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Abstract: Serum neurofilament light chain (sNfL) levels have been proposed as a biomarker of the
clinical activity, disability progression, and response to treatment of people with multiple sclerosis
(PwMS); however, questions remain about its implementation in clinical practice. Ocrelizumab (OCR)
has proven effective in improving clinical and radiological outcomes and reducing sNfL levels. This
real-life study followed the sNfL levels of 30 PwMS treated for 12 months with OCR and evaluated
the usefulness of this biomarker for their short-term prognosis, considering expanded disability
status scale (EDSS), annualized relapse rate (ARR), radiological activity, and NEDA-3 values. OCR
reduced ARR in 83% of PwMS and radiological activity in 80%. EDSS was maintained, while NEDA-3
was achieved in 70% at 12 months. OCR produced an early reduction in sNfL levels (at 3 months). At
baseline, greater MRI-evaluated radiological activity was associated with higher sNfL levels. sNfL
levels over the first 12 months of treatment did not predict a suboptimal response or sustained control
of the disease. Longer-term studies are needed to explore the predictive usefulness of sNfL levels in
PwMS treated with high-efficacy drugs.

Keywords: disease-modifying treatment; multiple sclerosis; neurofilament; no evidence of disease
activity; ocrelizumab; real world

1. Introduction

Multiple sclerosis (MS) is a neurodegenerative demyelinating inflammatory disease
related to axonal destruction, which is the most influential factor in the disability of people
with MS (PwMS). This axonal neurodegeneration process releases proteins that form part
of the cytoskeleton, such as neurofilament light chain in the cerebrospinal fluid (CSF) and
serum [1]. Among biomarkers under investigation for the implementation of personalized
medicine [2], serum neurofilament light chain (sNfL) is a promising candidate for assessing
the activity, progression, prognosis, and response to treatment of PwMS [3]. Baseline sNfL
levels have also been proposed as a potential predictive biomarker of disability in clinically
isolated demyelinating syndrome [4].

CSF and serum neurofilament light chain levels correlate with each other [4], and
their analysis is more accessible in serum by means of Single Molecule Array (SIMOA)
technology [5]. Researchers are using SIMOA to investigate the relationship of sNfL levels
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with inflammation and neurodegeneration in PwMS [6], although no agreement has yet
been reached on the sNfL levels associated with a worse prognosis. Elevated sNfL levels
have been reported in PwMS with a greater frequency and severity of relapses [7] and
in those with higher radiological activity [8], while they have also been associated with
neurodegeneration and a greater risk of disability [9] and brain atrophy [10]. sNfL levels
might therefore act as a predictive biomarker of clinical and radiological activity and of the
response to different disease modifying treatments (DMTs), which is essential to determine
suboptimal responses [11] and enhance the precision of MS therapies [12].

sNfLs are not MS-specific, also being elevated in active neuroaxonal lesions after
traumatic brain injury, stroke, and other neurodegenerative diseases [13]. Physiologically,
sNfL levels increase from the age of 60 years onwards, and reference values are given by
age [14]. In a meta-analysis published by Cai et al., reported sNfL levels ranged between
9 and 35.9 pg/mL [15].

There is a need to establish sNfL cutoff levels by age group to differentiate between
pathological and non-pathological conditions. Accordingly, a z-score was calculated, based
on 10,133 samples from healthy individuals and adjusting sNfL levels by age and body mass
index (BMI), reporting an association between a sNfL z-score >1.5 (percentile ≥94%) and a
greater risk of clinical or radiological disease activity and/or worsening of the expanded
disability status scale (EDSS) score in the following year [16]. It has been concluded that
neurofilament light chain levels are more closely associated with inflammatory activity
than with progression [17].

Ocrelizumab (OCR) is a recombinant humanized monoclonal antibody that selectively
acts on B lymphocytes with surface expression of CD20 [18]. OCR has been found to
significantly reduce the clinical activity and partially limit the progression of disability in
PwMS [19]. OCR was reported to reduce sNfL levels in progressive forms in the ORATORIO
trial [20] and in relapse forms in the OPERA trial [21], while another pivotal study observed
an association between sNfL levels at 48 weeks and the risk of disability progression up
to 9 years later [20]. In the ORATORIO trial, a 10-fold increase in baseline sNfL levels
in the control group was associated with greater risk of progression as assessed by the
Nine Hole Peg Test (9-HPT) (HR = 2.33, p = 0.036) and Timed 25-Foot Walk Test (T25FWT)
(HR = 5.35, p = 0.003). The significant reduction in sNfL, independently of inflammatory
activity, indicates that OCR treatment can also limit neuroaxonal damage.

The Ocrelizumab Biomarker Outcome Evaluation (OBOE) study (NCT02688985) re-
ported a 30.8% reduction in sNfL levels after 12 months of OCR treatment and a correlation
between sNfL levels and the number of Gd+ active lesions and/or increased T2 lesions in
brain magnetic resonance imaging (MRI) [22]. The reduction in sNfL levels obtained by
OCR was also found to be independent of baseline clinical or radiological activity [23]. A
study in PwMS found no significant difference in sNfL values between OCR and rituximab
(RTX) treatments (18.32 vs. 18.28 pg/mL, respectively) [24].

Various studies of PwMS have described a reduction in sNfL levels with the start
of DMTs, which have demonstrated moderate (teriflunomide (TFL) [25], dimethyl fu-
marate (DMF) [26], or (high natalizumab (NTZ) [27], fingolimod (FGL) [28], alemtuzumab
(ALM) [29], cladribine (CLD) [30], OCR [20], or ofatumumab (OFT) [31]) effectiveness.

Delcoigne et al. studied sNfL levels in 1261 patients receiving ALM, DMF, FGL, NTZ,
TFL, or RTX and observed that baseline sNfL concentrations were positively associated
with relapses and EDSS score, with all DMTs achieving a reduction in sNfL levels, which
was highest with ALM and lowest with TFL [32].

sNfL levels have been considered as a biomarker of disability progression. A study of
578 patients followed for seven years associated levels > 10 pg/mL with a greater risk of
progression and, independently, with a greater risk of disability during the first six months.
In a multicenter study based on Real-Life Experience, PwMS with sNfL levels > 8 pg/mL
had a 2.8-fold greater risk of deterioration, 4-fold greater risk of new lesions in T2, and
3.3-fold greater risk of relapse within two years [33]. However, other authors found no
increased disability progression in PwMS with elevated sNfL levels treated with highly
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effective drugs [34]. Pivotal clinical trials, extension studies, and real-life studies have
shown that sNfL levels can be reduced by treatment with both moderately and highly
effective DMTs [35]. However, most of this evidence has been based on selected cohorts,
largely in clinical trials, and few data have been published on populational cohorts [36].

The possibility to determine sNfL in peripheral blood has resulted in some research on
sNfL levels in the clinical setting over recent years. However, the availability of SIMOA tech-
nology has been limited to date, and further research is required to determine the sensitivity
and specificity of sNfL as a biomarker and to establish reference values and standardized
protocols [1]. The objectives of this real-life study were to determine sNfL levels in PwMS
before starting OCR treatment (baseline) and every 3 months for 12 months; to evaluate the
effectiveness of OCR; to assess the usefulness of sNfL levels as a biomarker for short-term
prognosis; and to explore their relationship with other clinical-demographic variables.

2. Materials and Methods

This prospective observational study included 30 PwMS prescribed OCR between 2021
and 2022 in three public hospitals in Southern Spain (San Cecilio Clinical and Virgen de las
Nieves University Hospitals in Granada and Torrecardenas University Hospital in Almeria).
OCR was prescribed following the routine clinical protocol at the hospitals, and MS was
diagnosed in accordance with the 2017 McDonald criteria [37]. Data were gathered on
demographics (age, sex, BMI) and clinical variables (age at disease onset, time with disease,
number of DMTs received, the most recent DMT before OCR, and the reason for prescribing
OCR). The effectiveness of treatment was assessed by results obtained at baseline and
12 months for the EDSS [38], annualized relapse rate (ARR), T25FW [39], 9HPT [40],
and brain MRI, considering T1-weighted images before and after contrast (gadolinium-
Gd) administration and T2/fluid-attenuated inversion recovery (FLAIR) sequences. No
evidence of active disease (NEDA-3), recorded at baseline and 12 months, was defined by
the absence of clinical relapse and sustained disability worsening (i.e., 1.5-point increase
from baseline EDSS of 0, 1-point increase from EDSS of 1.0–5.5, and 0.5-point increase from
EDSS > 5.5), and the lack of MRI activity [41].

Venous blood sNfL levels were measured at baseline and at 3, 6, 9, and 12 months using
SIMOA technology (Quanterix, Billerica, MA, USA) with an SR-X instrument (Quanterix,
Lexington, MA, USA) and NF-light Advantage Kit (Quanterix, Billerica, MA, USA); these
analyses were conducted by the Immunology Department of the Ramón y Cajal Hospital
in Madrid (Spain). The post-OCR response of sNfL levels was evaluated by calculating
absolute mean sNfL values at baseline (sNfL-b) and 12 months (sNFL-12 m) and considering
the ratio (sNfL-12 m/sNfL-b) and relative change in sNfL levels. Levels were also expressed
as percentiles, and z-scores were calculated according to age- and BMI-adjusted standard
reference values [16], with a z-score of sNfL > 1.5 (percentile ≥ 94) being associated with a
higher risk of disease activity.

SPSS 28.0 (IBM SPSS, Armonk, NY, USA) and R version 4.2.0 (R Foundation for Sta-
tistical Computing, Vienna, Austria) were used for data analyses. Median values with
interquartile range (IQR) were calculated for continuous variables and non-parametric
statistics were therefore applied, using the Mann–Whitney U test for unpaired data and the
Wilcoxon signed-rank test for paired data. Spearman’s rank-order correlation coefficient
was applied to determine monotonic relationships between sNfL and clinical or demo-
graphic variables. Frequencies and percentages were calculated for categorical variables
and their association were tested through the chi-square or Fisher’s exact tests. Clinical
outcomes and sNfL levels at each time point were analyzed by means of a mixed-effects
linear regression model to account for dependent (time series) observations and within
subject variations. Confounders were included in the regression analysis to account for
their potential effects on the clinical outcomes. Best model fit and model comparisons
were determined in a stepwise procedure through ANOVA and comparison of Akaike
Information Criterion to select the most parsimonious model [42]. Response and predictor
variables were transformed when necessary to solve linearity and heteroskedasticity issues.
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Categorical outcome variables were analyzed in a similar manner by fitting generalized
mixed-effects logistic regressions. A critical value of p ≤ 0.05 was set as the threshold for
statistical significance in all tests carried out.

Ethical considerations: This study was performed in accordance with Good Clinical
Practice and the Helsinki Declaration and was approved by the biomedical research ethics
committee of Andalusia. Informed consent was obtained from all study participants.

3. Results

This study included 30 PwMS with forms of relapsing–remitting MS (RRMS) who had
received OCR treatment for at least 12 months. At the onset of OCR treatment (baseline),
the mean age was 40.8 ± 10.5 years, the mean BMI was 24.5 ± 3.81 (n = 21), and 57% were
female; male and female participants did not significantly differ in sNfL levels (16.9 vs.
9.46 pg/mL, respectively; p = 0.368).

3.1. Baseline Clinical Characteristics and Follow Up

Table 1 lists the baseline clinical characteristics of the PwMS before OCR treatment:
seven (23.3%) were naïve, seven (23.3%) switched from fingolimod, four (13.3%) from
natalizumab, four (13.3%) from cladribine, three (10%) from interferon-beta, two (6.7%)
from dimethyl fumarate, two (6.7%) from alemtuzumab, and one (3.3%) from teriflunomide.
The switch was due to a suboptimal response in 29 (96.7%), relapse in 11 (36.7%), and
clinical/radiological activity in 18 (60%), and for safety reasons in 1 patient. The mean
number of previous treatments was 1.53 ± 1.33: one previous DMT had been received by
47.8%, two by 21.8%, and three by 30.4%.

Table 1. Clinical–demographic characteristics before starting OCR and at one year of treatment.

Before OCR After One Year
of OCR p Value

MS onset age (y), mean (SD) 30.1 (9.9)

Sex, female/male, n (%) 17/13 (56.5/43.3)

Disease duration (y), mean (SD) 12.2 (9.39)

Age (y), mean (SD) 40.8 (10.5)

Time with OCR, (m), mean (SD) 24.3 (7.94)

Baseline EDSS, median (range) 2.5 (1–6.5) 2.5 (1–7) p = 0.072

ARR mean (SD) 1.43 (1) 0.23 (0.43) p < 0.001

T25FW (n = 20) (s), mean (SD) 8.08 (5.78) 8.69 (7.5) p = 0.649

9HPT-d (s) (n = 24) mean (SD) 29.2 (13.3) 29.4 (23.83) p = 0.989

9HPT-nd (s) (n = 24) mean (SD) 29 (9.98) 28.30 (12.48) p = 0.187

T2 lesion on MRI (n = 29), n (%)

>20 19 (65.5)

9–20 9 (31)

<9 1 (3.4)

T1 gadolinium enhancement. n (%) 10 (34.5%)
(n = 29)

0
(n =24) p = 0.011

New or enlarged T2 lesions, (n = 24) n (%) 2 (8.3%)

PwMS with DMT before OCR, n, (%) 23(76.7)

High-efficacy therapies 17 (73.9)

Moderate-efficacy therapies 6 (26.1)

PwMS naïve 7 (23.3)
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At the 12-month follow-up, EDSS worsening was observed in one participant (3.3%),
relapse in seven (23.3%), and radiological activity (new lesions in T2, no Gd+ activity)
in two (8.3%). NEDA-3 was recorded in 70.8% of participants, a reduced ARR in 83.9%
(0.23 ± 0.42 at 12 months vs. 1.43 ± 1.01 at baseline, p < 0.01). The mean EDSS (2.98 ± 1.89)
did not significantly differ vs. baseline (3.1 ± 1.69), while active radiological lesions were
detected in two participants (8.3%) vs. ten (34.5%) at baseline, an 80% reduction.

Table 1: Annualized relapse rate (ARR), dominant (d), disease-modifying treatment
(DMT), expanded disability status scale (EDSS), magnetic resonance imaging (MRI) month
(m), Nine Hole Peg Test (9HPT), non-dominant (nd) ocrelizumab (OCR), people with
multiple sclerosis (PwMS), seconds (s), standard deviation (SD), Timed 25-Foot Walk
(T25FW), year (y).

3.2. sNfL Levels and Clinical Outcomes

Figure 1 plots sNfL levels against measurement timepoints (baseline and 3, 6, 9, and
12 months). Each point represents an individual observation, with a line showing the trend
of sNfL changes at each timepoint. Mean values with standard deviations were calculated
for sNfL levels at each timepoint. The mean reduction in sNfL levels over 12 months was
6.21 ± 11.8 points, with a mean percentage sNfL reduction of 16.3 ± 55.5. The mean sNfL
level was 12.7 ± 12.8 pg/mL at baseline vs. 6.48 ± 3.07 pg/mL at 12 months (p = 0.007),
the mean z-score was 0.26 ± 1.99 at baseline vs. −0.615± 1.26 at 12 months (p = 0.008). At
baseline, the sNfL level was >10 pg/mL in 33.3% at baseline versus 13.3% at 12 months,
and the z-score was >1.5 in 40% at baseline vs. 3.3% at 12 months (p = 0.003). Among PwMS
who had relapsed, 85.7% had shown an increase in sNfL levels during the three months
before the relapse.
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Figure 1. sNfL levels were compared among the different timepoints, using the non-parametric
Wilcoxon test for paired samples to verify whether values in subsequent timepoints are lower, com-
paring “Baseline” with “3 months”, “3 months” with “6 months”, “6 months” with “9 months”,
“9 months” with “12 months”, and “Baseline” with “12 months”. p-values of comparisons
are indicated.
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The median EDSS was higher in previously treated versus naïve patients (3.5 vs. 1.5,
p = 0.002). In comparison to the former, naïve patients had more relapses during the
previous year (2.43 ± 1.62 vs. 1.13 ± 0.46, p = 0.018) and higher radiological activity (mean
of 1.43 ± 1.72 vs. 0.727 ± 1.70 Gd+ lesions, p = 0.047). At baseline, sNfL levels were similar
between the groups (19.1 vs. 10.7 pg/mL; p = 0.174), although the naïve group had a higher
mean sNfL z-score (1.55 ±1.5 vs. −0.134 ± 1.97, p = 0.033) and sNfL-b/sNfL-12 m ratio
(p = 0.012).

The sample was divided between patients with and without NEDA-3 at 12 months
to evaluate the influence of baseline sNfL levels on clinical and radiological outcomes.
Table 2 exhibits demographic, clinical, and outcome data for the two groups. No significant
between-group difference was found in baseline sNfL level (p = 0.710), baseline z-score
(p = 0.26), sNfL level at 12 months (p = 0.153), z-score at 12 months (p = 0.852), reduction in
sNfL (p = 0.114), percentage sNfL reduction (p = 0.065), or sNfL ratio (p = 0.065). A NEDA-3
binomial logistic regression analysis was independently performed with other variables
such as age at onset of OCR, duration of the disease or EDSS without finding any statistical
significance when controlling for these.

Table 2. Demographic, clinical, and evolution data of PwMS with or without NEDA-3 criteria.

NEDA-3 (n = 17) No NEDA-3 (n= 7) p Value

MS onset age (y), mean (SD) 33.2 (10.6) 28 (8.08) p = 0.294

Sex, F (%) 11 (64.7) 2 (28.6) p = 0.182

Disease duration, (y) mean (SD) 11.9 (10.1) 2.71 (2.87) p = 0.032

Onset age (y) OCR, mean (SD) 44.4 (9.47) 31.9 (8.51) p = 0.006

Baseline EDSS median (range) 3.5 (1.0–6.5) 2 (1.0–3.5) p = 0.044

ARR mean (SD) 1.24 (0.83) 2.14 (1.46) p = 0.053

T25FW (n = 15) seg, mean (SD) 9.78 (7.47) 6.18 (0.62) p = 0.489

9HPT-d (s) (n = 19) mean (SD) 32.3 (17.4) 27.3 (4.9) p = 0.831

9HPT-nd (s) (n = 19) mean (SD) 32.3 (12.6) 28 (5.33) p = 0.989

T2 lesion on MRI (n = 24), n (%) p = 0.035

>20 13 (76.5) 2 (28.6)

9–20 3 (17.6) 5 (71.4)

<9 1 (5.9) 0

T1 gadolinium enhancement. n (%) 5 (29.4) 3 (42.8) p = 0.647

PwMS with DMTs before OCR, n (%) p = 0.412

High-efficacy therapies 10 (58.8) 3 (42.85)

Moderate-efficacy therapies 4 (23.5) 0

PwMS naïve 3 (17.6) 4 (57.15)

Table 2: Annualized relapse rate (ARR), dominant (d), disease-modifying treatment
(DMT), expanded disability status scale (EDSS), magnetic resonance imaging (MRI) month
(m), Nine Hole Peg Test (9HPT), non-dominant (nd) ocrelizumab (OCR), people with mul-
tiple sclerosis (PwMS), seconds (s) standard deviation (SD), Timed 25-Foot Walk (T25FW)
year (y).

Likewise, no significant difference was found between patients with vs. without
relapse during the 12-month follow-up in baseline sNfL levels (p = 0.441), baseline z-score
(p = 0.532), sNfL levels at 12 months (p = 0.364), z-score at 12 months (p = 0.544), reduction
in sNfL (p = 0.848), percentage sNfL reduction (p = 0.848), or sNfl ratio (p = 0.848).

Correlation analysis (Spearman’s rho) showed no relationship of baseline sNfL levels
with age at baseline (−0.062; p= 0.746), age at disease onset (−0.045; p = 0.812), time with
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the disease (−0172; p = 0.364), relapses during the previous year (−0.086; p = 0.653), or
EDSS score at baseline (−0.729; p = 0.136). A moderate correlation was found between
baseline sNfL levels and radiological activity (Gd+ lesions) (0.458; p = 0.012).

No difference was found between patients with versus without radiological activ-
ity during the 12-month follow-up in baseline sNfL levels (p = 0.116), baseline z-score
(p = 0.116), sNfL levels at 12 months (p = 0.958), z-score at 12 months (p = 0.587), reduction
in sNfL (p = 0.116), percentage sNfL reduction (p = 0.087), or sNfL ratio (p = 0.087).

Clinical outcome and confounding variables were analyzed in mixed linear regression
models. The final model included the sex and age of participants at baseline. The adjusted
model permits random intercepts and random slopes for each participant to improve the
depiction of individual variability over time. OCR treatment showed to have a significant
greater average reduction of sNfL levels in males compared to female participants. Age at
start of treatment also showed a significant effect to OCR treatment, where older subjects
showed worse response to treatment and lower reductions of biomarker levels overtime, in
some cases even slightly increasing by the end timepoint (Figure 2). In the mixed effects
binary logistic model on the most influential factors in relapses, the best fit was obtained
for the sNfL levels at 3 and 9 months: with the odds ratio of a relapse rising to 0.386 per
one-unit increase in sNfL at 3 months and to 2.035 per one-unit increase at 9 months.
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Figure 2. Mixed-effects linear regression models of each subject. OCR treatment appears to be more
effective at reducing blood sNfL levels in males as shown by the steeper downward slopes of the
fitted lines. Age at start of treatment also showed a significant reduction to treatment response on all
subjects independently of sex.

4. Discussion

This real-world study followed PwMS treated with OCR for 12 months to determine
the impact of this treatment on sNfL levels and other clinical, radiological, and disability
outcomes, exploring the factors that influence this effect. Information provided by this type
of study in a non-selected population complements data obtained in clinical trials [31,43].

In comparison to previous studies, the mean age at OCR onset was slightly higher
(40 years), the time with disease was longer (around 12 years), the mean EDSS was lower,
and the number of treatments was smaller (1.5 vs. 2.2), while ARR and Gd+ lesion load
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values were similar [33]. The main indication for this high-efficacy drug was a suboptimal
response to moderate-efficacy (26% of participants) or high-efficacy (74%) drugs. ARR,
disability progression (by EDSS, T25FW, and 9HPT), and MRI activity at 12 months were
not associated with sNfL levels at baseline. The MRI finding of Gd+ lesions at OCR onset
was moderately correlated with baseline sNfL levels (0.458. p = 0.012), in line with the
study by Cross et al. [22]

NEDA-3 was reached in 70% of the PwMS, very similar to other results obtained using
high-efficacy DMTs [30,44]. After 12 months of OCR treatment, the ARR was reduced in
83%, the EDSS was maintained, and there was an 80% reduction in those with radiological
activity. In comparison, Sandgren et al. reported that 33% of ALM-treated patients reached
NEDA-3 after a five-year follow-up, with a lower reduction in ARR [29].

Higher sNfL concentrations in CSF or serum have been associated with relapses, the
emergence of new lesions in neuroimaging, and a worsening of the disease [45]. Clinical
trials have determined sNfL levels in order to evaluate the effectiveness of different DMTs,
but less information has been published on their usefulness for DMT follow-up in the
routine clinical setting [16].

The significant reduction in sNfL levels verifies the molecular effect of OCR on neu-
rodegeneration in PwMS and was observed at three months after the first infusion, earlier
than reported for other DMTs [26]. The 16% decrease in sNfL levels at 12 months was lesser
than described in the OBOE study with OCR [22] or in the study with CLD [30].

The clinical and/or radiological activity of this disease is associated with elevated
sNfL levels and z-scores [46]. Interindividual differences in sNfL levels were minimized
by comparing sNfL levels and z-scores [16], obtaining similar results for both. Besides the
reduction in mean sNfL, the z-score was also decreased at 12 months vs. baseline, and the
sNfL level reduction was maintained for at least 12 months. Most studies of PwMS have
described a reduction in sNfL levels during the first 12 months, being greater and earlier
with high-efficacy treatments (anti CD20, CD52, and integrin α4β1 antibodies) than with
other oral therapies (S1P-receptor inhibitors, DMF, and TFL) or “platform” drugs [26,47].

Baseline sNfL levels were not associated with EDSS-assessed worsening, in agreement
with previous findings [48]. sNfL levels in PwMS have been reported to rise during
relapses and peak at three weeks [17]. In the present study, sNfL levels increased over
the three months before relapse in 85.7% of the PwMS with relapses, compared with 38%
of those treated with ALM [49]. As noted by other authors [5,50,51], not all PwMS with
clinical “relapse” have a higher sNfL level than determined in the three previous months.
Indeed, sNfL levels were not increased before the relapse in one out of six patients in the
present population.

Unlike in another study [52], no association was observed between increased sNfL
levels and greater disability assessed by EDSS, T25FW, or 9HPT test scores or between sNfL
levels or baseline z-score and NEDA-3 at 12 months. This difference may be explained
by the shorter follow-up time and/or the administration of a high-efficacy drug (OCR),
given that Meier and coworkers found no association between sNfL levels and progression
worsening in patients treated with anti-CD20 [53]. A real-life study of 14 cladribine-treated
PwMS also found no relationship between sNfL levels and relapse, neuroimaging activity,
EDSS progression, or NEDA-3 status [30]. Likewise, no correlation was reported between
sNfL levels and NEDA-3 in 74 PwMS treated with CLD [54] or in 52 PwMS treated with
DMF after 12 months of follow up [26]. However, studies with longer follow-up periods
have demonstrated an association between baseline sNfL levels and the presence of clinical
and radiological activity or EDSS progression [9,30,33,55]. Other authors have reported a
modest association between sNfL levels and the degree of disability but not the frequency
of relapses [36]. After a 12-year follow-up period, the only association observed by Canto
et al. was between sNfL levels and EDSS scores [56]. Baseline ARR, EDSS, and radiological
activity values were higher in naïve vs. previously treated patients, who had similar sNfL
levels (19.1 vs. 10.7 pg/mL, respectively); however, the baseline level (1.55 vs. −0.134)
and sNfL-b/sNfL-12 m ratio were higher in the naive group after adjustment by age and
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BMI (z-score). This may reflect the effect of DMTs on sNfL levels before the switch to OCR.
Sandgren et al. also obtained higher sNfL levels in naive vs. previously treated PwMS
group [29].

Study limitations include the modest sample size and follow-up period, preventing
study of the mid- to long-term prognosis. In addition, it is more challenging to obtain short-
term differences in sNfL levels and their relationship with relapses or disease progression
in patients treated with a very highly effective drug such as OCR.

Despite the prognostic and monitoring value of serial determinations of sNfL levels,
consensus groups recently concluded that these analyses will not replace MRI over the
short term but will be used as a complementary technique or with a greater frequency,
given their lower cost, thereby optimizing neuroimaging [57,58].

5. Conclusions

Given the unpredictable course and heterogeneous development of MS, biomarkers
are needed to improve follow-up of the disease and the response to DMTs. OCR is a highly
effective drug, as confirmed in this study, obtaining an ARR reduction in 83%, maintaining
the EDSS score, and reducing radiological activity in 80% at 12 months of follow up, when
70% of the PwMS reached NEDA-3. The OCR treatment produced an early reduction in
sNfL levels at three months that was maintained over the follow up period. Gd+ activity
on the baseline MRI scan was associated with higher sNfL levels. The evaluation of sNfL
levels during the first year of OCR treatment did not prove able to predict a suboptimal
response or a persistence of disease control. The long-term evaluation of sNfL levels in
wider studies is warranted to determine the predictive value of sNfL levels in PwMS treated
with high-efficacy drugs.
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