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Abstract

Breast cancer (BC) is one of the most diagnosed cancers in women. Based on histological characteristics, they are classified
as non-invasive, or in situ (tumors located within the milk ducts or milk lobules) and invasive. BC may develop from in situ
carcinomas over time. Determining prognosis and predicting response to treatment are essential tools to manage this disease
and reduce its incidence and mortality, as well as to promote personalized therapy for patients. However, over half of the cases
are not associated with known risk factors. In addition, some patients develop resistance to treatment and relapse. Therefore,
it is necessary to identify new biomarkers and treatment strategies that improve existing therapies. In this regard, the role of
the microbiome is being researched as it could play a role in carcinogenesis and the efficacy of BC therapies. This review
aims to describe specific microbiome patterns associated with BC. For this, a literature search was carried out in PubMed
database using the MeSH terms “Breast Neoplasms” and “Gastrointestinal Microbiome”, including 29 publications. Most
of the studies have focused on characterizing the gut or breast tissue microbiome of the patients. Likewise, studies in animal
models and in vitro that investigated the impact of gut microbiota (GM) on BC treatments and the effects of the microbiome
on tumor cells were included. Based on the results of the included articles, BC could be associated with an imbalance in
the GM. This imbalance varied depending on molecular type, stage and grade of cancer, menopause, menarche, body mass
index, and physical activity. However, a specific microbial profile could not be identified as a biomarker. On the other hand,
some studies suggest that the GM may influence the efficacy of BC therapies. In addition, some microorganisms and bacte-
rial metabolites could improve the effects of therapies or influence tumor development.
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PAMP Pathogen-associated molecular pattern

PD-1 Programmed cell death receptor 1

PD-L1 Programmed cell death ligand 1

PD-L2 Programmed cell death ligand 2

PRR Pattern recognition receptors

gPCR Quantitative polymerase chain reaction

ER Estrogen receptor

PR Progesterone receptor

RT-gPCR Real-time quantitative polymerase chain
reaction

slgA Immunoglobulin A secretory

TGF-B Transforming growth factor beta

TLR Toll-like receptor

TNF-a Tumor necrosis factor alpha

Background

Breast cancer (BC) is one of the most frequently diagnosed
tumors in women worldwide. Its incidence has increased in
recent decades. Although advances in diagnosis and treat-
ment have improved survival rate, it remains one of the lead-
ing causes of cancer death in women [1].

BC is a multifactorial disease whose development
involves genetic and environmental components that con-
tribute to the complexity of its treatment and management.
A wide variety of risk factors associated with BC have been
identified: genetic, such as BRCA1/2 mutations, and envi-
ronmental, such as alcohol intake, smoking, breast tissue

Table 1 BC classification and main characteristics

density, sedentary lifestyle and obesity. However, the main
risk factor is hormonal exposure throughout life, including
physiological changes associated with puberty, menarche,
pregnancy, menopause, hormonal contraceptives and hor-
mone replacement therapy. In this context, the risk of BC is
directly related to elevated levels of endogenous estrogens
and differences in estrogen metabolism, especially in post-
menopausal women [2, 3].

Several classifications have been developed to group BC.
Based on histological characteristics, there are non-invasive
(or in situ) and invasive BC. While non-invasive BC is
referred to tumors contained in the milk ducts or lobules
(such as ductal or lobular carcinoma in situ), invasive BC
means that cancer has spread into the surrounding tissues or
other body areas. In this case, BC can be ductal carcinoma
no special type, or lobular carcinoma. Over time, in situ car-
cinomas may become invasive BC [4]. Invasive BC can be
divided into different subtypes based on the expression of
biomarkers, such as estrogen receptor (ER), progesterone
receptor (PR), human epidermal growth factor receptor 2
(HER2) and Ki67 antigen [2, 5, 6]. Perou and Sorlier [7]
classify BC into four subtypes: luminal A and luminal B
(expressing ER), HER2-enriched and basal-like. However,
clinical practice uses a surrogate classification based on his-
tological and molecular characteristics (Table 1). The pro-
gression of BC is divided into four stages based on the TNM
system (classification of malignant tumors), which considers
the size of the primary tumor (T), lymph node involvement
(N) and metastasis (M). Similarly, tumor differentiation,

Intrinsic subtypes Surrogate intrinsic subtypes Biomarkers Frequency Therapy Prognosis
Luminal A Luminal A-like ER (+) 30-70% Endocrine therapy Good
PR (+) Chemotherapy
HER?2 (-)
Ki67 (])
Luminal B Luminal B-like HER2- ER (+) 15-20% Endocrine therapy Intermediate
PR (+) Chemotherapy
HER2 (-) Targeted therapy
Ki67 (1)
Luminal B-like HER2+ ER (+) Endocrine therapy Intermediate
PR (—/+) Chemotherapy
HER2 (+) Targeted therapy
Ki67 (/1)
HER2-enriched HER2-enriched (non-luminal) ER (-) 10-15% Targeted therapy Intermediate
PR (-) Chemotherapy
HER2 (+)
Ki67 (1)
Basal-like TNBC ER (-) 10-20% Chemotherapy Poor
PR (-) PARP inhibitors
HER?2 (-)
Ki67 (1)

ER estrogen receptor, PR progesterone receptor, HER2 human epidermal growth factor receptor 2, TNBC triple-negative breast cancer, PARP
poly(ADP ribose) polymerase 1 means high expression and | means low expression

@ Springer



Clinical and Translational Oncology

percentage of tubular formation, nuclear pleomorphism and
mitotic activity establish the grade of the disease. Staging
system, grade assessment and analysis of biomarkers have
prognostic and predictive value in BC [2, 5]. Table 1 sum-
marizes BC classifications and their main characteristics [4,
9].

The diagnosis of BC is based on the triad of clinical
assessment, imaging test and biopsy. The classic imag-
ing test is mammography although it has low sensitivity
(25-59%) in young women with dense breasts. In all cases,
the diagnosis is confirmed by biopsy [4, 8].

Treatment of BC is based on four main strategies: sur-
gery, radiotherapy, systemic therapy and immunotherapy.
Radiotherapy can be used as adjuvant or palliative therapy.
Systemic therapy is administered as adjuvant or neoadjuvant
and includes chemotherapy, endocrine hormone therapy and
biological or targeted therapy [2]. The choice of systemic
therapy largely depends on the molecular subtype, stage and
grade of BC (Table 1).

Early detection, determination of prognosis and predic-
tion of response to treatment are essential tools for man-
aging BC and reducing its incidence and mortality in the
population, as well as promoting personalized therapy for
patients [9]. Moreover, more than half of BC cases are not
related to any known risk factor [10]. Thereby, research into
new biomarkers for diagnostic, prognostic and predictive
value has emerged in recent years. In addition, the severity
of side effects caused by the existing treatments, and the
development of resistance and relapse, highlights the need
to develop new therapeutic agents or strategies that improve
treatment efficacy.

Human microbiome

The human body harbors trillions of commensals, symbi-
otic and pathogenic microorganisms (including bacteria,
archaea, viruses, fungi, and protozoa) that comprise the
human microbiota. Although this term is commonly used
as a synonym for microbiome, the latter encompasses the
taxonomy and abundance of microorganisms present in a
particular environment (microbiota), their genetic material
and their metabolites [11]. The microbiome is a dynamic
ecosystem that develops upon birth under the influence of
maternal microbiota and environment and varies throughout
life, both between and within individuals. The microbiota
colonizes different habitats within the human body (gut,
oral cavity, vagina, skin, etc.) and its structure widely dif-
fers depending on the niche it occupies [3]. Breast tissue
hosts a community of bacteria that contributes to maintain-
ing healthy breast tissue by stimulating resident immune
cells. In the female mammary gland, milk has been shown
to contain bacterial species, ostensibly reaching the ducts

from the skin. The phylum with the highest abundance in
breast tissue was Proteobacteria [12].

The perfect balance in this complex community is known
as eubiosis. Alteration or imbalance in the composition of
the microbiota (dysbiosis) can trigger harmful effects on
human health, leading to a variety of pathological condi-
tions, such as inflammatory bowel disease, diabetes, autoim-
mune diseases and even some types of cancer [13].

Gut microbiota (GM) is the most widely studied and best
characterized in the human body. The main phyla compris-
ing it are Firmicutes, Bacteroidetes, Actinobacteria, Pro-
teobacteria and Verrucomicrobia. Its distribution varies
throughout the gastrointestinal tract depending on the envi-
ronment [14]. GM composition is defined by various internal
and external factors, such as age, race, diet, stress, maternal
colonization, host genetics and exposure to antibiotics and
xenobiotics [3].

In eubiosis, GM contributes to maintaining the body’s
homeostasis and exerts a wide set of beneficial effects
on human health. First, GM maintains the intestinal bar-
rier function by strengthening the tight junctions between
intestinal epithelial cells and stimulating mucus production.
In addition, it stimulates the secretion of immunoglobulin
A (sIgA) by the immune cells in the intestine. Second, it
competes with pathogenic microorganisms for attachment
to the intestinal mucosa (competitive exclusion) or directly
prevents attachment of pathogens to the intestinal mucosa.
Third, GM produces a wide variety of molecules with
diverse biological activities, including short-chain fatty acids
(SCFAs), such as acetate, propionate and butyrate, which act
as an energy source for intestinal epithelial cells; vitamins,
such as K, cobalamin, biotin and folic acid; hormones, such
as catecholamines; and neurotransmitters, such as acetyl-
choline, serotonin, and dopamine. Additionally, some com-
mensal microorganisms produce peptides with antimicro-
bial activity (bacteriocins such as lactin) and compounds
with antifungal activity (such as benzoic acid). Finally, it
modulates the immune system by interacting with antigen-
presenting cells (such as dendritic cells) or by interacting
with the toll-like receptor (TLR) signaling cascade, among
other mechanisms. This pathway allows commensal micro-
biota to trigger a T cell-mediated immune response against
cancer cells [15].

Microbiota and breast cancer

The role of microbiota in carcinogenesis

Only a percentage of women with genetic predisposition
or exposure to known environmental risk factors develop

BC, and more than half of cases are unrelated to known risk
factors [10]. In this context, the growing evidence for the
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dual role of the human microbiome in human health and
disease has prompted the investigation of the gut and breast
microbiome in BC, hypothesizing that dysbiosis could be an
additional risk factor.

Alterations in the structure of GM and the functions
exerted by the microorganisms can affect the development
and progression of BC through various mechanisms. Some
bacteria are capable of directly inducing carcinogenesis.
In this regard, Helicobacter pylori is considered the only
direct carcinogenic bacterium in humans and is responsible
for gastric adenocarcinomas. However, the potential of other
bacteria (“oncomomicrobes”) to induce cancer via geno-
toxic-mediated mutagenesis through toxins and virulence
factors has also been unraveled [14]. Regarding BC, Parida
et al. [16] reported that intestinal colonization by entero-
toxigenic Bacteroides fragilis, which secretes the B. fragilis
toxin, affects epithelial hyperplasia in the mammary gland.
Furthermore, in vitro treatment of MCF-7 cells with this
toxin before cell injection into mice significantly increases
the rate of tumor growth and metastasis.

As mentioned above, hormone exposure is one of the
major factors associated with BC development, especially
in postmenopausal women. In this context, the estrobo-
lome is particularly important, which refers to the set of
microbial genes whose products are involved in estrogen
metabolism, such as the enzymes glucuronidases, glucosi-
dases and dehydrogenases [16]. Therefore, alterations in
the microbiota/estrobolome can lead to elevated levels of
circulating estrogens and their metabolites, increasing the

Conjugated
estrogens

EXCRETION

risk of BC. Estrogen metabolism occurs in the liver, where
are conjugated and excreted into the gastrointestinal lumen
through the bile. There, a fraction is deconjugated by the
action of bacterial f-glucuronidase and finally reabsorbed as
free estrogens through the enterohepatic circulation, being
distributed to organs such as the breast (Fig. 1). Addition-
ally, estrogen-like metabolites that could have carcinogenic
potential can be produced in the intestine. Moreover, bacte-
rial p-glucuronidases could be involved in the deconjugation
of xenobiotics and/or xenoestrogens, leading to their reup-
take through the enterohepatic pathway, thereby increasing
their half-life and availability in the organism. Bacteria with
B-glucuronidase enzymes are found in two dominant sub-
groups, the Clostridium leptum cluster and the C. coccoides
cluster, which belong to phylum Firmicutes. Moreover, the
Escherichia/Shigella bacterial group, member of the phylum
Proteobacteria, also possesses B-glucuronidases [3, 10, 15].

The immune system plays a key role preventing car-
cinogenesis and activation of the immune system has been
observed upon treatment, especially in HER2+ and triple-
negative BC [17, 18]. On the one hand, CD8+ T cells can
directly kill cancer cells and their presence is associated
with better prognosis. However, FOXP3+ CD4+ regula-
tory T cells mediate immunotolerance and correlate with
poor prognosis. In BC, the proportion of regulatory T
cells (Treg) increases with the disease stage and is asso-
ciated with relapse and decreased survival. Due to the
immunomodulatory capacity of the microbiota, changes
in the abundance of specific bacteria could likely lead to
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Fig. 1 Enterohepatic metabolism of estrogens and the impact of the estrobolome
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increased production of Treg cells (Fig. 2). Furthermore,
in animal models, some bacterial metabolites, such as
butyrate and propionate, reduce inflammation via altering
colonic regulatory T cells [10, 19]. Therefore, the micro-
biota and its metabolites can modulate the local immune
microenvironment.

Microbiota can contribute to the development of BC by
inducing a state of chronic inflammation. When the integrity
of the intestinal barrier is lost, gut bacteria can upregulate
TLRs and activate the nuclear factor-kB (NF-kB) pathway,
which regulates inflammation and has been implicated in
cancer. Pathogen-associated molecular patterns (PAMPs) are
recognized by innate immune cells through pattern recogni-
tion receptors (PRRs), such as TLRs and NOD-like recep-
tors (NLRs). These PAMPs are essential components of
pathogens, such as lipopolysaccharide, flagellin, lipoteichoic
acid and peptidoglycans. When TLRs recognize PAMPs,
they activate the production of proinflammatory cytokines.
Chronic TLR activation promotes tumor cell proliferation
and enhances the mechanisms of invasion and metastasis
through the regulation of cytokines, metalloproteinases and
pro-inflammatory integrins [10, 20]. Consequently, chronic
inflammation affects both the initiation and the progres-
sion of BC due to the constant presence of inflammatory
cytokines and the recruitment of immune system cells, such
as Tregs, which, as mentioned above, decrease the immune
response promoting immune evasion by the tumor (Fig. 2).

Tumor cell
proliferation

Loss of intestinal barrier , °
integrity - T
. ™
1 permeability and ole ©°o
bacterial entry ’
,' Bacteria
Y pampP
T TLR
Treg cell

Furthermore, changes in epigenetic marks and dietary
patterns also affect microbiota composition and influence
carcinogenesis. Modifications of epigenetic marks, such as
those inducing the inactivation of tumor suppressor genes,
are observed in patients with BC. In this line, the gut micro-
biome can contribute to this dysregulation through several
mechanisms. Specific bacterial metabolites, such as SCFAs
(butyrate and propionate), folates and biotins, can epigeneti-
cally modify gene expression. Similarly, microbiota synthe-
sizes enzymes that induce epigenetic changes and contribute
to the absorption of minerals that act as cofactors for these
enzymes. In addition, the content and quality of the diet is
particularly related to BC and is an important modulator
of the diversity and structure of the microbiota [10]. Data
from two large cohort studies showed that consuming more
polyunsaturated and vegetable fats was linked to a decreased
risk of hepatocarcinoma. This was related to the replacement
of animal or dairy fats with vegetable fats or replacing satu-
rated fats with monounsaturated or polyunsaturated fats [21].

The role of microbiota in breast cancer therapeutic
approaches

Treatments against BC, such as radiotherapy, systemic ther-
apy or immunotherapy, can alter the microbiota of patients,
which, in turn, may affect the efficacy and side effects of
treatments. On the other hand, GM can modulate cancer
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Fig.2 Potential mechanisms by which microbiota modulates tumor microenvironment and favors the development of BC
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progression through the synthesis of antitumor compounds
and the regulation of immune response and inflammatory
pathways of the host [15]. Thus, the combination of these
mechanisms may explain the impact of the microbiota on the
efficacy of different cancer therapies.

Indeed, it is known that GM can participate in the metab-
olism of a wide range of drugs used in chemotherapy, thus
modulating the response to treatment. For example, gemcit-
abine is a pyrimidine antagonist whose antitumor activity
is based on its intracellular activation and subsequent deg-
radation to an inactive compound by the enzyme cytidine
deaminase. Studies in mice has shown that resistance to
gemcitabine may be due to increased metabolic degrada-
tion of the drug due to the expression of an isoform of the
bacterial enzyme cytidine deaminase, observed mainly in
the Gammaproteobacteria class. Hence, the combination of
gemcitabine with ciprofloxacin favors the antitumor activity
of the drug; this synergism is caused by the bacterial inhibi-
tion exerted by the antibiotic. Furthermore, 5-fluorouracil
is a thymidylate synthase inhibitor whose therapeutic use is
limited due to the development of resistance and its gastro-
intestinal side effects. Preclinical trials in mice have shown
that administration of 5-fluorouracil in combination with a
cocktail of antibiotics decreases antitumor efficacy, while
supplementation with probiotics significantly enhances anti-
cancer effects [15].

Endocrine hormone therapy is used against hormone
receptor-positive BC and it target the ER directly or the
estrogen synthesis. The main types of endocrine therapy are
selective ER modulators, selective modulators ER degraders,
and aromatase inhibitors (AI) [22]. Nevertheless, there are
few works addressing the role of GM in hormone therapies.
In this regard, Lasagna et al. [23] carried out a monocenter
observational case—control study in which they discovered
that postmenopausal BC women who respond to Al had dif-
ferent fecal microbiota abundance than those resistant to Al
therapy. In particular, Veillonella genus were enriched in
the GM of patients resistant to AI. Although its implication
in BC remains undetermined, the presence of Veillonella
species in the GM of patients treated with CAR T cells have
been associated with poor prognosis [24].

Immunotherapy is based on the use of immune check-
point inhibitors (ICIs), molecules that block specific
immune regulatory pathways to enhance the antitumor
immune response. ICIs are monoclonal antibodies that
target receptor molecules on the surface of T cells, such as
cytotoxic T cell antigen 4 (CTLA-4) and the programmed
cell death 1 (PD-1) receptor or PD-1 ligands (PD-L1 and
PD-L2). By dysregulating the immune system, these mol-
ecules cause a wide range of side effects. Moreover, some
patients do not benefit from treatment (primary resistance)
or show no improvement in disease progression (secondary
resistance). Furthermore, there is evidence that in some
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cases ICIs can favor tumor development. Consequently,
studies have been carried out to identify predictive factors
of the efficacy of these treatments, as well as strategies to
overcome treatment resistance. Some of them have shown
that the GM composition modulates the activity, efficacy
and toxicity of ICIs. For example, anti-PD-L1 antibody
shows more efficacy for the treatment of melanoma in mice
when GM is enriched in Bifidobacterium species. Oral
administration to patients of a bacterial cocktail of these
species together with the anti-PD-L1 antibody specifi-
cally increases the T cell response and blocks the growth
of melanoma, whereas if the treatment is combined with
antibiotics, the survival rate is reduced [15].

Probiotics, prebiotics and breast cancer

Probiotics are defined as “strictly selected live strains
of microorganisms that, when administered in adequate
amounts, confer beneficial effects on the health of the
host” [25]. Many studies have been carried out in mouse
models to investigate the effects of probiotics on BC. Most
studies are based on the administration of strains of the
genus Lactobacillus, such as L. helveticus R389, L. aci-
dophilus and L. reuteria, and their ability to prevent and
control cancer progression is related to the modulation
of the host immune system. However, clinical studies of
probiotics in BC patients are very limited [10].

A prebiotic is defined as “a substrate that is selectively
utilized by host microorganisms conferring a health ben-
efit” [25]. They are mainly indigestible dietary fiber com-
pounds that, when combined with harmful and carcino-
genic substances in the intestine, promote their breakdown
and the growth of probiotics, inhibiting the proliferation
of pathogenic bacteria and the production of carcinogens.
The effect of different prebiotics has been investigated in
the context of BC, such as plant-based lignans, SCFAs or
polyphenols. GM transforms plant-based lignans (present
in soybeans, flax and sesame seeds, etc.) into phytoestro-
gens, estrogen-like compounds. Phytoestrogens act against
BC at concentrations above 10 uM by inhibiting the syn-
thesis and metabolism of estrogens and inducing antian-
giogenic, antimetastatic and epigenetic effects. SCFAs
produced by bacterial fermentation of dietary fiber also
have anticancer effects, especially butyrate. Butyrate can
reduce the viability of MCF-7 tumor cells. Finally, dietary
polyphenols are bio transformed by GM into derivatives
with increased bioavailability. In addition, dietary poly-
phenols can modulate the composition of the gut micro-
bial community, inhibiting the proliferation of pathogenic
bacteria and stimulating the activity and proliferation of
beneficial bacterial species [10].
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Rationale and hypotheses

There is an increasing number of studies characterizing the
GM of BC patients and healthy women to describe specific
microbial signatures of BC. Broadly, most studies define
the microbiota based on three characteristics: (1) alpha
(o) diversity, which refers to the diversity within a com-
munity of microorganisms and includes parameters, such
as richness and uniformity; (2) beta () diversity, which
refers to the differences between communities; and (3) tax-
onomic composition (measured in operational taxonomic
units, OTUs), which reports on the abundance (absolute
or relative) of specific members of the community [13].
Recently, recent studies have also analyzed breast micro-
biota composition.

Objective

Considering all of the above information, the general aim
of this review is to describe specific microbiome patterns
that could be associated with BC. The specific aims of the
review are (1) to describe the differences between the GM
of women with BC and healthy controls, (2) to define pos-
sible microbial profiles that could be used as non-invasive
biomarkers of BC, (3) to provide insight into the influ-
ence of the GM profile in the treatment of BC and (4) to
investigate the potential application of microorganisms as
probiotics.

Materials and methods
Search strategy

A literature search has been carried out using the Pub-
Med database. To use appropriate English vocabulary and
terminology, the following MeSH terms from the MeSH
medical database were used: “Breast Neoplasms™ and
“Gastrointestinal Microbiome”. To optimize and refine the
search, the above terms were combined with the Boolean
operator “AND” to return all results containing the speci-
fied terms.

Inclusion criteria

The following eligibility criteria were applied to the lit-
erature search: (1) articles published between 2016 and
2022 to accomplish an updated literature review, (2)

documents with full text available, and (3) articles pub-
lished in English.

Study selection and information collection

The literature search using the mentioned MeSH terms
combined with the Boolean operator “AND” provided an
initial result of 75 publications (Fig. 3). Application of the
aforementioned inclusion criteria reduced the search to 71
articles. The selection of publications that met the inclu-
sion criteria was carried out by two independent research-
ers by reviewing the title and abstract, to discard those
articles that did not contain relevant information to achieve
the proposed objectives. Thus, 15 articles were discarded.
To ensure that only publications that provided information
of interest were included, an exhaustive reading of full-text
selected articles was carried out. This assessment allowed
us to finally include 29 publications.

Results and discussion

A large proportion of the articles selected have in common
the aim of characterizing the gut microbiome or breast tis-
sue of BC patients. The selected studies analyze patients
with different molecular types, stages, and grade of can-
cer, as well as specific groups of patients: premenopausal,
postmenopausal, overweight, or obese, undergoing chemo-
therapy, with benign breast lesions, with non-malignant
breast disease or with benign breast disease [26—42]. We
also include a group of studies in animal models [26, 36,
43-52] and cell cultures [28, 33, 40, 53, 54] that focused
on the impact of the GM on various treatments against
BC, as well as on determining the effect of the GM or its
metabolites on tumor cells.

Nowadays, the two most extensively used metagenome
sequencing strategies are shotgun and the 16S rRNA.
Both are being used to catalog the human microbiome in
health and disease and to study microbial communities
of medical, pharmaceutical, or biotechnological relevance
[55]. However, it is noteworthy that we have not found
any works using full-length sequencing. This technique is
performed to determine the complete sequence of the pro-
tein-coding as well as the non-coding parts of the mRNA
which allows us to reach species and regions to genus [56].

For instance, a comparative analysis by Durazzi
et al. [57] showed that the use of 16S rRNA technique
sequenced partly the GM community detected by shotgun
and that genera detected by shotgun sequencing are bio-
logically meaningful even when less abundant.
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Records identified in the
PubMed search engine
n=75

Records excluded n=4

Publication date otherthan the period 2016-2022 (n=2)

Records screened by
title/abstract
n=71

Full-text articles assessed for
eligibility
n=56

Studiesincludedin
bibliographicalreview
n=29

Fig.3 Flowchart of the literature selection process

All the included studies, their main characteristics and
findings are summarized in Tables 2, 3 and 4.

Human studies

In human studies (Table 2), BC patients and controls were
in all cases matched or similar in terms of age, body mass
index (BMI), age at menarche and cancer grade and stage.
Characterization of the microbiota in human trials was per-
formed mainly from stool samples [26—40] although in some
cases breast tissue was analyzed [41, 42]. Microorganisms
were identified by sequencing regions of the 16S rRNA
(ribosomal ribonucleic acid) gene [26-28, 30, 31, 33—40] or
by shotgun metagenomic sequencing [32, 36]. Specifically,
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Full-text notaccessible (n=1)
Language other than English (n=1)

Records discarded forunrelated
content
n=15

Full-text articles excluded n=27
Non-relevantinformation (n=2)
Meta-analysis (n=1)
Review articles (n=20)
Special report(n=1)
Ongoing study (n=1)
Comment(n=1)
Hypothesis (n=1)

the 16S rRNA gene regions sequenced were V3-V4 [26-28,
30, 33, 34, 38], V4-V6 [42] or V4 [31, 35, 37, 39].

Studies characterizing GM mainly found that the micro-
bial composition of BC patients differs from that of healthy
controls [27, 28, 31-35, 37-39]. Therefore, GM dysbiosis
should be associated with BC (Table 2). However, GM is not
the only one that seems to play a role in this disease. Lately,
the importance of the breast microbiota in BC is being inves-
tigated and, analogously to GM, studies performed on breast
tissue samples found differences in the microbial composi-
tion in tumor tissue compared to adjacent healthy tissue [42]
(Table 2). These findings are consistent with other studies
[58—61] and a recent meta-analysis [62]. Moreover, GM can
also be related to other breast lesions and its composition
may differ from BC (Table 2). In this regard, the GM of
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patients with benign breast lesions and non-malignant breast
disease was different from controls [38, 39]. In addition,
the composition also varied between patients with BC and
patients with benign breast lesions [38] or benign breast dis-
ease [40]. However, no differences were observed between
patients with BC and non-malignant breast disease [39].
Measurement of a- and B-diversity showed controversial
results (Table 2). Several studies found lower a-diversity
in the GM of BC patients compared to controls [27, 31,
34, 38, 39], while others found increased a-diversity [28,
32] or no significant differences [33-35, 37]. a-Diversity
was also lower in tumor tissue compared to adjacent healthy
tissue [42], in patients with benign breast lesions and non-
malignant breast disease compared to controls [38, 39] and
in BC patients compared to patients with benign breast dis-
ease [40]. A decrease in GM diversity has been associated
with a variety of pathological conditions, such as obesity,
inflammatory bowel disease and autism [63, 64], and it has
also been found in several types of cancer, such as colorec-
tal cancer [65, 66]. Regarding p-diversity, changes in GM
fB-diversity allowed discrimination between BC patients and
controls [32, 34, 35, 38, 39], patients with benign breast
lesions, non-malignant breast disease and controls [38, 39],
and even between BC patients and patients with benign
breast lesions [38]. Nevertheless, Bilenduke et al. [37] and
Bobin-Dubigeon et al. [27] found no significant differences
in the B-diversity of the microbiota of patients when com-
pared to controls. In the same line, Byrd et al. [39] did not
find significant differences between BC patients and those
with non-malignant breast disease and Esposito et al. [42]
were unable to discriminate between tumor and adjacent
healthy tissue based on microbiota p-diversity.
Contradictory data increase when comparing the results
obtained in the studies that analyze the GM of specific
patients (Table 2). In this regard, it should be noted that
menopausal status is an important factor to take into account
in BC since the disease is more aggressive and has a worse
prognosis in premenopausal patients [67] and the risk of
BC is increased in postmenopausal women because of the
accumulation of endogenous estrogens. When investigating
the GM of premenopausal women with BC, J. Zhu et al.
[32] found no significant differences between the microbial
species of patients compared to controls. However, Hou
et al. [34] and He et al. [33] demonstrated the existence of
dysbiosis in premenopausal patients although the GM imbal-
ance was different in their population samples. Hou et al.
[34] described an enrichment of Anaerostipes and Bacte-
roides fragilis and a reduction of Bifidobacterium longum,
B. bifidum and B. adolescentis in the GM of patients. He
et al. [33] observed an increased Firmicutes/Bacteroidetes
ratio, as well as higher abundance of Allisonella, Megas-
phaera, Pediococcus, Abiotrophia, Granulicatella, Clostrid-
ium_sensu_stricto, Serratia, Enhydrobacter, Fusobacterium

@ Springer

and Slackia genus, and lower abundance of Clostridium_IV,
Eubacterium, Terrisporobacter, Turicibacter, Intestinibacter,
Butyricicoccus, Romboutsia, Providencia, Desulfovellario
and Desulfovibrio. Dysbiosis clearly characterized BC dur-
ing postmenopause [31, 32, 34]. In spite of this, patients’
GM composition was highly variable. For instance, J. Zhu
et al. [32] found significant differences in the relative abun-
dance of 45 species, including increases in Escherichia
coli, Klebsiella sp_1_1_55, Prevotella amnii, Enterococcus
gallinarum, Actinomyces sp. HPA0247, Shewanella putre-
faciens, Erwinia amylovora and Acinetobacter radioresist-
ens and decreases in Eubacterium eligens and Lactobacil-
lus vaginalis. Notably, A. radioresistens and E. gallinarum
were weakly positively correlated with C-reactive protein
expression and S. putrefaciens and E. amylovora correlated
with estradiol levels, whereas Actinomyces sp. HPA0247 was
weakly negatively correlated with the number of T CD3+
and CD8+ cells. Hou et al. [34] observed an enrichment of
Proteobacteria and Klebsiella pneumoniae and a decrease of
Akkermansia muciniphila and Phascolarctobacterium. It is
worth noting that Hou et al. [34] demonstrated the existence
of differences in the GM of premenopausal and postmeno-
pausal patients of BC. Based on this fact, they suggested
that changes in the relative abundance of specific bacterial
species could be used as potential universal BC biomarkers
(high abundance of Sutterella and Haemophilus parainflu-
enzae and low abundance of Faecalibacterium prausnitzii,
Ruminococcus gnavus and Rothia mucilaginosa), premen-
opause-specific BC biomarkers (increased abundance of
Anaerostipes and B. fragilis and decreased abundance of B.
longum, B. bifidum and B. adolescentis) or postmenopause-
specific BC biomarkers (increased abundance of Proteobac-
teria and K. pneumoniae and decreased abundance of A.
muciniphila and Phascolarctobacterium).

Among these potential universal BC biomarkers, Sutte-
rella and H. parainfluenzae are pathogenic bacteria associ-
ated with autism, ulcerative colitis and oropharyngeal cancer
[68-70]; F. prausnitzii is an important producer of SCFAs
and its decrease serves as an indicator of dysbiosis [71],
and decreased abundance of R. gnavus and R. mucilaginosa
has also been found in other cancers [68, 72]. For premeno-
pause-specific BC biomarkers, Anaerostipes has been linked
to endometrial cancer, hepatocellular carcinoma and thyroid
cancer [73-75]; B. fragilis contributes to the development of
colorectal cancer [76]. Furthermore, B. fragilis is a resident
bacterium in breast tissue and is able to colonize the gut
to promote breast tumorigenesis and metastatic progression
[16]. In addition, Bifidobacterium is a well-known probiotic.
Finally, regarding postmenopause-specific BC biomarkers,
Proteobacteria is a phylum enriched in pathogenic bacte-
ria; K. pneumoniae is a pathogen that produces colibactin,
a toxin that promotes the development of colorectal cancer
[77]; the abundance of A. muciniphila is reduced in patients
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with metabolic diseases, such as obesity, diabetes and hyper-
tension [78, 79] and Phascolarctobacterium, can produce
SCFAs and is reduced in many types of cancer [73, 80].

The analysis of GM by He et al. [33] suggested that the
enrichment in Desulfovibrio accompanied by a decrease in
Pediococcus could have diagnostic value for premenopausal
BC. Desulfovibrio genus has been associated with colon-
related tumors [81] and it may contribute to inflammation
and cardio-metabolic risk in BC [82], whereas Pediococ-
cus exerts an anti-inflammatory role in the gut and has anti-
proliferative and anticancer activity on cervical and colon
cancer cells [83, 84]. Moreover, Pediococcus is a genus that
produces SCFAs. These metabolites seem to improve health
status and their intestinal levels have also been reduced in
premenopausal patients [33].

Interestingly, the GM of BC patients varied accord-
ing to BC type, stage and grade, as well as based on other
characteristics, such as BMI, percentage of total body fat,
physical activity or age at menarche [29, 30, 39] (Table 2).
For instance, Wu et al. [30] associated HER2-positive BC,
overweight, obesity, increased total body fat, early menarche
(less than or equal to 11 years) and a sedentary lifestyle
with a decrease in a-diversity of GM and a different com-
position at phylum and genus level in BC patients. HER2-
positive compared to HER2-negative patients were charac-
terized by a decrease in Firmicutes (such as Clostridium,
Blautia, Coprococcus and Ruminococcus) and an increase
in Bacteroidetes. Early menarche compared to late menarche
(greater than or equal to 12 years) was associated with a
lower abundance of Firmicutes and a higher grade or stage
of tumor correlated with enrichment of Clostridium and
Veillonella and decreased abundance of Erysipelotrichae-
cea. Luu et al. [29] observed a similar pattern in overweight
and obese patients. In this case, the GM of patients with
high BMI was characterized by a decrease in Firmicutes,
F. prausnitzii, Blautia sp. and Eggerthella lenta. Notably,
F. prausnitzii exerts anti-inflammatory effects through the
production of butyrate [85]. Thus, since both obesity and
BC are associated with an inflammatory state, a significant
decrease in this species could contribute to the development
of the disease. The study also assessed the differences at
the phylum, genus and species level depending on the stage
and grade of BC. Patients in stage II/III had a higher total
number of Bacteroidetes, Clostridium coccoides cluster, C.
leptum cluster, F. prausnitzii and Blautia sp. compared to
stage O/I. Both Clostridium coccoides cluster and C. leptum
cluster express p-glucuronidases which, as mentioned above,
could contribute to the increase in systemic levels of free
estrogens and favor the development of more severe clinical
stages in patients with hormone-dependent BC. Finally, Luu
et al. [29] found that an increased percentage of Blautia sp.
correlated with a higher tumor grade, so this genus could
be associated with poor prognosis. Based on these results,

the GM profile could be used to define the molecular type,
stage, and grade of BC. In addition, the relationship between
this disease and GM dysbiosis suggests that GM alteration
may be one of the mechanisms by which some risk factors
contribute to the development of BC.

BC treatments, such as chemotherapy, affect the compo-
sition of the microbiome and, in turn, the microbiota may
influence the effects of chemotherapy (Table 2). Terrisse
et al. [36] described an association between GM f-diversity
and tumor stage and grade, axillary node involvement and
neurological side effects of chemotherapy. They also found
different microbial composition and functional pathways
depending on whether the patients had a favorable or unfa-
vorable prognosis. Unfavorable prognosis was associated
with Streptococcus, Lachnospiraceae (Blautia wexlerae),
Veillonella (V. parvula), Bacteroides spp. (B. uniformis),
E. ramosum, Enterobacteriaceae (Klebsiella spp.) and
Clostridiaceae (C. spiroforme, C. asparagiforme, C. boltae);
whereas a favorable prognosis was associated with Eubac-
teriaceae (E. rectale), A. muciniphila, Defulfovibrio piger,
Coprococcus (C. comes, C. catus), Collinsella, B. vulgatus
and Ruminococcaceae. The existence of a different microbial
profile depending on the prognosis of the patients may indi-
cate that the GM can be a predictive factor for the response
to chemotherapy in BC patients. Furthermore, Terrisse et al.
[36] demonstrated that the treatment was able to increase
a-diversity and shift the microbial profile of patients with
an unfavorable prognosis toward a microbial profile associ-
ated with a favorable prognosis. Thus, GM modulation could
be used to promote an effective response to BC therapies.
However, there is a need to determine which chemothera-
peutic agent affect the microbiota and to validate its ability
to inhibit unfavorable bacteria or enhance favorable com-
mensals in future clinical trials. Similarly, Bilenduke et al.
[37] found an association between cognitive impairment
and depression symptoms with differences in the microbial
composition of BC patients treated with chemotherapy. Spe-
cifically, they described a decrease in Odoribacter and an
increase in Clostridium, Eggerthella and Erysipelotrichi. In
this regard, certain drugs used in chemotherapy can con-
tribute to a state of systemic inflammation, but these effects
can also be attributed to various microorganisms. Therefore,
taking into account that chemotherapy is capable of altering
GM, it could potentiate the inflammatory effects of therapies
too. For instance, Odoribacter is a butyrate-producing genus
(anti-inflammatory SCFA), while Erysipelotrichi is associ-
ated with intestinal inflammation and activation of inflam-
matory pathways [86, 87]. Accordingly, Bilenduke et al.
[37] found a large decrease in the abundance of the genus
Akkermancia in BC patients. Low abundance of this genus
is related to pathologies such as irritable bowel syndrome
and is associated with loss of intestinal barrier integrity and
inflammation [88].
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The results obtained when characterizing the composition
of the GM largely differ among the different studies included
(Table 2), as previously described for specific groups of
patients. Q. Zhu et al. [28] assessed GM alterations in
patients compared to controls and observed in patients an
increase in the relative abundance of Rothia, Actinomyces,
Lautropia, Centipeda, Corynebacterium, Anaeroglobus,
Selenomonas, Fretibacterium and Tannerella, whereas a
decrease Subdoligranulum. The abundance of the Actinomy-
ces and Rothia genus has been linked to the development of
some cancers, such as colorectal cancer for Actinomyces [89]
and squamous cell lung carcinoma for Rothia [90]. Moreo-
ver, both Actinomyces and Rothia genus have been nega-
tively associated with levels of L-norvaline, a metabolite
that combined with DOX could counteract carcinogenesis
[91, 92]. Bobin-Dubigeon et al. [27] found that the GM of
patients with early-stage BC was characterized by a rela-
tive enrichment in Firmicutes, Clostridium cluster IV and
cluster XIVa, Blautia, Clostridium XVIII and Lachnospira;
as well as a decreasse in Bacteroidetes, Bifidobacterium
sp., Odoribacter sp., Butyricimonas sp. and Coprococcus
sp. Clostridium cluster IV and Clostridium cluster XIVa
express P-glucuronidases which, as previously mentioned,
are enzymes that contribute to increased serum levels of free
estrogens and, consequently, BC risk. Similarly, Coprococ-
cus sp., Butyricimonas sp. and Odoribacter sp. are SCFA-
producing genera, and their decrease has also been observed
in colorectal cancer [93], non-Hodgkin lymphoma [94] and
colorectal cancer [95], respectively. Bobin-Dubigeon et al.
[27] also found a decrease in Bifidobacterium sp. (a genus
that typically includes probiotic microorganisms related to
the maintenance of human health status) in patients. The
analysis of obese and overweight patients by Smith et al.
[35] revealed higher levels of the genus Allobaculum and
lower levels of Lysobacter in the GM of patients, while
Agrobacterium was the predominant genus in the GM of
controls. Saud Hussein et al. [41] compared the composition
of the breast microbiota and observed growth of E. coli and
Staphylococcus aureus in the breast tissue of BC patients
but were unable to detect growth in samples from women
with benign breast lesions. Nevertheless, Esposito et al. [42]
detected an increased abundance of Proteobacteria and Fir-
micutes and a decrease in Actinobacteria (especially Propi-
onibacterium acnes) in tumor breast tissue. These results are
in agreement with the study by Thompson et al. [96]. Pro-
pionibacterium acnes is an opportunistic pathogen whose
role in human health has not yet been established. Some
authors support its antitumor effect in BC [97], while others
suggest that it is involved in implant-associated infections
[98]. Unlike the tumor tissue, Propionibacterium and Pseu-
domonas predominated in healthy adjacent tissue [42].

Finally, regarding other breast lesions (Table 2), Z. Ma
et al. [38] investigated the composition of the GM in patients
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with BC and benign breast lesions. The authors established
the increase of Porphyromonas, Prevotella, Peptoniphilus
and Megamonas as an indicator of BC and the increase of
Escherichia, Lactobacillus and Coprobacillus levels were
associated with benign breast lesions. Porphyromonas and
Prevotella have also been identified as potential biomark-
ers of postmenopausal BC [32, 99] and have been associ-
ated with colorectal cancer and precancerous adenomas
[100, 101]. Similarly, Peptoniphilus genus was enriched in
HER2-positive and triple-negative subtypes of BC [102].
Additionally, within the genus Escherichia, E. coli is capable
of producing DNA mutagens, such as colibactin genotoxin,
and inducing tumorigenesis [103]. Although Byrd et al. [39]
found no significant differences between the microbiota of
patients with BC and non-malignant breast disease, BC was
positively associated with Bacteroides and Ruminococ-
caceae and negatively associated with Romboutsia, Cop-
rococcus and Faecalibacterium. J. Ma et al. [40] identified
59 members of the microbiota that differed in abundance
between patients with BC and benign breast disease. BC
patients displayed a lower relative abundance of Firmicutes
(Faecalibacterium) and Bacteroidetes and increased abun-
dance of Verrucomicrobia, Proteobacteria, Actinobacteria,
Bacillus, Enterobacter and Staphylococcus. Considering that
many breast lesions can give rise to precursors of BC or be
risk markers for the disease, the identification of microbial
profiles associated with these lesions could contribute to
early detection and help prevent BC development.

The entire gut microbiome was altered in BC patients
(Table 2). Several studies included in this review have
demonstrated that diverse metabolic pathways and particu-
lar metabolites can distinguish the microbiota of different
patient groups. Zhu et al. [28] found a relationship between
differences in the composition of the GM and its metabo-
lites in patients and controls. For example, enrichment of
Rothia and Actinomyces in patients was positively associ-
ated with the presence of 4-methylcatechol and guaiacol,
but negatively associated with norvaline. Byrd et al. [39]
observed an association between BC and non-malignant
breast disease with taxa involved in estrogen metabolism
and immune homeostasis. Similarly, J. Ma et al. [40] iden-
tified 26 metabolic pathways that differed between the
microbiota of BC patients or benign breast disease. Addi-
tionally, the abundance of some genes and the activation of
metabolic pathways were also related to the GM composi-
tion of premenopausal and postmenopausal BC patients. In
this regard, Zhu et al. [32] identified an increase in genes
related to PTS, secretion, vitamin B12 transport and man-
ganese/iron systems in premenopausal and postmenopausal
patients compared to controls. In addition, postmenopausal
patients showed higher expression of several genes involved
in lipopolysaccharide biosynthesis and lower expression of
genes related to butyrate synthesis. Nevertheless, Hou et al.
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[34] revealed that premenopausal patients had a microbiota
enriched in bacteria involved in steroid-related and onco-
genic pathways, whereas the microbiota of postmenopausal
patients was mainly composed of bacteria involved in chemi-
cal carcinogenesis and aldosterone-related pathways. He
et al. [33] assessed premenopausal patients and observed a
lower proportion of SCFA-producing bacteria and a decrease
in the levels of these metabolites, especially butyrate. The
microbiota of postmenopausal patients was characterized by
an enrichment of metabolic pathways of immune diseases
based on the study by Goedert et al. [31].

Taken together, BC is associated with an imbalance in
the gut and breast microbiome. This dysbiosis affects both
the diversity and abundance of specific microorganisms and
their metabolites and varies according to clinical features
(such as stage, grade, and molecular subtype of BC) and
host factors (such as menopausal status, age at menarche,
overweight, obesity and physical activity). In addition, the
interaction between microorganisms and the development
and progression of cancer is very complex, and a variety
of bacteria or their metabolites can promote or inhibit the
development of BC. In addition to this fact, the heterogene-
ity of the results reported does not allow a specific microbial
profile to be associated with BC. In general, it seems that
BC is related to a lower microbial diversity, an enrichment
of genera with harmful effects (associated with various
types of cancer, pathologies and inflammation or producers
of B-glucuronidases and toxins), such as Clostridium and
Bacteroides, and decreased in genera beneficial to health,
such as Faecalibacterium, Bifidobacterium and Akkerman-
sia. Furthermore, this disease can be related to a significant
decrease in SCFA-producing bacteria and lower levels of
these metabolites.

Animal model studies

Modulation of GM could be a useful strategy to enhance
the efficacy of therapies against BC. This review includes
some studies in animal models that support this hypothe-
sis (Table 3). Shi et al. [45] highlights the implications of
combined therapy of transforming growth factor-f§ (TGF-f)
inhibitors, such as galunisertib, with Escherichia coli Nissle
1917 in the prevention and treatment of BC. Oral administra-
tion of E. coli Nissle 1917, a probiotic with beneficial effects
on intestinal immune homeostasis, enhanced the effect of
galunisertib by modulating the GM and the tumor immune
microenvironment. Specifically, E. coli Nissle 1917 caused
an increase in the abundance of Alistipes shahii, A. mucin-
iphila, Bacteroides thetaiotaomicron, B. acidifaciens and
Lactobacillus johnsonii; and a decrease in the abundance
of Clostridium spp.

Di Modica et al. [26] determined that certain commen-
sal bacteria may contribute to the efficacy of trastuzumab

through modification of the tumor microenvironment. In
their model of HER2-positive BC, antibiotic administration
reduced the efficacy of trastuzumab by altering the GM by
reducing the abundance of Clostridiales (Lachnospiraceae),
Actinobacteria (Coriobacteriaceae), Turicibacteraceae and
Bacteroidetes (Prevotellaceae). In addition, the GM compo-
sition of HER2-positive patients had an impact on the activ-
ity of trastuzumab, as the transfer of fecal microbiota from
patients with different treatment responses to mice recapitu-
lated the results observed in patients. Furthermore, Terrisse
et al. [36] discovered that GM composition influences the
progression of BC and the anticancer effects of cyclophos-
phamide (CTX) since mice displayed different microbial
compositions depending on tumor development and CTX
activity. The GM of mice with slow tumor progression was
enriched on species present in the feces of patients in stage
I or no axillary node involvement pre- or post-chemotherapy
(Eubacterium rectale, E. eligens, A. muciniphila, B. longum,
C. aerofaciens and Alispites shahii). On the contrary, mice
that received fecal microbiota transplantation from patients
associated with an unfavorable prognosis (B. uniformis, B.
xylanivolvens, B. intestinalis) showed rapid disease pro-
gression. In addition, the tumor-killing activity of CTX was
lower in mice with fecal microbiota transplant from patients
compared to mice with fecal microbiota transplant from con-
trols. These studies suggest that some microbial populations
could serve as biomarkers to predict treatment response.
Dietary intervention may represent a promising strategy
for the prevention and treatment of BC, as the intake of a
wide range of compounds is able to regulate GM homeo-
stasis and influence tumor progression in animal models
(Table 3). Paul et al. [43] found that genistein, an isofla-
vone derived from soy products with anticancer properties,
could increase tumor latency and reduce tumor growth in
ER-negative mice by modulating GM. In particular, the GM
of genistein-treated mice was characterized by an increase in
Lactococcus and Eubacterium genus, members of Lachno-
spiraceae and Ruminococcaceae family and Verrucomicro-
bia phylum (such as A. muniphila). Daucosterol linolenate
(DLA), daucosterol linoleate (DL) and daucosterol palmitate
(DP), three phytosterols present in sweet potato, inhibited
tumor growth in MCF-7 cell xenograft nude mice by altering
the expression of tumor markers and cancer-related proteins,
modulating GM and production of SCFAs. In particular,
the three phytosterols reversed tumor-induced dysbiosis by
increasing Bacteroidetes richness and decreasing Firmicutes
richness, modulating GM diversity at family and genus level,
and promoting butyric or acetic and butyric acid production
by DL and DP, respectively [48]. Fucoidan, a complex sul-
phated polysaccharide obtained from brown algae, favored
the development of a more diverse gut microbiome through
an increase in the Bacteroidetes/Firmicutes ratio and an
increase in SCFAs producers such as Prevotella in a rat
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model of BC. Furthermore, fucoidan repaired intestinal bar-
rier function by promoting the expression of tight junction
proteins (Zonula occludens-1, claudin-1 and claudin-8) and
the levels of phosphorylated p38 MAPK and ERK1/2 [44].
The administration of Poria cocos fungus extracts exerted
a similar effect in triple-negative BC mice. In this case, the
change in the structure of the GM resulted in an increase in
beneficial bacteria, such as Lactobacillus, Bifidobacterium
and Blautia, and a decrease in sulfate-reducing bacteria,
such as Desulfovibrio and bacteria, associated with inflam-
mation, such as Mucispirillum, S24-7 and Staphylococcus
[47]. Finally, Li et al. [49] determined that maternal n-3
polyunsaturated fatty acids reduced the risk of BC in the
offspring by modulating the GM and reducing levels of the
proinflammatory factors interleukin 1p (IL-1p), IL-6 and
tumor necrosis factor a (TNF-a). In particular, n-3 poly-
unsaturated fatty acids caused an increase in a-diversity
and relative abundance of Akkermansia, Lactobacillus and
Mucispirillum. Mucispirillum was also positively associ-
ated with IL-10 levels, whereas Akkermansia was negatively
associated with IL-6.

Although bacteria are the most studied members of the
human microbiota, they are not the only microorganisms that
can be involved in BC and its treatment. Shiao et al. [50] dis-
covered that the mycobiome plays an opposite role to that of
the bacteriome in the efficacy of radiotherapy against BC, by
modulating the antitumor immune response (Table 3). While
the decrease in gut fungi favors the efficacy of radiotherapy,
the decrease in bacteria reduces the response to radiotherapy
and is related to the overgrowth of commensal fungi.

Several studies in mouse models have addressed the link
between alterations in GM in obesity associated with BC, the
existence of previous dysbiosis and its relation with cancer
prognosis and the effects of the tumor on the microbiota and
intestinal barrier function (Table 3). Hossain et al. [51] used
an immunocompetent mouse model of triple-negative BC to
conclude that there is an association between Western diet-
induced obesity and increased tumor growth, which is con-
sistent with previous studies, suggesting that obesity favors
the risk of this subtype of BC [104]. Similarly, obesity was
associated with a loss of microbial diversity, a decrease in
the Bacteroides/Firmicutes ratio (particularly Alistipes) and
an alteration in bacterial metabolic pathways. This decrease
in microbial diversity is also consistent with compelling data
available in the existing literature [105]. Finally, Hossain
et al. [51] demonstrated that the similarity of bacterial com-
munities based on taxonomic profiles and the variability of
functional profiles depended on obesity, although the latter
was also explained to a lesser extent by the presence of the
tumor and the obesity—tumor interaction.

Loman et al. [52] discovered that orthotopic mammary
tumors compromise the intestinal barrier function by alter-
ing the microbiome, highlighting a lower abundance of
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Lactobacillus and increased Bacteroides. Consequently,
they increase the translocation of enteric bacteria and cause
systemic inflammation including splenomegaly, increased
splenic bacterial load and proinflammatory cerebral and
splenic cytokines. This may explain the gastrointestinal
(diarrhea and nausea) and cognitive (anxiety and depres-
sion) symptoms associated with the tumor. In this context,
Lactobacillus supplementation could help to alleviate these
symptoms, as this probiotic genus is known to improve
intestinal barrier function, regulate the immune system and
influence intestinal motility [106, 107]. Furthermore, Rosean
et al. [46] identified pre-existing dysbiosis of the commen-
sal microbiota as a host-intrinsic regulator of tissue inflam-
mation, myeloid recruitment, fibrosis, and tumor cell dis-
semination in ER/PR-positive BC. Therefore, these authors
demonstrated that commensal dysbiosis contributes to the
spread and aggressiveness of BC and that dysbiosis could
be a biomarker or therapeutic target to reduce inflammation
within the tissue microenvironment.

GM characterization in animal models was performed
on stool samples and microbial composition was deter-
mined mainly by sequencing regions of the 16S rRNA gene
[26, 43-52] or by shotgun metagenomic sequencing [36].
Sequenced 16S rRNA gene regions were V3-V4 [26, 44,
45, 47-49] or V4 [43, 51, 52]. In addition, in the case of the
mycobiome, the composition of gut fungi was determined
by sequencing the ITS1 gene [50].

In vitro studies

In vitro studies with BC cell lines (Table 4) highlight the
potential therapeutic use of specific members of the micro-
biota or their metabolites in BC treatment. Ma et al. [40] dis-
covered that Faecalibacterium prausnitzii prevents MCF-7
cells growth by inhibiting the IL-6/STAT3 pathway. This
signaling pathway is hyperactivated in many cancers and
its hyper-activation is associated with poor prognosis. In
addition, in the tumor microenvironment, the IL-6/STAT?3
pathway promotes tumor cell proliferation, survival, inva-
siveness and metastasis, while suppressing the antitumor
immune response [108]. Consequently, F. prausnitzii could
act as a probiotic in BC by inhibiting tumor growth and
stimulating antitumor immunity. In the same cell line, An
et al. [54] determined that extracellular vesicles derived
from Klebsiella pneumoniae potentiate the antihormonal
effect of tamoxifen by downregulating cyclin E2, p-ERK
and p21. Furthermore, various metabolites produced by the
GM also showed inhibitory effects on BC cell lines. Zhu
et al. [28] found that L-norvaline can inhibit BC cell prolif-
eration when combined with DOX. Moreover, He et al. [33]
demonstrated that sodium propionate and sodium butyrate
inhibit the activity of SKBR3 and MCF-7 cells in a dose-
dependent manner.



Clinical and Translational Oncology

Finally, some studies in BC cell models suggest that dis-
ruption of lipid rafts may be a key factor in BC cell prolif-
eration and apoptosis. Bobin-Dubigeon et al. [53] found that
GM interacts with the lipid metabolism of enteric cells and
influences the behavior of MCF-7 cells. Since lipid metabo-
lites can reach mammary cells through systemic circulation,
they could affect BC. The authors used a basolateral medium
of Caco-2 cells preincubated with patients or control fecal
fluid and concluded that preincubation with patient or con-
trol fluid differentially affected MCF-7 cells viability. Fecal
water valerate, a SCFA, was independently associated with
a decreased ability of the Caco-2 cell medium to induce
MCEF-7 cell proliferation. In addition, MCF-7 cells viability
was positively related to the percentage of Bifidobacterium
sp. in the fecal water incubated with Caco-2 cells. Finally,
regarding the expression of genes related to lipid metabo-
lism, they found a positive relationship between the expres-
sion of the Apo AIV gene and acetate, butyrate, propionate,
and the percentage of Bacteroidetes. Moreover, the percent-
age of Blautia sp. was negatively correlated with the expres-
sion of the LXR (liver X receptor) gen. Apo AIV and LXR
genes regulate the synthesis of apolipoproteins, proteins
that are involved in the release of cholesterol from BC cells,
which is associated with reduced cell viability. Considering
the above, a relationship has been found between the abun-
dance of Blautia sp. and the severity of BC, this genus may
influence tumor development through its negative effect on
the LXR gene [53].

Limitations of the study

This literature review has some limitations. The biblio-
graphic search was performed in a single database, which
limited the incorporation of publications. Several of the
included trials were carried out with a small number of sam-
ples and assessed the GM in patients with different char-
acteristics, which limits the robustness of the conclusions.
Additionally, the reported results show great heterogeneity,
possibly due to biological factors (such as age, individual
genetic variation, ethnic origin, geographic location, and
dietary habits) that influence the composition of the micro-
biota, and the variability of analysis methods (hypervari-
able regions of the 16S rRNA gene, type and sequencing
platform, bioinformatics tools, etc.). Finally, most of the
articles identify the members of the GM at the genus level
or higher levels, which precludes the establishment of a link
of specific species with BC.

Finally, we are aware of recent changes in bacterial
taxonomy and nomenclature. However, we have kept the
nomenclature used by the authors for better traceability of
the works mentioned in this review.

Conclusions

Based on the literature included in this work, some clear
conclusions can be drawn. GM differs between BC patients
and healthy women. Therefore, BC may be associated with
microbiota dysbiosis. This imbalance affects microbial
diversity and the abundance of particular microorganisms
and their metabolites. Similarly, it varies depending on the
molecular type, stage and grade of cancer, as well as based
on the state of menopause, age at menarche, BMI and physi-
cal activity of the patients.

BC seems to be characterized by a loss of microbial diver-
sity, an enrichment of genera with deleterious effects (related
to cancer, pathologies and inflammation or producers of
B-glucuronidases and toxins), such as Clostridium and Bac-
teroides, and a decrease in genera beneficial for the health
as Faecalibacterium, Bifidobacterium and Akkermansia. In
addition, BC can be related to a decrease in SCFA-producing
bacteria and the levels of these metabolites. However, it has
not been possible to identify a specific microbial profile as
a non-invasive biomarker.

Studies in humans, animal models and in vitro indicate
that GM may influence the efficacy of BC therapies through
modulation of the tumor immune microenvironment, prob-
ably also being partly responsible for the treatment side
effects.

Studies performed on animal models and in vitro cell cul-
tures demonstrate the potential use of various microorgan-
isms (such as Escherichia coli Nissle 1917 and Faecalibac-
terium prausnitzii) as probiotics to promote the efficacy of
BC therapies or directly affect tumor development. Moreo-
ver, a variety of microbial metabolites (such as SCFA, such
as butyrate, propionate and valerate) have been proposed as
prebiotics.

Large-scale studies, especially clinical trials with stand-
ardized protocols, and the application of proper mathemati-
cal approaches to calculate adequately the microbiome abun-
dances are necessary to confirm the association between
microbiota and BC and to discover the potential clinical
applications of the microbiota in the prevention and early
diagnosis of BC, as well as therapeutic interventions [109].

The existence of biomarkers based on the composition of
the human microbiota would provide a new method for the
diagnosis of non-invasive BC. Furthermore, the ability of
the microbiota to modulate therapies would allow the devel-
opment of more effective therapeutic strategies, ultimately
contributing to reducing mortality and prevalence of BC.
Nevertheless, further research is needed to shed light on the
relevance of microbiota modulation for BC treatment.
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