
File chunking towards on-chain storage: a blockchain-based data
preservation framework

Muhammed Tmeizeh1,2 • Carlos Rodrı́guez-Domı́nguez2 • Marı́a Visitación Hurtado-Torres2

Received: 5 March 2024 / Revised: 14 June 2024 / Accepted: 15 June 2024
� The Author(s) 2024

Abstract
The growing popularity of the most current wave of decentralized systems, powered by blockchain technology, which act

as data vaults and preserve data, ensures that, once stored, it stays preserved, considered to be one of the most promising

safe and immutable storage methods. The authors of this research suggest an on-chain storage framework that stores files

inside blockchain transactions using file transforming, chunking, and encoding techniques. This study investigates the

performance of on-chain file storage using a simulated network blockchain environment. Test files of varying sizes were

deployed. Performance metrics, including consumed time in chunking, encoding, and distributing chunks among block

transactions, were measured and analyzed. An analysis of the collected data was conducted to assess the framework’s

performance. The result showed that selecting the appropriate chunk size significantly influences the overall performance

of the system. We also explored the implications of our findings and offered suggestions for improving performance within

the framework.

Keywords On-chain � File chunking � Blockchain � Immutable storage

1 Introduction

One of the most important research topics in recent years

has been the widespread adoption of the most recent breed

of decentralized systems, powered by blockchain and

decentralized file storage, that act as data vaults, protecting

data to ensure that when it is stored, it remains unchanged

(i.e., data is immutable) and can be used as secure storage,

for instance, for archiving files or data, property rights,

medical health records [1], and smart city data [2]. Some

studies such as [3] examined open difficulties and unre-

solved problems in data security and the potential of inte-

grating blockchain technology with many aspects, such as

IoT and health data.

To ensure that an organization or business maintains its

reputation and thrives, data security must be guaranteed.

Data integrity is considered one of the main security

principals. An IBM Cost of a Data Breach Report pub-

lished in 2023 showed that data storage is one of the most

targeted by frequent cyberattackers and has breaches that

cost, on average, more than 12 million USD [4]. Significant

consequences from data breaches could include financial

losses, reputational harm, and legal obligations. Conse-

quently, it is imperative that businesses implement strong

safeguards to protect their data integrity. The integrity of

electronic files is growing in significance at a time when

electronic data is the foundation of many vital systems and

activities, from financial records and transactions to med-

ical records, legal documents, intellectual property, and

scientific research. This paper aims to address the ongoing

problems of fraud and data tampering by giving files the

same level of immutability that usual blockchain records

have. Immutability offers a strong base for preserving open

Carlos Rodrı́guez-Domı́nguez and Marı́a Visitación Hurtado-

Torres contributed equally to this work.

& Muhammed Tmeizeh

mohammedt@paluniv.edu.ps; matps@correo.ugr.es

Carlos Rodrı́guez-Domı́nguez

carlosrodriguez@ugr.es

Marı́a Visitación Hurtado-Torres

mhurtado@ugr.es

1 Faculty of Engineering and Information Technology,

Palestine Ahliya University, Bethlehem 90907, West Bank,

Palestine

2 Department of Software Engineering, Higher Technical

School of Computer and Telecommunications Engineering,

University of Granada, 18071 Granada, Andalusia, Spain

123

Cluster Computing
https://doi.org/10.1007/s10586-024-04646-6(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-024-04646-6&domain=pdf
https://doi.org/10.1007/s10586-024-04646-6

and auditable documentation, safeguarding against mali-

cious modifications, and enhancing trust in digital

ecosystems.

The authors undertook a previous study [5] in this field,

showing blockchain as a promising solution for secure data

storage. That study showed that many proposals have been

made to take advantage of the immutability feature of

blockchain technology. A large number of those employ

blockchain-connected external storage to save a hashed

value that serves as a means of preventing the original

saved data from being altered or forged [5]. Furthermore,

other proposed works sought to save the data directly on

the blockchain ledger; the metadata, which is very small in

nature and includes things like gene names, light-weight

sensor data, or even changes made to specific network

nodes to enable the saving of data which is linked to

blockchain ledger [5]. Our goal in this study is to present a

framework that makes possible to store data directly into

blockchain world-state ledger, which is regarded as an on-

chain file storage solution. Moreover, data stored off-chain

in Decentralized File Storage (DFS) connected to its hash

value within the blockchain is not entirely safe since some

DFS has security or immutability flaws [6]. Our previous

survey study showed that the existing on-chain approaches

remains limited by its inability to handle the full file

storage inside the ledger, which is increasingly relevant in

organization and business that seeks for tamper proof

storage. This work introduces an innovative approach to

extend the on-chain capabilities to adapt the file to be

stored inside the ledger of the blockchain. Additionally,

offering superior performance by optimizing both storage

and retrieval speed addresses a critical gap in decentralized

storage solutions.

Many blockchain-based solutions, such as off-chain

approaches and non-blockchain-based solutions such as the

Interplanetary File System (IPFS), introduce tamper-resis-

tant storage, which aim to demonstrate the reliability that

stored data has not changed [5], since such approaches

serve as verification and checksum systems it cannot pre-

vent participating nodes that store data fragments from

updating or deleting it [6]. Linking data from outside the

blockchain with its hash value inside the blockchain pre-

sents a hurdle when using the DFS with blockchain [7]. A

centralized index is a problem for peer-to-peer decentral-

ized storage [7]. However, in this paper, we aim to

demonstrate with high reliability that data has not and also

cannot be changed after being saved. As data and trans-

actions that are saved inside the blockchain ledger are

tamper-resistant, immutable and cannot be changed after

being appended to the chain ledger, we aim to utilize this

concept to save the file itself inside the distributed ledger.

Moreover, a decentralized indexing system will also be

provided within the blockchain. This approach empowers

general-type file storage by providing a secure and efficient

environment in terms of data integrity and immutability.

In this study we suggest an architecture that uses per-

missioned blockchain technology to allow file storage

inside the blockchain ledger. This on-chain solution pro-

vides an immutable guarantee for the files since the whole

file is being stored inside the ledger. Using a permissioned

blockchain network such as Hyperledger Fabric, besides

the access roles and authorizations offered, will facilitate

file sharing between parties or organizations in a secure and

immutable manner. The main contributions and benefits of

the suggested framework are:

• providing a comprehensive on-chain solution for gen-

eral-type file storage;

• reducing the processing load of saving data on the

blockchain side by dividing tasks across the edge and

core blockchain network;

• applying compression techniques lessens the amount of

data in memory by shrinking the file, which optimizes

ledger storage capacity and enhances storage

effectiveness;

• leveraging the concept of storing files within a database

as Binary Large Object (BLOB) to facilitate the storage

of files within a blockchain ledger using a similar

approach.

The remainder of this paper is organized as follows:

Sect. 2 introduces an overview of related works by clas-

sifying, summarizing, illustrating related articles. Section 3

introduces an overview of the proposed framework while

also providing a comprehensive background on relevant

subjects in order to put the suggested framework into

context. Section 4 shows testing of the proposed frame-

work. Section 5 discusses in-depth the core elements of the

framework, which also explain each component’s presence

within the framework and justify its utilization for each

function. Finally, Sect. 6 concludes the paper and outlines

some future work.

2 Related work

This section presents the related works of researchers that

contributed to utilize blockchain as an immutable storage

medium. Immutable storage using blockchain technology

has been addressed by several approaches in recent years,

two main classification approaches can be considered: on-

chain and off-chain approaches.

Within the realm of off-chain, a diverse array of studies

has been conducted. Each contributing in saving the data

outside the blockchain while corresponding data are being

stored in blockchain to verify the original off-chain data.

For instance, Babu et al. [8] used MongoDB to store

Cluster Computing

123

electronic healthrecords (EHRs) while its hash value with

some patient information will be stored in the blockchain.

Yang et al. [9] proposed a solution to save data of the

products into two parts, the first part called public data

which will be saved in relation database where the private

part of the data will be stored in the blockchain.

Another approaches in off-chain that use IPFS for

instance, in [9] the authors use IPFS to save the data

generated by IoTs in smart city applications then linked the

data with Ethereum blockchain. Additional study by Mani

et al. [10] uses a similar approach for saving data in IPFS

which is connected to a Hyperledger blockchain that used

as index in the form of key-value to reach the date in IPFS.

Liu et al. [11] provided a way in his work to save images in

IPFS and save the associated hash for the images inside the

blockchain.

Furthermore, some studies accomplish the off-chain

storage using cloud storage which is connected with

blockchain. Chen et al. [12] used blockchain to index the

cloud data as well as saving some metadata of the cloud

records. additionally, Alrebdi et al. [13] used cloud storage

with blockchain, the role of blockchain is to serve as access

control and indexing system for the cloud data.

In a related study proposed by Pincheira et al. [14],

which considered an off-chain solution, the research yiel-

ded a mechanism to store datasets as files within the dis-

tributed file system, with the metadata of this set being

stored as a verification environment within the Ethereum

public blockchain. This effort allows users to update their

dataset while maintaining a fresh transaction within the

blockchain to continuously audit the data life cycle, mak-

ing the data more traceable. Testing was conducted uti-

lizing IPFS, Swarm, and Git storage as the DFS on a range

of file sizes, from 1 to 500 MB.

On the other hand, many studies conducted using on-

chain data storage for instance, Sharma and Park [15] used

blockchain to store a transactions of IoTs of smart city

application in the form of hashed values which aimed to

increase the security of data. Loss et al. introduce and

integration between FIWARE and blockchain to store data

in blocks, the authors used Ethereum in their work. As well

Khalaf and Abdulsahib [16] introduced a traceable way of

storage using blockchain, the study provides framework for

saving the wireless network sensors broadcasting data as a

transactions inside the blockchain.

Additionally, Arslan and Goker [17] introduced a new

approach to store multimedia data inside blockchain node

by making some modification on the miners behavior.

Gürsoy et al. [18] store pharmacogenomics as a string

inside the transactions associated with transaction ID in the

form of key value pairs which is related to some of gene

attribute.

Further research for Xie et al. [19] has proposed an on-

chain solution to store IOT data for agricultural projects.

An example of the collected data is humidity, temperature,

GPS location, pressure, and so on. The data is meant to be

saved inside the Ethereum blockchain as a transaction, and

the transaction ID, which is a hash value, will be saved in

an external traditional database with an identifier for each

entity. This value will be used to retrieve data from the

blockchain. Beside the main goal of storing data in

immutable storage, the study concerns historical transac-

tions for each entity. Additionally, [7] describes different

methods-such as off-chain and on-chain solutions-for using

blockchain technology for storage. Additionally, it illus-

trated the primary obstacles facing on-chain solutions,

which can be summed up as follows: block size, quantity of

transactions to be handled, gas cost per block, and locating

a minor ready to handle such transactions.

As illustrated most approaches and studies are focused

on off-chain approach, since it offers many benefits such as

the ability to store a variety of data formats and files as well

as the storage capacity. Whereas fewer papers delve into

on-chain approach due to it’s nature that poses some

restrictions on the format on the type of data that can be

saved in addition to some other factors which is related to

the blockchain capacity. Our previous study [5] illustrated

this point with more details. There are several limitations

with on-chain data storage in terms of the kinds of data that

can be stored. Saving general data formats like media files,

documents, and data sets cannot be done directly in the

ledger transaction due to the nature of the data that can be

handled in the transaction, such as block metadata, times-

tamps, hashes, short text, and encoded binary data. Since

the data structure of blockchain technology is primarily

designed to store transactions of digital currencies within a

connected chain of blocks. Our goal in this work is to

establish a general framework for data files with any type

of extension or format.

While the study [7] highlights the issue of fixed-size

block examples such as the Bitcoin platform or even

platforms that can adapt the change for the block size, we

solved this by adapting block-less blockchain platforms.

Another issue regarding saving the data that exceeds the

capacity of a block is that we split the data in order to make

it possible to distribute them among different blocks while

it is easy to collect them based on the indexing criteria that

we develop. Since the platform that we adopted is for

enterprise use, an organization that wishes to deploy such a

solution does not have to pay any gas costs since they share

their infrastructure with other organizations that do the

same in order to preserve their data.

Although [14] and other works had similar objectives,

our work has a different approach, since we aim at saving

the file in a single blockchain environment instead of

Cluster Computing

123

combining a blockchain with an external DFS. Likewise,

[19] also aim at the on-chain idea, however, that study

proposed the use of an external database as a source of data

indexing, which is non-distributed and non-tamper-proof

storage, and any loss of its content will leave the related

blockchain data pointless and useless. On the other hand,

our study does not rely on any external or integrated

storage, and the indexing is totally saved inside the

blockchain itself using integrated indexing chaincodes.

While in our study the data will be distributed to all par-

ticipating nodes who are enrolled in each private channel,

some studies, like and [17], suggest on-chain approaches

by changing the behavior of some nodes to store the data,

but there is no guarantee that the data will be replicated to

other nodes. Additionally, while [18] provides a paradigm

for storing genetic data, it does not provide a universal file

storage solution similar to what it is proposed in this paper.

3 Overview of the proposed framework

Our proposed framework is an on-chain storage frame-

work, using consortium blockchain between members that

want to store their files in an immutable storage by get the

benefits of tamper proof characteristic that blockchain

offers. Figure 1 shows the general structure of the proposed

framework, in this framework any participating member or

organization has nodes called peers which are configured to

be invoked from an authorized clients using Application

Programming Interface (API) and Software Development

Kit (SDK). Authorized and authenticated clients or peers

are eligible to store and retrieve files to and from the

network.

In our framework, we use the Hyperledger blockchain

Platform [20], which acts as a trusted infrastructure by

authenticating any new member, organization, or node that

wants to join the network. Besides, it’s ability to offer a

private channel between members or organizations that

wish to make shared immutable file storage and need to

impose their policy of committing or reading files to the

network.

The client edge and the blockchain network share the

workload in our framework. The file should be chunked

and transformed by the client before being sent over the

network. The data transformation and storage are handled

by the core network, also known as the blockchain net-

work. Further details regarding the framework are given in

the subsections that follow.

3.1 Background

The background of the suggested work is presented in this

section. Immutable data storage means that after storing the

data, editing, altering, or deleting this data is not possible.

In the real world, there’s a need for such storage. For

instance, medical trials, EHR, academic certificates, busi-

ness contracts, and many other similar cases are all seeking

such a solution. For instance, when someone buys a house,

an ownership contract is issued, and if the same house is

sold, a new contract is issued. The old contract should not

be overwritten; instead, it should be appended to the

existing one.

Hyperledger [20] is a general-purpose permissioned

blockchain that gives peers the ability to execute smart

contracts called chaincodes, which can be written using

general-purpose programming languages such as Go, Java,

and Node.js. It enables authenticated clients to send

transactions to their peers. The transaction lifecycle goes

through different entities: endorsing peers check the

validity and correctness of the transaction; the ordering

service uses the endorsement policy to order them

chronologically into new blocks; then broadcasts the new

state updates to peers and establishes consensus; finally,

blocks are delivered and committed to the current state

database for all peers on the channel.

Hyperledger consists of one channel or more; the

channel is established between two organizations or more.

Each channel has its peers. As illustrated in Fig. 2, we have

a Hyperledger with three organizations and two channels:

channel A is between organization 1 and organization 3,

and channel B is between organization 2 and organization

3. Each channel has its own distributed ledger. Each peer

who joins the network must have an identity issued via a

membership service provider (MSP). As illustrated, an

organization can be a member of one or more channels.

Applying our framework in blockchain with Hyper-

ledger Fabric’s modular design requires careful consider-

ation of certain essential ecosystem modules. The goal of

Fabric-CA is to issue and manage user IDs and certificates

since any connection that is formed should be done so in a

secure and legitimate manner. To demonstrate a real-world

implementation case, any member or organization enrolledFig. 1 General structure of the proposed framework

Cluster Computing

123

in the framework would require a Fabric-CA in order to

assign it the responsibility of issuing and managing cryp-

tographic identities for peers, clients, and users. Moreover,

a fabric peer module needs to be set up to host and execute

chaincodes, which lets clients outside the blockchain net-

work use the SDK to safely invoke and execute smart

contracts. Additionally, the SDK is crucial since it provides

a wide range of services and capabilities, such as event

management, transaction processing APIs, cryptographic

signature mechanisms, and logging frameworks. An

endorsement policy configuration is needed to indicate how

many peer nodes and members should accept the transac-

tion, as the framework saves the data in blocks of trans-

actions that are sent to peer nodes, who update the ledger

accordingly. The actual use case and the members’

agreement will dictate the configuration of this policy.

Hyperledger Fabric supports a number of consensus

approaches that let network users decide on the order and

validity of transactions. For instance, Kafka, RAFT, and

Solo. The RAFT Consensus Protocol [21] is a simple and

resource-efficient protocol that can be employed to run the

framework. On the other hand, Kafka is not supported in

the recent version [22]. However, since Solo relies on a

single-node ordering mechanism, it is utilized in our testing

network environments despite the fact that it is neither

scalable nor fault-tolerant [22].

The suggested approach can offer technical remedies to

deal with the aforementioned difficulties, such that if

organizations wish to share immutable storage for their

files, they can establish or join a blockchain network and

create their own private channel. This channel will be used

to save their data in a secure and tamper-proof manner.

3.2 Edge side

The edge or client side is responsible for preparing the file

and sending it to the core blockchain network to save it

directly inside the blocks of transactions. As illustrated

from Fig. 3 the file will be zipped and converted to BLOB,

then chunked with a fixed chunk size of 256 kilobytes, and

each chunk will be converted to a Base64 string before the

client sends the data to the peer in the core network. On the

client side, each chunk is labeled with an index number

before being sent to the blockchain core side. The process

of indexing will be done using TypeScript application

called LedgerLink on the edge side, as shown in Fig. 4; this

code is also responsible for calling blockchain peers

throughout the API using the SDK, which allows client

applications to interact with a Fabric blockchain network.

Padding is not used whenever files are not precise

multiples or less than the chunk size to prevent wasteful

data duplication or modification. This guarantees that there

are no extra padding bytes to optimize the consumed

storage and that each chunk appropriately depicts the

original data content. For example, if we have a 1000 KB

file and want to split it into chunks of 256 KB, then the last

chunk size will be 232 KB, occupying storage by full

chunks will be 3 � 256 KB ¼ 768 KB; and the last one will

be 1000 KB - 768 KB = 232 KB.

As illustrated in Fig. 4, to save or retrieve a file, on the

edge side, the FileHandler prepares the intended file to be

saved by reducing its size, throwing out compression,

converting it to BLOB, splitting it into chunks, and finally

Fig. 2 Hyperledger channels example

Fig. 3 Edge side: compressing, converting to BLOB, chunking, then

transforming to Base64

Cluster Computing

123

encoding each chunk to bees64 format. When retrieving the

file, the FileHandler will receive data from the LedgerLink

app in the form of Base64 chunks. The FileHandler will

decode the chunks, collect them into a BLOB, decompress

them, and finally save them to retrieve the original file. The

LedgerLink is responsible for establishing a secure con-

nection with the blockchain in order to send or receive

chunks. As well as save and retrieve the meta-data for files

such as file ID, file name, chunk index number, file

extension, and total count of chunks.

We utilize a compression strategy to minimize the file

size; choosing the right algorithm is essential to utilizing

the on-chain storage technique. Comparing different com-

pression algorithms is done to find the best candidate for

our work.

To make sure that every component of the file was intact

during the compression and decompression procedures, we

employed lossless compression in our framework. Lossless

compression is crucial because of the design of our system,

which protects the file’s integrity and entirety. We can

preserve the original file throughout the saving and retrie-

val stages by selecting this option, which ensures that no

data is lost during the compression and decompression

phases.

3.3 Blockchain side

On the core side of the blockchain network, the peer

received a request to save file chunks in the blocks; as

illustrated in Fig. 5, the chunks are received as a Base64

datatype. The chain code will transform the received chunk

into a binary datatype and put it in an array of bytes, then

send it to the transaction and, ultimately, to the blocks.

3.4 File chunks indexing

Figure 6 illustrates what the used chaincode anticipates

receiving from the client once file chunks are sent to the

blockchain peer. Since each file will consist of many

chunks, the formal arguments for the chaincode are the

chunk in Base64 format, the hash value of the file identi-

fying number, and the chunk number.

Every file will be splitted into one or more chunks, and

each chunk will be assigned an index number, starting from

zero during data processing in the LedgerLink app, which

is located on the edge side as shown in Fig. 4. When saving

and retrieving the file, the chunks will be retrieved in the

order specified by this index number and other file meta-

data that has been sent from the LedgerLink app to the File

Meta-Data smart contract.

3.5 Saving and retrieving files

As instructed in Fig. 4, after preparing the file on the edge

side from the FileHandler, the output will be sent to the

Fig. 4 Multi stage file processing interaction flow

Fig. 5 Blockchain Peer Side: converting to binary data, then save the

chunks in the transactions

Fig. 6 File chunks indexing

Cluster Computing

123

LedgerLink, which in turn will read the received data and

label each chunk with an index number, then send it to the

blockchain side. The sent data will be divided into two

categories of data. The chunks, their index order, and the

file to which they belong make up the first category, which

is the actual data of the file that will be sent to the file

chunk smart contract. The file’s meta-data, which includes

the file type name, file ID, total number of chunks, and

other details, falls into the second group, which will be sent

to the File Meta-Data smart contract. The file name and

extension will be used to construct the original file in the

event that a legitimate party requests the file; the file id is

the hash value of the file name using SHA256; the total

number of chunks will be used for extracting the file.

However, in order to retrieve the file ID, chunk count,

and other relevant information, the file reading process will

be issued from the LedgerLink by making use of the

information in a smart contract marked with File Meta-

Data. The File Chunks smart contract will utilize the output

to retrieve the chunks along with their corresponding index

order, allowing the pieces to be arranged on the edge side

and in a distant procedure. In order to create the desired

file, the FileHandler will receive the file meat data and

encoded chunks from the LedgerLink on the edge side.

4 Experiments and results

In this section, we present the outcomes of implementing

our proposed framework for saving text files as a case

study. The results provide insights into the effectiveness

and performance of our framework in addressing the

challenges of data storage and efficiency in decentralized

environments.

First, we describe the experimental setup and method-

ology employed assess the functionality of the framework.

The information gathered from our trials is then presented,

including metrics for file size reduction, time spent

chunking files, time needed to convert chunks to Base64

encoding, and transaction throughput on the blockchain

network.

Following that, elements of the suggested framework

have been deployed in an Oracle virtual machine (VM)

running Ubuntu 22.04. 8 GB of RAM and four 1.80 GHz

Intel (R) Core (TM) i7-8565U CPUs were set up in the

virtual machine. The suggested system is then operated as a

simulation environment on a test network running the

Hyperledger Fabric-2.5 version. The simulation fabric

network is implemented in Hyperledger Fabric and consists

of two organizations, one peer node for each organization,

a shared ledger among members, ordering service, endorser

peer node, fabric certificate authorities through MSP, and

chaincode.

The authenticated end-user application on the edge side

interacts with blockchain peer chaincodes through the SDK

to send data chunks to the ledger by connecting the

endorsed peers when they need to store files in the ledger.

The edge node application is divided into two sub-appli-

cations. The first is implemented in Python, which receives

the file, compresses it, converts it to a BLOB, chunks the

file, encodes each chunk to a Base64 string, and then saves

each chunk in a distinct line in a text file. The second sub-

part is implemented using TypeScript, which takes the

output text file of chunks and the hash code of the original

file, then connects to the chaincode to send the chunks to be

stored in the ledger.

Distributed File Systems dive deeply into selecting the

optimal file chunk size; for instance, Swarm [23] uses a

4 kilobyte (KB) default chunk size, while IPFS [24] uses

256 KB. We conducted our studies for both sizes (4 and

256 KB) on the basis of that.

We ran two separate experiments with 12 randomly

selected PDF files for each of the two chosen chunk sizes

(4 KB and 256 KB). The majority of random files include

only text or text with charts, with the exception of the five

megabyte (MB) file, which is an electronic PDF book.

Tables 1 and 2 present the measures and outcomes of the

two experiments. As can be seen from the tables, the tests’

largest file size was approximately 10.5 MB, while the

smallest file size was just about 100 KB.

Figure 7 shows that it takes time to split the file into

chunks using 4 KB and 256 KB chunk sizes. Figure 8

illustrates the time in seconds for the client application to

transform the chunk of binary data into a Base64 string

format, which will be used to send the data to the core

network for the same chunk sizes used before.

As a key goal of our suggested framework is to mini-

mize file size before storing it in the blockchain ledger, we

accomplish this task by applying the Zstandard compres-

sion algorithm. Figure 9 shows the size of the original file,

the file size after compression, and the size of the encoded

chunks following conversion to Base64 string formats.

By sending the chunks from the TypeScript client code

one after another throughout invoking API procedures of

the chaincode within the peer of organization 1 in the

simulation network, Fig. 10 illustrates how long it takes for

both chunk sizes to save the file in the core network. Every

file’s duration, from transmitting the first chunk to com-

mitting the last, is measured in milliseconds and subse-

quently converted to seconds.

To assess the performance of the overall solution, an

evaluation of the file retrieval efficiency and speed was

Cluster Computing

123

Fig. 7 Time consumed to chunk the file using 4 KB and 256 KB

chunk sizes

Fig. 8 Time consumed to encode the chunks to Base64 using 4 KB

and 256 KB chunk sizes

Table 1 File saving data summary: using a 256 KB chunk size

File size (bytes) Compressed size (bytes) Chunk count Chunking time (s) Encoded size (bytes) Encoding time (s) Save time (s)

102,602 77,985 1 0.0000 103,980 0.0003 2.103

266,603 187,461 1 0.0000 249,948 0.0010 2.135

359,075 253,832 1 0.0000 338,444 0.0006 0.155

422,552 196,232 1 0.0000 261,644 0.0008 0.124

512,088 311,796 2 0.0002 415,732 0.0033 2.196

829,048 741,722 3 0.0005 988,968 0.0016 2.102

1,052,352 881,284 4 0.0005 1,175,056 0.0021 2.480

1,664,464 466,725 2 0.0003 622,304 0.0010 0.243

1,821,766 1,280,137 5 0.0007 1,706,860 0.0028 0.609

4,293,938 3,354,594 13 0.0016 4,472,824 0.0084 1.466

5,842,628 5,402,908 21 0.0027 7,203,932 0.0132 4.659

11,081,517 1,694,115 7 0.0009 2,258,836 0.0044 2.798

Table 2 File saving data summary: using a 4 KB chunk size

File size (bytes) Compressed size (bytes) Chunk count Chunking time (s) Encoded size (bytes) Encoding time (s) Save time (s)

102,602 77,985 20 0.0001 104,032 0.0001 40.805

266,603 187,461 46 0.0002 250,068 0.0005 93.688

359,075 253,832 62 0.0002 338,608 0.0011 126.077

422,552 196,232 48 0.0002 261,768 0.0005 97.605

512,088 311,796 77 0.0003 415,932 0.0014 156.531

829,048 741,722 182 0.0005 989,448 0.0020 370.133

1,052,352 881,284 216 0.0006 1,175,620 0.0023 438.965

1,664,464 466,725 114 0.0004 622,604 0.0021 231.815

1,821,766 1,280,137 313 0.0008 1,707,684 0.0034 636.022

4,293,938 3,354,594 819 0.0019 4,474,976 0.0099 1664.697

5,842,628 5,402,908 1320 0.0030 7,207,396 0.0144 2679.468

11,081,517 1,694,115 414 0.0010 2,259,924 0.0045 840.943

Cluster Computing

123

conducted. Table 3 illustrates the consumed time in sec-

onds for fetching data from the blockchain, decoding,

decompressing, and saving that retrieved file. Given that

the best practice and recommended chunk size was 256 KB

in the previous subsection, the retrieval experiment was

conducted on the same chunk size. In this experiment, the

same 12 files that were previously saved were retrieved.

5 Discussion

5.1 Blockchain platform

Several blockchain platforms can be used to implement the

suggested architecture. To determine which blockchain

would be best for our job, we compared the Multichain and

Hyperledger Fabric blockchains in Table 4. Transactions

per second (TPS) are supported for both platforms; how-

ever, proper configuration and tweaking are mostly

required. Hyperledger is an outstanding match for our work

since it supports parallel transaction processing, which

allows us to have a higher throughput in terms of TPS, and

it offers a blockless design in terms of block size, also,

supporting role-based access control (RBAC) fits our pro-

posed work since enables organizations to grant peers

access to the files based on their roles. This approach

allows for the precise management of permissions and

privileges. The comparison conducted through a review of

Multichain white papers [20, 25].

5.2 File chunking

In the proposed work the file will be divided into segments

or chunks in the edge side. Chunking module can be either

fixed size or variable size. In our framework the we use

fixed size chunking. Choosing the chunk size is an

important issue since (i) choosing the optimal chunk size is

a critical factor in effective chunk distribution; (ii) fur-

thermore, the performance and reducing latency in the core

blockchain network while transforming and saving the

chunks; (iii) It is also a key consideration in optimizing

bandwidth usage; (iv) Additionally, it has a direct rela-

tionship with consistency and integrity in the chunk dis-

tribution process in the public ledger.

Fig. 9 File sizes before and after compression and encoding

Fig. 10 File-saving time in the core blockchain network

Table 3 Retrieving file data

summary: using a 256 KB

chunk size

Size (bytes) Fetching file from blockchain Decode time (s) Decompress time (s) Save time (s)

102,602 0.057 0.0003 0.0004 0.0012

266,603 0.071 0.0006 0.0002 0.0006

359,075 0.072 0.0009 0.0003 0.0006

422,552 0.066 0.0006 0.0004 0.0012

512,088 0.075 0.0012 0.0005 0.0016

829,048 0.115 0.0041 0.0007 0.0021

1,052,352 0.122 0.0032 0.0013 0.0022

1,664,464 0.088 0.0016 0.0016 0.0035

1,821,766 0.162 0.0051 0.0016 0.0021

4,293,938 0.345 0.0116 0.0032 0.0048

5,842,628 0.518 0.0196 0.0060 0.0093

11,081,517 0.199 0.0061 0.0066 0.0207

Cluster Computing

123

The chart analysis in Fig. 7 reveals that using 256 KB

chunk size slightly outperformed 4 KB chunk size, albeit

demonstrating a degree of symmetry or parity in many

aspects.

5.3 Chunks encoding

The Base64 index table is used to convert the binary format

that is fed into it into printable ASCII characters. It is

possible to utilize many encoding algorithms to encode the

file. Choosing the optimal algorithm for our task based on

the highest performing methods. In terms of speed and

performance, Base64 beats other common algorithms,

including UUEncode, XXEncode, USR, BINHEX, BTOA,

BOO, and Quoted-Printable [26]. It also performs well on a

variety of processor types and includes standard libraries

for well-known programming languages including Java-

Script, Go, Swift, PHP, Python, C#, and Java [27]. Thus,

Base64 is an excellent fit for our framework since it allows

us to use our framework on a variety of computers and

programming environments, especially on the edge.

We encode the data to Base64 before transmitting it to

the blockchain after transforming the file to binary format.

Sending raw binary data has some drawbacks compared to

using Base64, as a result of which our suggested work is

compatible with blockchain platforms that allow text-based

protocols and formats. When transmitting data over an

unencrypted connection, Base64 encoding additionally

helps in avoiding data modification and interception.

Additionally, because JSON payloads and URLs support

text data, it is more convenient to communicate data to an

API using them. However, this requires adding certain

overheads to the framework, such as more processing and

about a 33% increase in the size of the original data. The

framework’s last phase will store the data as binary rather

than Base64.

Performance is an important consideration; therefore,

we examine the time spent on the edge side of the encoding

process, considering the fact that using the compression

approach helps minimize the additional file size that results

from encoding the file. The encoding time, which takes

about 3.4 ms on average for the different chunk sizes we

use in our tests for all files enrolled in the testing, is suf-

ficient for both chunk size scenarios, as Fig. 8 illustrates.

5.4 File compression

An on-chain file saving is the goal of our endeavor. The

ledger will eventually get larger because the files are kept

directly on it. One useful method to take advantage of the

blockchain’s storage capacity is to compress files. We

decide to compress the files on the client or edge side in

order to minimize their size before saving them. In this

study, the selection of an acceptable compression technique

is primarily dependent on a few features, like minimizing

the file size and maintaining the original compressed file

without losing any of its contents.

Data compression algorithms come in two categories:

‘‘lossless’’ and ‘‘lossy’’. Text, strings, and programs can be

compressed using lossless data compression techniques,

while images, videos, and audio files can be compressed

using lossy compression algorithms. We select lossless

algorithms depending on the requirements indicated before.

Since our proposed framework is not meant to save a

certain file type, selecting the optimal compression method

will depend on the use case for the desired file type to store.

Table 5 provides a list of possible techniques that can be

used to compress files in the Portable Document Format

(PDF), for instance. Since our goal is to minimize the size

Table 4 Multichain and

hyperledger fabric comparison
Feature name Multichain Hyperledger

Scalability Less More scalable

Smart contracts Yes Yes

Code power Simple scripting language More powerful and flexible

Authorization Permissioned blockchain Permissioned blockchain (RBAC)

Block capacity Default block size 2 MB Blockless architecture

Privacy Greater control using private chains Fine-grained control over data access

Appending new block Traditional way Support parallel transaction processing

Table 5 Examples of lossless compression algorithms

Algorithm Mainly targeted file

Run length encoding Simple graphic

Shannon-Fano coding General-purpose

Zstandard General-purpose

Lempel–Ziv–Welch (LZW) General-purpose

Huffman coding Text data

Arithmetic encoding Text data

BZIP2 Text data

GZIP General-purpose

PPM General-purpose

Cluster Computing

123

of the ledger, the compression ratio is the basis for

choosing the best algorithm. Based on the results of the

RasterLite2 benchmark [28], Zstandard could be one of the

best options for our chosen case, which is text files.

The sizes of the original file, the compressed file, and

the total size of encoded chunks in the file are all demon-

strated in Fig. 9. The figure shows that, despite the

encoding process increasing the quantity of data, the

encoding size for all used files is smaller than the original

file size. This is due to the compression process that takes

place prior to the encoding process.

5.5 Optimal chunk size selection

Based on the aforementioned results, we infer that there is

a little variation in the various performance measures that

we ran while employing a 4 KB or 256 KB chunk size on

the edge side. Conversely, the choice of a suitable chunk

size is dependent on optimizing the file’s performance

efficiency during the saving process on chunks in the block

transactions. According to the results, it took less time to

save the file in blocks while utilizing a 256 KB chunk size

as opposed to a 4 KB chunk size. According to Fig. 10,

saving a file in a block with a 256 KB chunk size often

takes 1.75 s, but a file with a 4 KB chunk size typically

takes around 614 s. This outcome derives from the concept

that decreasing the chunk count is preferable to decreasing

the number of calls to the chaincode’s API.

5.6 File chunk retrieval

Figure 11 presents an examination of the retrieval time, or

the amount of time in seconds needed to read files, using

the data from Table 3, emphasizing significant trends and

consequences. The data presented clearly show that the

matching fetching or retrieving time and the compressed

file size have a positive relationship. The fetching time

grows progressively with increasing file size when the

original file size is shown against the fetching time. This

tendency indicates increased processing overhead, as the

increase in file chunks will take longer to retrieve. For

instance, a file with a size of 5706 KB takes longer than a file

with a size of 10,822 KB. This is because the number of

chunks for the first one is 21, and the latest is 7 chunks, as

shown in Table 1. The reason behind the increase in chunk

numbers is that after compressing the two files, the results

show notable shrinkage in the size of the latest one due to its

content, which has fewer images and figures inside, and more

text, which can be compressed with a higher ratio.

A comparison of the saving and retrieval times is pre-

sented in Fig. 12, which indicates a notable disparity

between the two procedures. Retrieval is far superior to

time saving, as shown. This finding is consistent with the

observation that the frequency of reading operations rela-

tive to saving operations significantly reduces the value of

saving time as opposed to retrieving time. While storing

activities for any file usually only happen once, reading

actions are carried out repeatedly, possibly on a massive

scale. As a result, retrieval time optimization is more

crucial for maintaining effective and responsive system

performance because it affects both the user experience and

system responsiveness when regular file access activities

are performed. In contrast, although optimizing the savings

of time is still important for overall system performance, it

is not as important because it happens less frequently than

retrieving.

Fig. 11 File retrieving time from the core blockchain network

Fig. 12 File saving vs. retrieving time to/from the core blockchain

network

Fig. 13 File size vs. ledger size: analyzing relationship

Cluster Computing

123

5.7 Ledger data size

Figure 13, which depicts the relationship between file and

ledger size, highlights another major challenge with ledger

size. As we’ve previously discussed, a crucial component

in many of our framework’s disciplines is the quantity of

chunks for each file. The figure shows how the ledger size

is influenced by the final file data result following file

processing, so the number of chunks will have an effect on

the ledger size regardless of the original file size. As shown

in the figure, the file with the size of 5706 KB, which has

the most chunks, is the source of the notable increase in the

ledger size, as seen in the figure. The authors will conduct a

subsequent study on a real blockchain network to deter-

mine the ideal chunk size in a real-world setting, consid-

ering the bandwidth, core network performance, and ledger

size optimization.

We conducted an experiment using 256 KB optimal

chunk size to save the files utilized in our earlier experi-

ments without compressing them in order to evaluate the

effectiveness of applying compression techniques and their

impacts on the ledger size. Figure 14 shows the ledger size

in both cases of storing compressed and non-compressed

files. As illustrated in the figure, there is a significant

change in the ledger size when using non-compressed files.

In summary, after saving all files used in the experiment,

the ledger size in the non-compressed files scenario is

about 105 MB, whereas the ledger size in the compressed

files scenario is around 55 MB, which shows a significant

reduction in the ledger size while saving the same data in

both cases. This experiment highlights the importance of

reducing file size using compression techniques suggested

in our framework.

5.8 Time performance analysis

Although many performance measurements were covered

in the previous sections, this section presents a time anal-

ysis to process the files in terms of compression, decom-

pression, coding, decoding, and saving the retrieved file.

Figure 15 shows the consumed time for compression and

decompression, which depicts that the average for com-

pressing 12 sample files is 0.52 s, while the average for

decompressing less than 0.002 s. These findings support

our framework objectives, which deliberately prioritized

effective reading above writing operations.

We examined the effectiveness of utilizing compression

techniques in our suggested framework by analyzing the

results of the previous experiment, which used a 256 KB

chunk size to save the files without compressing them. This

allowed us to determine the significance of using com-

pression in the framework in terms of the time consumed

for saving and retrieving data from the ledger. Table 6

displays the results for saving and retrieving the data.

When saving files without compression, the average time in

seconds is 4.89, whereas the time in seconds for saving

compressed files is 1.61. Moreover, retrieving the com-

pressed files takes an average of 0.16 s, whereas retrieving

the same files without compression takes around 0.27 s.

The time required to save each file to the ledger with and

without file compression is displayed in Fig. 16, whereas

the time required to retrieve data from the ledger with and

without file compression is displayed in Fig. 17. The

findings indicate that the time required for both processes

increases as the amount of data increases without com-

pression, suggesting that compression improves perfor-

mance for both file saving and retrieval. Due to this, the

0.52 and 0.002 s required average for compression and

decompression, respectively, are seen as acceptable for

such operations.

Based on the optimal selected chunk size, which is

256 KB, Fig. 18 shows the coding and encoding time

needed for the entire chunks of each file. The average time

is less than 0.003 s, while the average for decoding is

0.005 s, which is also considered to be negligible. No

experiment was carried out without encoding since it is an

essential component of the suggested framework to avoid

any compatibility issues as not all APIs or clients might

support data in binary format.Fig. 14 Ledger size compressed vs. uncompressed files

Fig. 15 File compressing vs. decompressing time

Cluster Computing

123

Finally, the last column in Table 3 shows the time

needed to reconstruct and save the file in its final stage to

appear ready for use. As illustrated in the table, the time

needed to reconstruct the file is negligible and falls well

within the expected performance parameters.

5.9 Performance comparison

In this section, we are going to compare the results of our

work with similar approaches that used on-chain solutions,

taking into account that they’re not totally identical

approaches, and have been tested in different environ-

ments. For example, testing results in research [19]

demonstrated that the proposed system can store around

300 sensor data per second, whereas reading the same data

from the system takes a few seconds. Assuming that each

sensor’s data type is double, then 300 � 8 bytes a total of

2400 bytes are required. Returning to our suggested

framework, 100.2 KB is the minimum file size that is used,

which needs about 2.1 s to be saved to the blockchain, and

retrieving it will take about 0.057 s.

The datasets used by the authors of [15] ranged in size

from 1 to 8 MB. The average time to store data is 3.9 s. We

assumed a mean data size of 3.8 MB in order to compare it

with a comparable size in our experiments, based on the

data sets employed in their study. On the other hand, our

proposed framework takes less time (around 1.5 s for

4.1 MB).

Fig. 16 File saving compressed vs. uncompressed

Fig. 17 File retrieving compressed vs. uncompressed

Fig. 18 File encoding vs. decoding time

Table 6 Time performance:

saving and retrieving data with

and without compression

Using compression Without using compression

File size Time to save (s) Time to retrieve (s) Time to save (s) Time to retrieve (s)

102,602 2.103 0.057 4.158 0.064

266,603 2.135 0.071 4.23 0.072

359,075 0.155 0.072 4.246 0.076

422,552 0.124 0.066 4.34 0.084

512,088 2.196 0.075 2.327 0.09

829,048 0.382 0.115 4.496 0.12

1,052,352 2.48 0.122 4.576 0.15

1,664,464 0.243 0.088 4.841 0.249

1,821,766 0.609 0.162 2.917 0.202

4,293,938 1.466 0.345 6.092 0.442

5,842,628 4.659 0.518 6.714 0.56

11,081,517 2.798 0.199 9.767 1.119

Cluster Computing

123

The authors of [18] employ gene data entries that are

stored using an Ethereum smart contract. The size of each

1000 entries is around 0.92 MB; in their work, 10,000

entries, or 9.2 MB, takes about 3.4 s; in our experiments,

the best relevant size to compare with is 10.57 MB, which

takes 2.8 s.

Considering that the previous works did not offer many

experimental findings for data retrieval, Table 7 compares

the time required for storing and retrieving data between

our proposed work and the relevant works. In this study, we

experimented with different file sizes and compared them

with those used in comparable publications. However,

because they are similar, some sizes can be compared.

Table 7 illustrates that our results outperform those

reported in comparable studies with respect to the amount

of time spent on data retrieval and storage. There are

multiple reasons for this improvement. The data were first

compressed to reduce their original size and then saved as

raw binary data, which has superior performance and

storage efficiency. Furthermore, certain preparatory activ-

ities, including chunking and data indexing, are carried out

on the edge.

6 Conclusion

In this study, we set out to investigate the potential and

performance of on-chain file storage in a blockchain ledger.

The proposed framework reveals that blockchain offers a

promising solution for organizations that seek an

immutable storage solution with the power of authentica-

tion and authorization that the Hyperledger Fabric block-

chain offers. Despite some limitations and constraints in

terms of consumed time, performance, and ledger size to

deploy the framework, the overall performance demon-

strates its potential as a viable alternative to traditional

centralized storage systems. In addition to evaluating the

performance of our framework, we also shed light on the

critical importance of selecting the appropriate chunk size,

and compression techniques for efficient file storage.

While our study provides valuable insights into utilizing

on-chain solutions, it is not without limitations. Future

research efforts should focus on addressing these limita-

tions and exploring opportunities for further optimization

and enhancement of file storage solutions, such as inves-

tigating the effects of redundancy of storage, ledger

capacity, encoding and appropriate file indexing.

Finally, our research highlights the importance of

blockchain technology in tackling the changing problems

associated with data storage. Organizations can explore

new avenues for secure, effective, and unchangeable data

storage solutions by adopting secure and decentralized

principles.

Author contributions Each author contributed to the conception and

design of the study, acquisition, analysis, and interpretation of data,

drafting the manuscript, and revising it critically for important

intellectual content. All authors have read and approved the final

version of the manuscript and agree to be accountable for all aspects

of the work. Muhammed Tmeizeh: conceptualization, methodology,

formal analysis, writing—original draft, writing—review and editing.

Carlos Rodriguez-Dominguez: supervision, project administration,

writing—review and editing Marı́a Visitación Hurtado: supervision,

project administration, writing—review and editing.

Funding Funding for open access publishing: Universidad de Gran-

ada/CBUA.

Data availability No datasets were generated or analysed during the

current study.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

Table 7 Performance comparison

Approach Operation Approach test data size Approach time (s) Our relevant data size Our proposed framework time (s)

[19] Save data 2400 B 1 100 KB 2.1

[15] Save data 3.8 MB 3.8 4.1 MB 1.5

[18] Save data 9.2 MB 3.4 10.57 MB 2.8

[19] Retrieve data 2400 B Few seconds 100 KB 0.057

Cluster Computing

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

References

1. Shahnaz, A., Qamar, U., Khalid, A.: Using blockchain for elec-

tronic health records. IEEE Access 7, 147782–147795 (2019).

https://doi.org/10.1109/ACCESS.2019.2946373

2. Loss, S., Singh, H.P., Cacho, N., Lopes, F.: Using FIWARE and

blockchain in smart cities solutions. Clust. Comput. 26(4),

2115–2128 (2023)

3. Popoola, O., Rodrigues, M., Marchang, J., Shenfield, A., Ikpehia,

A., Popoola, J.: A critical literature review of security and privacy

in smart home healthcare schemes adopting IoT & blockchain:

problems, challenges and solutions. Blockchain: Res. Appl.

100178 (2023). https://doi.org/10.1016/j.bcra.2023.100178

4. Gaia-GIS: Ibm security (2023). https://www.ibm.com/reports/

data-breach. Accessed 2 May 2024

5. Tmeizeh, M., Rodrı́guez-Domı́nguez, C., Hurtado-Torres, M.V.:

A survey of decentralized storage and decentralized database in

blockchain-based proposed systems: potentials and limitations.

In: International Congress on Blockchain and Applications,

pp. 204–213. Springer, Berlin (2023)

6. Casino, F., Politou, E., Alepis, E., Patsakis, C.: Immutability and

decentralized storage: an analysis of emerging threats. IEEE

Access 8, 4737–4744 (2019)

7. Hepp, T., Sharinghousen, M., Ehret, P., Schoenhals, A., Gipp, B.:

On-chain vs. off-chain storage for supply- and blockchain inte-

gration. Inf. Technol. (2018). https://doi.org/10.1515/itit-2018-

0019

8. Babu, E.S., Yadav, B.R.N., Nikhath, A.K., Nayak, S.R., Alnu-

may, W.: MediBlocks: secure exchanging of electronic health

records (EHRs) using trust-based blockchain network with pri-

vacy concerns. Clust. Comput. 26(4), 2217–2244 (2023)

9. Yang, X., Li, M., Yu, H., Wang, M., Xu, D., Sun, C.: A trusted

blockchain-based traceability system for fruit and veg-

etable agricultural products. IEEE Access 9, 36282–36293

(2021). https://doi.org/10.1109/ACCESS.2021.3062845

10. Mani, V., Manickam, P., Alotaibi, Y., Alghamdi, S., Khalaf, O.I.:

Hyperledger healthchain: patient-centric IPFS-based storage of

health records. Electronics 10(23), 3003 (2021)

11. Liu, F., Yang, C., Yang, J., Kong, D., Zhou, A., Qi, J., Li, Z.: A

hybrid with distributed pooling blockchain protocol for image

storage. Sci. Rep. 12(1), 3457 (2022)

12. Chen, Y., Ding, S., Xu, Z., Zheng, H., Yang, S.: Blockchain-

based medical records secure storage and medical service

framework. J. Med. Syst. 43, 1–9 (2019)

13. Alrebdi, N., Alabdulatif, A., Iwendi, C., Lian, Z.: SVBE:

searchable and verifiable blockchain-based electronic medical

records system. Sci. Rep. 12(1), 266 (2022)

14. Pincheira, M., Donini, E., Vecchio, M., Kanhere, S.: A decen-

tralized architecture for trusted dataset sharing using smart con-

tracts and distributed storage. Sensors 22(23), 9118 (2022)

15. Sharma, P.K., Park, J.H.: Blockchain based hybrid network

architecture for the smart city. Future Gener. Comput. Syst. 86,

650–655 (2018). https://doi.org/10.1016/j.future.2018.04.060.

https://www.sciencedirect.com/science/article/pii/S0167739X183

0431X

16. Khalaf, O.I., Abdulsahib, G.M.: Optimized dynamic storage of

data (ODSD) in IoT based on blockchain for wireless sensor

networks. Peer-to-Peer Netw. Appl. 14, 2858–2873 (2021)

17. Arslan, S.S., Goker, T.: Compress-store on blockchain: a

decentralized data processing and immutable storage for multi-

media streaming. Clust. Comput. 25(3), 1957–1968 (2022)

18. Gürsoy, G., Brannon, C.M., Gerstein, M.: Using Ethereum

blockchain to store and query pharmacogenomics data via smart

contracts. BMC Med. Genom. 13(1), 1–11 (2020)

19. Xie, C., Sun, Y., Luo, H.: Secured data storage scheme based on

block chain for agricultural products tracking. In: 2017 3rd

International Conference on Big Data Computing and Commu-

nications (BIGCOM), pp. 45–50 (2017). https://doi.org/10.1109/

BIGCOM.2017.43

20. Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis,

K., De Caro, A., Enyeart, D., Ferris, C., Laventman, G., Mane-

vich, Y., et al.: Hyperledger fabric: a distributed operating system

for permissioned blockchains. In: Proceedings of the Thirteenth

EuroSys Conference, pp. 1–15. USENIX Association, Philadel-

phia, PA (2018)

21. Ongaro, D., Ousterhout, J.: In search of an understandable con-

sensus algorithm. In: 2014 USENIX Annual Technical Confer-

ence (USENIX ATC 14), pp. 305–319. Association for

Computing Machinery, New York, NY (2014)

22. Fabric, H.: Ordering service (2024). https://hyperledger-fabric.

readthedocs.io/en/latest/orderer/ordering_service.html. Accessed

5 May 2024

23. Trón, V.: The book of swarm: storage and communication

infrastructure for self-sovereign digital society back-end stack for

the decentralised web. V1. 0 pre-Release 7 (2020)

24. Benet, J.: IPFS-content addressed, versioned, P2P file system

(2014). arXiv preprint. arXiv:1407.3561. Accessed 26 Feb 2024

25. MultiChain: Multichain private blockchain—white paper. https://

www.multichain.com/download/MultiChain-White-Paper.pdf.

Accessed 15 Feb 2024

26. Mustapa, M., Taliang, A., Iskandar, A., et al.: Comparison of

encoding and decoding methods for binary files. J. Phys.: Conf.

Ser. 1364, 012024 (2019)

27. Muła, W., Lemire, D.: Faster Base64 encoding and decoding

using AVX2 instructions. ACM Trans. Web (2018). https://doi.

org/10.1145/3132709

28. Gaia-GIS: Benchmarks (2019 update) (2019). https://www.gaia-

gis.it/fossil/librasterlite2/wiki?name=benchmarks?(2019?update).

Accessed 25 Feb 2024

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Muhammed Tmeizeh is a Ph.D.

candidate at the University of

Granada, Spain. He obtained his

Master’s degree in Informatics

and Bachelor’s degree in Com-

puter Science from Palestine

Polytechnic University. He is a

researcher specializing in

blockchain-based systems and a

lecturer at Palestine Ahliya

University, where he also serves

as the Dean of Admission and

Registration. Additionally, he is

a team leader for many software

development projects at Pales-

tine Ahliya University. He is a reviewer for two prestigious interna-

tional conferences. His work is focused on advancing the field of

blockchain technology through innovative research and practical

applications.

Cluster Computing

123

https://doi.org/10.1109/ACCESS.2019.2946373
https://doi.org/10.1016/j.bcra.2023.100178
https://www.ibm.com/reports/data-breach
https://www.ibm.com/reports/data-breach
https://doi.org/10.1515/itit-2018-0019
https://doi.org/10.1515/itit-2018-0019
https://doi.org/10.1109/ACCESS.2021.3062845
https://doi.org/10.1016/j.future.2018.04.060
https://www.sciencedirect.com/science/article/pii/S0167739X1830431X
https://www.sciencedirect.com/science/article/pii/S0167739X1830431X
https://doi.org/10.1109/BIGCOM.2017.43
https://doi.org/10.1109/BIGCOM.2017.43
https://hyperledger-fabric.readthedocs.io/en/latest/orderer/ordering_service.html
https://hyperledger-fabric.readthedocs.io/en/latest/orderer/ordering_service.html
http://arxiv.org/abs/1407.3561
https://www.multichain.com/download/MultiChain-White-Paper.pdf
https://www.multichain.com/download/MultiChain-White-Paper.pdf
https://doi.org/10.1145/3132709
https://doi.org/10.1145/3132709
https://www.gaia-gis.it/fossil/librasterlite2/wiki?name=benchmarks%2b%282019%2bupdate)
https://www.gaia-gis.it/fossil/librasterlite2/wiki?name=benchmarks%2b%282019%2bupdate)

Carlos Rodrı́guez-Domı́nguez is

an Associate Professor at the

University of Granada, Spain,

where he also obtained his

Ph.D. in Computer Sciences and

Master Degree in Software

Development. He is also a co-

founder and Chief Technology

Officer at Everyware Technolo-

gies since 2012. He is a member

of the Modeling & Develop-

ment of Advanced Software

Systems (MYDASS) research

group. He participates as a guest

editor of high prestige journals

and as a member of several organizing and program committees of

multiple conferences, workshops and scientific journals. He has par-

ticipated as a developer and researcher in more than 20 R&D&I

projects, also publishing more than 100 papers in journals, national

and international conferences. His research work is focused on the

communication and coordination in ubiquitous systems and context-

aware applications.

Marı́a Visitación Hurtado-Torres
is an Associate Professor at the

University of Granada (Spain)

where she received both an MSc

in Computer Science and a PhD

in Computing. Main fields of

research: Information and

Communication Technologies

Applied to Health, Inclusion and

Education, Assistive Technolo-

gies, Ontology Engineering and

Blockchain. Around 100

research papers published in

international journals and spe-

cialized conferences on these

topics. Coordinator of the Master in Management and Business Pro-

cess Technologies. Experience in more than 30 international, national

and regional R&D&I competitively-financed projects. Editorial Board

member of the Journal of Information & Management (Elsevier), and

reviewer of several prestigious international conferences.

Cluster Computing

123

	File chunking towards on-chain storage: a blockchain-based data preservation framework
	Abstract
	Introduction
	Related work
	Overview of the proposed framework
	Background
	Edge side
	Blockchain side
	File chunks indexing
	Saving and retrieving files

	Experiments and results
	Discussion
	Blockchain platform
	File chunking
	Chunks encoding
	File compression
	Optimal chunk size selection
	File chunk retrieval
	Ledger data size
	Time performance analysis
	Performance comparison

	Conclusion
	Author contributions
	Open Access
	References

