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Abstract

A functional nonlinear regression approach, incorporating time infor-
mation in the covariates, is proposed for temporal strong correlated man-
ifold map data sequence analysis. Specifically, the functional regression
parameters are supported on a connected and compact two–point homoge-
neous space. The Generalized Least–Squares (GLS) parameter estimator
is computed in the linearized model, having error term displaying mani-
fold scale varying Long Range Dependence (LRD). The performance of
the theoretical and plug–in nonlinear regression predictors is illustrated by
simulations on sphere, in terms of the empirical mean of the computed
spherical functional absolute errors. In the case where the second–order
structure of the functional error term in the linearized model is unknown,
its estimation is performed by minimum contrast in the functional spec-
tral domain. The linear case is illustrated in the Supplementary Material,
revealing the effect of the slow decay velocity in time of the trace norms
of the covariance operator family of the regression LRD error term. The
purely spatial statistical analysis of atmospheric pressure at high cloud
bottom, and downward solar radiation flux in [1] is extended to the spa-
tiotemporal context, illustrating the numerical results from a generated
synthetic data set.

Keywords Connected and compact two–point homogeneous spaces, LRD mani-
fold functional time series, temporal strong correlated manifold map data, man-
ifold multiple functional regression.

1 Introduction

The strong effect of climate changes in solar radiation in several ways through
atmospheric components has been extensively studied. That is the case of the
increase in greenhouse gases can trap more heat in the atmosphere, leading to
an increase in Earth’s surface temperature. Additionally, the presence of atmo-
spheric aerosols, such as smog or pollution particles, can scatter solar radiation,
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which can have local effects on the amount of energy reaching the Earth’s sur-
face. In particular, the interaction between distribution and intensity of solar
radiation, and atmospheric pressure patterns seriously affects regional and global
climate systems (see, e.g., [13]; [26]). Particularly, a purely spatial statistical
analysis of atmospheric pressure at high cloud bottom, and downward solar radi-
ation flux has been achieved in [1] in the framework of spherical isotropic random
fields, from a nonparametric bayesian perspective. This research area motivates
the manifold infinite–dimensional nonlinear regression approach presented with
temporal long–memory isotropic manifold functional error term. In particular,
the downward solar radiation flux earth map prediction problem, from observed
atmospheric pressure at high cloud bottom is addressed here. This issue has
strong impact in climate change analysis. That is the case of solar radiation on
surface inducing high temperatures and evaporation, or the relationship between
atmospheric pressure, and precipitation, among others, affecting the Hydrolog-
ical Cycle.

The proposed functional predictive framework also supposes a substantial
contribution in the field of spatiotemporal regression from a functional perspec-
tive, leading to the analysis of the evolution of manifold map data sequences
correlated in time. The temporal correlation is represented in a flexible way
interacting with the spatial scale, i.e., allowing different long range dependence
levels depending on the spatial scales. The statistical methodology proposed is
quite flexible although it requires the application of sophisticated mathematical
tools (e.g., infinite–dimensional spectral analysis). However, as illustrated in
the present paper, the computational cost and complexity of its implementation
can be substantially reduced under the scenario analyzed of invariance of the
involved covariance kernels, with respect to the group of isometries of the man-
ifold Md, with d being its topological dimension. Such kernels admit a diagonal
representation in terms of the eigenfunctions of the Laplace–Beltrami operator.

We adopt the separable Hilbert space framework of H = L2 (Md, dν) of
Md−supported functional data under square–integrability with respect to the
normalized Riemannian measure dν on Md. Our functional regression model-
ing framework goes beyond the structural assumptions present, for instance, in
[3]; [11]; [12]; [5]; [8]; [10]; [17]; [20]; [21]; [22], and references therein. It
also supposes an extension to the nonlinear, non Euclidean, and Long–Range
Dependence (LRD) settings of the FANOVA analysis under dependent errors
achieved in [23], as well as of the subsequent contributions addressed in [25]
for multiple regression, and in [2] for fixed effect models including the case of
circular domains. The second order properties of the error term in the linearized
model, including spatial–scale–varying LRD, are characterized via a semipara-
metric framework in the spectral domain, following the multifractional inte-
gration approach for functional time series in [18], and [24]. Indeed, in this
framework, an extended approach respect to the one given in [15] is adopted,
since in that paper only the context of fractional integration of functional time
series can be addressed. Note that, in our manifold scale varying spectral anal-
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ysis, Short Range Dependence (SRD) condition assumed in [19] is not required
(see also [7], and [6] where SRD spherical functional time series are introduced
and analyzed).

As pointed out in [1], the averaging over time achieved in its purely spa-
tial analysis of bivariate atmospheric pressure and downward solar radiation flux
data, can cause information lost about possibly important temporal patterns
in these data. To overcome this drawback our manifold functional regression
model incorporates time evolution. We adopt the generalized least squares es-
timation strategy in the approximation of the manifold–supported functional
regression parameters defining the functional regression predictor in the lin-
earized model. Under a misspecified scenario, our plug–in nonlinear regression
predictor is constructed from the estimation of the spectral density operator
family characterizing the second–order structure of the functional error term in
the linearized model. Specifically, a minimum contrast estimation strategy is
considered in the approximation of the parametric pure point spectrum of the
long–range dependence operator at the direct sum of the eigenspaces of the
Laplace Beltrami operator where the projected linearized process displays LRD.
The asymptotic analysis of the regression predictor can be conducted in a similar
way to [25] in the linearized model.

The outline of the paper is as follows. Section 2 presents some preliminary
elements on the spectral analysis of LRD manifold functional time series. Section
3 introduces our multiple functional regression setting in a parametric nonlinear
framework. The generalized least–squares estimator of the manifold functional
regression parameter vector is then computed in the linearized model, as well as
the linear and nonlinear regression predictors. In Section 4, a simulation study is
undertaken to illustrate the performance of the theoretical and plug–in nonlinear
regression predictors, under an infinite–dimensional log–Gaussian scenario. See
also Section 1 in the Supplementary Material where the prediction methodology
proposed is illustrated in the context of spherical functional fixed effect models.
Indeed, for this family of spherical functional linear models, the asymptotic
and finite functional sample properties of the theoretical and plug–in regression
predictors are illustrated. Particularly, the effect of the pure point spectral
patterns of the LRD operator of the regression error, affecting accuracy and
variability of GLS plug–in parameter estimator, is analyzed. The main practical
motivation of this paper arises in Section 5, where downward solar radiation flux
earth maps functional prediction is achieved from atmospheric pressure at high
cloud bottom, considering a generated synthetic data set. Some final comments
and open research lines are discussed in Section 6.

2 Preliminaries

Let X = {X(x, t), x ∈ Md, t ∈ T} be a zero–mean, stationary in time, and
isotropic in space mean–square continuous Gaussian, or elliptically contoured,
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spatiotemporal random field on the basic probability space (Ω,A, P ), with co-
variance function C(dMd

(x,y), t−s) = E [X(x, t)X(y, s)] , for x,y ∈ Md, and
t, s ∈ T. Here, T denotes the temporal domain, which can be Z or R. Under
the conditions of Theorem 4 in [16], the covariance function C(dMd

(x,y), t−s)
admits the following diagonal series expansion:

C(dMd
(x,y), t− s) =

∑
n∈N0

Bn(t− s)

δ(n,d)∑
j=1

Sd
n,j(x)S

d
n,j(y)

=
∑
n∈N0

δ(n, d)

ωd
Bn(t− s)R(α,β)

n (cos (dMd
(x,y))) , x,y ∈ Md, t, s ∈ T,

(1)

where δ(n, d) denotes the dimension of the nth eigenspace Hn of the Laplace
Beltrami operator, ωd =

∫
Md

dν(x), and {Sd
n,j , j = 1, . . . , δ(n, d), n ∈ N0}

is the system of orthonormal eigenfunctions of the Laplace Beltrami operator
∆d on L2(Md, dν,R). Furthermore, in the last identity in (1), we have ap-
plied addition formula in the context of connected and compact two–point
homogeneous spaces (see Theorem 3.2 in [14] and p. 455 in [4]), where

Rα,β
n (cos(dMd

(x,y))) =
Pα,β
n (cos(dMd

(x,y)))
Pα,β
n (1)

, with Pα,β
n denoting the Jacobi

polynomial of degree n ∈ N0, with parameters α and β (see, e.g., [16], and
[9], for more details on Lie Algebra based approach).

Consider the restrictionXT = {X(x, t), x ∈ Md, t ∈ [0, T ]} ofX satisfying
(1) to the interval [0, T ]. The following lemma provides the orthogonal expansion
of XT = {X(x, t), x ∈ Md, t ∈ [0, T ]} in terms of the eigenfunctions of the
Laplace Beltrami operator (see Theorem 1 in the Supplementary Material in
[18]).

Lemma 1 Let XT = {X(x, t), x ∈ Md, t ∈ [0, T ]} be the restriction of X
to the interval [0, T ], satisfying (1), and∑

n∈N0

Bn(0)δ(n, d) < ∞. (2)

Then, XT admits the following orthogonal expansion:

XT (x, t) =
L2
H̃
(Ω,A,P )

∑
n∈N0

δ(n,d)∑
j=1

Vn,j(t)S
d
n,j(x), x ∈ Md, t ∈ [0, T ], (3)

where L2
H̃
(Ω,A, P ) = L2(Ω×Md×[0, T ], P (dω)⊗dν⊗dt), with H̃ = L2(Md×

[0, T ], dν ⊗ dt). Here, {Vn,j(t), t ∈ [0, T ], j = 1, . . . , δ(n, d), n ∈ N0} is a
sequence of centered uncorrelated random processes on [0, T ] given by

Vn,j(t) =

∫
Md

XT (y, t)S
d
n,j(y)dν(y), j = 1, . . . , δ(n, d), n ∈ N0, (4)
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in the mean–square sense.

Assume that T = Z, and that the map

X̃t : (Ω,A) −→
(
L2(Md, dν,R),B(L2(Md, dν,R))

)
is measurable, with X̃t(x) := X(x, t) for every t ∈ T and x ∈ Md. Here,
B(L2(Md, dν,R)) denotes the Borel σ–algebra on L2(Md, dν,R) (i.e., the small-
est σ–algebra containing the collection of all open subsets of L2(Md, dν,R)).
By previous assumptions on X,

{
X̃t, t ∈ Z

}
then defines a manifold weak–

sense stationary functional time series. In particular, E
[
X̃t

]
= 0, and σ2

X̃
=

E
[
∥X̃t∥2L2(Md,dν,R)

]
= E

[
∥X̃0∥2L2(Md,dν,R)

]
= ∥R0∥L1(L2(Md,dν,R)), for every

t ∈ Z. By L1(L2(Md, dν,R)) we denote the space of trace or nuclear oper-

ators on L2(Md, dν,R). The second–order structure of
{
X̃t, t ∈ Z

}
is char-

acterized by the family of covariance operators {Rt, t ∈ Z} given by, for all
h, g ∈ L2(Md, dν,R),

Rt(g)(h) = E[X̃s+t(h)X̃s(g)] = E

[〈
X̃s+t, h

〉
L2(Md,dν,R)

〈
X̃s, g

〉
L2(Md,dν,R)

]
Rt := E[X̃s+t ⊗ X̃s] = ∀t, s ∈ Z. (5)

Let
{
X̃t, t ∈ Z

}
be, as before, a weak–sense stationary centered functional

time series with values in the space L2(Md, dν,R). Under (1), the family of its
covariance operators {Rt, t ∈ Z} satisfies

Rt = E
[
X̃t ⊗ X̃0

]
=

∑
n∈N0

Bn(t)

δ(n,d)∑
j=1

Sd
n,j ⊗ Sd

n,j , t ∈ Z. (6)

Now, the main elements involved in the spectral analysis of functional time
series are briefly introduced in our LRD setting. Specifically, the spectral density
operator family {Fω, ω ∈ [−π, π]} is given by

Fω =
S(L2(Md,dν,C))

1

2π

∑
t∈Z

exp (−iωt)Rt, ω ∈ [−π, π]\{0}, (7)

where =
S(L2(Md,dν,C))

denotes the identity in the norm of the space of Hilbert–

Schmidt operators. From equations (6) and (7),

Fω =
S(L2(Md,dν,C))

∑
n∈N0

[∑
t∈Z

exp (−iωt)Bn(t)

]
δ(n,d)∑
j=1

Sd
n,j ⊗ Sd

n,j

=
S(L2(Md,dν,C))

∑
n∈N0

fn(ω)

δ(n,d)∑
j=1

Sd
n,j ⊗ Sd

n,j ,
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with

Bn(t) =

∫
[−π,π]

exp (iωt) fn(ω)dω, ∀t ∈ Z. (8)

The functional Discrete Fourier Transform fDFT X̃
(T )
ω (·) of the manifold

map data is defined as

X̃(T )
ω (·) =

L2(Md,dν,C)

1√
2πT

T∑
t=1

X̃t(·) exp (−iωt) , ω ∈ [−π, π], (9)

where =
L2(Md,dν,C)

denotes the equality in L2(Md, dν,C) norm, with L2(Md, dν,C)

being the complex version of the Hilbert space L2(Md, dν,R). Note that X̃
(T )
ω (·)

is a random element in the space L2(Md, dν,C), since

E
[
∥X̃(T )

ω ∥L2(Md,dν,C)

]
≤ 1√

2πT

T∑
t=1

E∥X̃t(·)∥L2(Md,dν,R) < ∞.

As usually, the periodogram operator is defined from the fDFT by p
(T )
ω =

X̃
(T )
ω ⊗ X̃

(T )
ω = X̃

(T )
ω ⊗ X̃

(T )
−ω . Its mean is then computed as

E[p(T )
ω ] = E[X̃(T )

ω ⊗ X̃
(T )
−ω ] =

1

2π

T−1∑
u=−(T−1)

exp (−iωu)
(T − |u|)

T
Ru

=

∫ π

−π
FT (ω − ξ)Fξdξ, T ≥ 2,

in terms of the Féjer kernel FT (ω) =
1
T

∑T
t=1

∑T
s=1 exp (−i(t− s)ω) .

3 Multiple functional regression in manifolds

As given in Section 5 on the real–data application, the evolution of geophysical
phenomena are usually governed by nonlinear equations. In particular, in this
section these equations define the trend of our response in a nonlinear way from
the observed covariates. These covariates are introduced as the observation
of random magnitudes, possibly governed by nonlinear equations depending on
time and space, involving a random initial condition. That is the case of the
barometric equation defining atmospheric pressure at high cloud bottom in Sec-
tion 5, where we have considered the initial pressure at medium–low altitudes
as the random initial condition, since, in our observation model, random fluctu-
ations are induced by unknown heights, where atmospheric pressure measure-
ments are taken in the height range given by the interval (6000, 12000) meters.
Note that in the real–data example in Section 5, we analyze the evolution of
nonlinear functional association between the atmospheric pressure at high cloud
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bottom, and the downward solar radiation flux. The last one displays changes
in its spherical patterns with the latitude, affected by the observed atmospheric
pressure during the studied period autumn–winter. In that period, medium
and high latitude areas (in both hemispheres) display low atmospheric pressure,
while subtropical and tropical regions display high atmospheric pressure. Note
that the reverse situation occurs in spring-summer.

The following manifold multiple functional nonlinear regression model is
introduced:

Y(x) = H (X(β)) (x) + ε(x) x ∈ Md, (10)

where

X = (Xt,j)t=1,...,T ;j=1,...,p; Y(x) = [Y1(x), Y2(x), . . . , YT (x)]
T ,

β(x) = [β1(x), . . . , βp(x)]
T ; ε(x) = [ε1(x), ε2(x), . . . , εT (x)]

T ,

for every x ∈ Md. Here, βj ∈ L2(Md, dν,R) provides the spatial weighting of
temporal covariates Xt,j ∈ R, t = 1, . . . , T, j = 1, . . . , p (e.g., time–varying
Fourier coefficients of a spatiotemporal magnitude with respect to a purely spa-
tial basis). The isomorphic operator H : [L2(Md, dν,R)]T → [L2(Md, dν,R)]T
combines geographical and temporal information affecting the functional re-
sponse Y in a nonlinear manner. Here, [L2(Md, dν,R)]T denotes the space of
T–dimensional vector functions with the inner product

⟨f ,g⟩[L2(Md,dν,R)]T =
T∑
l=1

⟨fl, gl⟩L2(Md,dν,R) ,

for every f = (f1, . . . , fT )
T , g = (g1, . . . , gT )

T ∈ [L2(Md, dν,R)]T .
Along the paper we assume that the error term {εt, t ∈ Z} is such that

{ε̃t = H−1(εt), t ∈ Z} is an LRD stationary centered functional time series,
with values in the space L2(Md, dν,R), having invariant covariance operator
family, satisfying the conditions assumed in Theorem 4 in [16] and in Lemma
1. Hence, ε̃(x) = [H−1(ε1)(x),H

−1(ε2)(x), . . . ,H
−1(εT )(x)]

T has matrix
covariance operator

Rε̃ε̃ = E
[
ε̃(·)ε̃T (·)

]

=


E
[
H−1(ε1)(·)⊗H−1(ε1)(·)

]
· · · E

[
H−1(ε1)(·)⊗H−1(εT )(·)

]
E
[
H−1(ε2)(·)⊗H−1(ε1)(·)

]
· · · E

[
H−1(ε2)(·)⊗H−1(εT )(·)

]
...

...
...

E
[
H−1(εT )(·)⊗H−1(ε1)(·)

]
· · · E

[
H−1(εT )(·)⊗H−1(εT )(·)

]


=


R0 R1 · · · RT−1

R1 R0 · · · RT−2
...

...
...

RT−1 RT−2 · · · R0

 .
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The functional entries of Rε̃ε̃ then admit the diagonal series expansion given in
equation (1). In the subsequent development we will consider the orthogonal
expansion of Md–supported functions βh, h = 1, 2, . . . , p, given by

βh(x) =
∑
n∈N0

δ(n,d)∑
k=1

β
(h)
n,kS

d
n,k(x), ∀x ∈ Md, (11)

where β
(h)
n,k =

〈
βh, S

d
n,k

〉
L2(Md,dν,R)

, for every k = 1, . . . , δ(n, d), n ∈ N0, and

h = 1, 2, . . . , p.
From the conditions assumed on the error term, the restriction of{

H−1(Yt), t ∈ Z
}
to the interval [0, T ] also admits the orthogonal expansion

in the space L2
H̃
(Ω,A, P ) = L2(Ω×Md × [0, T ], P (dω)⊗ dν ⊗ dt)

Ỹt = H−1(Yt)(x) =
∑
n∈N0

δ(n,d)∑
j=1

Ỹn,j(t)S
d
n,j(x), ∀x ∈ Md, (12)

where Ỹn,j =

(〈
Ỹ1, S

d
n,j

〉
L2(Md,dν,R)

, . . . ,
〈
ỸT , S

d
n,j

〉
L2(Md,dν,R)

)T

, for j =

1, . . . , δ(n, d), and n ∈ N0.

3.1 GLS functional parameter estimation

According to equation (8), applied to the case X̃t = ε̃t, for every t ∈ Z, one
can consider the matrix sequenceΛn =

 Bn(0) · · · Bn(T − 1)
...

...
...

Bn(T − 1) · · · Bn(0)

 , n ∈ N0


=


∫
[−π,π]

 fn(ω) · · · exp (iω(T − 1)) fn(ω)
...

...
...

exp (iω(T − 1)) fn(ω) · · · fn(ω)

dω, n ∈ N0

 ,(13)

where here we have denoted by Bn(t), t = 0, . . . , T − 1, the time–varying
coefficients in the series expansion of the functional entries of Rε̃ε̃ given as in
equation (1). In the subsequent development we will assume that Xt,j ∈ R,
t = 1, . . . , T, j = 1, . . . , p, are such that∑

n∈N0

δ(n, d)
(
XTΛ−1

n X
)−1

< ∞. (14)

Note that under conditions in Theorem 4 in [16] and Lemma 1, from Cauchy–
Schwartz inequality, ∑

n∈N0

δ(n, d)Λn < ∞.
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The GLS functional parameter estimator of β = [β1, β2, . . . , βp]
T is com-

puted from projection into the orthonormal basis {Sd
n,j , j = 1, . . . , δ(n, d), n ∈

N0} of eigenfunctions of the Laplace Beltrami operator ∆d on L2(Md, dν,R).
Specifically, from equations (11)–(12), the GLS β̂ is the minimizer of the mean
quadratic loss function

L =
∥∥∥Ỹ −Xβ

∥∥∥
R−1

ε̃ε̃

=
∑
n∈N0

δ(n,d)∑
j=1

[
Ỹn,j −Xβn,j

]T
Λ−1

n

[
Ỹn,j −Xβn,j

]

=
∑
n∈N0

δ(n,d)∑
j=1

∥ε̃n,j∥2Λ−1
n

, (15)

where, as before,X = (Xt,h)t=1,...,T ;h=1,...,p, and for n ∈ N0 and j = 1, . . . , δ(n, d),

βn,j =
(
β
(1)
n,j , . . . , β

(p)
n,j

)T

Ỹn,j =
(
Ỹn,j(1), . . . , Ỹn,j(T )

)T

ε̃n,j =

(〈
ε̃1, S

d
n,j

〉
L2(Md,dν,R)

, . . . ,
〈
ε̃T , S

d
n,j

〉
L2(Md,dν,R)

)T

.

Here, for each n ∈ N0, Λ
−1
n denotes the matrix defining the bilinear form char-

acterizing the inner product of the Reproducing Kernel Hilbert Space (RKHS)
of (ε̃n,j , j = 1, . . . , δ(n, d)) . Hence,

β̂n,j = (XTΛ−1
n X)−1XTΛ−1

n Ỹn,j , j = 1, . . . , δ(n, d), n ∈ N0. (16)

Thus, our predictor of the response is given by:

Ŷ(x) = H
(
X(β̂)

)
(x), x ∈ Md, (17)

where, for x ∈ Md,

β̂(x) =
∑
n∈N0

δ(n,d)∑
j=1

β̂n,jS
d
n,j(x)

=

∑
n∈N0

δ(n,d)∑
j=1

β̂
(1)
n,jS

d
n,j(x), . . . ,

∑
n∈N0

δ(n,d)∑
j=1

β̂
(p)
n,jS

d
n,j(x)

T

. (18)

3.2 Second–order moments of the GLS functional parameter
estimator

The following proposition provides the functional second–order moments of the
unbiased GLS parameter estimator of β computed in (18).
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Proposition 1 The following identities hold:

(i) E[β̂n,j ] = βn,j , j = 1, . . . , δ(n, d), n ∈ N0, i.e., E
[
β̂
]
= β.

(ii) Var
[
β̂n,j

]
= (XTΛ−1

n X)−1, j = 1, . . . , δ(n, d), n ∈ N0, i.e.,

Var(β̂) =
∑

n∈N0
δ(n, d)

(
XTΛ−1

n X
)−1

, where X has been introduced
in equation (10).

Proof.
The proof of (i) and (ii) follows straightforward as in the real–valued case.

Specifically,

E
[
β̂n,j

]
= E

[
(XTΛ−1

n X)−1XTΛ−1
n Ỹn,j

]
= (XTΛ−1

n X)−1XTΛ−1
n E

[
Ỹn,j

]
= (XTΛ−1

n X)−1XTΛ−1
n Xβn,j

= βn,j , j = 1, . . . , δ(n, d), n ∈ N0. (19)

Hence, from (19), for every x ∈ Md,

E
[
β̂(x)

]
= E


 ∞∑

n=0

δ(n,d)∑
k=1

β̂
(1)
n,kS

d
n,k(x), . . . ,

∞∑
n=0

δ(n,d)∑
k=1

β̂
(p)
n,kS

d
n,k(x)

T


=

 ∞∑
n=0

δ(n,d)∑
k=1

E
[
β̂
(1)
n,k

]
Sd
n,k(x), . . . ,

∞∑
n=0

δ(n,d)∑
k=1

E
[
β̂
(p)
n,k

]
Sd
n,k(x)

T

=

 ∞∑
n=0

δ(n,d)∑
k=1

β
(1)
n,kS

d
n,k(x), . . . ,

∞∑
n=0

δ(n,d)∑
k=1

β
(p)
n,kS

d
n,k(x)

T

= β(x).

(20)

Regarding (ii), as it is well known, since for every j = 1, . . . , δ(n, d), n ∈ N0,

β̂n,j = βn,j + (XTΛ−1
n X)−1XTΛ−1

n ε̃n,j , (21)

we have

Var
[
β̂n,j

]
= E

[(
β̂n,j − βn,j

)T (
β̂n,j − βn,j

)]
= (XTΛ−1

n X)−1XTΛ−1
n ΛnΛ

−1
n X(XTΛ−1

n X)−1

= (XTΛ−1
n X)−1, ∀j ∈ {1, . . . , δ(n, d)}, n ∈ N0. (22)
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From (22), applying uncorrelation of the sequence of centered random pro-
cesses {ε̃n,j(t), t ∈ [0, T ]} (see equation 21)

E

[∥∥∥β̂ − β
∥∥∥2
L2(Md,dν,R)

]
=

∑
n∈N0

δ(n, d)(XTΛ−1
n X)−1,

under condition (14).

3.3 Functional spectral based plug–in estimation of β

This section presents a plug–in GLS estimation methodology when the second
order structure of the error term is unknown. In our case, the entries of the ma-
trix sequence {Λn, n ∈ N0} are misspecified. The approach presented is based
on the estimation of such entries in the spectral domain under the following
semiparametric modeling in the spectral domain (see [24]):

Assumption I. Assume that the entries fn, n ∈ N0, of matrix sequence in (13)
admit the following semiparametric modeling, for every n ∈ N0,

fn,θ(ω) = Bη
n(0)Mn(ω)

[
4(sin(ω/2))2

]−α(n,θ)/2
, θ ∈ Θ, ω ∈ [−π, π],(23)

where α(n, θ), Mn(ω), and Bη
n(0) are the eigenvalues of the LRD operator Aθ,

of the Hilbert–Schmidt operator spectral family {Mω, ω ∈ [−π, π]} , and of
the autocovariance operator Rη

0 of the manifold white noise innovation process
η involved in the definition of the error term ε, respectively. Note that in
our simulations in Section 4 we have considered the case where the regular
spectral operator family {Mω, ω ∈ [−π, π]} corresponds to SRD in the case
where α(n, θ) = 0, for every n ∈ N0, and θ ∈ Θ.

We apply the minimum contrast estimation strategy introduced in equations
(5.1)–(5.19) in [24], and equations (3.8)–(3.16) in [18], for the special case of
H = L2(Md, dν,C). Specifically, parameter θ in equation (23), characterizing
the pure point spectrum of LRD operator Aθ, is estimated by θ̂T satisfying

θ̂T = arg min
θ∈Θ

∥∥∥∥−∫ π

−π
p(T )
ω ln (Υω,θ)Wωdω

∥∥∥∥
L(L2(Md,dν;C))

, (24)

where for each θ ∈ Θ, and ω ∈ [−π, π], ω ̸= 0,

Υω,θ = [Nθ]
−1Fω,θ = Fω,θ[Nθ]

−1, (25)

with {Fω,θ, ω ∈ [−π, π]} denoting the adopted semiparametric spectral density
operator family model, and the integral operator Nθ has kernel

KNθ
(x,y) =

∑
n∈N0

W̃ (n)

[∫ π

−π

Bη
n(0)Mn(ω)

[
4(sin(ω/2))2

]−α(n,θ)/2

|ω|−γ
dω

]
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×
δ(n,d)∑
j=1

Sd
n,j(x)S

d
n,j(y), x,y ∈ Md, θ ∈ Θ, (26)

where W̃ denotes the positive self–adjoint operator on L2(Md, dν,C) factorizing
the weighting operator Wω = W̃ |ω|γ , for every ω ∈ [−π, π], and γ > 0. Fourier
transform inversion formula leads to the corresponding estimation

B̂n,θ̂T
(t) =

∫ π

−π
exp(iωt)f

n,θ̂T
(ω)dω, n ∈ N0,

of the entries of Λ
n,θ̂T

, given by

Λ
n,θ̂T

=




B̂
n,θ̂T

(0) · · · B̂
n,θ̂T

(T − 1)
...

...
...

B̂
n,θ̂T

(T − 1) · · · B̂
n,θ̂T

(0)


 , n ∈ N0.

Thus, for every n ∈ N0,

β̂
n,j,θ̂T

=
(
XTΛ−1

n,θ̂T
X
)−1

XTΛ−1

n,θ̂T
Ỹn,j , n ∈ N0, j = 1, . . . , δ(n, d),

and the corresponding plug–in nonlinear predictor is computed as

Ŷ
θ̂T
(x) = H

(
X(β̂

θ̂T
)
)
(x), ∀x ∈ Md, (27)

where for x ∈ Md,

β̂
θ̂T
(x) =

∑
n∈N0

δ(n,d)∑
j=1

β̂
n,j,θ̂T

Sd
n,j(x)

=

∑
n∈N0

δ(n,d)∑
j=1

β̂
(1)

n,j,θ̂T
Sd
n,j(x), . . . ,

∑
n∈N0

δ(n,d)∑
j=1

β̂
(p)

n,j,θ̂T
Sd
n,j(x)

T

. (28)

4 Simulations

This section considers the sphere as manifold to illustrate the performance of the
multiple functional nonlinear regression predictor proposed (see Supplementary
Material for the linear case corresponding to operator H being the identity op-
erator). Specifically, we consider the case where H(Xβ)(x) = exp (Xβ) (x) =∑∞

k=0
(Xβ(x))k

k! , with (Xβ(x))k being the T–dimensional vector with compo-
nents (

∑p
j=1Xt,jβj(x))

k, t = 1, . . . , T, for every x ∈ Md, and k ∈ N0. The
regression predictors (17) and (27) are then implemented in Sections 4.1 and
4.2, respectively, under a log–Gaussian scenario in terms of spherical harmonics.
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4.1 Theoretical predictor

As commented before, this section illustrates the performance of the nonlinear
regression predictor (17) for the case of H (X(β)) = exp (X(β)) , when the
error term ε is a log–gaussian isotropic spherical functional process displaying
spherical scale varying LRD in time. The regression prediction results are tested
for functional sample sizes T = 110, 300, 500. A wavelet–based simulation of
fractional Brownian motion with Hurst parameters H = 0.5/k, k = 1, 2, is
applied in the definition of the temporal dynamics of the covariates at each one
of the two spherical scales selected. Specifically, our choice of the spherical
functional regression parameters is given by the eigenfunctions S2

1,1, and S2
1,2 of

the spherical Laplace Beltrami operator, displayed at the two plots of the first
line of Figure 18 in Section 2.1 of the Supplementary Material. The regression
error is generated from its truncated expansion (see Figure 19 in Section 2.1 of
the Supplementary Material, where realization 75 is showed), obtained from its
projection into the eight eigenfunctions plotted in Figure 18 of Section 2.1 of
the Supplementary Material. The corresponding time varying coefficients are
computed from the inverse Fourier transform of the frequency varying eigenval-
ues of the square root of the semiparametric spectral density operator family in
equation (23) under Assumption I (see Figure 1).

Figure 1: LRD operator eigenvalues (left–hand side), and the squared root
of frequency varying eigenvalues in 50th realization, for the first 8 Laplace
Beltrami operator eigenspaces selected (right–hand side)

The nonlinear response is estimated from equation (17), approximated by
the nonlinear transformation of the corresponding truncated version of the GLS
linear predictor. See Figures 2 and 3, where one realization of the nonlinear
response and its functional regression prediction are displayed, respectively. Our
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empirical analysis is based on the simulation of R = 100 repetitions of the spher-
ical functional samples. Specifically, we compute the empirical mean absolute
errors associated with the theoretical spherical functional regression predictor
for the functional sample sizes T = 110, 300 (see Figures 20 and 21 in Section
2.1 of the Supplementary Material), and for T = 500 (see Figure 4). One can
observe an important reduction of such empirical mean absolute errors as the
functional sample size increases.

In the next section, under a misspecified model scenario, the residual anal-
ysis achieved is performed in the functional spectral domain, implementing the
minimum contrast estimation of the second–order structure of the log–error
term displaying spatial scale varying LRD, considering the case of an increasing
sequence of LRD operator eigenvalues (see Figure 1 where these eigenvalues
are plotted for the eight spherical scales analyzed). The case of a decreasing
sequence of LRD eigenvalues can be seen in Section 2.2.1 of the Supplementary
Material.
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Figure 2: Log–Gaussian nonlinear spherical functional response values at
times t = 9, 19, 29, 39, 49, 59, 69, 79, 89, 99 (corresponding to realization 75)
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Figure 3: Nonlinear spherical functional response predictions at times t =
9, 19, 29, 39, 49, 59, 69, 79, 89, 99 (corresponding to realization 75)
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Figure 4: Empirical mean absolute errors, based on 100 repetitions, for
functional sample size T = 500, associated with the spherical functional
regression predictor at times t = 31, 36, 41, 46, 51, 56, 61, 66, 71, 76
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4.2 Plug–in predictor

In this section, in the generation of the temporal covariates the Hurst parame-
ter value H = 0.001 has been considered in the wavelet–based approximation
of fractional Brownian motion. Our choice here of the spherical functional re-
gression parameters corresponds to the eigenfunctions S2

1,1, and S2
2,1 plotted

at the left–hand side of the first two lines of Figure 18 in Section 2.1 of the
Supplementary Material.

Specifically, since we assume that the second–order structure of the LRD
isotropic spherical functional error term is unknown, we apply minimum con-
trast estimation in the functional spectral domain to compute a second–order
approximation of the Gaussian log–error term. In the implementation of this
estimation technique (see [18]; [24]), we consider a set of 100 candidates for
the first eight eigenvalues of the LRD operator (see Figure 22 in Section 2.2 in
the Supplementary Material).

The 50th realization of the spherical functional error term, and its spectral
based minimum contrast estimation are plotted in Figures 23 and 24 in Section
2.2 of the Supplementary Material, respectively. The corresponding empirical
mean absolute errors, based on 100 repetitions (see Figure 25 in Section 2.2
of the Supplementary Material), and based on 500 repetitions (see Figure 5),
associated with the minimum contrast estimator of the spherical error term are
computed. One can observe changes in the spatial patterns improving the ac-
curacy when the number of repetitions increases from 100 to 500. Furthermore,
there is an important reduction of the spatial areas with the highest magnitudes
of these empirical mean absolute errors.

The plug–in regression spherical functional predictor, in the linearized model,
of the response is then obtained. The corresponding empirical mean absolute
errors in the nonlinear prediction of the response are also computed as showed
for R = 100 in Figure 26 in Section 2.2 of the Supplementary Material, and for
R = 500 in Figure 8. One can observe the decrease of the magnitude in some
temporal nodes as R increases. Additionally, the variation in the spatial patterns
suggests an improvement in the estimation provided by the plug–in regression
spherical functional predictor when the number of repetitions goes from 100 to
500. The spherical functional response values and their corresponding nonlinear
response predictions in the 50th generation are previously given in Figures 6
and 7, respectively. See Section 2.2.1 of the Supplementary Material, where
similar results are plotted for the case of a decreasing eigenvalue sequence of the
LRD operator, characterizing the functional spectrum of the isotropic spherical
functional error term.
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Figure 5: Empirical mean absolute errors, based on 500 repetitions, associ-
ated with the minimum contrast estimator of the spherical functional error
term at times t = 9, 19, 29, 39, 49, 59, 69, 79, 89, 99
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Figure 6: Nonlinear (log–Gaussian) spherical functional response values at
times t = 9, 19, 29, 39, 49, 59, 69, 79, 89, 99 (corresponding to realization 50)
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Figure 7: Nonlinear (log–Gaussian) spherical functional response regression
predictions at times t = 9, 19, 29, 39, 49, 59, 69, 79, 89, 99 (corresponding to
realization 50)
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Figure 8: Empirical mean absolute errors, based on 500 repetitions, asso-
ciated with the spherical functional nonlinear regression predictor at times
t = 9, 19, 29, 39, 49, 59, 69, 79, 89, 99
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5 Real–data application

This section considers the implementation of the proposed nonlinear spherical
functional regression methodology in the prediction of the time evolution of
downward solar radiation flux earth maps, from the daily observation on the
earth globe of atmospheric pressure at high cloud bottom. A synthetic data set
is generated based on the nonlinear physical models governing both magnitudes,
downward solar radiation flux and atmospheric pressure at high cloud bottom.

In the generations of spherical functional observations of downward solar
radiation flux through autumn–winter, its nonlinear mean displayed in Figure 9
is computed after some steps involving several geophysical magnitudes. Specif-
ically, a starting polar and azimuthal angle grid is considered with 180 nodes in
the intervals (0, π), and (0, 2π), respectively. A meshgrid is then constructed in
the corresponding two–dimensional angle interval. The polar angle values are
converted into latitudes in the computation of the Zenith Angle (ZA), that is
one of the input variables of the physical equation defining Solar Irradiance (SI).
Note that the ZA depends on the time of the year, and the declination through
a suitable trigonometric equation. The declination is given by a sinusoidal func-
tion also depending on the day of the year. Other parameters involved in these
previous physical equations are the Earth Radius ER = 6371000 in meters, and
the Solar Constant G0 = 1361 in W/m2.

The solar irradiance is obtained from the Clear Sky Index (CSI=0.8) by using
the relationship

SI = G0(CSI)(cos(ZA)/π. (29)

Finally, to reflect persistent in time of SI random fluctuations during autumn–
winter, a standardized LRD isotropic spherical functional process is generated
as error term, scaling each marginal with the solar irradiance standard deviation
value 160.2262 (see Figure 10).

The nonlinear mean of the atmospheric pressure is computed (see Figure
32 of the Supplementary Material for spring–summer period, and Figure 11
for autumn–winter period), from the barometric equation, involving sea level
pressure P0 = 1013.25, air molar mass M = 0.029 in kilograms per mole,
acceleration due gravity g = 9.81 in m/s2, ideal gas constant RC = 8.314,
Kelvin temperature TT = 273 + 15, and usual range of heights at bottom
of high cloud, where we have considered the height interval (6000, 12000) in
meters. Thus, pressures pp obey the equation

pp = P0(exp(−M(g)(heights)/(RC(TT )))).

Again, a meshgrid is constructed from latitude and days to finally compute
the daily values of the spherical functional isotropic regressor mean over a year
from the input argument pp, in terms of polar angle, amplitude of pressure
variation with latitude and over days, and angular frequency corresponding to
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an annual cycle. We have considered the value 49.6453 of pressure standard
deviation in the normalization of each marginal of the spatiotemporal pressure
process generated (see Figure 12), by adding to the computed nonlinear mean
a standardized LRD isotropic spherical functional error term (see Figure 13).

Note that although this synthetic spherical functional data set has been
generated for the time period of one year, for illustration purposes, we have
restricted our attention to the period autumn–winter, where low pressure is
frequently observed at earth globe areas of medium and high latitudes in both
hemispheres, while the highest pressures are localized at tropical and subtropical
areas. The reverse situation corresponds to the spring–summer period (see Fig-
ure 32 in Section 3 of the Supplementary Material). Indeed, this fact constitutes
one of our main motivations to include in this nonlinear spherical functional re-
gression problem the temporal information. Specially, regarding time–varying
covariates in this example, one can see how spherical patterns displayed by the
spherical functional regressor change drastically in these two periods (autumn–
winter and spring–summer), affecting in a very different way the response defined
by solar irradiance.

The results after implementation of the proposed spherical functional non-
linear multiple regression predictor are showed in Figure 14 where the original
values of the response are plotted at the left–hand side for different times while
at the right–hand side the corresponding spherical functional regression predic-
tor values are showed. Note that, the spherical functional regression predictor
reproduces the magnitudes and the spherical patterns of the spherical functional
solar irradiance very close.

The performance of the proposed regression prediction technique is illus-
trated by the implementation of 5–fold cross validation. The spherical func-
tional 5–fold cross validation errors obtained by computing the proposed regres-
sion predictor are displayed in Figure 15. The absolute 5–fold cross validation
errors associated with the plug–in predictor, after minimum contrast estimation
of the error term are also plotted in Figure 16. Note that a slight difference
between regression and plug-in regression performances is observed in the order
of magnitude of the modulus of the 5–fold cross validation errors.
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Figure 9: Nonlinear response mean computed from evaluation of phys-
ical model (29) of downward solar radiation flux during autumn-
winter. Its spherical functional values are displayed at times
t = 1, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101, 111, 121, 131, 141, 151, 161, 171
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Figure 10: Daily spherical functional response observations
during autumn-winter period. Generated synthetic data
of downward solar radiation flux are displayed at times
t = 1, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101, 111, 121, 131, 141, 151, 161, 17126



Figure 11: Nonlinear spherical functional regressor mean
computed from barometric equation during autumn-winter.
Its spherical functional values are displayed at times
t = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 18027



Figure 12: Daily spherical functional regressor observations dur-
ing autumn-winter period. Generated synthetic data of atmo-
spheric pressure at high cloud bottom are displayed at times
t = 1, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101, 111, 121, 131, 141, 151, 161, 17128



Figure 13: Spherical functional random effect at times
t = 1, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101, 111, 121, 131, 141, 151, 161, 171
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Figure 14: Spherical functional response values (left-hand side) and spher-
ical functional regression prediction values (right-hand side) at times t =
41, 101, 121, 141 from top to the bottom respectively
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Figure 15: Spherical functional 5–fold-cross valida-
tion errors associated with response regression predictor.
Their spherical functional values are displayed at times
t = 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 3931



Figure 16: Spherical functional 5–fold-cross validation abso-
lute errors associated with response plug–in regression predic-
tor. Their spherical functional values are displayed at times
t = 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 3932



6 Conclusions

This paper opens a new research line within the context of multiple functional
nonlinear regression from manifold functional data strong–correlated in time.
Particularly, the framework of connected and compact two–point homogeneous
spaces is adopted. The formulated multiple functional regression model, with
functional response, functional regression parameters and time–dependent scalar
covariates, goes beyond the assumptions of weak–dependent, and the Euclidean
setting usually adopted in the current literature in functional regression. The
simulation study and real–data application illustrate the interest of the presented
approach, allowing the incorporation of time in the covariates, to represent the
evolution of nonlinear associations between the manifold response and regres-
sors. In particular, this aspect is crucial when changes over time arise modifying
in a substantial way the manifold patterns of functional response and regressors.
On the other hand, the linear case addressed in the Supplementary Material (ex-
tended one way FANOVA model to the spatiotemporal spherical context) in a
different orthogonal basis framework, allows the prediction of local behaviors
in a neighborhood of the pole of the zonal functions considered, which can be
of interest in detecting small local changes in the functional response mean in
those small areas near the pole.
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