and OoD data. In the following work in (Lin et al.,
2021, June) exploited the idea that easy OoD samples can be detected by leveraging low-level statistics.
On this basis, several intermediate classifiers are trained at different depths and each example is outputted
through one of them depending on its complexity. To measure complexity, a function based on the number
of bits used to encode the compressed image is harnessed. The OoD scoring function employed is the above
presented energy function adapted to the corresponding depth.

Although only a few research contributions are presented in this work, it must be noted that the OoD
problem has been widely studied in the literature (Salehi et al., 2021), with proposals ranging from the more
complex and well performing ones to the more simple yet effective ones. As the aim of this paper is to show
that the robustness in the OoD can be affected when the pruning of the network is done. Therefore, the
OoD detection method will be selected to be computationally cheap yet effective, to not add computational
complexity to the MOEA.

In this section, a review of the related work from three different perspectives has been presented. Terms
like MONAS, MOEA are important as this work presents a new work about these topics. Moreover, it
is based on a TL scheme in which an evolutionary pruning of the last layers is done. In the last years,
several proposals have been published over these topics, i.e, MOEAs that search for the best architecture
attending to one or more objectives and also pruning approaches for CNNs. However, this study introduces
a new manner to guide the evolutionary pruning of the models with the usage of a OoD mechanism. MO-
EvoPruneDeepTL tries to solve the problem of achieving robust models with high performance and least

6



active neurons. This scheme, a MOEA that performs pruning in the last layers (TL paradigm) with three
objectives is a new contribution to all this fields at the same time.

3. Multi-Objective Evolutionary Pruning for Deep Transfer Learning

This section is devised to explain the details of MO-EvoPruneDeepTL. First, in Subsection 3.1 the
formulation to the problem at hand is presented. In Subsection 3.2, we will describe the objectives used
to guide the search. Then, in Subsection 3.3, the description of the OoD detector is explained. The DL
and network schemes are shown in Subsection 3.4. Finally, in Subsection 3.5, the evolutionary parts of
MO-EvoPruneDeepTL are described.

3.1. Problem formulation

This section aims at defining and explaining the mathematical components that circumscribe MO-
EvoPruneDeepTL. We explore different concepts needed to fully understand the basics of our study.

We define the concept of dataset. Mathematically, we define a training dataset D .
= {(xi, yi)}Ni=1 com-

posed by N (instance, label) pairs. Such a dataset is split in training, validation and test partitions, such
that D = Dtr ∪ Dval ∪ Dtest with |Dtr| = Ntr.

Another important concept to keep in mind is the model. We define a model Mθ to represent the
relationship between its input X and its corresponding output y ∈ {1, . . . , Y }, where Y denotes the number of
classes present in D. Learning the parameter values θ∗ that best model this relationship can be accomplished
by using a learning algorithm θ∗ = ALG(M ;Dtr) that aims to minimize a measure of the difference (loss)
between the model’s output and its ground truth over the training instances in Dtr (e.g. gradient back-
propagation in neural networks). In what follows Mθ is assumed to be a NN, so that θ represent the totality
of trainable weights in its neural connections.

In the context of TL for classification tasks, the NN Mθ is assumed to be composed by a pre-trained
feature extractor Fϕ(x) (whose parameters ϕ are kept fixed while ALG(·) operates), and a dense (i.e.
fully-connected) part Gθ(·) that maps the output of the feature extractor to the class/label to be pre-
dicted. Therefore, after tuning the trainable parameters of the network as θ∗ = ALG(G;Dtr), the class
ŷ ∈ {1, . . . , Y } predicted for an input instance x is given by:

ŷ = (F ◦Gθ∗)(x) = Gθ∗(F (x)), (1)

where ◦ denotes composition of functions. When predictions are issued over the validation partition Dval,
a measure of accuracy can be done by simply accounting for the ratio of correct predictions to the overall
size of the set, i.e. ACCval = (1/Nval) ·

∑
i∈Dval

I(ŷi = yi), where I(·) equals 1 if its argument is true (0
otherwise).

Bearing this notation in mind, pruning can be defined as a binary vector p = {pj}Pj=1, where P denotes
the length of the feature vectors extracted by Fϕ(x) for every input instance to the network. As such, pj = 0
indicates that neural links that connect the j-th component of the feature vector to the rest of neurons
in the dense part Gθ(·) of the network are disconnected, causing that all trainable parameters from this
disconnected input to the output of the overall model are pruned. Conversely, if pj = 1 the j-th input
neuron is connected to the densely connected layers of the neural hierarchy. By extending the previous
notation, the training algorithm is redefined to θ∗(p) = ALG(G;Dtr,p) to account from the fact that
the network has been pruned as per p. This dependence of the trained parameters on the pruned vector
propagate to the measure of accuracy over the validation instances, yielding ACCval(p). Likewise, a measure
of the reduction of the number of trainable parameters can be also computed for a given pruning vector p
relative to the case when no pruning is performed (i.e., p = 1

.
= {1}Pj=1) as MEM(p) = |θ(p)|/|θ(1)|.

Intuitively, a good pruning strategy should consider the balance between the reduced number of trainable
parameters and its impact on the accuracy when addressing the modeling task at hand. Reducing the amount
of parameters to be stored has practical benefits in terms of memory space, and can yield a lower inference
latency when the trained model is queried.
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A third dimension of the network that can be affected by pruning is its capacity to detect OoD instances.
A significant fraction of the techniques proposed so far for identifying query samples that deviate from the
distribution of training data rely on the network dynamics between neurons while the instance flows through
the network. This is the case of ODIN (Liang et al., 2018, Aprila), BASELINE (Hendrycks & Gimpel, 2016)
and ENERGY (Liu et al., 2020), among others. To quantify the capability of a pruned network Mθ∗(p) to
detect OoD instances, we utilize other datasets D′ = {D′

d}DOoD

d=1 different from D, whose instances (x′, y′) are
assumed to be representative of the OoD test instances with which the model can be queried in practice. An
OoD detection technique TOoD(x;Mθ∗(p)) ≡ TOoD(x) processes the activations triggered by x throughout
the trained pruned model Mθ∗(p) so as to decide whether x is an InD (TOoD(x) = 0) or an OoD instance
(corr. TOoD(x) = 1). This being said, true positive and false negative rates can be computed for T (x) over
the test subset Dtest of D and random Nval/DOoD-sized samples drawn from every other dataset D′

d, which
can be aggregated in a compound performance metric. Among other choices for this purpose, we consider
the AUROC measure AUROC(p), which measures the ability of T (·) to discriminate between positive and
negative examples. This measure is set dependent on p in accordance with previous notation, as T (x)
operates on the neural activations stimulated by x.

3.2. Objectives of MO-EvoPruneDeepTL

This section introduces the objectives that guide MO-EvoPruneDeepTL during its evolutionary process.
We define them using the notation previously commented in Subsection 3.1.

The optimization problem addressed in this work aims to discover the set of Pareto-optimal pruning
vectors {popt

k }Kk=1 that best balance between three objectives:

1. The modeling performance of the pruned model over dataset D. This performance is measured with
the accuracy over the test dataset (Dtest). It is the percentage of well classified images out of the total
set of images.

2. The number of active neurons left after the pruning operation. The number of active neurons corre-
sponds with the remaining active connections after the pruning and evolutionary process.

3. The capability of an OoD detection technique to discriminate between OoD and InD data by inspecting
the activations inside the pruned model.

Mathematically:

{popt
k }Kk=1 = argp∈{0,1}P [maxACCval(p),minMEM(p),maxAUROC(p)] , (2)

s.t. D : In-distribution dataset, (3)

D′
1, . . . ,D′

DOoD
: Out-of-distribution datasets, (4)

Fϕ(x) : Pre-trained feature extractor, (5)

T (x) : Out-of-distribution detection technique. (6)

3.3. Out of Distribution detector of MO-EvoPruneDeepTL

In the following subsection the technique selected to assess the OoD performance of the pruned models
is presented, along with a clarification about the metrics used to measure it.

Due to the fact that every new child of the population in the evolutionary algorithm must have its
OoD performance correctly assessed, the chose method should not entail a big computational burden while
maintaining a sufficient effectiveness in detecting OoD samples. The technique presented in (Liang et al.,
2018, Aprilb), ODIN, fulfills these requirements and is the selected one.

Before explaining ODIN, the already mentioned performance metric used in this study must be clar-
ified, namely the AUROC or Area Under the Receiver Operation Characteristic curve. It is a threshold-
independent metric for binary classification that can be considered as the probability that the model ranks
a random positive example with higher score than a random negative example. Is defined as TPR/FPR,
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which stand for True Positive Rate and False Positive Rate respectively and can be computed as TPR =
TP/(TP+FN) and FPR = FP/(FP+TN). Therefore, in order to compute the AUROC, the FPR value for
every TPR needs to be calculated. In this work, TP is used to refer to an in-distribution sample correctly
classified as such, whereas a TN represents an OoD sample detected correctly by the OoD detector.

The basic principle of ODIN is to use maximum softmax probability with temperature scaling as the
OoD score for every sample, defined by the expression

fODIN (x;T ) = maxi(Si(x;T )) = Sŷ(x;T ), (7)

where Si(x;T ) is the softmax probability of the ith class for the input instance x, scaled by a temperature
parameter T ∈ R+. This scaled softmax can be calculated as:

Si(x;T ) =
exp(hi(x)/T )∑N
j=1 exp(hi(x)/T )

. (8)

where hi(x) | i ∈ {1, . . . , Y } are the logits, the values prior to the softmax activation function. Then, and
in accordance with notation presented in Subsection 3.1, the OoD detection technique TOoD, ODIN in this
case TODIN , will output a 1 if the instance’s score is below a defined threshold, indicating that is considered
an out-of-distribution sample, outputting a 0 otherwise:

x belongs to

{
in-distribution if TODIN (x;T ;λ) = 0 ⇐⇒ fODIN (x;T ) ≥ λ,

out-distribution if TODIN (x;T ;λ) = 1 ⇐⇒ fODIN (x;T ) < λ.
(9)

It is important to remark that ODIN also uses an input preprocessing pipeline to further improve its
performance in the OoD detection problem, but that in this study it will be discarded for the sake of reducing
the computational burden of the algorithm.

So, in order to implement ODIN, the below presented steps must be followed. First, the model Mθ must
be trained using the training set Dtr of the in-distribution dataset D. Then the logits of the instances of the
test set Dtest must be extracted for the sake of calculating the temperature scaled softmax outputs using
the equation (8). The OoD score of each input instance fODIN (x;T ) will be the maximum of these scaled
softmax outputs, i.e., the value corresponding to the predicted class, as expression (7) indicates.

Next, same operation must be repeated with the the out-of-distribution detection set, composed by
samples drawn from every other dataset D′

d as indicated in Subsection 3.1. In this manner, we have created
two distributions of OoD scores: one for the in-distribution samples of Dtest and other for the out-of-
distribution ones. Now, the threshold on the score for each TPR is defined by using the score distribution of
test instances and equation (9). The corresponding FPR for each TPR is computed by employing the OoD
distribution and the defined threshold, obtaining a set of [TPR, FPR] values that compose the ROC curve.
Finally, from this curve the AUROC can be computed, therefore obtaining the desired robustness score for
the model Mθ and in-distribution dataset D.

In this study, in order to evaluate the robustness of each model, a practical approach is used, which
involves the usage of the OoD detector with the other datasets that are not covered in training phase.
However, the design of the algorithm accommodates any other dataset as an OoD evaluation dataset.

3.4. Network characteristics of MO-EvoPruneDeepTL

In this subsection, we introduce the characteristics of the used network in MO-EvoPruneDeepTL. In our
study, we use the TL paradigm, i.e., the weights of the convolutional phase are imported and fixed from
another trained network in a similar task. For that reason, the DL model we use works as a feature extractor.
The images pass through the network and it extracts their main features. These features correspond with
the neurons which are evolved by the evolutionary components of MO-EvoPruneDeepTL.

The chosen network for this study is ResNet-50. The output of this network is a vector of 2048 features
or characteristics. They are used as the input for the last layers of the neural network. In our case, following
the research in (Poyatos et al., 2023), the last part of the neural network is composed by an input layer that
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receives an input vector of 2048 features (i.e., the output of the ResNet-50), followed by a hidden layer of 512
neurons and, finally, an output layer with as many neurons as classes defined in the problem at hand. This
architecture is depicted in Figure 1, wherein Layer 1 corresponds to our intermediate layer of 512 neurons,
and Network Features denote the vector of 2048 features extracted from ResNet-50. We highlight in red the
connections affected when a neuron is pruned. More specifically, each feature contributes to the neurons of
the intermediate layer. The solver learns to distinguish which features are the most important and which
are not, so that the whole set of connections from irrelevant features onward is eliminated, thereby not
contributing to the rest of the intermediate layer.

Figure 1: Pruning method of MO-EvoPruneDeepTL.

Following the previous idea, this network has fewer connections than a standard fully-connected layer,
in which each neuron is connected to the next group of neurons. This type of layer is referred to as sparse
layer. The genetic algorithm is in charge of finding an optimal pruning pattern for that sparse layer, in
which the chromosome representing the pruning pattern can be decoded to an adjacency matrix. Figure 1
shows that this matrix defines the structural composition (connections) of the layer in the neural network.
In particular, binary entries in the adjacency matrix correspond to the connections between the blue and
green circles, so that certain connections will be removed (red lines) as a result of the pruning operation,
rendering the sparse nature of the matrix and the layer itself.

3.5. Evolutionary components of MO-EvoPruneDeepTL

In this section, we introduce the evolutionary components of MO-EvoPruneDeepTL. It is a MOEA, called
Non-Dominated Sorting Genetic Algorithm II (NSGA-II) (Deb et al., 2002). The population of networks is
evolved using the common operators from this GA, but, in this case, only two individuals are used for the
evolution as parents. As a result, two offspring individuals are produced. Our MO-EvoPruneDeepTL uses
a binary encoding strategy, which represents if a neuron is active or not. A neuron is active if its gen is 1
or not active if it is 0. Thanks to this direct encoding approach, each gen determines uniquely a neuron in
the decoded network.
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The initialization of the chromosomes correspond with a random discrete initialization in [0, 1], the
selection is done using a binary tournament selection method, whereas the replacement strategy is the
dual strategy of ranges of Pareto dominance and crowding distance of NSGA-II. Finally, the crossover and
mutation operator are outlined:

Crossover: the crossover operator used in MO-EvoPruneDeepTL is the uniform crossover. This operator
defines two new individuals from two parents. Mathematically, given these two parents p and q, where
p = {pi}Pi=1 and q = {qi}Pi=1 and their length is P , the resultant offsprings p’ = {p′i}Pi=1 and q’ = {q′i}Pi=1

(also with length P ) are generated using these equations:

p′i =

{
pi if r ≤ 0.5
qi otherwise

q′i =

{
qi if r ≤ 0.5
pi otherwise

(10)

where r is the realization of a continuous random variable with support over the range [0.0, 1.0]. This
operator creates two individuals using information of the genes of both parents. Each position i of the new
individual takes the value of the gene of p or q until the offspring is fully created.

Mutation: the mutation performed by MO-EvoPruneDeepTL is the Bit Flip mutation. This operator
needs a mutation probability defined by mutp. Thus, for each chromosome, all of its genes can be mutated
if the mutation is really performed, which means changing the value of the gene from active to not active
or vice versa. The parameter that controls if a gene is flipped or not is mutp.

Next, we give a brief explanation about the process that MO-EvoPruneDeepTL performs. First, we need
to know the data required by MO-EvoPruneDeepTL, which is the dataset for training the network and its
test dataset, the InD data, and also the OoD data, so that each model can also be tested on it. Lastly, the
configuration of the GA and of the network are also required.

Once all the data is gathered, then the evolutionary process takes place. Algorithm 1 shows the pseu-
docode of MO-EvoPruneDeepTL. The beginning of the process is the standard procedure of initialization
and evaluation of the initial population (lines 1 and 2). Then, the evolution is performed. In each generation,
the operators are being executed sequentially. The parents are selected using the selection operator (line
4). After that, they generate their offspring using the crossover operator (line 5) which are mutated using
the mutation operator (line 6). Then, both children are evaluated to obtain the values of the objectives
that guide the evolutionary process. Thus, for each child, its chromosome is decoded into a sparse network
(line 8) which is trained using the train set of the InD data (line 9). Then, the information contained in the
logits is passed through the OoD detector which determines the robustness of the child using the AUROC
metric (line 10). The accuracy is calculated using the test set of the InD (line 11) and the complexity of the
network is also achieved using the number of neurons which are active in the child chromosome (line 12).
Then, the objectives are retained as part of the information of the child for further generations (line 13).

4. Experimental framework

This section is intended to describe the framework surrounding the experiments conducted in this study.
In Subsection 4.1, a detailed description of the datasets is given. Then, Subsection 4.2 shows the values of
the parameters and the network setup of MO-EvoPruneDeepTL in the experiments.

4.1. Dataset information

In this study we have selected several datasets which fit in our working environment. These datasets
represent a good choice for TL approaches due to their size, as the training and inference times are lower.
Thus, these datasets are suitable for problems related with population metaheuristics, since a large number
of individuals will be evaluated. We present a brief description of each dataset:

• CATARACT ([dataset]Sungjoon Choi, 2020) is a dataset related with the medical environment. It
classifies different types of eye diseases.
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Algorithm 1: MO-EvoPruneDeepTL

Input : InD dataset, OoD dataset, configuration of the GA and configuration of the network
Output: Evolved pruned network

1 Initialization of individuals of the population using the initialization operator;
2 Evaluation of the initial population (see lines 9-14);
3 while evaluations < max evals do
4 Parent selection using binary tournament;
5 Generate offsprings using uniform crossover;
6 Mutation of individuals using the bit flip mutation;
7 for each child p in children population do
8 SparseNetworkp ← Decodification of child chromosome;
9 SparseTrainedNetworkp ← Train SparseNetworkp using the train set of InD data;

10 AurocChildp ← Robustness metric of child using OoD data;
11 AccChildp ← Accuracy of SparseTrainedNetworkp evaluated in test set of InD data;
12 ComplexChildp ← Number of active neurons in SparseNetworkp;
13 SolutionVector(AccChild,ComplexChild,AurocChild)p;
14 evaluations+=1;

15 end
16 Replacement Strategy;

17 end

• LEAVES ([dataset]Hafiz Tayyab Rauf et al., 2019) is a dataset that is composed of images of different
types of leaves, since healthy to unhealthy with different shades of green.

• PAINTING is related to the painting environment ([dataset]Virtual Russian Museum, 2018). This
dataset is composed of images which represent different types of paintings.

• PLANTS is dataset which presents a great variety of leaves and plants, which ranges from tomato, or
corn plants to other leaves, among others ([dataset] Singh et al., 2020, May).

• RPS ([dataset]Laurence Moroney, 2019) is a dataset whose purpose is to distinguish the gesture of the
hands in the popular Rock Paper Scissors game from artificially-created images with different positions
and skin colors.

• SRSMAS is based on the marine world whose aim is to classify different coral reef types ([dataset]
Gómez-Ŕıos et al., 2019).

Next, we show some examples for several of the above datasets are shown in Fig. 2.
Finally, we highlight the main characteristics in quantitative terms of instances, classes and metrics with

non-pruned networks for each dataset. Table 1 show these numbers.

4.2. Training and network setup

In this subsection, we describe both the training and network setup of MO-EvoPruneDeepTL. First, we
explain how our datasets are split. Then, the network setup is presented. Lastly, we discuss the parameters
of MO-EvoPruneDeepTL.

In this study, we use six different datasets in our experiments. We need to split the images of these
datasets into a train and test subsets, as the evaluation of MO-EvoPruneDeepTL requires it. We have
created a 5-fold cross-validation evaluation environment, meanwhile for the rest of the datasets, their train
and test subsets had already been predefined.

Another component of MO-EvoPruneDeepTL is the used network along all the experiments. In our case,
we have chosen ResNet-50 as the pre-trained network. We have selected ResNet-50 as the baseline feature
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Figure 2: Images of datasets. Left: LEAVES examples. Middle: RPS examples. Right: SRSMAS examples.

Table 1: Datasets used in the experiments.

Dataset Image Size
L

(# classes)
# Instances
(train / test)

Accuracy
(No Pruning)

AUROC
(No Pruning)

CATARACT (256, 256) 4 480 / 121 0.732 0.870
LEAVES (256, 256) 4 476 / 120 0.935 0.960
PAINTING (256, 256) 5 7721 / 856 0.951 0.990
PLANTS (100, 100) 27 2340 / 236 0.480 0.820
RPS (300, 300) 3 2520 / 372 0.954 0.934
SRSMAS (299, 299) 14 333 / 76 0.885 0.999

extraction method following up the conclusions drawn in (Poyatos et al., 2023), in which several experiments
with other feature extractors such as DenseNet and VGG were found to perform worse than ResNet-50.
Although other larger feature extractors may provide better performance, the choice of ResNet-50 is also
related to the number of features obtained from the network, which directly influences the evaluation time of
a solution. Based on these criteria, ResNet-50 is established as the pretrained backbone for our experiments,
given its good balance between performance and complexity. This election has been taken to maintain the
balance between the number of features, which leads to a higher computational space, and the performance
obtained in the TL process. The combinatorial problem can be huge for typical values of feature extractors
commonly used in problems where TL is in use. Using this network yields feature vectors Fϕ(x) comprising
P = 2, 048 components, leading to a total of 22,048 ≈ 3.23 · 10616 possible pruning patterns. Furthermore,
the evaluation of pruned networks during the search requires repeatedly training over the instances in the
test subset can be computationally expensive. Note that, although in our experiments a CNN model is used,
the pruning can also be performed with other type or architectures, like Long Short-Term Memory (LSTM)
(Wang et al., 2019).

These extracted features are passed through the last layers, which are the layers that are going to be
trained. The model with the larger accuracy on the training set is saved. The optimizer of the training
environment is the standard SGD. The parameters of MO-EvoPruneDeepTL are shown in Table 2. The

13



maximum number of training epochs is 600, but the training phase stops if no improvement is achieved in
ten consecutive rounds. The last important parameter appears in the OoD phase. It is called TempODIN

and it controls how the softmax values are computed using the logits from the Ind and OoD. The parameters
of this study (see Table 2) have been selected by following recommendations of the authors. The values
of the parameters controlling the genetic search operators have been taken from (Poyatos et al., 2023).
The characteristics of the neural network are also those utilized in this previous work. Moreover, the OoD
detection mechanism is based on (Liang et al., 2018, Aprila). In that work different temperature values
were tested, reporting the value of the parameters of the technique that rendered the best results in their
experiments. For this reason, in this work we have chosen the same value (namely, temperature equal to
1000).

Table 2: Parameters of MO-EvoPruneDeepTL.

Parameter Value

Maximum Evals 200
# Runs 10

Population size 30
pmut

1
P

Batch Size 32
TempODIN 1000

The last contribution of this section is the discussion of the parameters of MO-EvoPruneDeepTL. The
maximum evaluations of MO-EvoPruneDeepTL is set to 200 and the size of the population of networks
for each generation is 30. Table 3 shows the evaluation time for each individual, so that the total time
of execution is the time of the first column multiplied by the number of evaluations. Each OoD detection
requires a minute, but in the datasets with the 5-fold cross-validation, this time reaches the five minutes.
Moreover, we also indicate the inference time for test and the required time to calculate the AUROC
metric in the OoD phase. Those times force us to keep a low number of runs and evaluations to meet a
computationally affordable balance between the performance of our models and the high execution times
required for our simulations. Moreover, although statistical tests are important to assess the significance
of the differences in the results, but due to these limited number of runs, we can not apply them, as large
number of runs is required to achieve statistically reliable insights.

Table 3: Average time in evaluations of MO-EvoPruneDeepTL.

Dataset Total Evaluation Training and Inference OoD Detection

CATARACT 332 min 1.66 min 0.66 min 1 min
LEAVES 1600 min 8 min 3 min 5 min

PAINTING 1700 min 8.5 min 7.5min 1 min
PLANTS 800 min 4 min 3 min 1 min

RPS 900 min 4.5 min 3.5 min 1 min
SRSMAS 1500 min 7.5 min 2.5 min 5 min

The experiments have been carried out using Python 3.6 and a Keras/Tensorflow implementation de-
ployed and running on a Tesla V100-SXM2 GPU.

5. Results and discussion

This section is devised to analyze the behavior of MO-EvoPruneDeepTL. To this end, we define three
research questions (RQ) which are going to be answered in the following subsections with diverse exper-
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iments over the previous datasets. We will show and analyze several plots to illustrate the benefits of
MO-EvoPruneDeepTL. The RQ can be stated as follows:

(RQ1) How are the approximated Pareto fronts produced by the proposal in each of the considered datasets?

The Pareto front can be defined as the set of non-dominated solutions, being chosen as optimal,
if no objective can be improved without sacrificing at least one other objective. The problem at
hand is approximated using a multi-objective approach. For that reason, we want to check that not
only we have promising solutions in the extreme values of the Pareto front, but also to have a wide
population of diverse solutions in the whole Pareto. As a consequence of that, to answer this RQ, we
will analyze how is the Pareto front for each dataset and if there exists any direct connection between
the objectives of the study: accuracy, complexity of the network, and robustness. In addition, a
comparison to other pruning methods from the literature will be performed to check whether our
proposal performs competitively against such methods.

(RQ2) Is there any remarkable pruning pattern that appears in all the solutions of the Pareto front?

We compare the pruning patterns of all the models of the Pareto fronts of MO-EvoPruneDeepTL
to show if there are some important patterns which are key to identify the most important zones
of the input images. We employ a well-known technique called Grad-CAM (Selvaraju et al., 2017,
October), which uses the gradient of the classification score with respect to the convolutional features
of the network to check which parts of the image are most important for the classification task. Grad-
CAM lies in the group of Explainable Artificial Intelligence (XAI) techniques, as it produces details
to make easy to understand which neurons are the relevant ones in all the experiments (Barredo
Arrieta et al., 2020). These neurons lead to specific pixels or group of them of the original images
that are passed through the network.

(RQ3) Do our models achieve an overall improvement in performance when merged through ensemble mod-
eling?

MO-EvoPruneDeepTL trains a great variety of models which leads to a wide diversity of models
in the Pareto front for each dataset. The aim of this RQ is to check whether the diversity of
pruning patterns in the Pareto front can be used to improve our DL models through ensemble
strategies. Our aim is to check if an ensemble of differently pruned models can yield more accurate
predictions, leading to a better overall performance than their compounding models in isolation.
Beyond improving the accuracy through ensembles, we will also explore whether ensemble modeling
allows obtaining more robust models, so that the number of OoD samples that the network wrongly
predicts as InD is lower.

This section is divided in Section 5.1, where we analyze the different Pareto front for each considered
dataset in order to answer RQ1. Next, in Section 5.2, we will examine the different pruning patterns of
our models. Precisely, we will look for the neurons that appears in most of them, and we will highlight
the essential zones of the input images, as this is the key part to answer RQ2. Lastly, we will discuss in
Section 5.3 the benefits of the diversity of our models when ensemble modeling is performed, to show if an
improvement in terms of accuracy and AUROC is achieved, which the principles lines of the RQ3.

5.1. Answering RQ1: Analyzing the Pareto fronts of MO-EvoPruneDeepTL

The objective of this section is to answer RQ1 by performing a complete analysis of the Pareto fronts
of MO-EvoPruneDeepTL and then, performing a comparison against competitive pruning methods of the
literature. This analysis is to be performed focusing on two important aspects: i) how are the Pareto fronts
for each dataset? and ii) how are the projections in each objective for each dataset? MO-EvoPruneDeepTL is
run for 10 times, each yielding an estimation of the Pareto front between the three objectives. Such Pareto
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front estimations contain solutions that dominate – in the Pareto sense – the rest of evaluated solutions
during the evolutionary search. The elitist nature of the algorithm ensures that non-dominated solutions are
retained in the population. Moreover, after the 10 executions of the algorithm, all Pareto front estimations
are merged together. Non-dominated solutions in this merger compose a new Pareto front estimation (i.e., a
super Pareto front) containing the best solutions found across the 10 runs of the algorithm. For simplicity,
these solutions will be hereafter denoted as the Pareto front discovered by MO-EvoPruneDeepTL. Moreover,
for each Pareto front, it has been included the results for the non-pruned network for each dataset, which
are composed of solutions with all the active neurons and the accuracy and AUROC showed in Table 1.

Figure 3: Pareto fronts of MO-EvoPruneDeepTL. Left: CATARACT dataset. Middle: RPS dataset. Right: PAINTING
dataset.

With these graphics we analyze the quality of each Pareto and, particularly, by assessing the full spectrum
of solutions that can be achieved in each of the Pareto. Moreover, we are going to study whether there is a
direct relationship between any of the objectives we have formulated in the previous sections. In order to
develop these plots, we have collected all the solutions of the super Pareto front (called Pareto front from
now), selecting 10% of the best solutions for each objective in order to make their projections.

These Pareto front are presented in Figures 3 and 4. We can observe the diversity of pruning patterns
produced by MO-EvoPruneDeepTL. Moreover, another insight from these Pareto front comes up when we
inspect extreme values of each objective, as they systematically achieve good results in each dataset. Most
of the solutions obtain high values of accuracy and robustness meanwhile their remaining active neurons are
kept low.

First, we focus on the central part of the 3D projections, in which we visualize the three objectives. Our
goal is to detect if there exist some kind of relationship between them. We clearly see that the projection
in all the Pareto front takes values to the upper corner in which the three objectives present low values of
percentage of active neurons, but high accuracy and AUROC. Moreover, this distribution of the points in
both group of figures indicate that there is a tendency of the solutions to that plane in which the number
of active neurons is low.

Analyzing the two-dimensional planes, there is not a clear relation between the performance and robust-
ness. Nonetheless, the common point of this projection, namely, the complexity of the network, sheds light
to the fact that it can be related with the performance and robustness separately. In both cases, a minimum
number of active neurons is needed in order to start achieving good results in each objective. For both
objectives, there is a certain range of optimal number of active neurons in which each of them obtains their
best values.

The last experiment of this section addresses the performance comparison between MO-EvoPruneDeepTL
and other competitive pruning methods from the related literature. In this work, we compare MO-EvoPruneDeepTL
to the following two methods considered to be competitive counterparts for benchmarks between pruning
proposals (Hoefler et al., 2021):

• weight (Han et al., 2015, December): The parameters with lower values are pruned at once. This method
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Figure 4: Pareto fronts of MO-EvoPruneDeepTL. Left: LEAVES dataset. Middle: PLANTS dataset. Right: SRSMAS dataset.

operates over the whole parameter set in the layer to be optimized.

• neuron (Srinivas & Babu, 2015, September): The neurons with lower mean input connection values are
pruned.

Both pruning methods require a parameter that controls their execution, which is the target percentage
of remaining neurons. This percentage represents the active weights remaining in the network that each
of these methods reaches at the end of its execution. For a fair comparison, we force these methods to
target the same percentage of remaining weights as in the solutions of the Pareto front estimated by MO-
EvoPruneDeepTL. We note that the Pareto front estimation contains the non-dominated solutions found
in the 10 runs of the algorithm. In this case, we have ordered the solutions in terms of complexity (second
objective), which yields a distribution of ordered solutions, from least to most active weights. Based on this
sorted list of solutions, we have chosen those with the median and the lowest values of the percentage of the
remaining active weights (complexity of the network) to assess how MO-EvoPruneDeepTL behaves in these
representative cases. Once we annotate these percentages, the pruning methods prune the fully-connected
network until reaching such annotated values, giving rise to the accuracy values shown in the columns of
this table.

Table 4 shows the results of the comparison between MO-EvoPruneDeepTL and the pruning methods.
The second column indicates the target percentage of remaining weights corresponding to each dataset.
The third, fourth, and fifth columns report the accuracy of weight pruning, neuron pruning, and MO-
EvoPruneDeepTL, respectively. In addition, each dataset spans two rows in the table: the first row shows
the median percentage of active weights and the accuracy of each of the proposals for that case, whereas
the second row represents the case with the lowest percentage of active weights and their respective levels
of accuracy for each approach.

Results in the above table evince that MO-EvoPruneDeepTL outperforms these pruning methods in
most of the datasets. There are four datasets in which, without any doubt, MO-EvoPruneDeepTL achieves
a better performance than pruning methods. For the SRSMAS dataset, weight is slightly better than MO-
EvoPruneDeepTL in the case of the lowest percentage of active weights. This difference might be enough to
state that SRSMAS performs better than MO-EvoPruneDeepTL. Nonetheless, the median case shows that,
when a minimal number of neurons/weights are active, our proposal outperforms weight in this dataset.

A special case is noted in the results for the RPS dataset, which is the easiest one in terms of modeling
difficulty. Results expose this fact because, when the approach is to eliminate a whole group of connections
represented by the neurons, MO-EvoPruneDeepTL achieves a better performance in both cases. In fact, the
greater the number of neurons/connections to be active is, the better both models will perform. However,
if the strategy is to eliminate single connections as implemented by the weight strategy, it does not imply
removing the whole set of connections of the neuron. In this case, this method may perform better than
MO-EvoPruneDeepTL. The fact that RPS is the simplest dataset is reflected in the fact that the same
accuracy value can be achieved by several desired pruning configurations. Based on this observation, it
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Table 4: Comparison of MO-EvoPruneDeepTL against competitive pruning methods of the literature in terms of accuracy
given a fixed value of target percentage of pruning weights.

Dataset
Percentage of

weight neuron MO-EvoPruneDeepTL
remaining weights

CATARACT
3.3% 0.380 0.248 0.694
0.09% 0.182 0.165 0.504

LEAVES
10.80% 0.637 0.700 0.906
2.90% 0.462 0.450 0.515

PAINTING
15.5% 0.747 0.524 0.935
0.09% 0.333 0.107 0.429

PLANTS
11.1% 0.212 0.072 0.373
0.25% 0.043 0.034 0.106

RPS
5.0% 0.943 0.900 0.894
0.24% 0.943 0.333 0.484

SRSMAS
8.79% 0.454 0.408 0.782
0.10% 0.161 0.079 0.145

can be concluded that removing connections is a valid pruning method especially when complemented with
other techniques such as evolutionary algorithms. In this case, there is potential for improvement in extreme,
intermediate or general cases, as shown in the Pareto front estimations reported in these results.

Results attained by MO-EvoPruneDeepTL at the median percentage of pruning neurons are remarkable,
since it corresponds to the center of the distribution of complexity values in the Pareto front estimated by
the technique. In detail, all cases report a minimum of approximately 70% of pruned weights in the worst
case. In the best case, almost the entire network is pruned, which corresponds to the lowest complexity
value in the estimated front. The higher the percentage of pruned neurons is, the more difficult is to achieve
a model with good accuracy levels, since a minimal amount of neurons/weights is needed to achieve them.
This is exposed in most considered cases, in which the median value achieves a better performance. Taking
a closer look at the case with lowest percentage of remaining weights, which can be deemed a more complex
case, the performance of the models degrades, which is one of the lessons learned from the inspection of
the Pareto fronts made in this section. However, MO-EvoPruneDeepTL is able to outperform the rest of
pruning methods with models that do not surpass 3% of active neurons, except in the case of SRSMAS,
whose performance is practically the same.

The Pareto fronts shown in this section have allowed us to obtain valuable information on the different
executions of MO-EvoPruneDeepTL. The configuration of MO-EvoPruneDeepTL has allowed us to obtain
a fairly diverse set of solutions, with competitive solutions at the extreme values of the different objectives
of the study. A second conclusion drawn from this analysis is the existence of relationship or direct Pareto
both the complexity of the network and its performance and the complexity and robustness, but it does not
appear to exist between the performance and the robustness. Finally, a third conclusion has been drawn
from the comparison against other pruning methods: in general, MO-EvoPruneDeepTL is able to outperform
such methods for both intermediate and extreme pruning values, whereas a minimum percentage of neurons
is required to produce high-quality pruned models.

5.2. Answering RQ2: Remarkable pruning patterns in the Pareto fronts of MO-EvoPruneDeepTL

This RQ aims to analyze if there are certain pruning patterns, along the different trained networks, that
allows detecting important regions in the input images to the pruned networks.

In order to answer this RQ, we must discriminate relevant neurons that appear in most of the pruning
patterns in the Pareto fronts produced by MO-EvoPruneDeepTL. In doing so, we resort to a XAI technique
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called GradCAM (Selvaraju et al., 2017, October), which permits to localize the regions within the image
that are responsible for a class prediction. Thanks to GradCAM, we can go backwards from the neurons of
the solutions and highlight these key pixel regions. For each dataset, we depict several query images, and
remark the 10 most relevant neurons as per GradCAM and their distribution among the three objectives.
In the following figures, the central sections are relevance heatmaps obtained by GradCAM, remarking the
most influential zones of the input images as warmer colors. In addition to the heatmap, we also present two
more plots. The first one, in the left top, show as a bar diagram the index of the 10 most relevant neurons
which appear as active in most of the solutions of the Pareto front, with their relative frequency. The
second one, at the right, shows the distribution of the objective’s values for these representative neurons.
In this chart, a boxplot is shown for each objective and neuron: from left to right, accuracy, percentage
of active neurons and AUROC, respectively. The border of the heatmaps and the color of the bars in the
figures are related, so that the reader can match each heatmap to the corresponding neuron and frequency
of appearance in the Pareto.

Figure 5 shows the previous information for the CATARACT dataset. In the first one, the barplot, we
can see that the least important neuron achieves a 60% of frequency in the Pareto front, i.e., it appears in
the 60% of solutions meanwhile the best one has a frequency rate of more than the 80%. The second figure,
the boxplot, shows the distribution of the objectives for solutions which have these relevant neurons. These
results show that low complexity is presented in these neurons and high accuracy and AUROC. Lastly,
we see the heatmaps for this dataset. For the shown images, we can see how these pruning patterns that
MO-EvoPruneDeepTL achieves during its evolutionary process. These patterns let us recognize how the
network dictate the class for each image thanks to these ten most important neurons.

The next figure, Figure 6 shows the results for the RPS dataset. The bar graph shows that these neurons
achieve an appearance in more than the 80% of solutions of the Pareto and the boxplot confirm that the
solutions in which these neurons are presented achieve, in most cases, less than 10% of active neurons,
accuracies near 90% and AUROC around an 80%. The examples images shown in the heatmaps present
the effect of these important neurons. As we have previously noted, the keys to recognize the images are
position of the fingers and even the separation among them, as warmer color are presented for them.

The next dataset is PAINTING. Figure 7 shows the set of graphics for this dataset. The relevant neurons
for PAINTING achieve a minimum percentage of appearance of 70% among all the solutions in the Pareto
front. There is a significant difference between the first relevant neuron and the rest in terms of appearance.
These solutions present almost a 20% of active neurons, but also high performance both in accuracy and
AUROC, between 90 and 100%. This indicates the great level of uniformity in the robustness for this
dataset. These neurons help us to analyze the images of this dataset. The third image presents a woman
and, taking a deep look into the heatmaps, we see that the network recognizes the face, and then the outer
parts, like the arms and the hair. Another interesting image is the fifth one. Our network is able to recognize
the chest and also the arms and the rest of the body extremities.

We continue our analysis of the obtained pruning patterns of MO-EvoPruneDeepTL with the PLANTS
dataset, shown in Figure 8. The most important neurons have an appearance rate between 60 and 80% in
all the solutions of the Pareto front. Their distribution of objective report us a very low complexity of the
network, near the 10% in average, with a good result for this dataset both in accuracy and AUROC. This
dataset contains images of leaves and plants of fruit and vegetables and, for that reason, our network focus
in the recognition of the shape of these leaves, as it is shown in the three bottom images of the figure.

We continue with this analysis with the LEAVES dataset. In this case, Figure 9 shows the three graphics
for this dataset. The first one, which is related with the relevance of the neurons, exhibit two neurons which
appear in all the solutions of the Pareto front and another two which present almost a 100% of appearance.
For those neurons, the boxplot chart report us similar distributions because, in all the cases, the remaining
active neurons are kept low and the accuracy and AUROC are high. Lastly, the images from this dataset
show both diseased and healthy leaves. The achieved pruning patterns of MO-EvoPruneDeepTL are able
to distinguish the healthy from the diseased leaves (last image versus the third one starting from the top),
and then the type of the disease.

The last dataset is SRSMAS, whose charts are presented in Figure 10. The most relevant neurons obtain
a minimum of 60% of appearance in all the solutions of the Pareto front, which has been a constant factor
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(b) Boxplots of CATARACT

(c) Heatmaps of CATARACT

Figure 5: Bars, boxplots and heatmaps of CATARACT.
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(c) Heatmaps of RPS

Figure 6: Bars, boxplots and heatmaps of RPS.

21



209 1002 219 1775 537 2003 1009 903 1596 567

Index of relevant neuron

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
fre

qu
en

cy
in

ag
g.

P
ar

et
o

fro
nt

(a) Bars of PAINTING

209 1002 219 1775 537 2003 1009 903 1596 567

Index of relevant neuron

0.0

0.2

0.4

0.6

0.8

1.0

D
is

tr
ib

ut
io

n
of

ob
je

ct
iv

es
am

on
g

so
lu

tio
ns

w
ith

ac
tiv

e
ne

ur
on

(b) Boxplots of PAINTING

(c) Heatmaps of PAINTING

Figure 7: Bars, boxplots and heatmaps of PAINTING.
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1473 1281 60 730 758 828 462 1853 1425 1589

Index of relevant neuron

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
is

tr
ib

ut
io

n
of

ob
je

ct
iv

es
am

on
g

so
lu

tio
ns

w
ith

ac
tiv

e
ne

ur
on

(b) Boxplots of PLANTS
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Figure 8: Bars, boxplots and heatmaps of PLANTS.
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(b) Boxplots of LEAVES

(c) Heatmaps of LEAVES

Figure 9: Bars, boxplots and heatmaps of LEAVES.
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in all the datasets. Moreover, the distribution of the objectives for the solutions, in which these neurons
are active, shares a common line: high values both performance and robustness and low complexity of the
network. These neurons draw pruning patterns that identify the class for the input images. As an example,
in the fourth image it is only necessary to recognize the silhouette of the coral reef, but in the fifth one, the
network needs to understand how is the central part of the coral reef and then its extremities.
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(b) Boxplots of SRSMAS

(c) Heatmaps of SRSMAS

Figure 10: Bars, boxplots and heatmaps of SRSMAS.

In these figures, we have seen several datasets in which the difference rate between the most important
neurons is close (RPS and PLANTS), but there are other datasets in which this difference is up to 20%
between the most and least relevant neurons. Moreover, the distribution of the objectives for each dataset
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gives us good insights about the uniformity of the performance and robustness in most of the datasets.
The good work done by MO-EvoPruneDeepTL in training the models has made possible to achieve

remarkable pruning patterns. These have helped us to decipher not only those neurons that have been key
in the whole training and inference process, but also to locate in the input images those groups of influential
pixels which have been important to decide the class of each of these images.

5.3. Answering RQ3: Quality of the models through ensemble modeling

This subsection is devised to formally answer to RQ3, which is to show if the ensemble modeling is
able to improve the quality of the trained models by MO-EvoPruneDeepTL. An elementary key in this
regard is model diversity, understood as the ability to generate and train models from a given dataset that
are different to each other and that model differently the distribution underlying the dataset at hand. If
MO-EvoPruneDeepTL is found to be capable of generating models in this way (as a byproduct of its multi-
objective search), then an ensemble of such models can give rise to an improved performance and reduced
risk of overfitting. For all of these reasons, ensemble modeling can achieve an improvement in terms of
either accuracy and/or robustness with respect to the individual pruned models comprised in the Pareto
front estimated by MO-EvoPruneDeepTL.

Having established the motivation for ensemble modeling, we will now describe its implementation. We
depart from the two objectives to be maximized, namely, accuracy and robustness. The proposed ensemble
strategy consists of collecting the models in the estimated Pareto front (containing the best solutions from
the different runs performed) that fall within a statistical range of accuracy or AUROC (the robustness
measure). Thus, the ensemble will fuse together those pruned models that fall within two given percentiles
of the distribution of these metrics over the Pareto front of the three objectives. From these assembled
models, their predictions for a given query are merged into one (by simple majority voting), and compared
to the prediction of the best individual model in the ensemble.

The analysis of the ensemble behavior is done based on different percentile ranges of each of the accuracy
and AUROC distributions, providing more precise information for each of these metrics. Next, we explain
how such percentile ranges are chosen. We start with a first range (percentiles (50%, 60%)), and we increase
the extremes of the interval by 5% in each iteration, giving us 8 quartile intervals for both metrics. Models
in the Pareto front whose objective values fall within each of these percentile ranges are included in the
ensemble. For example, the interval (75%, 85%) will contain those models in the estimated Pareto front
whose accuracy objective is within this range given the distribution of the accuracy objective computed over
the whole Pareto front estimation (a similar example can be given for the AUROC score). These percentiles
are defined as (Qmin, Qmax), where Qmin = 50%, 55%, . . . , 85%, and Qmax = 60%, 65%, . . . , 95%. With this
division, we have the following intervals (50%, 60%), (55%, 65%), . . . , (85%, 95%).

In this study, we have selected the CATARACT, PAINTING and RPS datasets for the experimental tests
performed to examine the behavior of ensemble modeling. Two different plots are depicted for each dataset,
one for each metric (accuracy and AUROC). In each of these plots, three symbols appear in the form of
a rectangle, a square and a star. The rectangle shows the distribution of accuracy/AUROC values for the
models in the percentile range at hand. The square symbolizes the best result for that measure. Lastly,
the star indicates the accuracy/AUROC of the ensemble.With this explanation, we can interpret the two
graphs that result from making the ensemble. The first one is related to the accuracy of the network. Figure
11 shows this graph. It presents three graphs sorted alphabetically by dataset. The first one corresponds
to CATARACT, the second to RPS and the third to PAINTING. Each of them shows, for each interval of
quantile the distribution of individual accuracies, the maximum of the distribution and the accuracy of the
ensemble.

The overall performance in the three cases is positive since the diversity of the models allows us to find
new models that improve the accuracy for each quantile interval, except in the case of RPS where we only
have one model in the interval (60%, 70%). In the RPS case, we have models near the 90% of accuracy and
the ensemble produces a new model with almost 96% of it, which is a great result. Moreover, models with
higher accuracy (96% or more) achieve close to 100% of accuracy. For RPS (the chart of the right), most of
the ensemble models get a 95% of accuracy, meanwhile their individual models are present a lower value in
accuracy. As a result, these charts show the benefits of the ensemble modeling for the accuracy objective.
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Figure 11: Ensemble modeling of the models trained by MO-EvoPruneDeepTL in terms of accuracy. Left: CATARACT
dataset. Middle: RPS dataset. Right: PAINTING dataset.

The second part of this section consists of replicating the previous experiment, but for the case of OoD
detection in order to check if the AUROC improves when ensemble modeling occurs. In such a case, we will
be able to confirm that the new model detects less OoD sample as InD, which makes an improvement in the
associated metric.

The interpretation of the set of charts is the same as in the previous case. We have made the ensemble
with the models for each interval. The same characteristics are presented in Fig. 12. It is shown the
distribution of individual AUROC values, its maximum and then, marked with a star, the AUROC of the
ensemble. The CATARACT case shows an improvement in the AUROC in all the cases but one. For the
RPS case (middle chart), the case of (85%, 95%) achieves almost a 95% of AUROC, meanwhile the individual
values get a maximum of 87%. The PAINTING dataset also presents outstanding results. Its minimum
AUROC for all the intervals of the ensemble is more than 98.5% and the least value is of individual models
is less than 97%. The results obtained from the graph are similar to those obtained for the case of accuracy,
since they improve on the individual results in the vast majority of the intervals.

In this section, we have conducted two experiments which involve the ensemble modeling of the trained
models by MO-EvoPruneDeepTL. The ensemble has been done taking into account the performance of the
network and the robustness and we have given the liberty to choose the interval of values for each measure.
The results drawn from these graphics show that both of the objectives have been improved. Performing a
MO search not only provides the user with a wide range of models that balance between the three stated
objectives, but it also achieves more diversity among the models in order to ensemble them and achieve even
higher performance and robustness.

6. Conclusions

This paper has introduced MO-EvoPruneDeepTL, a MONAS model that evolves sparse layers of a DL
model which has been instantiated using the TL paradigm. MO-EvoPruneDeepTL uses a MOEA, which
evolves these sparse layers, in order to obtain adapted, pruned layers to the problem at hand and making
decisions about the neurons that need to be active or inactive.

MO-EvoPruneDeepTL is a model that evolves the extracted features from the pre-trained network in
order to train the last layers to tackle the considered problem. Our results draw two conclusions from
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Figure 12: Ensemble modeling of the models trained by MO-EvoPruneDeepTL in terms of OoD detection. Left: CATARACT
dataset. Middle: RPS dataset. Right: PAINTING dataset.

the Pareto fronts: there exists a great diversity in the solutions and they also establish promising values
for the objectives in their extremes values. Moreover, the projections for each objective shed light on the
existence of a direct relationships between the complexity of the network and each of the other two objectives
(performance and robustness), whereas there is no direct relationship between the latter two. This work
falls within the umbrella of OWL because the evolved models are asked about new data, which is the OoD
datasets. Moreover, OWL is related with GPAI and, particularly, in this manuscript, the experiments have
shown the capability of AI generating AI as the MOEA has learnt from the trained DL models.

The trained models of MO-EvoPruneDeepTL lead to several pruning patterns in which there exist
neurons that appear in most of the best solutions of the Pareto front. These patterns help us to recognize
the key group of regions of the input images that our models consider the most important ones when
assigning the class to the input image at inference time.

The diversity of the models of MO-EvoPruneDeepTL has shown that ensemble modeling is able to
increase the overall performance, both in performance of the network and robustness, in most of the quantiles
for minimum and maximum considered objective values.

The evolved trained models have shown a great performance with a minimum number of active neurons,
but it is also shown the great contribution of the robustness for these models, as each DL model is tested
with data that it has not previously seen. Moreover, the objectives of the MOEA have been the performance,
complexity and robustness, but other alternatives can be formulated as objectives such as the latency or
energy used of the GPU in the inference of the pruned model or the epistemic uncertainty level.

An ablation study is also in our agenda for future research, aiming to discern which algorithmic steps are
more relevant for the search convergence of the solver when tackling the multi-objective problem at hand.
We envision that the results of this ablation study can illuminate the design of new operators and more
effective search strategies than the ones utilized in this work. Moreover, we will investigate the influence of
different robustness measures on the Pareto front estimations produced by MO-EvoPruneDeepTL.
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Loni, M., Sinaei, S., Zoljodi, A., Daneshtalab, M., & Sjödin, M. (2020). DeepMaker: A multi-objective optimization framework

for deep neural networks in embedded systems. Microprocessors and Microsystems, 73 , 102989. https://doi.org/10.1016/
j.micpro.2020.102989.

Lu, Z., Cheng, R., Huang, S., Zhang, H., Qiu, C., & Yang, F. (2022a). Surrogate-assisted Multi-objective Neural Architecture
Search for Real-time Semantic Segmentation. arXiv preprint arXiv:2208.06820 , . https://arxiv.org/abs/2208.06820.

Lu, Z., Cheng, R., Jin, Y., Tan, K. C., & Deb, K. (2022b). Neural Architecture Search as Multiobjective Optimization
Benchmarks: Problem Formulation and Performance Assessment. arXiv preprint arXiv:2208.04321 , . https://doi.org/

10.48550/arXiv.2208.04321.
Lu, Z., Deb, K., Goodman, E., Banzhaf, W., & Boddeti, V. N. (2020, August). NSGANetV2: Evolutionary Multi-Objective

Surrogate-Assisted Neural Architecture Search. In Computer Vision – ECCV 2020: 16th European Conference, Glasgow,
UK, Proceedings, Part I . https://doi.org/10.1007/978-3-030-58452-8_3.

Lu, Z., Whalen, I., Boddeti, V., Dhebar, Y., Deb, K., Goodman, E., & Banzhaf, W. (2019, July). NSGA-Net: Neural architec-
ture search using multi-objective genetic algorithm. In GECCO 2019 - Proceedings of the 2019 Genetic and Evolutionary
Computation Conference, Prague, Czech Republic, 2019 . https://doi.org/10.24963/ijcai.2020/659.

Lu, Z., Whalen, I., Dhebar, Y., Deb, K., Goodman, E. D., Banzhaf, W., & Boddeti, V. N. (2021). Multiobjective Evolutionary
Design of Deep Convolutional Neural Networks for Image Classification. IEEE Transactions on Evolutionary Computation,
25 , 277–291. https://doi.org/10.1109/TEVC.2020.3024708.

Mart́ın, A., Lara-Cabrera, R., Fuentes-Hurtado, F., Naranjo, V., & Camacho, D. (2018). EvoDeep: a new evolutionary
approach for automatic deep neural networks parametrisation. Journal of Parallel and Distributed Computing, 117 , 180–
191. https://doi.org/10.1016/j.jpdc.2017.09.006.

Martinez, A. D., Del Ser, J., Villar-Rodriguez, E., Osaba, E., Poyatos, J., Tabik, S., Molina, D., & Herrera, F. (2021). Lights
and shadows in Evolutionary Deep Learning: Taxonomy, critical methodological analysis, cases of study, learned lessons,
recommendations and challenges. Information Fusion, 67 , 161–194. https://doi.org/10.1016/j.inffus.2020.10.014.

Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D., Francon, O., Raju, B., Shahrzad, H., Navruzyan, A., Duffy, N.
et al. (2019). Evolving deep neural networks. In Artificial intelligence in the age of neural networks and brain computing
(pp. 293–312). Academic Press. https://doi.org/10.1016/B978-0-12-815480-9.00015-3.

[dataset]Laurence Moroney (2019). Rock, Paper, Scissors Dataset. Retrieved from http://www.laurencemoroney.com/

rock-paper-scissors-dataset/. Accessed September 10, 2020.
Pan, S. J., & Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 22 ,

1345–1359. https://doi.org/10.1109/TKDE.2009.191.
Parmar, J., Chouhan, S. S., Raychoudhury, V., & Rathore, S. S. (2022). Open-World Machine Learning: Applications,

Challenges, and Opportunities. ACM Comput. Surv., (pp. 1–36). https://doi.org/10.1145/3561381.
Pham, H., Guan, M., Zoph, B., Le, Q., & Dean, J. (2018, July). Efficient neural architecture search via parameters sharing. In

International Conference on Machine Learning, Stockholm, Sweden, 2018 . http://proceedings.mlr.press/v80/pham18a.

html.
Poyatos, J., Molina, D., Martinez, A. D., Del Ser, J., & Herrera, F. (2023). EvoPruneDeepTL: An evolutionary pruning model

for transfer learning based deep neural networks. Neural Networks, 158 , 59–82. https://doi.org/10.1016/j.neunet.2022.
10.011.

Real, E., Aggarwal, A., Huang, Y., & Le, Q. V. (2019, January). Regularized evolution for image classifier architecture search.
In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 2019 . https://doi.org/10.1609/

aaai.v33i01.33014780.
Real, E., Liang, C., So, D., & Le, Q. (2020, July). AutoML-zero: evolving machine learning algorithms from scratch. In

International Conference on Machine Learning, 2020 . https://doi.org/10.48550/arXiv.2003.03384.
[dataset]Virtual Russian Museum (2018). Art Images: Drawing/Painting/Sculptures/Engravings. Retrieved from https:

//www.kaggle.com/thedownhill/art-images-drawings-painting-sculpture-engraving, Accessed September 10, 2020.
Salehi, M., Mirzaei, H., Hendrycks, D., Li, Y., Rohban, M. H., & Sabokrou, M. (2021). A unified survey on anomaly,

novelty, open-set, and out-of-distribution detection: Solutions and future challenges. arXiv preprint arXiv:2110.14051 , .
https://doi.org/10.48550/arXiv.2110.14051.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017, October). Grad-CAM: Visual Explana-
tions from Deep Networks via Gradient-Based Localization. In 2017 IEEE International Conference on Computer Vision
(ICCV), Venezia, Italy, 2017 . https://doi.org/10.1109/ICCV.2017.74.

30



[dataset] Singh, D., Jain, N., Jain, P., Kayal, P., Kumawat, S., & Batra, N. (2020, May). PlantDoc: A Dataset for Visual
Plant Disease Detection. In 7th ACM IKDD CoDS and 25th COMAD, Hyderabad, India, 2020 . https://doi.org/10.

1145/3371158.3371196.
Srinivas, S., & Babu, R. V. (2015, September). Data-free Parameter Pruning for Deep Neural Networks. In Proceedings of the

British Machine Vision Conference (BMVC), Swansea, UK, 2015 . https://dblp.org/rec/journals/corr/SrinivasB15.

bib.
Stanley, K., & Miikkulainen, R. (2002). Evolving neural networks through augmenting topologies. Evolutionary Computation,

10 , 99–127. https://doi.org/10.1162/106365602320169811.
Suganuma, M., Kobayashi, M., Shirakawa, S., & Nagao, T. (2020). Evolution of Deep Convolutional Neural Networks Using

Cartesian Genetic Programming. Evolutionary Computation, 28 , 141–163. https://doi.org/10.1162/evco_a_00253.
[dataset]Hafiz Tayyab Rauf, Saleem, B. A., Lali, M. I. U., Khan, M. A., Sharif, M., & Bukhari, S. A. C. (2019). A citrus fruits

and leaves dataset for detection and classification of citrus diseases through machine learning. Data in Brief , 26 , Article
104340. https://doi.org/10.1016/j.dib.2019.104340.

Trivedi, A., Srivastava, S., Mishra, A., Shukla, A., & Tiwari, R. (2018). Hybrid evolutionary approach for Devana-
gari handwritten numeral recognition using Convolutional Neural Network. Procedia Computer Science, 125 , 525–532.
https://doi.org/10.1016/j.procs.2017.12.068.

Wang, S., Lin, P., Hu, R., Wang, H., He, J., Huang, Q., & Chang, S. (2019). Acceleration of LSTM With Structured Pruning
Method on FPGA. IEEE Access, 7 , 62930–62937. 10.1109/ACCESS.2019.2917312.

Wang, S., Liu, J., & Jin, Y. (2021). A Computationally Efficient Evolutionary Algorithm for Multiobjective Network Robustness
Optimization. IEEE Transactions on Evolutionary Computation, 25 , 419–432. https://doi.org/10.1109/TEVC.2020.

3048174.
Wang, Z., Li, F., Shi, G., Xie, X., & Wang, F. (2020). Network pruning using sparse learning and genetic algorithm. Neuro-

computing, 404 , 247–256. https://doi.org/10.1016/j.neucom.2020.03.082.
Wei, H., Lee, F., Hu, C., & Chen, Q. (2022). MOO-DNAS: Efficient Neural Network Design via Differentiable Architecture

Search Based on Multi-Objective Optimization. IEEE Access, 10 , 14195–14207. https://doi.org/10.1109/ACCESS.2022.

3148323.
Yang, J., Zhou, K., Li, Y., & Liu, Z. (2021). Generalized out-of-distribution detection: A survey. arXiv preprint

arXiv:2110.11334 , . https://doi.org/10.48550/arxiv.2110.11334.
Yang, Z., Wang, Y., Chen, X., Shi, B., Xu, C., Xu, C., Tian, Q., & Xu, C. (2020, June). CARS: Continuous Evolution

for Efficient Neural Architecture Search. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Virtual, June, 2020 . https://doi.org/10.1109/CVPR42600.2020.00190.

Zhou, Z.-H. (2022). Open-environment machine learning. National Science Review , 9 , 1–11. https://doi.org/10.1093/nsr/

nwac123.
Zoph, B., & Le, Q. V. (2016). Neural Architecture Search with Reinforcement Learning. arXiv preprint arXiv:1611.01578 , .

https://arxiv.org/abs/1611.01578.

31





205

Chapter III

El papel de la Computación
Evolutiva en los sistemas de IA de
propósito general





207

1 Introducción

En este capítulo se abordará el cuarto objetivo de la tesis. Este trabajo aborda la creciente
demanda de modelos adaptables capaces de hacer frente a un conjunto diverso de tareas
de aprendizaje, superando las limitaciones de los sistemas diseñados para ocuparse de una
sola tarea. La reciente aparición de los Sistemas de Inteligencia Artificial de Propósito
General (General-Purpose Artificial Intelligence Systems- GPAIS) plantea retos tanto de
configuración como de adaptabilidad de modelos a escalas de complejidad mucho mayores
que el diseño óptimo de los modelos tradicionales de Aprendizaje Automático (Machine
Learning - ML). La Computación Evolutiva ha sido una herramienta útil tanto para el
diseño como para la optimización de modelos de ML, dotándolos de la capacidad de
configurarse y/o adaptarse a la tarea considerada. Por ello, su aplicación a GPAIS puede
considerarse como una elección natural.

El objetivo de este trabajo es analizar el papel de la Computación Evolutiva en el
campo de los GPAIS, explorando el uso de Algoritmos Evolutivos (AEs) para su diseño o
mejora. También relacionamos las propiedades de los GPAIS con las áreas del ML en las
que los AEs han tenido una notable contribución, destacando los hitos recientes de los
AEs para los GPAIS. Además, discutimos los retos de aprovechar los beneficios de los
AEs para los GPAIS, presentando diferentes estrategias tanto para el diseño como para
la mejora de los GPAIS con AEs, cubriendo áreas tangenciales, identificando nichos de
investigación y esbozando potenciales líneas de investigación para los AEs y los GPAIS.

Este trabajo se estructura de la siguiente manera: la Sección 1.1 introduce y motiva
las bases con las que se trabajará en el resto de secciones. Tras ello, en la Sección 2, se
proporciona la base necesaria para comprender el trabajo realizado. En la Sección 3, se
examinan las diferentes opciones de uso de los AEs para el diseño y mejora de GPAIS, se
alinean las propiedades de GPAIS con las áreas de ML en las que los AEs han contribuido
en buena manera, y se muestran casos prácticos como hitos en el desarrollo de AEs con
GPAIS. La Sección 4 hace énfasis en los retos para obtener los beneficios de usar AEs para
GPAIS y también estrategias que permiten abordar GPAIS con AEs, junto con las áreas
de investigación adecuadas dentro de los AEs para aplicar estas estrategias. Finalmente,
en la Sección 5, se exponen las conclusiones extraídas y las líneas futuras de investigación.

1.1 Motivación

El ML es un subcampo de la IA que se centra en el desarrollo de modelos capaces de
aprender patrones a partir de datos. La optimización de estos modelos ha sido un área
destacada de investigación, donde se han obtenido resultados significativos [STÖ19] gracias
a la adaptación de su diseño estructural y/o hiperparámetros en función de diversos
objetivos, como el rendimiento, la complejidad o la robustez, entre otros [YS20, YOY+23].
La diversidad de objetivos de optimización considerados hasta la fecha en la optimización
de modelos ML refleja la capacidad de estos algoritmos para abordar diferentes criterios.

Los avances recientes en varias áreas de investigación del ML como el Aprendizaje
Profundo (Deep Learning - DL) [GBC16] y los Modelos de Lenguaje Grande (Large
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Language Models - LLM) [MSC+13, HM15] – con chatbots que presentan un rendimiento
sin precedentes como ChatGPT [VDBZ+23] y modelos entrenados para generar código
que mejore la eficacia de los operadores de mutación dentro de la computación evolutiva
[LGJ+24] – indican un cambio notable hacia sistemas de IA más generalizados. Dichos
GPAIS han ganado importancia debido a sus capacidades únicas, no solamente para
ejecutar las tareas de modelado para las que fueron diseñados originalmente, sino también
para realizar bien aquellas tareas para las que no fueron entrenados explícitamente. Esta
capacidad de generalización que va más allá de las tareas conocidas ha sido constatada
por las recientes definiciones que se han atribuido a los GPAIS (véase [TMP+24] y las
referencias allí comentadas).

Como se ha señalado anteriormente, existen numerosos enfoques para optimizar los
modelos de ML que han demostrado una notable competitividad en diversos dominios
del ML [SCZZ20]. Sin embargo, estudios recientes señalan una nueva tendencia de in-
vestigación centrada en la optimización de GPAIS, yendo más allá del ML tradicional
[GAU+23, UGT23, CL23, BNN+23, TMP+24]. Áreas de interés dentro de la optimización
como open-ended evolution [Sta03, TBC+16, PBC+19, ZLSC23], quality-diversity opti-
mization [PSS16, CD18, BDT+23] y novelty search [LS08] se han convertido en una parte
esencial para GPAIS. En dichas áreas, los GPAIS se sitúan a la vanguardia de la inves-
tigación actual. Estos sistemas presentan características atractivas, como la generación
de nuevos conocimientos, la adaptación a diversos entornos, y la integración de nuevas
tareas sin reducir el rendimiento. Al igual que ocurre con otros sistemas complejos, en
los GPAIS hay decisiones críticas que afectan tanto a su diseño como a su optimización,
y que abordan retos como la dimensionalidad del espacio de búsqueda, la evolución de
los objetivos y la necesidad de adaptación continua. Este panorama dinámico ofrece
oportunidades para integrar los GPAIS con otras técnicas de optimización eficaces.

En este sentido, los AEs destacan como una familia versátil de algoritmos que han
liderado el diseño y optimización de modelos de ML [ASBC+19, TTBG21], teniendo un
impacto sustancial en ambos escenarios [ÜB22, LMX+23]. Los AEs han desempeñado un
papel fundamental en diversas áreas de investigación, aportando contribuciones valiosas
al desarrollo de modelos de ML de alta calidad. Un ejemplo notable de su éxito está en
su fusión con los LLM [AST+24].

Los AEs han demostrado su capacidad para evolucionar programas, resolver problemas
de optimización dinámica o equilibrar varios objetivos en conflicto, entre otros escenarios.
Además de su historial de éxitos en la optimización de sistemas de IA de propósito fijo,
los AEs resultan especialmente atractivos para la optimización de GPAIS y para abordar
los mayores retos que plantean en comparación con los sistemas de IA de propósito fijo.
De hecho, ciertas áreas de investigación de los AEs se corresponden con algunas de las
propiedades fundamentales de los GPAIS, como la adaptabilidad a problemas a lo largo
del tiempo (optimización dinámica evolutiva) o la confluencia de múltiples objetivos en
entornos multitarea (lo que corresponde a la optimización multitarea y multiobjetivo).

Este trabajo analiza el potencial de la IA que potencia a otra IA, utilizando a los AEs
como una capa adicional de abstracción para diseñar o enriquecer GPAIS. Nos referiremos
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a estos modelos como EA-GPAIS. En concreto, los objetivos de este trabajo son:

• Relacionar el potencial de los AEs con los GPAIS, con el fin de fomentar una mayor
investigación en esta área de la IA. Para ello, desarrollaremos los tres objetivos
siguientes:

– Estudiar el diseño y la mejora de GPAIS mediante AEs con una taxonomía
basada en AEs que potencia a otra IA. Cada categoría de la taxonomía sirve
de guía sobre cómo los AEs pueden diseñar o mejorar la IA.

– Asociar las propiedades de GPAIS con áreas específicas de ML en las que los
AEs han realizado aportaciones significativas, para demostrar que la conexión
entre los AEs y GPAIS está bien definida, ya que los AEs pueden facilitar
estas propiedades.

– Mostrar los hitos recientes de EA-GPAIS. Bajo la definición de GPAIS presen-
tada en la siguiente sección, ilustramos diversos trabajos que han contribuido al
inicio y progreso de este campo en los últimos años, mostrando así el potencial
de EA-GPAIS.

• Debatir los retos que plantea el aprovechamiento de las ventajas de EA-GPAIS y las
estrategias para hacer frente a los avances, centrándose en los retos futuros. Para
ello, lo desglosamos en los dos siguientes subobjetivos:

– Estudiar los retos existentes para obtener los beneficios de los AEs en el
contexto de GPAIS. Tanto para el diseño como para la mejora de GPAIS el
uso de los AEs es una tarea compleja, y debemos asegurarnos de explotar el
beneficio de su sinergia.

– Explorar las estrategias que pueden aplicarse con los AEs para diseñar y
mejorar los GPAIS. Estas estrategias servirán de guía para los desarrollos
actuales y futuros de GPAIS utilizando AEs.
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2 Antecedentes y trabajo relacionado

Esta sección hace un breve resumen de la importancia de la computación evolutiva en
ML con el transcurso del tiempo y en la nueva era de la generación de modelos en IA
en la subsección 2.1. A continuación, se explican varias características de GPAIS en la
subsección 2.2. Por último, se muestra la relevancia del paradigma de la IA que potencia
a otra IA en relación con GPAIS en la subsección 2.3.

2.1 La Computación Evolutiva en el Aprendizaje Automático

La computación evolutiva ha proporcionado mecanismos inteligentes capaces de optimizar
modelos en diversos entornos. Como señalan Nan Li et al. [LMX+23], que revisaron
más de quinientas propuestas, estos algoritmos han sido ampliamente utilizados para
optimizar las diferentes etapas dentro del diseño total de los modelos de ML, incluyendo
el preprocesado, postprocesado y el propio modelado. Cabe destacar que dentro de
todas estas etapas, la computación evolutiva ha alcanzado una importancia considerable
en ramas específicas, como la selección de características [XZBY16], la extracción de
características [MSNM21], el aprendizaje por conjuntos (ensemble learning) [Hey24],
e incluso en la mejora del diseño de estos modelos mediante otras técnicas como las
máquinas de vectores soporte (Support Vector Machines) [FLSL19] y los árboles de
decisión (Decision Trees) [BBdCF12].

El rápido crecimiento del DL en los últimos años ha ampliado sus límites de aplicación.
Se han desarrollado diversas propuestas evolutivas que han facilitado la optimización de
los pesos, la arquitectura y la configuración de los modelos de DL [DSOM+19, ZLZ22].
La computación evolutiva ha contribuido significativamente al progreso en cada una
de las nuevas temáticas del ML, gracias al desarrollo de algoritmos que impulsan el
conocimiento en estas áreas. Estos algoritmos han sido ampliamente estudiados debido
a su aplicabilidad en una gran variedad de disciplinas [GL23]. Por lo tanto, en la era
moderna de la IA, en la que surgen problemas cada vez más complejos, los antecedentes
de la computación evolutiva nos sugieren que está destinada a convertirse en uno de los
mecanismos principales para la nueva generación de modelos de IA.

2.2 GPAIS: Definiciones y Propiedades

El estudio de los GPAIS parte de una clara distinción de los sistemas de IA de propósito
fijo, que están diseñados para realizar tareas específicas. Esta diferenciación ha generado
debates sobre las características que ha de presentar sistema de IA para ser clasificado
como GPAIS [UGT23]. Un estudio reciente ofrece un análisis exhaustivo de los GPAIS,
planteando una definición como referencia clara, una caracterización y una clasificación
de estos sistemas mediante el uso de una taxonomía que distingue varias estrategias para
construir GPAIS. En concreto, los GPAIS se definen en función del proceso seguido para
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incorporar una nueva tarea al sistema, ya sea reentrenando todo el sistema desde cero con
esa tarea o bien mediante una adaptación para solucionarla conservando el conocimiento
aprendido por el sistema a partir de datos anteriores. Según [TMP+24]:

Definición 1 (GPAIS): Un Sistema de Inteligencia Artificial de Propósito General
(GPAIS) se refiere a un sistema avanzado de IA capaz de realizar eficazmente una
serie de tareas distintas. Su grado de autonomía y habilidad viene determinado
por varias características claves, como la capacidad de adaptarse o desenvolverse
bien en nuevas tareas que surjan en el futuro, la demostración de ser competente
en dominios para los que no ha sido entrenado de forma intencionada y específica,
la capacidad de aprender a partir de datos limitados y el reconocimiento proactivo
de sus propias limitaciones con el fin de mejorar su rendimiento.

La Definición 1 [TMP+24] proporciona una descripción exhaustiva de las características
que puede poseer un GPAIS. A continuación, y basándonos en [TMP+24], presentamos
brevemente los conceptos de GPAIS que nos ayudarán a entender el papel que pueden
desempeñar los AEs.

El rasgo clave que distingue los GPAIS frente a la IA clásica de propósito fijo radica
en la capacidad de abordar simultáneamente múltiples tareas de aprendizaje (ya sean
conocidas o desconocidas). Teniendo en cuenta lo que sabemos sobre esas tareas, Triguero
et al. [TMP+24] diferencian entre dos tipos de GPAIS:

• GPAIS de mundo cerrado: Asumen que tenemos datos para un número deter-
minado de tareas, y que esas serán las únicas tareas que se tratarán.

• GPAIS de mundo abierto: Estos sistemas reconocen que pueden surgir nuevas
tareas y que los datos disponibles pueden ser limitados (o inexistentes).

En el contexto del mundo abierto, se espera disponer de muy pocos datos, por lo que
resulta fundamental aprovechar los conocimientos previos de otras tareas. De este modo,
los GPAIS de mundo abierto se centran en la diversidad/generalización de modelos en
vez de en el ajuste de la configuración del modelo para una tarea concreta, de modo
que puedan utilizarse en diferentes problemas incluso en ausencia de suficientes datos
para estas nuevas tareas. El conocido campo de la IA Generativa (GenAI) se compone
de sistemas que son un ejemplo excelente de sistemas GPAIS de mundo abierto, que
se caracterizan por su autonomía, adaptabilidad a nuevas tareas, ser competentes en
dominios para los que no han sido entrenados expresamente, capacidad de aprender a
partir de datos limitados y reconocer proactivamente sus propias limitaciones. Estas
características han supuesto una transformación completa de la IA, como se refleja en
[Mii24].

Esta definición nos permite distinguir entre varios grados de autonomía para los
GPAIS, sin embargo, existen múltiples líneas de investigación para realizar estos sistemas.
En la literatura especializada, encontramos dos enfoques distintos, pero no excluyentes.
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Por un lado, se puede intentar crear un único modelo de aprendizaje multitarea que sea lo
suficientemente general/diverso. Para ello, el modelo puede requerir ser entrenado sobre
datos de carácter general (por ejemplo, mediante autosupervisión) para posteriormente
ser adaptado ("fine-tuned") a nuevas tareas específicas. Esa es la idea subyacente de los
modelos fundacionales (foundation models) [BHA+22]. Por otro lado, se puede optar por
añadir una nueva capa de abstracción que utilice otra IA para ayudar a la IA subyacente
a ser más general. Aquí es donde los AEs pueden marcar la diferencia. La siguiente
subsección se centra en describir las diferentes vías de aplicación en las que un modelo de
IA puede ayudar a otro basándose en la taxonomía propuesta en [TMP+24].

2.3 IA que potencia a otra IA para GPAIS

El concepto de modelos de IA potenciados o incluso diseñados por otro modelo de IA se
conoce típicamente como IA que potencia a otra IA. Siguiendo la taxonomía propuesta
en [TMP+24], mostramos una lista no exhaustiva de temas en los que una IA puede ser
útil para diseñar o mejorar otra IA. En cuanto al diseño de un modelo general de IA,
podemos optar por los siguientes niveles:

• Optimización de hiperparámetros: Aunque el uso de AEs para la optimización
de hiperparámetros no es nuevo ni inusual en la IA de propósito fijo [YZ20, BKvS+23],
aquí nos centramos en la idea de ajustar un conjunto de hiperparámetros para
resolver una serie de tareas. En el contexto de mundo abierto, el reto consiste en
encontrar la mejor configuración cuando surge una nueva tarea, potencialmente con
pocos o ningún dato, para explotar el conocimiento previo con el fin de generalizar.

• Selección automática de algoritmos: El planteamiento anterior puede mejo-
rarse aún más si se determina tanto el algoritmo de IA más adecuado como sus
hiperparámetros. Esto permitiría una solución de IA más general que decide au-
tomáticamente la técnica de IA a utilizar para uno o varios problemas a la vez. En
ML, esto se conoce normalmente como AutoML [HKV19]. En este campo, los AEs
han hecho una buena aportación con el objetivo tanto de reducir la complejidad del
modelo de DL como de obtener mejores resultados [MDVR+21, ZLZ22].

• Construcción de algoritmos: En un nivel más bajo, podemos utilizar un modelo
de IA para diseñar los componentes de un algoritmo. AutoML-zero es un ejemplo
notable de este tipo [RLSL20]. La neuroevolución [SCLM19] también es una
alternativa para el diseño de modelos enteros de DL desde cero. Esto tiene el
potencial de diseñar algoritmos que generalicen múltiples tareas directamente, pero
a día de hoy se conoce muy poco trabajo para diseñar algoritmos desde cero que
permitan realizar nuevas tareas.

El objetivo de enriquecer una IA con la entrada de otra IA suele ser para abordar
problemas intrínsecos para que los modelos generalicen bien. Según [TMP+24], los
siguientes cinco enfoques para enriquecer son clave en GPAIS.
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• Descubrir nuevos comportamientos para hacer frente a los cambios dinámicos
del entorno, como los cambios en la distribución de los datos subyacentes. El
aprendizaje continuo (continual learning) [PKP+19] es un ejemplo destacado de
este ámbito.

• Generación de datos para mitigar la falta de datos que puedan parecerse a los que
podemos encontrar para una nueva tarea. Con la aparición de GenAI, los modelos
generativos [SWVN23] pueden ser capaces de crear datos que sigan la distribución
de un conjunto de datos de entrenamiento dado. POET [WLCS19] es un ejemplo
relevante de generación de entornos/escenarios para mejorar la generalidad de un
modelo en posibles escenarios de mundo abierto.

• Aprendiendo a aprender para compensar, de nuevo, la falta de datos para una
tarea concreta en presencia de muchas tareas (a veces relacionadas). Aprender a
transferir conocimiento de manera eficaz de un conjunto de tareas a una nueva
tarea [WRH17] puede permitir que los GPAIS generalicen bien. Few-shot learning
[WYKN20] es un ejemplo destacable en esta área.

• Active learning para buscar de forma autónoma la ayuda humana para perfeccionar
un modelo existente [FYHT17]. Esto puede proporcionar una adaptabilidad más
segura a nuevas tareas en situaciones desconocidas o inciertas.

• Aprendizaje cooperativo y colectivo puede utilizarse para construir sistemas
más amplios compuestos por diferentes modelos de IA, que se enriquezcan mutua-
mente con distintas ideas. Un ejemplo es la explotación de diferentes modalidades
de datos.
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3 Relación entre el potencial de los AEs y los GPAIS: Tax-
onomía para AEs que potencia a otra IA y principales
hitos

Como se ha comentado anteriormente, la implementación de GPAIS puede realizarse
añadiendo una nueva capa de abstracción para diseñar o mejorar otra IA. Para mostrar
el potencial de los AEs con los GPAIS, la subsección 3.1 y 3.2 describen cómo los AEs
pueden ayudar a diseñar y mejorar los GPAIS, respectivamente. Además, la subsección
3.3 analiza la idoneidad de los AEs en GPAIS examinando sus propiedades y su conexión
con áreas de investigación de ML en las que la computación evolutiva ha tenido un papel
relevante. Finalmente, la subsección 3.4 muestra varios hitos de EA-GPAIS durante los
últimos años.

3.1 AEs que potencia a otra IA para el diseño de GPAIS

Partiendo de la revisión realizada en la sección 2.3, exploramos ahora cada una de las
categorías y examinamos las estrategias en las que los AEs han hecho sus aportaciones,
sirviendo de referencia para futuros desarrollos GPAIS que utilicen AEs. A continuación,
las describimos brevemente para destacar el potencial de los AEs en estos escenarios de
diseño:

• Optimización de hiperparámetros: Esta categoría ha sido objeto de un amplio
estudio a lo largo de los años, con los algoritmos genéticos apareciendo como un
enfoque ampliamente utilizado para abordar el problema [DFDF+18]. Sin em-
bargo, existen heurísticas alternativas como la Optimización por Enjambre de
Partículas (Particle Swarm Optimization) o la Optimización Bayesiana, que tam-
bién demuestran su eficacia en este contexto [YS20]. En el ámbito del DL, el DL
evolutivo se centra normalmente en descubrir el conjunto óptimo de hiperparámetros
[DSOM+19, DHD20, BBS20]. Los métodos deNeural Architecture Search (NAS)
evolutiva son particularmente adecuados para identificar las mejores configura-
ciones de hiperparámetros para estos modelos [OSB+14]. Además, los últimos
avances en neuroevolución han integrado NAS y AEs co-evolutivos, incorporando
los hiperparámetros como parte de este proceso evolutivo [MLM+24a].

• Selección automática de algoritmos: El área de NAS evolutiva en DL ha
recibido una atención considerable en los últimos años, con varias versiones de
Algoritmos Genéticos que se han utilizado para seleccionar la estructura óptima
para los modelos de DL [SXZ+20, SXZY20]. Su capacidad para explorar grandes
espacios de búsqueda los hace muy adecuados para estas tareas, como se destaca
en [LSX+23, ZLZ22] tanto para los AEs monoobjetivo como multiobjectivo. Es
importante señalar que NAS a menudo abarca tanto la selección de modelos como
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la optimización de hiperparámetros, y muchas propuestas las tratan como si fueran
la misma tarea.

• Construcción de algoritmos: En esta categoría, las propuestas de NAS evolutiva
son capaces de diseñar modelos de DL en una amplia gama de dominios [EMH19b,
ZQGT21]. Además, la Programación Genética se ha utilizado no solamente para
los procesos de selección y construcción de características [EVH10], sino también
para la construcción de características por sí sola [TXZ16]. Por último, AutoML-
zero proporciona un método evolutivo para construir redes neuronales desde cero
[RLSL20].

3.2 AEs que potencia a otra IA para la mejora de GPAIS

Esta sección se centra en cómo pueden aprovecharse los AEs para mejorar los GPAIS.
La necesidad de capacidades de generalización y adaptabilidad de los GPAIS son dos
cuestiones clave para las que los AEs han mostrado ser exitosos. El enriquecimiento de
los GPAIS mediante el uso de los AEs puede llevarse a cabo de la siguiente manera:

• Descubrir nuevos comportamientos: Para que los GPAIS se adapten eficaz-
mente a entornos dinámicos, la optimización dinámica evolutiva se perfila como un
área esencial, ofreciendo propuestas innovadoras [NYB12]. Además, la adaptabilidad
es mayor cuando se combina con AEs multiobjetivo [ABBS17].

• Generación de datos: En situaciones en las que los GPAIS se enfrentan a datos
limitados, el objetivo principal de los AEs es extraer toda la información de calidad
del conjunto de datos disponibles. La generación evolutiva de datos se emplea
ampliamente en diversos ámbitos, incluso para problemas con desbalanceo de datos
[KGJH16]. Además, open-ended evolution no solamente genera datos, sino que
también crea entornos de aprendizaje, enriqueciendo la comprensión del modelo
[WLCS19]. Los AEs también pueden generar diversas configuraciones del modelo
inicial para adaptar el modelo a los datos [CCH+23]. Por último, quality-diversity
optimization ofrece un enfoque global para esta categoría. Estos métodos garantizan
la generación de una colección diversa de individuos con el mayor rendimiento posible,
presentando también propiedades deseables como la robustez y la adaptabilidad a
diversos escenarios [PSS16].

• Aprendiendo a aprender: Dado que los GPAIS suelen funcionar con datos
limitados, resulta imprescindible aprovechar la información de tareas similares. El
aprendizaje por transferencia evolutivo (ETL) y la optimización por transferencia
evolutiva (ETO) no solamente permiten transmitir los parámetros aprendidos, sino
también las representaciones y los operadores [TFJ21]. Además, la integración de
la optimización dinámica evolutiva con el aprendizaje de transferencia expande el
espectro de aplicaciones en escenarios de GPAIS [JWQ+21, WWZ+23].
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• Active learning : Este enfoque se ha analizado junto con la optimización multiob-
jetivo, dando lugar a métodos capaces de aprovechar el conocimiento y descubrir
soluciones de alta calidad [RV18]. El frente de Pareto delimita una región dentro del
espacio de búsqueda donde se encuentran las buenas soluciones, enriqueciendo así
el modelo mediante la localización de soluciones de alta calidad [LJJ22]. Además,
la integración del active learning con otros enfoques basados en AEs, como los
AEs co-evolutivos, puede reforzar aún más las interacciones y conducir a mejores
soluciones [LLL14].

• Aprendizaje cooperativo y colectivo: La optimización multitarea evolutiva
(EMO) [ODSMH22] facilita la maximización del conocimiento entre tareas, permi-
tiéndoles aprender unas de otras [XQX22]. Los AEs desempeñan un papel crucial
en la mejora de este proceso, particularmente en escenarios de GPAIS donde las
tareas pueden variar en cuanto a su tipo, permitiendo al AE explotar la sinergia de
las interacciones. Además, los AEs co-evolutivos contribuyen a la explotación de la
información facilitando su intercambio entre poblaciones [MLZ+19]. El ensemble
learning aprovecha el aprendizaje colectivo de modelos individuales para explotar
la sinergia entre tareas [Hey24]. Este enfoque permite al sistema aprovechar el
conocimiento grupal para mejorar el rendimiento. Cabe señalar que esta categoría
no sólo mejora las prestaciones existentes, sino que también tiene el potencial de
descubrir nuevos comportamientos a través de la cooperación y el intercambio de
información, mejorando aún más el sistema.

3.3 Conexión entre GPAIS, Aprendizaje Automático, y Áreas de In-
vestigación sobre Optimización

En esta sección, analizamos las capacidades de los AEs para los GPAIS teniendo en
cuenta sus diversas necesidades. Examinamos qué propiedades de los GPAIS pueden
ser compatibles con los resultados y los conocimientos obtenidos en las distintas áreas
de investigación de los AEs. Complementamos este análisis con una evaluación de las
capacidades de las áreas de investigación en AEs para los GPAIS considerando sus
propiedades:

• GPAIS han de adaptar sus conocimientos a tareas que varían con el
tiempo aprovechando los conocimientos previos: Para estos escenarios, los
AEs para optimización dinámica podrían ser muy útiles, ya que es necesario ajustar
la estrategia de búsqueda del algoritmo en tiempo de ejecución para poder adaptar
la búsqueda al panorama cambiante de la optimización. En concreto, se podrían
detectar nuevos patrones a lo largo del tiempo, o decidir ignorar patrones anteriores
que ya no reflejen las tareas actuales.

• GPAIS pueden realizar varias tareas simultáneamente, incluso siguiendo
diferentes prioridades u objetivos: Los AEs multiobjetivo podrían utilizarse
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para optimizar los GPAIS teniendo en cuenta distintos objetivos y obteniendo
modelos con distintos equilibrios entre ellos. Asimismo, los AEs multitarea pueden
aprender diferentes tareas simultáneamente, lo que permite mejorar los GPAIS
al abordar múltiples tareas. Otra área de los AEs que podría aplicarse es la de
los algoritmos co-evolutivos, mediante los cuales muchos algoritmos se ejecutan
en paralelo e intercambian información para mejorar la búsqueda. Este enfoque
co-evolutivo podría ayudar a los GPAIS para explotar las sinergias entre las tareas
compartiendo conocimientos entre ellas.

• GPAIS pueden realizar tareas inéditas con pocos o ningún dato nuevo:
Para reforzar esta funcionalidad, los AEs se pueden emplear para optimizar si-
multáneamente múltiples modelos de IA, garantizando la diversidad entre sus
conocimientos modelados. Esta diversidad abarca multitud de opciones, lo que au-
menta la probabilidad de identificar modelos que muestren un rendimiento superior
en tareas nuevas y desconocidas.

• GPAIS deben poder construirse/configurarse de forma autónoma: Los
AEs se han empleado tradicionalmente para el ajuste automático de modelos de ML
en tres niveles de granularidad diferentes. En el nivel más alto, los AEs se utilizan
para la selección de algoritmos, un proceso en el que se han aplicado ampliamente.
Pasando a un nivel intermedio, una vez determinado el algoritmo, los AEs pueden
configurar sus parámetros para optimizar el rendimiento. Por último, en el nivel
más bajo de granularidad, los AEs participan en la configuración o construcción
de primitivas de modelos, lo que demuestra su versatilidad en todos los niveles de
ajuste de modelos.

• GPAIS debe funcionar eficazmente en el diseño, en la fase de entre-
namiento y en el proceso de inferencia: El problema del rendimiento ha sido
motivo de preocupación para los AEs y se ha estudiado con diferentes técnicas
que pueden trasladarse a otros contextos. Por ejemplo, para mitigar los costes
de entrenamiento, se puede emplear un AE para reducir el conjunto de datos de
entrenamiento, creando un conjunto de datos reducido con un rendimiento similar,
una técnica conocida como destilación de datos. Además, los AEs pueden utilizarse
para reducir la complejidad del modelo, ya sea mediante la poda o la cuantización,
disminuyendo así los costes de entrenamiento y de inferencia.

• GPAIS deben explorar, evaluar y decidir acciones o secuencias de acciones
en pos de metas u objetivos específicos: Este es un escenario común para
los AEs. La computación memética, es una alternativa sólida y robusta para la
búsqueda en dominios complejos gracias a su enfoque combinado de exploración-
explotación. Además, los AEs se han utilizado tradicionalmente para el aprendizaje
por refuerzo, en el que los resultados de las acciones se utilizan para reforzar las
mejores acciones, una técnica que se aplica en diversos ámbitos, desde los juegos
hasta la robótica. Por consiguiente, los AEs pueden ofrecer robustez y adaptabilidad
incluso en entornos dinámicos.
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• GPAIS debe abordar simultáneamente tareas de modelización multi-
modal definidas sobre diversos conjuntos de datos: Los AEs demuestran
su versatilidad a la hora de manejar sin problemas diversas representaciones. Los
AEs adaptados a determinadas representaciones pueden trabajar en cooperación
para abordar eficazmente tareas multimodales. En consecuencia, la multimodalidad
del conocimiento puede mejorarse mediante los AEs, facilitando la integración de
información heterogénea en un espacio de características unificado.

• GPAIS deben aprender de forma cooperativa, intercambiando conocimien-
tos sobre las tareas aprendidas y aprovechando las sinergias que se deriven
de ellas: Se han desarrollado numerosas técnicas para facilitar el intercambio de
información entre modelos, como los AEs co-evolutivos o la optimización multitarea.

• GPAIS son capaces de estimar su confianza a la hora de abordar su(s)
tarea(s) y de solicitar proactivamente nueva información cuando no están
seguros de su resultado.: En los casos en que se carezca de información suficiente,
los GPAIS deberían decidir de forma autónoma solicitar datos adicionales. Sin
embargo, para minimizar la demanda de nuevos datos y garantizar su eficacia, estos
deben seleccionarse con criterio y distribuirse ampliamente. Los AEs pueden generar
prototipos de nuevos datos y seleccionar entre ellos en función de su contribución
potencial al conjunto de datos existente. Además, un experto puede supervisar
y evaluar las distintas opciones propuestas por el AE. Este enfoque permite al
experto centrarse en la evaluación de las opciones propuestas, en lugar de limitarse
a proponer la necesidad de nueva información.

Las Tablas 1 y 2 resumen los resultados de este análisis, emparejando cada propiedad
de un GPAIS con su área de investigación de optimización de ML relacionada, y facilitando
un listado no exhaustivo de las áreas de estudio de computación evolutiva que se conectan
con cada propiedad. En conclusión, los EA-GPAIS se convierten en la extensión lógica del
ML evolutivo tradicional, donde los AEs se han aplicado tradicionalmente para diseñar y
optimizar el rendimiento de los sistemas de ML.
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motivación para EA-GPAIS.

Propiedad GPAIS Área del ML Área sobre AEs Motivación para EA-GPAIS

GPAIS adaptan sus conocimientos a tareas
que varían con el tiempo aprovechando los
conocimientos previos

Continual learning, data shift, concept drift,
aprendizaje por transferencia

Optimización dinámica evolutiva
• Aparición/desaparación de nuevos patrones
• Cambios graduales/drásticos de tareas con
el tiempo

GPAIS pueden realizar varias tareas
simultáneamente, explotando sinergias entre
ellas

Aprendizaje multitarea, aprendizaje por
transferencia, meta-aprendizaje

Optimización multiobjetivo, optimización
evolutiva multitarea, co-evolución cooperativa

• Conflictos en la naturaleza de diferentes
objetivos 7→ necesidad de balance entre ellos
• Intercambio de conocimiento entre GPAIS
para abordar diferentes tareas.

GPAIS pueden realizar tareas inéditas con
pocos o ningún dato nuevo

Zero-/Few-shot learning
Open-ended evolution, quality-diversity
optimization, AEs multimodales, generación
evolutiva de datos

• Modelado de lo desconocido en GPAIS de
mundo abierto 7→ Diversificación del
conocimiento del modelo

GPAIS deben poder construirse/configurarse
de forma autónoma

AutoML, selección/diseño automático de
algoritmos, meta-aprendizaje

NAS evolutivo, programación genética,
hiper-heurísticas

• Configuración de las primitivas de bajo nivel
• Espacios de búsquedas más grandes

GPAIS debe funcionar eficazmente en el
diseño, en la fase de entrenamiento y en el
proceso de inferencia

Métodos de validación de modelos de ML,
compresión de modelos (poda/cuantización),
destiliación del conocimiento y de los datos,
dispersión estructurada

Poda/cuantización evolutiva, optimización
global de gran escala, AEs paralelos, AEs
distribuidos, optimización basada en
sustitutos, asignación dinámica de recursos
en los AEs

• Evaluación del modelo 7→ Alto coste
computacional
• Variabilidad de tareas respecto al tiempo
puede requerir una reconfiguración a pesar
del tiempo extra de entrenamiento
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Table 2: Conexión entre las propiedades de GPAIS, el ML y áreas de investigación de la computación evolutiva, junto con la
motivación para EA-GPAIS (II).

Propiedad GPAIS Área del ML Área sobre AEs Motivación para EA-GPAIS

GPAIS deben explorar, evaluar y decidir
acciones o secuencias de acciones en pos de
metas u objetivos específicos

Árbol de búsqueda Monte Carlo, aprendizaje
por refuerzo (multiagente), programación
dinámica, A*

Aprendizaje por refuerzo evolutivo, teoría de
juegos evolutiva, robótica evolutiva

• Compensación de exploración-explotación
para descubrir estrategias óptimas
(exploración) mientras que se explotan
estrategias conocidas para maximizar la
recompensa (explotación)
• Muestreo eficaz del espacio de estrategias
posibles
• Robustez y adaptabilidad en
configuraciones dinámicas

GPAIS debe abordar simultáneamente tareas
de modelización multimodal definidas sobre
diversos conjuntos de datos

Fusión de datos, aprendizaje multimodal,
aprendizaje de representaciones, recuperación
multimodal, adaptación del dominio

AEs mixtos, aprendizaje de representaciones
evolutivo, AEs co-evolutivos, programación
genética, conjuntos de AEs

• Integración y codificación de información
heterogénea de diferentes modalidades dentro
de un espacio de características
• Adaptabilidad robusta a las características
variables de los datos

GPAIS deben aprender de forma cooperativa,
intercambiando conocimientos sobre las
tareas aprendidas y aprovechando las
sinergias que se deriven de ellas

Adaptación del dominio, aprendizaje por
transferencia, aprendizaje federado

Optimización multitarea evolutiva, AEs
distribuidos, AEs co-evolutivos

• Estrategias sencillas de intercambio de
conocimientos entre AE se pueden aplicar a
las tareas relacionadas con el modelado
GPAIS

GPAIS son capaces de estimar su confianza a
la hora de abordar su(s) tarea(s) y de
solicitar proactivamente nueva información
cuando no están seguros de su resultado.

Estimación de la incertidumbre, modelado
bayesiano, active learning

Aumento de datos evolutivo, generación de
prototipos evolutiva, selección de prototipos
evolutiva

• AEs pueden utilizarse para optimizar la
selección de puntos de datos cuya supervisión
se consulta al oráculo
• AEs pueden utilizarse para seleccionar un
subconjunto diverso y representativo de datos
no etiquetados para su etiquetado



222

3.4 Hitos y logros notables de EA-GPAIS

En esta sección, analizamos con más detalle casos específicos representados por propuestas
que han contribuido significativamente al avance del campo en los últimos años. Ilustramos
diferentes trabajos registrados en la literatura para EA-GPAIS de mundo cerrado y abierto
en las subsecciones 3.4.1 y 3.4.2, respectivamente. La Tabla 3 muestra estas propuestas
exitosas en diferentes áreas. Las dos primeras filas corresponden a propuestas de GPAIS
de mundo cerrado en las que no existen mecanismos de adaptación a nuevas tareas.
Aunque estas propuestas representan un avance hacia los GPAIS de mundo abierto, siguen
estando en un escenario cerrado. La última fila, separada con una línea más gruesa,
está compuesta por enfoques evolutivos en GPAIS de mundo abierto, ya que incorporan
mecanismos para generar diversidad y compartir conocimientos.

3.4.1 Hitos recientes en los EA-GPAIS de mundo cerrado

Las propuestas enumeradas en esta tabla han marcado un rumbo significativo en la
investigación, sentando las bases iniciales en la sinergia entre AEs y GPAIS. Muchos
trabajos sobre NAS, DL evolutivo y neuroevolución han impulsado avances importantes en
estos ámbitos, como demuestran los estudios exhaustivos publicados a lo largo de los años
[TSK+18, ASBC+19, TTBG21, ÜB22, LMX+23, LSX+23, MDVR+21, DHD20, ZLZ22].
Los puntos comunes entre estas propuestas son el enfoque en la configuración del modelo,
mediante el uso de un AE para evolucionar pesos o hiperparámetros de un GPAIS basado
en redes neuronales. Comenzamos describiendo varios casos de estudio relacionados con
la optimización de hiperparámetros:

• NEAT [SM02] es la primera etapa en el campo de la neuroevolución. Utiliza un AE
para hacer evolucionar redes neuronales mínimas hacia la creación de arquitecturas
de red más profundas.

• EDEN [DB17] propone evolucionar diferentes tipos de capas convolucionales, de
pooling y fully-connected con sus hiperparámetros dentro de las redes neuronales
profundas.

• EvoAAA [CRMdJ20] es una propuesta de NAS vinculada a los autoencoders.
En este caso, la configuración del modelo (arquitectura, pesos e hiperparámetros)
evoluciona hacia una red con un mejor rendimiento en cuanto a la precisión.

• DENSER [ALMR19] pertenece a una rama de propuestas en NAS que se caracter-
izan por el uso de una gramática de operadores para evolucionar redes neuronales.
DENSER utiliza un enfoque genético que codifica la macroestructura de la red
neuronal (capas, tasa de aprendizaje, parámetros, etc.), mientras que la evolución
gramatical especifica los parámetros de cada unidad del algoritmo evolutivo y el
rango válido de los parámetros.
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Table 3: Enfoques evolutivos para GPAIS de mundo cerrado y de mundo abierto.

GPAIS Objective Hyper-parameter
optimization

Algorithm
selection

New algorithm
construction

C
lo

se
d-

w
or

ld Perfor-
mance

NEAT
EDEN

EvoAAA
DENSER

LSEIC
CoDeepNEAT

LEAF
A-MFEA-RL

AutoML-
zero

Perfor-
mance &

Complexity

NSGA-Net
NSGANetv2

NAT

LEMONADE
MOENAS-TF-

PSI
MOAZ

O
pe

n-
w

or
ld

Diversity

POET
EGANS

EUREKA
XferNAS
ESBMAL

– –

La categoría de selección de algoritmos difiere de la categoría anterior. En esta
segunda categoría se hace hincapié en la búsqueda del mejor algoritmo más que en la
mejor configuración de hiperparámetros. En NAS y DL evolutiva, los autores a menudo
solapan estas categorías, ya que la arquitectura de la red suele codificarse como parte de
los hiperparámetros que deben optimizarse. Por lo tanto, la evolución de la arquitectura
de red puede producir el mejor algoritmo (red neuronal) para abordar el problema en
cuestión. Destacamos varios trabajos bajo esta categoría que han alcanzado una gran
influencia en esta rama de la literatura:

• CoDeepNEAT [MLM+24a] representa uno de los avances más reputados en el
campo del NAS. Se aplica un esquema coevolutivo con dos poblaciones de esquemas
(la columna vertebral de la red neuronal) y los módulos que se insertarán en cada
parte del esquema. A continuación, se ejecuta una búsqueda evolutiva para conseguir
la mejor columna vertebral y los mejores módulos, junto con sus parámetros.

• LSEIC [RMS+17] proporciona una visión sobre la evolución de clasificadores a
gran escala, con la intención de buscar automáticamente la mejor arquitectura para
abordar el problema en cuestión. Para ello, este trabajo propone recurrir a varias
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estrategias de codificación y operadores de mutación en el algoritmo evolutivo que
sea aplica

• LEAF [LMH+19] es un entorno de trabajo basado en que usa internamente CoDeep-
Neat como motor interno para evolucionar redes. Constituye un marco en AutoML
evolutivo que optimiza no solo los hiperparámetros, sino también las arquitecturas
de red y su tamaño.

• A-MFEA-RL [MDSOH21] aprovecha la capacidad de la optimización evolutiva
multitarea para configurar un GPAIS capaz de resolver simultáneamente múltiples
escenarios de aprendizaje por refuerzo. Para ello, se realiza una búsqueda evolutiva
sobre un espacio de búsqueda unificado que representa la arquitectura de la red
neuronal, el número de neuronas de cada capa y la presencia de capas compartidas
entre modelos.

Otras propuestas de NAS han optimizado métricas más allá de la precisión, cen-
trándose especialmente en la complejidad de las redes. Estas propuestas comparten
características similares con las anteriores, pero en su mayoría incorporan algoritmos
evolutivos multiobjetivo para resolver dichos objetivos. A continuación resumimos algunos
de los enfoques representativos más conocidos:

• NSGA-Net [LWB+19] es una aplicación de un algoritmo evolutivo multiobje-
tivo (NSGA-II) para encontrar las redes neuronales con el mejor equilibrio entre
rendimiento de modelado y complejidad. NSGA-Net implica una exploración del
espacio de arquitecturas potenciales de redes neuronales en tres pasos: un primer
paso de inicialización de la población basado en el conocimiento previo de arquitec-
turas construidas a mano, un paso de exploración usando cruces y mutaciones en
las arquitecturas, y un paso de explotación basado en un historial de arquitecturas
neuronales evaluadas.

• NSGANetv2 [LDG+20] amplía la propuesta anterior de NAS basándose en un
algoritmo evolutivo multiobjetivo que utiliza dos sustitutos, uno a nivel de arqui-
tectura y otro a nivel de pesos. En el nivel de arquitectura, el sustituto mejora la
eficiencia de la muestra y en el nivel de pesos, los pesos evolucionan a través de una
Supernet basada en las arquitecturas candidatas.

• NAT [LSG+21] presenta un mecanismo para el diseño automáticamente de redes
neuronales, aprovechando el aprendizaje de transferencia con múltiples objetivos.
Para lograr este objetivo, NAT utiliza Supernets de tareas específicas que comparten
sus conocimientos con otras subredes dentro de un proceso de búsqueda evolutiva
multiobjetivo. Aunque este planteamiento avanza hacia un GPAIS de mundo abierto
al incorporar el intercambio de conocimientos, se trata de un GPAIS de mundo
cerrado, ya que carece de mecanismos de adaptación a nuevas tareas.



225

Las dos propuestas siguientes se refieren a la Selección del algoritmo con varios
objetivos, centrándose en la obtención de la propia red más que en la optimización de sus
pesos:

• LEMONADE [EMH19a] utiliza un algoritmo evolutivo multiobjetivo para buscar
arquitecturas bajo múltiples objetivos. La novedad radica en cómo LEMONADE
aborda el consumo de recursos, utilizando un mecanismo de herencia lamarckiana.
Este mecanismo genera redes hijas que parten del rendimiento predictivo de sus
padres entrenados. Para ello, se aplican operadores de morfismos, utilizando un
concepto similar al empleado en las propuestas anteriormente explicadas.

• MOENAS-TF-PSI [PL23] es otro AE multiobjetivo que pretende mejorar ciertas
soluciones sobre frentes aproximados utilizando una búsqueda local denominada
potential solution improving. Además, recurre a una métrica basada en la precisión
como métrica libre de entrenamiento para estimar el rendimiento de la red evolu-
cionada sin ejecutar ninguna época de entrenamiento, reduciendo el considerable
coste computacional típico de los métodos NAS.

Este breve repaso a la literatura reciente sobre EA-GPAIS de mundo cerrado termina
con la revisión de los esfuerzos en lo que se refiere a la construcción de nuevos algoritmos.
En estos casos, el objetivo es crear un modelo completamente nuevo y su algoritmo
de aprendizaje a partir de primitivas de procesamiento de bajo nivel. Dos propuestas
recientes se encuadran en esta categoría:

• AutoML-zero [RLSL20] emplea un AE que altera el paradigma tradicional de los
GPAIS de mundo cerrado al ir más allá de la optimización del rendimiento. No
solamente descubre los hiperparámetros óptimos, sino que también desarrolla un
algoritmo completo para crear un modelo adaptado a un problema de modelado
dado.

• MOAZ [GAK+23] representa la variante multi-objetivo de AutoML-zero. El
objetivo es distribuir las soluciones en un frente de Pareto compensando la precisión
con la complejidad computacional del algoritmo. Además de generar diferentes
soluciones Pareto-óptimas, MOAZ puede recorrer eficazmente el espacio de búsqueda
para mejorar la eficiencia de la búsqueda utilizando operadores especializados de
cruce y mutación.

Estos EA-GPAIS se han centrado predominantemente en la optimización del rendimiento
de los GPAIS y en la adición de objetivos de búsqueda adicionales, como la complejidad.
Sin embargo, aún queda camino por recorrer para que estos EA-GPAIS cumplan las
propiedades que se les presuponen, especialmente en lo que se refiere a su naturaleza
multimodal y multitarea y a su eficiencia computacional. Los logros de los GPAIS de
mundo cerrado descritos hasta la fecha solamente consideran una única tarea, requieren
elevados costes computacionales y suponen que se dispone de suficientes datos para la
formulación de una función objetivo que evite que el GPAIS se ajuste en exceso.
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3.4.2 Hitos recientes en los EA-GPAIS de mundo abierto

Las propuestas más recientes se han centrado en garantizar que los GPAIS puedan
integrar nuevas tareas dentro de sus conocimientos adquiridos, a diferencia de los métodos
tradicionales de búsqueda por objetivos que limitan la capacidad del sistema para integrar
una nueva tarea. Aunque no existan estudios específicos sobre estos conceptos basados
en la diversidad, varias áreas de investigación están estrechamente relacionadas con
los principios de los GPAIS de mundo abierto. Los últimos estudios revisados, en lo
que sigue, se basan precisamente en la generación de diversidad y el descubrimiento de
comportamientos de modelos diversos:

• POET [WLCS19] se centra en la generación de diversidad a través de la síntesis
de datos. En este trabajo, los agentes se emparejan con estos nuevos entornos
generados para aprender de ellos y, al mismo tiempo, también se optimizan los pesos
de los agentes. Además, pueden incluso transferirse de un entorno a otro, utilizando
sus conocimientos para adaptarse al otro. La diversidad se induce a través de la
síntesis de datos, donde el conocimiento se transfiere entre entornos a través de
los agentes, optimizando en última instancia el modelo a través de los pesos de los
agentes.

• EGANs [CCH+23], enmarcado en el área de las Redes Generativas Adversarias,
sirve como ejemplo de generación de diversidad a través del modelo, particularmente
en un entorno de zero-shot learning. Mediante un enfoque evolutivo, EGANS
aprende inicialmente el generador óptimo de modelos. En una etapa posterior, este
generador pasa a formar parte de otro proceso evolutivo para determinar el modelo
final.

• EUREKA [MLW+23] constituye otro GPAIS de mundo abierto en el que se
realizan varias tareas de aprendizaje por refuerzo al mismo tiempo. El algoritmo
evolutivo hace evolucionar varias funciones de recompensa en un contexto basado en
el código fuente del entorno. EUREKA genera funciones de recompensa ejecutables,
mejorándolas con una búsqueda evolutiva que produce iterativamente lotes de
recompensas candidatas.

• XferNAS [Wis20] presenta un marco de GPAIS de mundo abierto para la trans-
ferencia de conocimientos. XferNAS recoge el conocimiento de origen de múltiples
tareas y combina este conocimiento para generar una arquitectura para una nueva
tarea.

• ESBMAL [RV18] integra Active Learning y AEs para mejorar el etiquetado de
datos. El AE reporta de forma óptima los mejores lotes de datos para potenciar
el proceso de selección de instancias, contribuyendo al conjunto de propuestas de
mundo abierto junto con los enfoques anteriormente mencionados.

Durante nuestra investigación, no hemos encontrado ningún trabajo específico centrado
en la utilización de AEs para la selección o construcción de algoritmos en GPAIS de
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mundo abierto. A diferencia de los GPAIS de mundo cerrado, el uso de nuevas métricas
de diversidad para desarrollar GPAIS de mundo abierto puede considerarse un nicho de
investigación aún por explorar.

Otra característica importante es que los GPAIS actuales suelen considerar una sola
tarea en un entorno de mundo cerrado, lo que es aún más raro en los problemas de
mundo abierto. Sorprendentemente, la aplicación de AEs se ha utilizado para el diseño y
optimización de modelos de aprendizaje multitarea [ZNL+23]. También hemos destacado
EUREKA como una propuesta de GPAIS de mundo abierto que trabaja con agentes de
aprendizaje por refuerzo capaces de realizar varias tareas. Estos nichos de investigación
que hemos detectado deberían estimular los esfuerzos en estudios venideros relacionados
con GPAIS y AEs.

Los sistemas GenAI suelen ser más autónomos y no dependen de expertos. Aun así,
el uso de AEs puede permitirles alcanzar niveles de autonomía aún mayores, reduciendo
incluso de este modo la necesidad de contar con un experto. Utilizar otra IA para ayudar
a mejorarla puede ser un enfoque viable. Dentro del campo del GenAI, cada vez son más
los trabajos que utilizan AEs para potenciar este tipo de sistemas, lo que constituye uno
de los principales focos de atención en los próximos años [WWW+24]. En esta línea de
investigación, los trabajos recientes aprovechan los AEs como algoritmos clave para tareas
como la fusión de modelos y la creación de modelos de base [AST+24], la evolución del
código generado por los LLM [HMO24], la evolución de las salidas de los LLM [GWG+24],
y la generación de algoritmos de optimización [LTYZ23].
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4 Retos para aprovechar las ventajas de EA-GPAIS y es-
trategias para hacer frente a los progresos realizados

La integración de los AEs con los GPAIS plantea retos importantes, a pesar de sus
beneficios potenciales. Una de las principales dificultades es garantizar la sinergia entre
la naturaleza adaptativa de los AEs y los complejos procesos de toma de decisiones de los
GPAIS. Por este motivo, en la subsección 4.1 recogemos estos retos de cómo los AEs son
capaces de adaptarse a los GPAIS para el diseño y optimización de estos sistemas. Para
superar estos desafíos, también presentamos varias estrategias que pueden implementarse
con AEs ya sea para el diseño como para la mejora de los GPAIS. En concreto, nos
centramos en su objetivo, su importancia en el contexto de GPAIS, y un análisis de las
áreas de investigación basadas en AEs que pueden ayudar a materializar estas estrategias.
Este análisis, respaldado a través de las secciones 4.2 a 4.5, sirve como muestra para
motivar el desarrollo presente y futuro de EA-GPAIS.

4.1 Challenges harnessing the benefits of EA-GPAIS

Hay muchas formas en las que los AEs pueden beneficiar tanto a los GPAIS de mundo
cerrado como a los de mundo abierto. Los AEs pueden mejorar los GPAIS de mundo cer-
rado facilitando el preprocesamiento avanzado de datos, optimizando los hiperparámetros
y adaptando los modelos. Además, EMO utiliza los AEs para aprender simultáneamente
varias tareas, lo que demuestra su versatilidad a la hora de abordar diversos retos de
forma individual.

En escenarios de mundo abierto, los modelos deben adaptarse a nuevos problemas con
un número mínimo de datos, garantizando un rendimiento sólido en los diversos retos
que puedan surgir. Los AEs ofrecen funciones objetivo flexibles que refuerzan la solidez
dentro del espacio de soluciones. La optimización multifactorial favorece la solidez entre
tareas, mejorando potencialmente el rendimiento en nuevos problemas.

Los AEs ofrecen la ventaja de generar múltiples soluciones a lo largo del proceso de
optimización, lo que garantiza una gama de modelos de IA optimizados para resolver
nuevos problemas. El uso de una variedad de modelos de IA puede mejorar los resultados,
ya que diferentes modelos pueden funcionar mejor para retos específicos. Mantener
esta diversidad es importante para lograr resultados competitivos sin necesidad de un
reentrenamiento exhaustivo.
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4.2 EA-GPAIS mediante la explotación y adaptación de del conocimiento
existente

4.2.1 ¿Por qué es importante esta estrategia para GPAIS?

El desarrollo de un sistema capaz de realizar un conjunto diverso de tareas requiere
un esfuerzo considerable. Por lo tanto, todo el conocimiento que posea el sistema debe
considerarse fundamental para su mejora continua. Los GPAIS deben aprovechar todos su
conocimiento del conjunto de tareas existentes para mejorar el rendimiento y adaptarse a
las nuevas tareas entrantes. Esto obliga al sistema a mantener su nivel de rendimiento en
las tareas anteriores, al tiempo que se adapta con éxito a las nuevas que van apareciendo
con el tiempo.

4.2.2 ¿Cómo pueden contribuir los AEs a esta estrategia?

Como ya se ha dicho previamente, ETO [TFJ21], EMO [ODSMH22], y ETL [ZQD+21]
han demostrado ser estrategias para optimizar el conocimiento adquirido previamente.
Por lo tanto, mediante la generalización del aprendizaje a través de problemas, ETO,
EMO y ETL pueden ser útiles para optimizar el intercambio de conocimientos entre los
modelos concebidos para diferentes tareas.

4.2.3 ¿Qué áreas de investigación de los AEs son útiles para esta estrategia?

Los ámbitos de investigación de los AEs mencionados anteriormente pueden vincularse a
la estrategia de explotación y adaptación de los conocimientos existentes:

• La ETO combina principios de los AEs y el aprendizaje por transferencia como esen-
cia, el conocimiento o las soluciones aprendidas de un problema de optimización en
un dominio de origen sirven para mejorar un proceso de optimización en otro dominio
relacionado. Cuando las soluciones a tales problemas representan el conocimiento del
GPAIS (es decir, sus parámetros aprendidos), ETO puede optimizar la adaptación
del conocimiento transferido al problema de destino afinándolo o reconfigurándolo
para que se adapte mejor a las características del dominio de destino.

• El ETL pretende aprovechar el conocimiento de dominios relacionados para mejorar
el rendimiento en un dominio diferente, pero principalmente se centra en mejorar
el aprendizaje y la adaptación del modelo mediante AEs. El ETL se ha utilizado
ampliamente en NAS, con trabajos como XferNAS, en el que se aplica un proceso
de aprendizaje por transferencia para iniciar arquitecturas para una nueva tarea,
de forma que el conocimiento en otros problemas relacionados se transfiere para
crear una red [Wis20]. Otro trabajo que ilustra el potencial de ETL se presenta
en [PMMS+23], donde el proceso de transferencia de conocimiento entre tareas en
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dominios similares se acelera mediante la poda de los componentes innecesarios de
la red neuronal utilizando un AE, por lo que el GPAIS puede generalizar de forma
autónoma a otras tareas al tiempo que conserva el conocimiento de las tareas de
origen aprendidas.

• De forma diferente, la EMO puede utilizarse en escenarios en los que los parámetros
de los GPAIS evolucionan conjuntamente dentro de una única búsqueda evolutiva
basada en varias funciones objetivo, como se ha hecho en [MDSOH21] en el contexto
del aprendizaje por refuerzo multitarea. En este caso, un espacio de búsqueda
unificado puede codificar eficazmente los parámetros compartidos por todas las tareas.
Los operadores evolutivos adecuados para intercambiar información de los genotipos
entre las tareas a optimizar (como los definidos en la optimización multifactorial
[BOGT20]) implementan eficazmente la transferencia de conocimientos dichas tareas.

En estas tres áreas de investigación, la transferencia de parámetros, esquemas u
otros elementos arquitectónicos pueden acelerar el proceso de aprendizaje y potenciar
aún más el rendimiento del modelo. Cuando se trata de GPAIS en estas áreas, el gran
espacio de búsqueda de variables de decisión evolucionado por el AE puede suponer un
reto. Recientemente, los enfoques de aprendizaje multitarea han estado utilizando AEs
multiobjetivo y la optimización global a gran escala para garantizar la escalabilidad para
tamaños de modelo realistas [LLF+23]. La evaluación de la transferencia de conocimientos
entre tareas a menudo requiere la formación en la tarea o tareas de destino, lo que
provoca retrasos significativos. Para reducir este coste, se han utilizado modelos basados
en sustitutos en el DL evolutivo [SWX+20]. En GPAIS multitarea, los modelos para
diferentes tareas pueden tener distintas latencias de procesamiento, y los modelos basados
en sustitutos pueden beneficiarse de los aprendidos para las tareas evaluadas con mayor
rapidez [WJSO22].

4.3 EA-GPAIS mediante la creación continua de nuevo conocimiento

4.3.1 ¿Por qué es importante esta estrategia para GPAIS?

Los GPAIS necesitan adaptarse a nuevas tareas con muy pocos datos, por lo que requieren
la creación continua de conocimiento diverso para acelerar la capacidad de respuesta y
facilitar la integración de tareas. Cuando un GPAIS tiene un buen rendimiento en un
conjunto determinado de tareas (escenario de mundo cerrado), su transición a un escenario
de mundo abierto se realiza utilizando mecanismos de diversificación del conocimiento,
que pueden llevarse a cabo mediante el modelado de conjuntos, la aleatorización de los
parámetros del GPAIS o la generación de datos sintéticos, entre otras estrategias.
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4.3.2 ¿Cómo pueden contribuir los AEs a esta estrategia?

Los AEs pueden servir para generar modelos diversos y tratar problemas en diferentes
espacios de búsqueda. A la hora de aplicar esta estrategia con los AEs, se plantea un
doble dilema: (1) cómo formular las funciones objetivo que modelen adecuadamente la
diversidad en entornos de mundo abierto, incluso en ausencia de datos de la(s) nueva(s)
tarea(s); (2) cómo conservar las soluciones durante la búsqueda evolutiva que sean a la
vez buenas para las tareas de origen y diversas de manera que sean potencialmente útiles
para acometer las nuevas tareas.

4.3.3 ¿Qué áreas de investigación de los AEs son útiles para esta estrategia?

Diferentes áreas de investigación de los AEs han prestado atención al descubrimiento y
la conservación de soluciones diversas durante la búsqueda. Además, los AEs también
pueden ser útiles para inducir esta diversidad mediante la síntesis de datos que pro-
ducen comportamientos diversos del modelo a través del entrenamiento. A continuación
revisaremos algunas de estas áreas:

• El open-ended evolution se alinea perfectamente con esta estrategia, ya que persigue
la generación continua de conocimiento sin llegar a un estado óptimo. La integración
del open-ended evolution con los AEs hace factible la creación de sistemas que puedan
adaptarse continuamente [Tay19], donde los AEs ayudarán a crear más datos o
entornos de trabajo [LS11a]. Este es el enfoque seguido en POET [WLCS19] o en
Minimal Criterion Coevolution [BS17].

• La quality-diversity optimization tiene como objetivo desarrollar AEs que prioricen
la generación de soluciones diversas y de alta calidad. Además de evaluar la calidad
de las soluciones, las métricas de diversidad miden lo distinta que es cada solución
respecto a las demás. Promover la diversidad garantiza que las soluciones sean
buenas y variadas en todos los comportamientos posibles. Los AEs diseñados
según este paradigma son idóneos para la evolución de los GPAIS en entornos de
mundo abierto. Mediante la evolución de sus parámetros y/o configuración y el
diseño de medidas para cuantificar la diversidad de los GPAIS evolucionados, la
quality-diversity optimization puede proporcionar un conjunto de modelos diversos
y de buen rendimiento. Esto podría ofrecer mejores garantías de adaptabilidad a
nuevas tareas, incluso en presencia de objetivos contradictorios [NGWN19].

• La optimización multimodal busca también mantener soluciones diversas y de
alta calidad durante la búsqueda evolutiva [Pre15]. Sin embargo, a diferencia de
la quality-diversity optimization, la diversidad se define sobre el genotipo de las
soluciones evolucionadas por el algoritmo en vez de en un espacio de comportamiento.
En cualquier caso, la optimización multimodal también puede ser una prometedora
área de investigación de AEs para producir modelos diversos, en particular sobre
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espacios de búsqueda combinatoria que representan configuraciones de modelos
[TI20].

• La novelty search implica dirigir la búsqueda en base a una medida de la novedad
de las soluciones en el espacio de búsqueda, y no basándose en una función objetivo
[LS11b, LS11a]. Esto garantiza el descubrimiento de nuevas soluciones y la acumu-
lación de más conocimiento sobre el problema en cuestión. Aunque tanto la novelty
search como la quality-diversity optimization se esfuerzan por conservar soluciones
diversas, la novelty search se centra en promover la novedad como medida de la
diversidad, mientras que la quality-diversity optimization busca un equilibrio entre
las soluciones de alta calidad y la diversidad, abarcando múltiples aspectos más
allá de la novedad por sí sola. Estas técnicas pueden complementarse para crear
nuevo conocimiento para los GPAIS de mundo abierto, y algunos aspectos de la
novelty search pueden contribuir a la diversidad en el marco de la quality-diversity
optimization. La novelty search con los AEs se ha explorado en robótica y sistemas
de conducción autónoma, para garantizar que el conocimiento creado evite el mal-
funcionamiento del sistema, mostrando las posibilidades que aporta esta área de
investigación de los AEs para que los sistemas complejos se adapten a circunstancias
desconocidas [LSMC19].

• El ensemble learning evolutivo estudia la optimización de los “aprendices" dentro
de un ensemble de modelos de ML basado en diferentes objetivos. La mayor parte
de la literatura se centra en el rendimiento del ensemble en tareas de modelado,
pero algunos trabajos abordan diferentes objetivos como la igualdad [ZLZ+23]
y el manejo de recompensas conflictivas en sistemas de aprendizaje por refuerzo
multiagente [BCJ23]. Consideramos que el amplio bagaje de metodologías para
modelar la diversidad en el ensemble learning evolutivo (recientemente revisado en
[Hey24]) puede abrir vías complementarias para realizar GPAIS de mundo abierto
basados en ensembles de modelos de ML.

4.4 EA-GPAIS mediante la construcción de nuevos modelos desde cero

4.4.1 ¿Por qué es importante esta estrategia para GPAIS?

La construcción de nuevos modelos desde cero es otra estrategia utilizada en los GPAIS.
En estos casos, la construcción suele asociarse a los GPAIS de mundo cerrado, ya que
requiere la hipótesis de disponer de datos de calidad para formular una función objetivo
que guíe la búsqueda del modelo óptimo para la(s) tarea(s) en cuestión. Cuando llegan
nuevas tareas, el modelo puede dejar de ser óptimo, por lo que debe optimizarse de nuevo
para esas nuevas tareas. Para abordar este problema como un problema de mundo abierto,
es crucial modificar cada parte del modelo para las nuevas tareas. Sin embargo, la falta de
suficientes datos de alta calidad dificulta esta adaptación. Puede que no haya suficiente
conocimiento previo de las nuevas tareas para evaluar con precisión la generalización del
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algoritmo desarrollado. En consecuencia, la dificultad reside en adaptar este enfoque a
escenarios de mundo abierto.

4.4.2 ¿Cómo pueden contribuir los AEs a esta estrategia?

Los AEs pueden optimizar varias etapas de un modelado de ML, lo que los hace adecuados
para los GPAIS. Áreas del ML como AutoML, optimización de hiperparámetros e ingeniería
de atributos se han tratado eficazmente mediante AEs [TTBG21]. Los GPAIS pueden
heredar este exitoso historial de logros, enfrentándose a nuevos retos como la mayor
granularidad a la que se construyen los GPAIS (por ejemplo, primitivas de procesamiento
de bajo nivel, como en AutoML-zero [RLSL20]), o la ya mencionada dificultad de formular
un objetivo para optimizar sobre escasos datos o incluso ningún conocimiento sobre la(s)
nueva(s) tarea(s).

4.4.3 ¿Qué áreas de investigación de los AEs son útiles para esta estrategia?

Áreas como AutoML y la selección de algoritmos ya se han aplicado en GPAIS utilizando
AEs [LMH+19]. Además, el AutoML puede identificar etapas de modelado óptimas para
enfoques de DL, abarcando la ingeniería de atributos, la optimización de hiperparámetros
y NAS. En consecuencia, los AEs han desempeñado un papel importante en la construcción
de modelos desde cero en los últimos años. Este compromiso es evidente gracias a los
diversos estudios sobre NAS que exploran la construcción de modelos [LSX+23, DSOM+19,
DHD20, ZLZ22], y también a los varios GPAIS de mundo cerrado que se encuadran en
esta estrategia: AutoML-zero y MOAZ, su extensión a la optimización multiobjetivo.
Por último, en el campo de la neuroevolución, CoDeepNEAT [LMH+19, MLM+24a]
puede considerarse como una construcción del modelo, a pesar de estar clasificado en
la categoría selección de algoritmos. Este enfoque tiene como objetivo identificar las
primitivas esenciales para la construcción de una red neuronal. Para ello, se desarrolla la
selección y evolución de dos poblaciones: una para las estructuras de la red y otra para
sus primitivas.

4.5 Problemas interestratégicos resueltos con los AEs

A continuación nos centramos en el uso de los AEs para afrontar y resolver problemas
de múltiples estrategias en el contexto de los GPAIS. En concreto, exploramos cómo los
AEs pueden navegar eficazmente por entornos problemáticos y complejos, combinando
varias estrategias para adaptarse a diversas condiciones y optimizar soluciones de forma
colaborativa:
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4.5.1 Escasez de datos de calidad para las tareas objetivo

En el contexto de los GPAIS, el objetivo principal es facilitar la adaptación del sistema
ante la aparición de una nueva tarea. Sin embargo, los datos disponibles para esta
adaptación pueden ser a menudo insuficientes. Para solucionarlo, se puede recurrir a
diversas estrategias, como la síntesis de datos y el active learning. La combinación de estas
estrategias con los AEs puede reducir el tiempo y mejorar la calidad de la adaptación.
Los AEs, como en el caso de POET [WLCS19], no sólo pueden generar datos similares,
sino también optimizar grupos de datos nuevos para que el sistema funcione mejor en
tareas conocidas, o incluso adaptarse a nuevas tareas de una manera más rápida y eficaz.

4.5.2 Formulación de funciones objetivo en régimen de mundo abierto para
zero-shot learning

En EA-GPAIS, la cuidadosa selección de las funciones objetivo es crucial para el diseño y la
mejora del sistema. Como se ha indicado anteriormente, durante la fase de entrenamiento
del GPAIS puede ocurrir que haya un conocimiento incompleto de las tareas objetivo,
por lo que se hace necesario preparar al GPAIS para nuevas tareas. Los paradigmas del
ML como el few-shot learning, el meta-aprendizaje o el aprendizaje por transferencia, que
pueden adaptar el modelo para realizar nuevas tareas con un número limitado de ejemplos,
se emplean a menudo en escenarios de zero-shot learning de mundo abierto. Sin embargo,
al tratarlos con EA-GPAIS, resulta crucial formular unos objetivos de optimización que
sean capaces de medir la adaptabilidad del GPAIS optimizado a lo desconocido. Las
medidas de diversidad, el descubrimiento de tareas auxiliares autosupervisadas que el
GPAIS pueda aprender de forma anticipada, o incluso las estrategias de open-ended
evolution basadas en AEs pueden ser líneas de investigación interesantes para este fin.

4.5.3 Dimensionalidad del espacio de búsqueda

El diseño de un sistema implica tomar decisiones importantes sobre sus parámetros.
Cuando se trata de un sistema extremadamente grande, tomar estas decisiones resulta
incluso más difícil. En consecuencia, la selección de todos los componentes relevantes
durante el diseño de un GPAIS se plantea como una tarea importante. En este contexto,
la optimización global a gran escala se perfila como un campo idóneo para afrontar
los problemas caracterizados por espacios de alta dimensionalidad. Los AEs han sido
ampliamente utilizados en problemas de optimización a gran escala [OLY22]. Mediante el
uso de AEs para problemas de alta dimensión y la transferencia de conocimientos para
escenarios de mundo abierto, podemos hacer que el diseño o incluso la construcción de
grandes GPAIS sea factible y computacionalmente asequible.
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4.5.4 Evaluación costosa de las funciones objetivo

La selección de un modelo que defina un sistema dado es una decisión fundamental que
influye en el rendimiento del sistema a la hora de realizar una tarea determinada. Cuando
esta selección la realiza un AE, la búsqueda evolutiva requiere evaluar la calidad de
múltiples modelos candidatos que, dentro del contexto de las tareas de que se realizan
en el ML, implican repetidas fases de entrenamiento/validación. Aunque el diseño del
modelo, especialmente en el caso de los modelos de mayor tamaño, puede suponer un
cuello de botella en el proceso de evaluación, es fundamental señalar que, en el ML,
la evaluación de la calidad de dichos modelos también contribuye significativamente al
tiempo de evaluación.

Las funciones objetivo que tienen costes computacionales elevados pueden beneficiarse
de las ventajas que se buscan adoptando AEs para el diseño y la mejora de los GPAIS.
La optimización basada en sustitutos es una solución que permite agilizar los tiempos de
evaluación mediante el uso de modelos sustitutos para hacer el proceso más eficiente y
explorar así más modelos candidatos. Esto mejora la eficiencia global de los EA-GPAIS.
Los AEs y los modelos basados en sustitutos desempeñan un papel fundamental a la hora
de la elección del modelo y la eficacia de la evaluación. Estos algoritmos contribuyen a la
exploración global dentro del espacio de búsqueda, mientras que los modelos basados en
sustitutos mejoran la eficiencia computacional del proceso global, agilizando así el proceso
de optimización. Este enfoque colaborativo acelera la convergencia hacia soluciones
óptimas, lo que lo convierte en una estrategia convincente para refinar y optimizar los
GPAIS.

En conclusión, las áreas de investigación descritas en esta sección delinean un panorama
prometedor para futuros estudios sobre el desarrollo de los GPAIS. Estas áreas de
investigación basadas en AEs, junto con las que ya contribuyen activamente al avance
continuo de los GPAIS, tienen el potencial de fomentar la aparición de sistemas capaces
de autoconstruirse y/o autoadaptarse a nuevas tareas, acercándonos así a la IA a una IA
más general.
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5 Conclusiones

La computación evolutiva desempeña un papel importante en el diseño y la mejora
de los sistemas de IA. La integración de los AEs con GPAIS está actualmente dando
lugar a avances significativos, como se pone de manifiesto en este estudio. Los objetivos
principales de este trabajo han sido: (1) introducir el término EA-GPAIS y una taxonomía
para los AEs que potencia a otra IA, (2) analizar las diversas opciones para el diseño y
mejora de los GPAIS utilizando la taxonomía de AEs que potencia a otra IA, relacionar
las propiedades clave de los GPAIS con las áreas de investigación de AEs que pueden
estudiarlas, y (3) estudiar los retos de aprovechar las ventajas de los EA-GPAIS y las
estrategias para abordar los avances en EA-GPAIS. Los AEs contribuyen al diseño de
los GPAIS optimizando los hiperparámetros y la configuración, seleccionando algoritmos
más adecuados o incluso creando algoritmos desde cero. La mejora de los GPAIS con la
ayuda de los AEs implica inducir la diversidad mediante mecanismos evolutivos dentro del
GPAIS, hacer evolucionar los datos a partir de los cuales aprende el GPAIS u optimizar
la transferencia de conocimientos entre tareas.

Existen múltiples propuestas de GPAIS de mundo cerrado en el ámbito del DL, pero es
importante reconocer que existen otras áreas que también han influido significativamente
en la evolución de este tipo de sistemas. La brecha hacia los GPAIS de mundo abierto se
está acortando, como demuestran las propuestas que ejemplifican el uso de la diversidad
para generar conocimiento y adaptarse a lo desconocido. Esta noción está inspirando a
los investigadores a explorar nuevos horizontes, combinando su experiencia con los AEs
para desarrollar los GPAIS de mundo abierto. Con este creciente interés, se prevé un
futuro rebosante de modelos EA-GPAIS versátiles que serán referentes en sus respectivos
ámbitos.

Desde la perspectiva de la gobernanza de los GPAIS, la inclusión de los AEs en
el diseño y mejora de estos sistemas complejos puede aportar ventajas adicionales, ya
que proporcionan medios para considerar objetivos de optimización que miden aspectos
relacionados con la credibilidad de estos sistemas. Una reflexión general sobre estos temas
se ha realizado en [TMP+24].

Como conclusión, la fuerte investigación sobre GPAIS y GPAIS evolutivos que se ha
observado en los últimos años pone de manifiesto las grandes expectativas depositadas en
este campo a la hora de revolucionar el campo del ML evolutivo, dando lugar a sistemas
de IA más generales capaces de resolver un amplio abanico de tareas y de adaptar por
sí mismos sus conocimientos para abordar otras nuevas. La flexibilidad y facilidad de
adaptación de los AEs los convierte en un complemento perfecto para hacer frente a las
estrictas propiedades que se buscan en los GPAIS, incluyendo la multimodalidad de las
tareas a resolver, su variabilidad en el tiempo, o la gran dimensionalidad del diseño y de
su construcción. La hibridación de esta familia de algoritmos con los GPAIS promete un
futuro brillante en el campo de la IA, que representará la vanguardia de la investigación
en los próximos años con el objetivo fundamental de desarrollar sistemas similares a los
humanos, capaces de analizar, aprender y realizar diversas tareas por sí mismos.
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