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ABSTRACT 

Introduction: Aging leads to physiological cognitive decline that it is worsened in people with 

neurodegenerative diseases such as Alzheimer’s Disease. Despite the ongoing search for a 

solution to this cognitive decline, no effective remedies have been established. It has been 

determined that modifiable external factors, such as oral health and occlusal function, prevent 

cognitive decline. 

Objective: To analyze the primary interactions between occlusal function and cognitive 

functions. 

Main findings: Masticatory function is related to cognitive functions. In particular, current 

evidence, from both animal and human studies, suggests that the activation of masticatory 

muscles and proper mastication, with natural teeth or dental prosthesis, induces the release of 

several mediators and the activation of specific brain areas. Together, they result in higher 

neuronal activity, neurotrophic support, blood flow and the prevention of amyloid beta plaque 

formation. Thus, all the components of the masticatory system must work together in order to 

preserve cognitive function. 

Conclusions: Available evidence suggests that oral and cognitive health are more 

interconnected than previously thought. Therefore, maintenance and adequate restoration of the 

whole masticatory system are important for the prevention of cognitive decline. In summary, 

oral and chewing health lead to healthy cognitive aging. 

Key words: mastication; dementia; cognitive dysfunction. 
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INTRODUCTION 

Aging involves physiological cognitive decline. The deterioration of processing speed and 

memory, language, visuospatial, and executive functions, is normal as one ages 1. However, the 

magnitude of this deterioration, the temporality, and the rate at which it occurs throughout life 

differ 1. Certain situations or modifiable external factors either protect against this deterioration 

or accelerate the underlying mechanisms 2. In fact, about 10% of the levels of neurodegenerative 

biomarkers (such as amyloid beta) may decrease spontaneously 3. Furthermore, some factors 

have been identified as modifiable and reversible causes of cognitive deterioration 4. 

Besides normal aging and the associated cognitive decline that does not affect daily normal 

activities, neurodegenerative diseases and dementia syndromes, such as Alzheimer’s Disease 

(AD), induce more aberrant forms of deterioration 5. Dementia syndromes are among the most 

devastating of all mental illnesses related to cognitive decline and are the most significant age-

related disorders 6. The deterioration affects several functions including motivation, social 

behavior and emotional control 7. As a result, dementia syndromes cause a profound impact on 

quality of life and an economic burden from the need for a caregiver. 

The effect on healthcare systems is significant as well. It costs almost €800 billion ($1 trillion) 

a year in Europe. This is greater than the cost of diabetes, cardiovascular diseases and cancer 

put together 8–10. This cost will increase globally as longevity increases. This drives the urgency 

to search for effective strategies which modify its course in the adult population 11. 

The literature describes various external modifiable factors that may affect the development of 

different dementia syndromes such as AD. These include smoking, alcohol, drug abuse, diet 

and stress 12. Protective factors which reduce the progression of established AD include 

education, exercise 13 and active social commitments 12. Moreover, some of these protective 

factors have been described as beneficial in slowing the normal physiological cognitive decline 
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associated with aging 14,15. The absence of a clearly defined and studied strategy for addressing 

pathological cognitive deterioration 1 make this a very attractive field to explore. 

An abundance of animal and human studies suggest that masticatory function is relevant to 

cognitive deterioration 16,17. However, this relationship is complex and difficult to establish. 

Although data from animal studies seems to establish a causal relation, this has not been 

confirmed in longitudinal human studies. A deeper understanding of this relationship would 

give us the chance to institute new strategies that improve the course of cognitive deterioration 

in patients. This must be done by analyzing the available data while understanding its 

complexity. 

Thus, it is the aim of the current review to describe the interactions between occlusal and 

cognitive functions presented in the literature and to propose how such interactions may benefit 

patients. This review offers a broad overview of this highly complex interaction that previously, 

has only been partially analyzed. We achieve this by conducting a search of the database 

Pubmed with the following search strategies ("mastication"[MeSH Terms] OR 

"mastication"[All Fields]) AND ("cognition"[MeSH Terms] OR "cognition"[All Fields]), 

("mastication"[MeSH Terms] OR "mastication"[All Fields] OR "chewing"[All Fields]) AND 

("hippocampus"[MeSH Terms] OR "hippocampus"[All Fields]), ("mastication"[MeSH Terms] 

OR "mastication"[All Fields] OR "chewing"[All Fields]) AND ("dementia"[MeSH Terms] OR 

"dementia"[All Fields]) and ("mastication"[MeSH Terms] OR "mastication"[All Fields] OR 

"chewing"[All Fields]) AND ("Cortex"[Journal] OR "cortex"[All Fields]). 

MASTICATORY AND COGNITIVE FUNCTIONS IN ANIMALS 

Many animal studies have linked aspects of chewing function with alterations in areas of the 

brain related to cognitive function 18. This has been done by modifying the masticatory system 

to create different dysfunctions for comparison. Masticatory dysfunction is a common 



Page 6 of 32 

technique used to study the connection between chewing and cognitive function. This is often 

done by extracting teeth (in part or completely), providing a soft (powder or liquid) or hard 

(solid) diet or raising the bite by adding a hard permanent material to the occlusal surface. 

In mice, these masticatory changes cause alterations in learning and memory by reducing the 

number and activity of neurons in the hippocampus 19–21, especially in the cornus Ammonis 1 

(CA1) and CA3 regions 22,23. Reducing the chewing function of mice is also found to reduce 

neuronal activity and neurogenesis in the subgranular zone (SGZ) 24 and subventricular zone 

(SVZ) of the hypothalamus. These are involved in connecting the central nervous system with 

the periphery, 25. 

A soft diet reduces expression of the brain-derived neurotrophic factor (BDNF), c-Fos and 

bromodeoxyuridine (BrdU) + cells in areas such as the motor M1, CA1, 2 and 3, dentate gyrus 

(DG), piriform cortex and the SVZ and SGZ zones 20,22,26,27. This causes a reduction in 

neurogenesis, neuronal activity, neuronal trophic activity and synaptic formation (Figure 1). 

Insufficient masticatory activity (induced with a powdered diet) during development and aging 

restrains hippocampal neurogenesis in adulthood 26. 

Reducing mastication by extracting all teeth induces mice to have longer escape latencies. This 

is possibly due to a reduction in cell proliferation and newborn cell survival and differentiation 

in the hippocampal DG. This also reduces the expression of hippocampal BDNF 28–30. Reduced 

masticatory function in early life causes chronic stress which impairs the ability to recognize 

novel objects 31. Tooth loss in mice also causes reduced volume of the frontal association cortex 

and nucleus accumbens 32, two structures related to cognition (Figure 2). 

Excessive occlusal loading, from the placement of a hard permanent material to the occlusal 

surface, for example, reduces the number of newborn BrdU+ cells in the hippocampal DG. 

Additionally, the survival of these newborn cells is reduced, the apoptotic cells in the 

hippocampal DG are increased 33 and the number of dendritic spine numbers in CA1 are 
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lowered 34. This malocclusion also reduces glucocorticoid receptors-mRNA, which impairs the 

hypothalamic-pituitary-adrenal feedback inhibition, especially in CA3 34 (Figure 2). 

As a summary, the link between cognitive decline and altered masticatory function seems 

plausible. However, direct translation to humans must be made with caution as many of the 

functions described above do not occur in the same way, as presented below. 

MASTICATORY AND COGNITIVE FUNCTIONS IN HUMANS 

Aging leads to physical and functional deterioration in older individuals. In addition to esthetic 

and social problems 35, tooth loss causes stress 36 which may trigger the activation of 

neuroinflammatory pathways related to oxidation 37. Tooth loss also contributes to multiple 

other pathologies that are associated to functional and physical deterioration 38,39, and dietary 

changes that lead to worse nutrition 40–43. The association between the loss of teeth and general 

health could be even greater considering that aging implies a deterioration in the chewing ability 

for other reasons as well (see 44 for review). For example, the masticatory muscles are weakened 

45, more natural teeth are lost 46, swallowing patterns change 47, and there is an increase in the 

number of scars in the mouth and throat that make chewing difficult 48. Oral health also affects 

“quality of life”, altering the management of emotions, self-esteem and self-confidence 49–51. 

Number of natural teeth and cognitive function: The periodontal pathway 

Tooth loss is often the consequence of periodontal disease. More than 60% of adults over the 

age of 65 suffer from moderate to severe periodontal disease 52. It is the 6th most prevalent 

disease in the world 53. The inflammatory process around the teeth is usually caused by 

accumulated microbial plaque from poor oral hygiene, which elderly people are less competent 

to maintain 54. Moreover, the presence of periodontal disease has been associated with cognitive 

impairment regardless of age, sex, or education level 55. Although reverse causation may be 

suspected (cognitive impairment results in poor oral hygiene that leads to periodontal disease), 
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longitudinal studies have found that periodontitis is associated with an increase in cognitive 

impairment 56 and risk of AD development 57. These studies have short follow-up periods; only 

6 months and 3 years, respectively. 

The possible pathway linking both diseases might be the low-level but chronic systemic 

inflammation that accompany peripheral infections, such as periodontal disease 58 (Figure 3). 

Lower mini-mental state examination (MMSE) results are related to a higher state of 

periodontal deterioration as measured by the levels of cytokines produced by exposure to 

bacteria lipopolysaccharides (LPS), such as interleukin (IL) 1beta, IL6, IL10 and Tumor 

Necrosis Factor (TNF) alfa 59. Periodontitis and the associated inflammatory mediators have 

also been associated with higher levels of tau protein 60,61, and plasma levels of amyloid beta 

(Aβ) -1-42 62 and Aβ1-40 63, which may reinforce the inflammatory hypothesis. Both tau protein 

and Aß are associated with AD when they become hyperphosphorylated and form fibrillar 

structures in the form of plaques, respectively. 

However, most of the studies referenced above focus on few inflammatory markers, such as the 

C-reactive protein (CRP) 63. It may be suspected that a subject susceptible to periodontal disease 

has a higher inflammatory response profile. An increased inflammatory response would not 

occur only in the periodontium but everywhere. Thus, the connection between periodontitis and 

cognitive impairment could be a spurious association due to a confounding factor, the 

inflammatory response potential of the patient. This inflammatory response is, in fact, a 

necessary cause for both periodontitis and cognitive impairment. 

It has recently been reported that 29 markers of systemic inflammation which normally increase 

with periodontitis are not as relevant as previously thought for cognitive impairment 64. This 

study supports the idea that the most probable relationship between cognitive functions and oral 

health can be caused by the loss of teeth caused by periodontal disease, but not inflammation 
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itself. This leads to the study of other parameters in oral health such as the number of natural 

teeth remaining in the mouth. 

The number of remaining natural teeth is directly related to cognitive function 65–68 and the 

presence of less than 9 teeth is related to dementia 65 and cognitive impairment 67. Furthermore, 

the number of remaining natural teeth is related to lower activities of daily living (ADL), quality 

of life scores, and cognitive function as well as depression and food deficiency 69. Tooth loss 

has also been associated with cognitive impairment regardless of nutrition 70. Different 

hippocampus-based cognitive processes have been evaluated by episodic and semantic memory 

tasks which find that a lower number of natural teeth resulted in worse scores 66. It is important 

to note that most of these studies are cross-sectional in nature, the reported associations must 

be considered carefully without assuming causality. Thus, a reduced number of teeth might be 

a consequence of an already impaired capacity for ADL, as previously stated. 

Interestingly, after the 2007 study, Stein and co-workers found a significant interaction between 

tooth loss and the prevalence of dementia through ApoE allele (one of the most studied markers 

of AD). From the study, 21.5% of the participants had dementia at baseline which was directly 

related to the number of remaining teeth (0-9) 71. The authors pointed out that the participants 

with at least one ApoE allele and fewer teeth had lower scores at the first cognitive examination 

which declined quicker than participants with no or one risk factor 71. The risk of developing 

AD was also found to be inversely related to the number of remaining teeth in another 

longitudinal study 72. These studies were conducted in community-dwelling settings, which 

could have other co-lateral factors possibly not controlled for. 

Chewing ability and cognitive function: more than natural teeth 

It may seem logical to think that more natural teeth will induce better masticatory abilities. 

These can be measured by color-changing gums, mandibular excursions (ranges of distances 

that the mandible moves in the open, lateral, and forward directions), bite force, number of 
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occluding pairs (pairs of upper teeth that contact with lower teeth when closing the mandible) 

and complaints of the masticatory system (facial pain, headaches/migraines). Better masticatory 

abilities are related to improved cognitive function 73. 

However, there are patients that are already so deteriorated that they lack adequate masticatory 

function regardless of the number of teeth. Some studies have determined that the relationship 

between masticatory function and cognition is not influenced by the number of natural teeth or 

the type of prosthetic rehabilitation (complete or partial, removable or fixed), but the 

masticatory function itself 70,74–77. The local distribution of the masticatory forces seems to be 

important as well 78. 

Episodic memory is predicted by masticatory performance in individuals with complete 

dentures 74. However, this study does not address the direction of the association and 

masticatory performance was self-assessed. Furthermore, poor chewing ability is related to 

lower cognitive functions, measured with different cognitive tests such as MMSE, Hasegawa 

Dementia Scale-Revised (HDS-R) and Frontal Assessment Battery (FAB) 69,76. Likewise, other 

executive functions, such as word fluency, Stroop color word test or trail-making B, can be 

predicted by from masticatory system issues such as headaches and migraines 74. However, not 

all dentures provide these benefits. Patients who wear complete dentures often complain of 

issues such as bad adjustment, more limited range of ingestible food, discomfort and 

dissatisfaction. As a consequence, the cerebral blood flow is reduced 79. To solve some of the 

limitations associated with standard complete dentures, implant-retained overdentures can be 

prescribed. This treatment option increases the amplitude and power of alpha waves and 

cognitive scores (cognitive performance (MMSE) and brain function (EEG)) 80. 

Multiple interactions have been explored to explain this association. The treatment of 

edentulism with adequately adjusted dentures increases the occlusal contact area and increases 
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occlusal force. This situation leads to an increase in the brain function activity measured with 

electroencephalography (EEG) 81. 

In summary, edentulous subjects with good occlusal function after an adequate rehabilitation 

should maintain correct cognitive functions. Understanding this hypothesis and the possible 

physiological mechanisms of this link are key to understanding potential improvements in 

current therapies. 

Chewing ability and release of myokines 

In recent years, the effect that the contractions of skeletal muscles, from general exercise, exert 

on cognitive functions has been well studied 82–84. Considering that the musculature related to 

chewing is also skeletal, it could be assumed that the relationship between occlusal function 

and cognitive functions may imply similar pathways. Confirmation of such similarities is 

crucial. 

The beneficial effect of exercise on cognition could be explained by increased levels of 

neurotrophins such as BDNF, especially in the hippocampus 85. This increase could be 

explained by the activation of muscle-released myokines such as fibronectin type III domain-

containing protein 5 (FNDC5) (released to the bloodstream as irisin) and cathepsin B (CTSB) 

that cross the Blood Brain Barrier generating an up-regulation of BDNF in the brain 86,87. This 

has been proven in human studies 85 and has been linked with neurogenesis in the dentate gyrus 

of the hippocampus in animal models. However, in humans it has been recently discussed that 

in the adult dentate gyrus, neurogenesis is a rare and isolated event 88. Others support the idea 

that adult neurogenesis in humans is persistent in both physiological and pathological aging 89. 

Thus, there could be other ways that the influence of exercise is transferred to cognitive 

improvement. 
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BDNF has an important role in the maintenance of cognitive functions 90. High levels of this 

neurotrophin are associated with greater neuronal plasticity 91, maintenance of hippocampal 

volume 92 and an improvement of trophic support, thus reducing the susceptibility of neurons 

to oxidative stress and the dysfunction caused by neurotoxic species such as amyloid beta 

plaques 91. Elevated levels of BDNF also play a protective role in the pathogenesis of AD. It 

allows a non-amyloidogenic pathway in which the amyloid precursor protein (APP) is cleaved 

by a gamma secretase (ADAM10 or ADAM17 / TACE) preventing the formation of amyloid-

beta insoluble peptides 93,94. 

Thus, in summary, myokines such as FNDC5 and CTSB released in the medium by the 

contraction of the skeletal muscles during its activation improve superior cognitive functions 

thanks to the BDNF neurotrophic roles and their involvement in the establishment of a non-

amyloidogenic pathway in the processing of APP. 

Chewing ability and activation of Locus Coeruleus 

Locus Coeruleus (LC) activation through trigeminal sensory inputs is another possible 

interaction pathway between occlusion and cognitive functioning. 

The LC is part of the Ascending Reticular Activating System (ARAS). It is composed of 

noradrenergic neurons 95 that connect with virtually all brain structures 96–98. The stimulation of 

LC neurons favors cognitive processes through the modulation of the noradrenergic system 15,99 

and regulates neuroinflammatory processes by stimulating phagocytosis of Aß plaque through 

microglia 97,98. It is important to note that pathological changes of LC neurons have been 

observed as an early sign of AD 100. 

The LC receives sensory inputs from different sources, including the trigeminal nucleus 101. 

The trigeminal sensory inputs originate in, among other structures, the periodontal fibers 102,103 

and in the proprioceptive jaw muscle spindles, whose function will depend on the type of 
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activity, i.e., the type of diet or occlusal stimulation 101. The alteration in the activity of the 

masseter muscles caused by a malocclusion generates an alteration in the ascending trigeminal 

sensorimotor information. This causes an asymmetry in the LC excitability and a change in 

cognitive performance 104,105. Unilateral or bilateral tooth loss without occlusal rehabilitation 

leads to a malocclusive situation. This problem also generates structural changes in the chewing 

muscles. The loss of unilateral function due to a right-left edentulism generates a masseter 

atrophy of the edentulous side accompanying the absence of teeth 106,107. The rehabilitation of 

the lost occlusal function allows masticatory performance recovery and the function of the 

musculature on that side 108. However, we must keep in mind that the adjustment of removable 

prosthesis does not always allow a complete recovery of occlusal functionality. In contrast, 

fixed prosthetic rehabilitation better preserves the physiology of the mandibular muscles 109. 

However, a specific comparison of both denture types has not been analyzed. 

Chewing ability and direct activation of brain areas 

Chewing also involves the activation of numerous brain areas that intervene in the initiation 

and perpetuation of masticatory movements. Functional magnetic resonance imaging (fMRI) 

studies show that chewing produces significant bilateral functional connections between motor 

cortices 110. They also embrace motor, premotor and somatosensory cortices and supplementary 

motor areas (SMA). In addition, motor cortical seeds show bilateral functional connections with 

the posterior cerebellar lobes, precuneus, cuneus and cingulate cortex. Both cerebellar 

hemispheres show functional connectivity paths with each other. 

Other masticatory tasks, including uni- or bi-lateral chewing of gum, show activity in several 

areas of the brain, including the right prefrontal cortex, left insula, thalamus, bilateral anterior 

cerebellar hemispheres, vermis, SMA, medial cingulate gyrus, primary motor (M1) and 

premotor cortices, and bilateral primary (S1) and secondary (S2) cortices 111. Interestingly, 
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these authors found no differences in the activation of brain areas when they compare unilateral 

chewing and bilateral occlusion, considering that all subjects were evaluated fully dentated. 

To clarify this aspect, the activation of brain areas in subjects with bilateral absence of molars 

(Kennedy class I) has also been investigated 112. Two different situations were analyzed within 

the same 11 patients: FDA (full dental arch, with the removable prosthesis, and, therefore, total 

dentition) and SDA (shortened dental arch, with edentulous posterior sections, Kennedy class 

I, without the partial prosthetic rehabilitation). Statistically significant differences in the 

activation of different areas of the brain occurred in both situations during mastication. Chewing 

gum with FDA generated activation in the middle frontal gyrus, primary sensorimotor cortex 

extending to the pre-central gyrus, SMA, putamen, insula and cerebellum. However, during 

gum chewing with the SDA the activation of the middle frontal gyrus was not observed. 

In summary, some areas of the brain, characteristically altered in cognitive ageing, are also 

involved in the chewing processes, particularly the posterior cingulate gyrus, fusiform gyrus, 

cuneus, primary motor, somatosensory cortices, precuneus and caudate nucleus as well as the 

hippocampus, amygdala, temporal fusiform cortex, planum plare, cingulate gyrus, lateral 

ventricle, precuneous cortex, superior temporal gyrus, post central gyrus and central opercular 

cortex (Figure 4). Thus, if cognitive impairment and chewing share target brain regions, it 

would seem clear that alterations in mastication or occlusion may also have some role in 

cognitive decline by reducing the activity of those areas. 

INTEGRATIVE REMARKS 

This review offers a broad overview of the highly complex interaction between oral health and 

cognitive function that has only been partially analyzed. We have evaluated the direct effects 

that oral health and mastication may have on cognitive health. 
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As a general summary (Figure 5), chronic low-level systemic inflammation classically made 

responsible for this association has recently been considered with caution. The absence of teeth 

or proper occlusal rehabilitation that could lead to reduced chewing abilities is being 

investigated with great interest. Reduced mastication generates a reduction in specific 

mediators released from masticatory muscles that are associated with neuronal activities and 

amyloid plaque removal in the hippocampus. Furthermore, trigeminal inputs as a consequence 

of masticatory function are also able to activate neurons in the Locus Coeruleus, which are 

implicated in regulating neuroinflammation and neurotrophic support. Finally, during 

mastication, the areas that get activated receive more blood flow. Some of these areas are also 

commonly affected in cognitive deterioration. Thus, it seems logical to think that if those areas 

are properly stimulated and receive adequate blood supply by masticatory functions, they would 

be less prone to deteriorate, and, so, less prone to induce cognitive decline. 

It is important to remember that because of the complexity of the association and the long period 

between cause and effect, results that link proper masticatory function to better cognitive health 

are difficult to be achieved. Other indirect connections must also be accounted for, from 

considering mastication as the first step of digestion to, of course, reduced stress and better 

social interactions, which are also important in cognitive maintenance and brain function. Thus, 

all the components of the masticatory system must work together to maintain cognitive 

function. 

CONCLUSION 

The current review summarizes the available evidence suggesting that the association between 

oral and cognitive health involves much more than a single interaction. We are not only 

referring to oral health as the absence of inflammation or trying to restore teeth once they are 

lost from an esthetic or social perspective; we are proposing a completely new tool: adequately 

restoring functional mastication to prevent cognitive decline.  
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FIGURE LEGENDS 

Figure 1. Graphical summary of the alterations that occur in memory and learning functions in 

animal models due to an occlusal dysfunction with the deprivation by soft diet. 

 

  

�����
���

��
	����������

����� 


��

����������

���	 �����
����� 
���������

���
���

�� ��

���
���
���������

����� 
��� 
���
���
���
���
��������
�����
��������
�������������
���
�����

����� 
��� 
���
���
���
���
��������
�����
��������
��
�
���
���������������

���	 �����
�����������
�����������

���������
��� �����

���������������������������������������



Page 29 of 32 

Figure 2. Graphical summary of the interaction between the occlusal condition and the 

alteration of structures such as the hippocampus through the chronic stress generated by an 

experimental occlusal alteration in the animal model. 
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Figure 3. Periodontopathogens generate neuroinflammation through an increase in the levels 

of local and systemic inflammation that results in neurodegeneration and cognitive decline by 

an increase in the accumulation of Aß and P-Tau. 
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Figure 4. Overlapping of the brain areas involved in chewing processes (blue) or sensible to 

cognitive ageing effects (red). Violet indicates common areas to both processes. 
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Figure 5. Graphical summary of the different pathways by which the occlusal function 

influences cognitive performance and AD pathogenesis. 
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