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« In 1905 “L’ Enseignement Mathématique” started an inquiry into the methods of work-

ing of mathematicians. The results of this inquiry augmented and developed later by several

authors, for instance Carmichael and Hadamard, can be expressed shortly as follows. The fac-

ulty of deduction belongs to the conscious mind, the subconscious being in general only able

to perform very simple and trivial deductions. On the contrary the faculty of rearranging is

typical of the work of the subconscious and is described by Carmichael as consisting of an

extremely rapid passing over of innumerable useless combinations till a vital one or some vital

ones rise to consciousness, to bring, after a severe control of the conscious mind, new truth to

light. »

J. A. Schouten
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Chapter 0

Resumen

Desde que Einstein formalizó la extensión del espacio-tiempo de Minkowski a una variedad

curva de Lorentz para modelar campos gravitatorios no nulos, la geometría lorentziana ha

servido como el marco matemático fundamental para expresar la Relatividad General. Inicial-

mente, su estudio era predominantemente local, ya que investigaciones globales en geometría

lorentziana parecían innecesarias para describir nuestro Universo inmediato. Sin embargo, a

partir de la década de 1970, los progresos en las Teorías de Causalidad y Singularidad, im-

pulsados principalmente por las contribuciones de Hawking, Penrose, Geroch, entre otros, han

conducido a la reconocida necesidad de desarrollar nuevas metodologías para realizar análi-

sis exhaustivos de los modelos cosmológicos. Estos avances impulsaron significativamente

la progresión contemporánea de la geometría lorentziana global, produciendo resultados con

interpretaciones físicas inesperadas.

Además, es importante destacar que la exploración puramente geométrica de las variedades

lorentzianas ha generado interés en numerosos estudios recientes, estableciéndose como una

rama de la Geometría Diferencial caracterizada por problemas no exclusivamente originados

en la Física y carentes de aplicaciones directas en ella.

Esencialmente, un tensor métrico lorentziano en una variedad (diferenciable) define una

estructura de conos tangentes, que nos permiten clasificar los vectores tangentes en tres tipos:

temporales, luminosos y espaciales. Esto se conoce como su carácter causal. En consecuen-

cia, una curva en la variedad se clasifica como temporal, luminosa o espacial si sus vectores

tangentes exhiben consistentemente el carácter causal correspondiente. La idea clave de la

Relatividad General consiste en conceptualizar la gravedad como un efecto producido por la

curvatura del espacio-tiempo. De esta manera, las partículas materiales (luminosas, respectiva-
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14 Resumen

mente) en “caída libre” serían geodésicas temporales (luminosas, respectivamente) del tensor

métrico lorentziano.

Recordemos la noción de estructura conforme en signatura semi-riemanniana. Una estruc-

tura conforme semi-riemanniana (M, c) es el par formado por una variedad M y una clase de

equivalencia c de métricas semi-riemannianas en M , donde dos métricas están en c si difieren

por un factor que es una función diferenciable positiva en la variedad M . A menos que se

indique lo contrario, M es una variedad de dimensión n ≥ 2.

La estructura de conos es un invariante conforme en la geometría lorentziana. Weyl intro-

dujo las estructuras conformes (en signatura lorentziana) para formular una teoría unificada de

campos. Weyl escribió “Para derivar los valores de las cantidades gik a partir de fenómenos

observados directamente, usamos señales de luz... Observando la llegada de la luz en los pun-

tos vecinos a O podemos determinar las razones de los valores de los gik... Sin embargo, es

imposible derivar más resultados a partir del fenómeno de la propagación de la luz...” [67, Cap.

4]. Se pueden encontrar más detalles sobre la teoría de Weyl y las ideas físicas detrás de ella en

los textos clásicos [29], [10] y [57], mientras que una exposición elemental de la misma está

disponible en [1].

En esta tesis, nos centraremos en dos temas aparentemente no relacionados que, tras un

examen más detenido, revelan conexiones profundas en las que creemos contribuir a su clari-

ficación y comprensión mejorada. Estos son la geometría lorentziana y la geometría conforme

riemanniana. Aunque a primera vista estos dos temas pueden parecer no relacionados, se sabe

que han estado conectados desde los tiempos de Cartan, quien introdujo la noción de “espacio

generalizado” para construir un puente entre la geometría en el sentido del programa de Erlan-

gen de Felix Klein y la Geometría Diferencial. En el programa de Erlangen, una geometría se

da mediante una variedad dotada de una acción transitiva de un grupo de Lie, y así por un es-

pacio homogéneo G/H de un grupo de Lie G. Klein consideraba G/H dotado de la geometría

cuyo grupo de automorfismos era G. La idea de Cartan fue asociar a dicho espacio homogéneo

una estructura geométrica diferencial, cuyos objetos pueden pensarse como análogos curvos

del espacio homogéneo G/H , al igual que las variedades riemannianas pueden pensarse como

análogos curvos del espacio euclidiano. En terminología moderna, tales estructuras se llaman

geometrías de Cartan, y se definen como fibrados principales dotados de conexiones de Cartan,

véase la Definición 3.1. El espacio homogéneo G/H se denomina el modelo homogéneo de

la geometría de Cartan. Un estudio exhaustivo de varios ejemplos básicos de geometrías de



Resumen 15

Cartan se puede encontrar en el libro [62].

Para Cartan, las estructuras conformes riemannianas n-dimensionales pueden considerarse

como análogos curvos del espacio de rayos en el cono de luz futuro del espacio-tiempo de

Minkowski Ln+2 visto como un subconjunto en el espacio proyectivo RP n+1. Notemos que

este espacio de rayos es topológicamente la esfera Sn. Aquí, el grupo ortocrono O+(1, n + 1)

actúa como el grupo de transformaciones conformes globales de Sn con respecto a la clase

conforme que contiene la métrica redonda canónica. Denotaremos esta clase conforme por

c0. En este contexto, el par (Sn, c0) es denominado el espacio de Möbius. Las geometrías de

Cartan que surgen al deformar el espacio de Möbius se conocen como geometrías de Möbius,

véase la Definición 3.5. Las geometrías de Cartan se han utilizado también para investigar otros

tipos de geometrías. Por ejemplo, [53] está dedicado al estudio de las variedades luminosas

vistas como análogos curvos del cono de luz futuro de Ln+2. Recordemos que una variedad

luminosa no es más que una variedad dotada con un tensor métrico degenerado, consulte la

Sección 2.2.

Queremos enfatizar que las ideas de Cartan jugaron un papel significativo en el trabajo de

Einstein desarrollando la Relatividad General. Adjuntamos un fragmento de una carta escrita

por Cartan y dirigida a Einstein donde se puede ver cómo compartían correspondencia e ideas:

«En tus artículos recientes en los Sitzungsberichte dedicados a una nueva teoría

de la relatividad generalizada, introdujiste la noción de “Fernparallelismus” en

un espacio riemanniano. Ahora bien, la noción de espacio riemanniano dotado

de un Fernparallelismus es un caso especial de una noción más general, la de es-

pacio con una conexión euclidiana, que esbozé brevemente en 1922 en un artículo

en los Comptes Rendus (vol. 174, pp. 593-595), publicado cuando impartías tus

conferencias en el Collège de France; incluso recuerdo que intenté, en casa del Sr.

Hadamard, darte el ejemplo más simple de un espacio riemanniano con Fernpar-

allelismus al considerar dos vectores dentro de una esfera que forman el mismo

ángulo con las líneas meridianas que pasan por sus orígenes como paralelos: las

geodésicas correspondientes son las líneas de rumbo. Este ejemplo se cita en un

artículo: “Sur les récentes généralisations de la notion d’espace” (Bull. Sciences

math. 48, 1924, pp. 294-320). »

En este pasaje, se puede leer cómo Cartan le dijo a Einstein que la noción de “Fernparal-

lelismus” era un caso particular de una teoría mucho más general de conexiones que él mismo
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había desarrollado. La carta completa se puede leer en [26].

Uno de los objetivos principales y el hilo conductor de esta tesis será proporcionar un

enfoque novedoso para estudiar y relacionar la geometría lorentziana y la geometría conforme

riemanniana. Para ser precisos, vamos a utilizar inmersiones espaciales que factorizan a través

de ciertas hipersuperficies luminosas embebidas en variedades lorentzianas. Además de este

propósito, estudiaremos estos tipos de inmersiones porque son de interés desde la perspectiva

de la teoría de subvariedades. Como es bien sabido, las hipersuperficies luminosas heredan una

métrica degenerada de la métrica lorentziana ambiente y desempeñan un papel importante en la

Relatividad General como horizontes de sucesos de agujeros negros [33]. La teoría clásica de

subvariedades falla para estas hipersuperficies ya que el fibrado normal de tales hipersuperficies

está contenido en su fibrado tangente. Creemos que el estudio de inmersiones espaciales de

codimensión dos que factorizan a través de una hipersuperficie luminosa puede proporcionar

una herramienta para comprender la geometría de tales hipersuperficies y también servir para

profundizar en nuestra comprensión de las propias inmersiones. El estudio de inmersiones

espaciales de codimensión dos en hipersuperficies luminosas se ha desarrollado previamente

en [52], [55] y [56] para el caso de inmersiones compactas en el cono de luz del espacio-tiempo

de Minkowski. El caso no compacto se considera en [4] y el estudio de inmersiones atrapadas

en hipersuperficies luminosas del espacio-tiempo de de-Sitter aparece en [3]. Este enfoque

también se ha aplicado a los espacio-tiempos de Brinkmann. Recordemos que los espacio-

tiempos de Brinkmann admiten un campo de vectores luminosos paralelo y entonces, admiten

una foliación por hipersuperficies luminosas. Las inmersiones espaciales que se encuentran en

tales hipersuperficies se han estudiado en [16] para el caso compacto y en [54] para casos más

generales.

También será crucial para nosotros abordar la geometría conforme riemanniana a través

de las geometrías de Cartan, las cuales proporcionan herramientas poderosas para reinterpre-

tar la geometría conforme. Uno de los hitos principales en esta tesis será reconstruir tales

geometrías de Cartan a partir de inmersiones espaciales. Esta metodología se examinará con

detalle en el Capítulo 5. En los Capítulos 2 y 3, introduciremos las nociones necesarias sobre

geometría lorentziana, conforme y de Cartan para entender esta nueva perspectiva. El Capí-

tulo 4 está dedicado enteramente al estudio de inmersiones espaciales en una cierta familia de

espacio-tiempos. Este capítulo tiene un interés intrínseco desde la perspectiva de la teoría de

subvariedades, pero además también tiene aplicaciones en el estudio de las relaciones entre la
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geometría lorentziana y la geometría conforme. Finalmente, en el Capítulo 6, continuaremos

estudiando las relaciones entre ambas geometrías utilizando para ello una versión debilitada

de la construcción de variedades ambiente para estructuras conformes riemannianas dada por

Fefferman y Graham, ver [31]. Para llevar a cabo tal construcción, es necesario enfatizar que el

espacio total Q del fibrado de escalas de una estructura conforme riemanniana admite natural-

mente una métrica degenerada, llamada tensor tautológico, que denotaremos por h̄, ver Sección

6.1. Con esto en mente, la construcción de una variedad ambiente esencialmente implica ex-

tender localmente la variedad luminosa (Q, h̄) en una variedad lorentziana que la admita como

una hipersuperficie luminosa.





Chapter 1

Introduction

Since Einstein’s extension of Minkowski spacetime to a curved Lorentzian manifold to model

nonzero gravitational fields, Lorentzian geometry has served as the fundamental mathematical

framework for expressing General Relativity. Initially, its study was predominantly local, as

global investigations of Lorentzian geometry appeared unnecessary for describing our imme-

diate Universe. However, beginning in the 1970s, advancements in Causality and Singular-

ity Theories, primarily through the contributions of Hawking, Penrose, Geroch, and others,

prompted consideration of the necessity to develop new methodologies for comprehensive ex-

aminations of cosmological models. These advancements significantly spurred the contem-

porary progression of global Lorentzian geometry, yielding results with unexpected physical

interpretations.

Furthermore, it is noteworthy that the purely geometric exploration of Lorentzian manifolds

has generated interest in numerous recent studies, establishing itself as a branch of Differential

Geometry characterized by problems not exclusively originating from Physics and lacking

direct applications therein.

Essentially, a Lorentzian metric tensor on a (smooth) manifold defines a structure of tangent

cones, which allow us to classify tangent vectors into three types: timelike, lightlike, and

spacelike. This is known as their causal character. Consequently, a curve on the manifold

is classified as timelike, lightlike, or spacelike if its tangent vectors consistently exhibit the

corresponding causal character. The key idea of General Relativity consists of conceptualizing

gravity as an effect produced by the curvature of the spacetime. In this way, material particles

(resp. lightlike) in “free fall” would be timelike (resp. lightlike) geodesics of the Lorentzian

metric tensor.
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20 Introduction

Let us recall the notion of a conformal structure in semi-Riemannian signature. A semi-

Riemannian conformal structure (M, c) is the pair formed by a manifoldM and an equivalence

class c of semi-Riemannian metrics on M , where two metrics are in c if they differ by a factor

that is a smooth positive function on the manifold M . Unless stated otherwise, M is an (n ≥

2)-dimensional manifold.

The structure of cones is a conformal invariant in Lorentzian geometry. Weyl introduced

conformal structures (in Lorentzian signature) in order to formulate a unified fields theory.

Weyl wrote “ To derive the values of the quantities gik from directly observed phenomena, we

use light-signals... By observing the arrival of light at the points neighbouring toO we can thus

determine the ratios of the values of the gik’s... It is impossible, however, to derive any further

results from the phenomenon of the propagation of light...” [67, Chap. 4]. Further details of

Weyl’s theory and the physical ideas behind it can be found in the classical texts [29],[10] and

[57], while an elementary exposition of it is available in [1].

In this thesis, we will focus on two seemingly unrelated topics that, upon closer inspec-

tion, they reveal deep connections in which we believe we contribute to their clarification and

enhanced understanding. These are Lorentzian geometry and Riemannian conformal geome-

try. Although at first glance these two topics may appear unrelated, it is known that they have

been connected since the times of Cartan, who introduced the notion of “espace généralisé” in

order to build a bridge between geometry in the sense of Felix Klein’s Erlangen program and

Differential Geometry. In the Erlangen program, a geometry is given by a manifold endowed

with a transitive action of a Lie group, and thus by a homogeneous space G/H of a Lie group

G. Klein considered G/H endowed with the geometry whose automorphism group was G.

Cartan’s idea was to associate to such a homogeneous space a differential geometric structure,

whose objects may be thought of as curved analogs of the homogeneous space G/H , just like

Riemannian manifolds may be thought of as curved analogs of Euclidean space. In modern

terminology, such structures are named Cartan geometries, and they are defined as principal

bundles endowed with Cartan connections, see Definition 3.1. The homogeneous space G/H

is referred to as the homogeneous model of the Cartan geometry. A comprehensive study of

several basic examples of Cartan geometries can be found in the book [62].

For Cartan, n-dimensional Riemannian conformal structures can be considered as curved

analogues of the space of rays in the future lightlike cone of the Minkowski spacetime Ln+2

seen as a subset in the projective space RP n+1. Note that this space of rays is topologically



Introduction 21

the sphere Sn. Here, the orthochronous group O+(1, n+ 1) acts as the group of global confor-

mal transformations of Sn with respect to the conformal class containing the canonical round

metric. We denote this conformal class by c0. In this setting, (Sn, c0) is called the Möbius

space. Cartan geometries that arise from deforming the Möbius space are known as Möbius

geometries, Definition 3.5. Cartan geometries have been employed to investigate other types of

geometries. For instance, [53] is devoted to study lightlike manifolds as curved analogs of the

future lightlike cone of Ln+2. Recall that a lightlike manifold is nothing more than a manifold

endowed with a degenerate metric tensor, see Section 2.2.

We want to emphasize that Cartan’s ideas played a significant role in Einstein’s work de-

veloping General Relativity. We attach a fragment of a letter written by Cartan and addressed

to Einstein where it can be seen how they shared correspondence and ideas:

« In your recent articles in the Sitzungsberichte devoted to a new theory of general-

ized relativity, you introduced, the notion of “Fernparallelismus” in a Riemannian

space. Now, the notion of Riemannian space endowed with a Fernparallelismus is

a special case of a more general notion, that of space with a Euclidean connec-

tion, which I outlined briefly in 1922 in an article in the Comptes Rendus (vol. 174,

pp.593-595), published when you gave your lectures at the Collège de France; I

even remember trying, at Mr Hadamard’s home, to give you the simplest example

of a Riemannian space with Fernparallelismus by regarding two vectors within a

sphere making the same angle with the meridian lines passing through their ori-

gins as parallel: the corresponding geodesics are the rhumb lines. This example

is quoted in an article: “Sur les récentes généralisations de la notion d’espace”

(Bull. Sciences math. 48, 1924, pp.294-320). »

In this passage, one can read how Cartan told Einstein that the notion of "Fernparallelis-

mus" was a particular case of a much more general theory of connections that he himself had

developed. The entire letter can be read at [26].

One of the main goals and guiding thread of this thesis will be to provide a novel approach

to studying and relating Lorentzian geometry and Riemannian conformal geometry. To be

precise, we will use spacelike immersions that factor through certain lightlike hypersurfaces

embedded in Lorentzian manifolds. In addition to this purpose, we study these types of immer-

sions because they are of interest from the perspective of the theory of submanifolds. As it is

well-known, lightlike hypersurfaces inherits a degenerate metric from the Lorentzian ambient
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metric and play an important role in General Relativity as event horizons of black holes [33].

The classical theory of submanifolds fails for these hypersurfaces since the normal bundle of

such hypersurfaces is contained in their tangent bundle. We think that the study of codimen-

sion two spacelike immersions which factor through a lightlike hypersurface can provide a tool

to understand the geometry of such hypersurfaces and also to serve for deepening our under-

standing of the immersions themselves. The study of codimension two spacelike immersions

in lightlike hypersurfaces has been previously developed in [52], [55] and [56] for the case

of compact immersions into the lightlike cone in the Minkowski spacetime. The non-compact

case is considered in [4] and the study of trapped immersions into lightlike hypersurfaces of the

de-Sitter spacetime appears in [3]. This approach has been also applied to Brinkmann space-

times. Recall that Brinkmann spacetimes admit a parallel lightlike vector field and then, they

have a foliation by lightlike hypersurfaces. Spacelike immersions which lie in such hypersur-

faces have been studied in [16] for the compact case and in [54] for more general settings.

It will also be crucial for us to approach Riemannian conformal geometry through Cartan

geometries, which provide powerful tools for reinterpreting conformal geometry. One of the

main milestones in this thesis will be to reconstruct such Cartan geometries from spacelike

immersions. This methodology will be thoroughly examined in Chapter 5. In Chapters 2 and

3, we will introduce the necessary notions of Lorentzian, conformal, and Cartan geometries to

understand this new perspective. Chapter 4 is entirely devoted to the study of spacelike immer-

sions in a certain family of spacetimes. This Chapter has intrinsic interest from the perspective

of the theory of submanifolds, but it also has applications in the study of the relationships be-

tween Lorentzian geometry and conformal geometry. Finally, in Chapter 6, we will continue

studying relationships between both geometries focusing on a weakened version of the ambient

manifold construction for Riemannian conformal structures given by Fefferman and Graham,

see [31]. To carry out such construction, it is necessary to emphasize that the total space Q

of the scale bundle of a Riemannian conformal structure naturally admits a degenerate met-

ric, called the tautological tensor, which we denote by h̄, see Section 6.1. With this in mind,

the construction of an ambient manifold essentially involves locally extending the lightlike

manifold (Q, h̄) into a Lorentzian manifold that admits it as a lightlike hypersurface.

Now that we have introduced the setting of this thesis, we are going to outline the contents

of each chapter. We would like to highlight that the material covered in Chapters 4, 5, and 6 is

available in [47], [45] and [46], respectively.
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From a mathematical perspective, a classical problem in Riemannian conformal geometry

is the construction of invariants. The invariants of any Riemannian metric in a conformal class

transform according to intricate formulas and they do not provide invariants for the confor-

mal structure. The problem of the construction of conformal invariants remains very difficult.

Anyway, there are several equivalent ways of describing conformal structures which immedi-

ately lead to a construction of conformal invariants. In Chapter 3, we focus on introducing and

studying two of these equivalent ways of describing conformal structures: Möbius geometries

and tractor bundles.

For this purpose, we need to introduce a family of tensors which we will refer to as

“Schouten type-tensors”, Definition 3.12. A tensor D is said to be a “Schouten type-tensor”

for a Riemannian conformal structure (M, c) if it is a map such that:

1. D : c→ T(0,2)M such that for every g ∈ c, the tensor D(g) is symmetric and

2. D satisfies the following conformal transformation law

D(e2ug) = D(g)− ∥∇u∥2

2
g − Hess(u) + du⊗ du,

where ∇u and Hess(u) are the gradient and the Hessian of the function u ∈ C∞(M) for

the metric g, respectively. Here, ∥ · ∥ denotes the norm with respect to g.

Every Riemannian conformal structure (M, c) endowed with a “Schouten type-tensor” D

can be seen equivalently as an admissible Cartan geometry (p : P →M,ω) with homogeneous

model the Möbius space, see details in Chapter 3. For dimension n ≥ 3, every Riemannian

conformal structure admits a unique normal Möbius geometry, [20, Theor. 1.6.7]. This is

the one constructed by taking the Schouten tensor itself as the “Schouten type-tensor”. The

Cartan connection ω associated to the normal Möbius geometry is called the normal Cartan

connection.

On the other hand, we are interested in the equivalent approach taken by Thomas in the

1920s, [63]. He describes Riemannian conformal structures in terms of vector bundles en-

dowed with certain linear connections, see Definitions 3.7 and 3.8. He named these special

bundles and connections as tractor conformal bundles T → M and tractor connections ∇T .

The relationship between tractor connections on tractor conformal bundles and Cartan connec-

tions on Möbius geometries was given by Čap and Gover in [18] in a more general setting. We

want to emphasize that Chapter 3 has been added in an attempt to clarify this relationship. As
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far as we know, this aspect has not been addressed elsewhere with sufficient detail. There is a

one-to-one correspondence between tractor conformal bundles T → M endowed with tractor

connections ∇T and Möbius geometries (p : P → M,ω). The following diagram represents

the equivalent constructions that we have just presented:

(
M, c,D

) (
T →M,∇τ

)

(
p : P →M,ω

)

For dimension n ≥ 3, the pair consisting of the tractor conformal bundle and the tractor

connection that corresponds to the normal Möbius geometry is called the normal standard trac-

tor conformal bundle, and the tractor connection is referred to as the normal tractor connection,

Definition 3.20. In [19], the normal tractor connection is characterized in terms of its curvature

properties. We have included here this result in Theorem 3.22.

It is worth highlighting that “Schouten type-tensors” are truly interesting to study. These

tensors are of greater importance in dimension two where there is no canonical choice since

the Schouten tensor is not defined in such dimension. In the last Chapter, we will see that

all these tensors can be reconstructed through certain Weingarten endomorphisms of spacelike

submanifolds. We will also focus on a “normalized” subset within the family of “Schouten

type-tensors”, whose elements are known as Möbius structures. A Möbius structure is a triple

(M, c,D) where D is a “Schouten type-tensor” that additionally satisfies the condition

tracegD(g) =
Sg

2(n− 1)

for every g ∈ c, Definition 3.24. These Möbius structures have been used to study various

problems. For instance, the equivalence problem between two dimensional Möbius structures

(M, c,D) and a subset of Möbius geometries was addressed in [15] and [14].

In Chapter 4 we begin by introducing a family of spacetimes that we are going to study,

to do this we first have to recall some basic facts of the Schwarzschild spacetime. Karl

Schwarzschild discovered in 1916 the point-mass solution to Einstein equations that bears

his name. Historically, this solution was the first and more important nontrivial solution of the

vacuum Einstein equations. The (m + 2)-dimensional exterior Schwarzschild spacetime with
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mass M ≥ 0 is equipped with the Lorentzian metric

g̃ = −
(
1− 2M

rm−1

)
dt2 +

1

1− 2M
rm−1

dr2 + r2gSm ,

where (t, r) ∈ R× R>0 with rm−1 > 2M and gSm denotes the usual round metric of constant

sectional curvature 1 on the m-dimensional sphere Sm. For M = 0, the Schwarzschild metric

reduces to the Minkowski metric in spherical terms, Example 4.10. The exterior Schwarzschild

spacetime has several remarkable properties which we are interested in.

1. For every lightlike vector field ξ in the tr-half plane, the Levi-Civita connection ∇̃ of the

Schwarzschild metric satisfies ∇̃ξ = α⊗ ξ for some 1-form α.

2. The (m + 2)-dimensional exterior Schwarzschild spacetime admits two foliations by

lightlike hypersurfaces. In fact, for every lightlike vector field ξ in the tr-half plane,

the distribution given by the vector fields g̃-orthogonal to ξ is involutive and every leaf

inherits a degenerate metric from g̃, Lemma 4.1.

3. The vector field ∂t is a timelike Killing vector field. That is, the exterior Schwarzschild

spacetime is static.

These properties rely on the following facts. The metric g̃ is a warped product metric given

by a Lorentzian metric on an open subset of the tr-plane and a Riemannian metric, [51, Chap.

7]. Moreover, the metric on the tr-plane admits a globally defined lightlike vector field and the

function f 2(r) := 1− 2M
rm−1 does depend only on r.

These facts lead us to consider the following family of Lorentzian warped product mani-

folds.

Definition 1.1. A Lorentzian warped product manifold (M̃, g̃) = B ×λ F is said to be an

(m+2)-dimensional generalized (exterior) Schwarzschild spacetime whenB is an open subset

of R2 with canonical coordinates (t, r) and metric

gB = −f 2(r)dt2 +
1

f 2(r)
dr2, (1.1)

where f(r) > 0, (F, gF ) is a m-dimensional connected Riemannian manifold and λ ∈ C∞(B)

with λ > 0 is the warping function. That is, M̃ = B × F and

g̃ = π∗
B(gB) + (λ ◦ πB)2π∗

F (gF ),

where πB and πF are the natural projections on B and F , respectively (see Section 2.3).
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Note that the Minkowski spacetime can be described in two ways from this setting. Namely,

as was mentioned above and for f(r)2 = 1, λ(t, r) = 1 and (F, gF ) = Em.

For λ(t, r) = r and (F, gF ) = Sm, this class includes relevant spacetimes with spherical

symmetry. Namely, we set

f 2(r) = 1− 2M

rm−1
+

q2

r2m−2
− 2Λr2

m(m+ 1)
, (1.2)

where M is called the mass parameter, q is the charge and Λ is a constant function. For

q = Λ = 0, we get the Schwarzschild metric and for q ̸= 0, Λ = 0, the Reissner-Nordström

metric with total charge q. The de-Sitter and anti-de-Sitter versions correspond to Λ > 0 and

Λ < 0, respectively, [40].

The generalized Schwarzschild spacetimes admit two lightlike vector fields ξ, η ∈ X(B),

see (4.2). The distributions Dξ and Dη defined by the g̃-orthogonal vector fields to ξ and η, re-

spectively, are involutive, Lemma 4.1. Therefore, we have two transverse foliations by lightlike

hypersurfaces of M̃ . It is worth pointing out that the vector field ∂t ∈ X(M̃) is Killing if and

only if the warping function λ depends only on the (radial) coordinate r. The integral curves of

ξ and η are called lightlike geodesic generators of the corresponding lightlike hypersurfaces.

Recall that we can scale ξ and η so that they are geodesic vector fields, [32]. As was mentioned,

the Minkowski spacetime Lm+2 admits two descriptions as generalized Schwarzschild space-

time. Every description provides different foliations by lightlike hypersurfaces, see details in

Example 4.10.

The main aim of Chapter 4 is to study spacelike immersions of an n-dimensional manifold

M in generalized Schwarzschild spacetimes. Most of our results are focused on the particular

situation in which the spacelike immersion of M is contained in a leaf of the above mentioned

foliations by lightlike hypersurfaces.

The research on spacelike immersions (definition in Section 2.2) has been developed both

from physical and geometric interest. For instance, the Cauchy problem for the Einstein equa-

tions is formulated as an initial data problem on a Riemannian manifold which becomes a

Cauchy hypersurface in the solution spacetime, see [40, Chap. 7]. Recall also the Penrose

incompleteness theorem which relates the existence of a trapped codimension two spacelike

immersion with the singularities of certain spacetimes [40, Chap. 7]. We also want to high-

light the seminal work [58]. The notion of trapped immersion is usually given in terms of the

mean curvature vector field of the immersion, Definition 4.45.

We wish to highlight that the study of spacelike immersions in generalized Friedmann-
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Lemaître-Robertson-Walker spacetimes goes back to the seminal work [7]. Since then mul-

tiple researchers have developed this topic. These spacetimes are written as I ×λ F with

metric −dt2 + λ2(t)gF . From this point of view, the spacelike immersions in generalized

Schwarzschild spacetimes can be seen as the next natural step to shed light in the theory of

spacelike submanifolds. As far as we know, there is no many works devoted to this problem.

For instance, in the setting of stationary spacetimes, the study of prescribed mean curvature

problem in Schwarzschild and Reissner-Nordström spacetimes appears in [25]. On the other

hand, the results in [65] have been enriching and have given us a better approach for the devel-

opment of this Chapter.

The plan of Chapter 4 is as follows. Section 4.1 presents the distributions Dξ and Dη

and also includes several technical results to be used later. Section 4.2 focuses on the family

of Lorentzian manifolds we are interested in, Definition 1.1. Since this family of Lorentzian

manifolds are warped product manifolds, we particularize the formulas for theirs Levi-Civita

connections from [51, Chap. 7]. For a spacelike immersion in a generalized Schwarzschild

spacetime Ψ : M → B ×λ F, we have written Ψ = (ΨB,ΨF ), u := t ◦ ΨB and v := r ◦ ΨB.

Lemma 4.8 states that a spacelike immersion factors through an integral hypersurface of Dξ if

and only if

∇v = (f ◦ΨB)
2∇u,

where ∇ denotes the gradient operator corresponding to the induced metric g on M . In order

to make the presentation of the results more fluid, in the Introduction we specialize our results

and discussions to the distribution Dξ and its integral lightlike hypersurfaces. Almost all the

results admit a similar version for the other distribution Dη.

Section 4.3 exhibits several fundamental equations for spacelike immersions in general-

ized Schwarzschild spacetimes. As a consequence, we obtain an integral characterization of

compact spacelike immersions through leaves of Dξ, Theorem 4.14.

Assume Ψ : M → B ×λ F is a compact spacelike immersion in a generalized

Schwarzschild spacetime with f ′ > 0 (resp. f ′ < 0). Then∫
M

[
n g̃(H, ξ⊥) +

(ξλ
λ

◦ΨB

) [
n+ 2g(ξ⊤, η⊤)

] ]
dµg ≥ 0. (resp. ≤ 0),

where the superscripts ⊤ and ⊥ denote the tangent and normal parts of the in-

dicated vector fields, respectively. The equality holds if and only if M factors

through an integral hypersurface of Dξ.
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Our main results are in Sections 4.4, 4.5 and 4.6, where we will focus on the case of

spacelike immersions factoring through a lightlike integral hypersurface of Dξ or Dη. First,

in Section 4.4 we deal with the case of arbitrary codimension. Our maim aim here is to find

several conditions which assure that the immersion factors through a slice of the generalized

Schwarzschild spacetime. That means the above mentioned functions u and v are constants.

Therefore, assuming that we have a spacelike immersion Ψ :M → B×λF through an integral

hypersurface of Dξ, we want to highlight some results here:

• Assume ηλ ≥ 0 and M compact with H = 0. Then M factors through a

slice and the immersion of M in such slice is minimal, Corollary 4.23.

• Assume M compact with Ricg(∇v,∇v) ≤ 0. The normal vector field η⊥ is

an umbilic direction if and only if M factors through a slice, Theorem 4.24.

• Assume ξλ ̸= 0. Then M factors through a slice if and only if ∇⊥ξ = 0,

Theorem 4.30.

The assumption ξλ ̸= 0 in Theorem 4.30 hold for a wide family of generalized Schwarzschild

spacetimes. Indeed, when λ(t, r) = r, this hypothesis is satisfied. This warping function in-

cludes all physically relevant spacetimes of the family, such as the Schwarzschild or Reissner-

Nordström spacetimes. For Theorem 4.24, it is a key fact that if η⊥ is an umbilic direction then

∇v is a conformal vector field (4.15).

In our notion of generalized Schwarzschild spacetime, the geometry of the Riemannian

part F is arbitrary. Nevertheless, the case of spherical symmetry is the most relevant from

the physical point of view. Theorem 4.25 and Proposition 4.32 show conditions to ensure that

F is a topological sphere. In fact, if we assume M compact and η⊥ an umbilic direction,

Theorem 4.25 states a condition on the Ricci tensor which shows that, when ∇v is a nonzero

vector field, M is isometric to a sphere Sn(c) of constant sectional curvature c. This result is a

consequence of [27, Theor. 1]. Therefore, in case that the codimension of M is two and F is

simply-connected, by means of Proposition 4.32, the manifold F must be a topological sphere.

Section 4.5 is devoted to study codimension two (m = n) immersions through these light-

like integral hypersurfaces. In the terminology of black holes, a such immersion M is called a

cross-section when every lightlike geodesic generator intersects M at most one, [33]. At topo-

logical level, every codimension two immersion through a lightlike integral hypersurface is a

covering space of the fiber F but not necessarily a Riemannian covering, Proposition 4.32 and
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Remark 4.34. The mean curvature vector field of these immersions is obtained in Proposition

4.37 and Corollary 4.38 as follows

H =

[
ηλ

λ
◦ΨB −

(ξλ
2λ

◦ΨB

)
∥∇v∥2 + 1

n
∆v

]
ξ +

(ξλ
λ

◦ΨB

)
ℓξ,

where ℓξ is the normal lightlike vector field toM with g̃(ξ, ℓξ) = −1. Furthermore,

we compute that

∥H∥2 = 1

v2

(
(f ◦ΨB)

2 − SΨ∗
F (gF ) − v2Sg

n(n− 1)

)
,

where Sg and SΨ∗
F (gF ) are the scalar curvatures of the induced metric g and Ψ∗

F (gF )

onM , respectively. Since there is no possibility of confusion, we denote the norms

of g and g̃ the same as ∥ · ∥.

These results extend previous ones in [3], [4], [52] and [56], see details in Remark 4.39. The

second formula shows a relation between the intrinsic and extrinsic geometry of the codimen-

sion two immersions through lightlike integral hypersurfaces. A such kind of relation has been

previously pointed out for the case of the lightlike cone in the Minkowski spacetime in [52]

and [56]. Section 4.5 also contains a characterization of marginally trapped immersions when

the warping function λ agrees with the radial coordinate, Corollary 4.47. This result extends

[4, Cor. 6.3] where the case of the lightlike cone in the Minkowski spacetime was studied.

We finish this Chapter with Section 4.6. Here we proceed with the study of immersions

with parallel mean curvature vector field. That is, we consider the condition ∇⊥H = 0.

Under a technical condition, Theorem 4.52 provides an intrinsic characterization of the slices as

the unique codimension two immersions through lightlike integral hypersurfaces with parallel

mean curvature vector field.

In Chapter 5 we will relate tractor conformal bundles and tractor connections with codimen-

sion two spacelike immersions in a Lorentzian manifold. Although we can find the definitions

of these objects in Section 3.1 (Definitions 3.7 and 3.8), we will include the formal definitions

here to facilitate reading.

([19]) A (Riemannian) tractor conformal bundle on a manifold M with dimM =

n ≥ 2 is a rank n+ 2 real vector bundle T →M endowed with a bundle metric h

of Lorentzian signature and with a distinguished oriented lightlike line subbundle

T 1 ⊂ T .
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([14], [19]) A tractor connection ∇T on a tractor conformal bundle T → M is a

linear connection such that ∇T h = 0 and the following map β is an isomorphism

of vector bundles on M

TM Hom
(
T 1, (T 1)⊥/T 1

)

M

β

given by

β(Vx)
(
ξ
)
= ∇T

Vxσ + T 1
x , (1.3)

where x ∈M , Vx ∈ TxM , ξ ∈ T 1
x and σ ∈ Γ(T 1) is any section with σ(x) = ξ.

In Section 3.1 we can see how (T , T 1,h,∇T ) induces a conformal class of Riemannian

metrics c onM . If we start with a Riemannian conformal structure (M, c) and the induced con-

formal structure on M by means of (T , T 1,h,∇T ) agrees with c, we say that (T , T 1,h,∇T )

is a standard tractor conformal bundle for the fixed Riemannian conformal structure.

From the point of view of Lorentzian geometry, there is a setting where several of the above

mentioned objects arise in a natural way. Namely, from every spacelike inmersion Ψ: Mn →

(M̃n+2, g̃) and each lightlike normal vector field ξ, we can construct a tractor conformal bundle

as follows. The vector bundle T on M is the pullback via Ψ of the tangent bundle of the

manifold M̃ with bundle metric g̃ and distinguished lightlike line subbundle T 1 = Span{ξ}.

The natural choice for a tractor connection is the induced connection ∇̃.

Of course, the induced connection ∇̃ is always a metric connection but the map β defines an

isomorphism of vector bundles if and only if the Weingarten endomorphism Aξ corresponding

to the normal vector field ξ is non-singular at every point x ∈ M, Proposition 5.1. Then, the

following natural question is about when (T , T 1, g̃, ∇̃) is a standard tractor conformal bundle

for the conformal class of the induced metric on M .

That is, when the induced metric from Ψ belongs to the equivalence class of the

conformal structure deduced from (T , T 1, g̃, ∇̃)?

This happens if and only if there is a nonvanishing smooth function µ ∈ C∞(M) such that

A2
ξ = µ2 · Id, Proposition 5.1. There are two mutually disjoint possibilities in order to the

condition A2
ξ = µ2 · Id holds. Namely, Aξ = µ · Id or M is endowed with an almost product
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structure P (i.e., P ∈ T(1,1)M with P 2 = Id and P ̸= ±Id) compatible with the induced metric

and therefore with its conformal class, see Section 5.1.

The following natural question is addressed in Theorem 5.4 and Corollary 5.7, where we

characterize

when the standard tractor conformal bundle corresponding to a spacelike immer-

sion Ψ: Mn → (M̃n+2, g̃) and a lightlike normal vector field ξ as above is normal.

The normality condition on (T , T 1, g̃, ∇̃) is stated in terms of relationships between the ex-

trinsic and intrinsic geometry of the spacelike immersion. Theorem 5.4 deals with the general

case A2
ξ = µ2 · Id and Corollary 5.7 with the umbilical one. Although, the normality condition

for a tractor connection was stated for dimM = n ≥ 3, the curvature properties in Theorem

3.22 have sense for n ≥ 2. The main results of this Chapter can be summarized as follows.

Let Ψ: Mn → (M̃n+2, g̃) be a spacelike immersion in a Lorentzian manifold with

induced metric g, and let ξ ∈ X⊥(M) be a lightlike vector field. Let us consider

(T , T 1, g̃, ∇̃) as above. Then,

1. The induced connection ∇̃ is a tractor connection if and only if the Wein-

garten endomorphism Aξ is not singular at every point.

2. (T , T 1, g̃, ∇̃) is standard for the induced metric g if and only if there is a

smooth nonvanishing function µ ∈ C∞(M) such that A2
ξ = µ2 · Id.

3. Assume Aξ = µ · Id and there is a lightlike vector field ℓ ∈ X⊥(M) such

that g̃(ξ, ℓ) = −1. Then, (T , T 1, g̃, ∇̃) is normal if and only if the following

conditions hold:

(a) ∇⊥ξ = 1
µ
dµ⊗ ξ, where ∇⊥ denotes the normal connection.

(b) For every V,W ∈ X(M), the Ricci tensor of g satisfies

Ricg(V,W ) =
n

2
∥H∥2 g(V,W )− (n− 2)g̃(H, ξ)g(V,AℓW ),

where H is the mean curvature vector field of Ψ: M → (M̃, g̃).

The general case A2
ξ = µ2 · Id is analyzed in Theorem 5.4.

As a direct consequence when (T , T 1, g̃, ∇̃) is normal, the scalar curvature Sg of the induced

metric g satisfies Sg = n(n − 1)∥H∥2, moreover (M, g) is Einstein if and only if Ψ : M →

(M̃, g̃) is totally umbilical.
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Chapter 5 ends with an application to genereralized Schwarzschild spacetimes (Section

5.2). We assume that (M̃, g̃) now belongs to the said family of spacetimes, then Proposition

5.11 states the following result.

Let Ψ : M → B ×λ F be a codimension two spacelike immersion through an

integral hypersurface L of Dξ. Then, (T , T 1, g̃, ∇̃) is a standard tractor conformal

bundle if and only if ξλ ̸= 0.

Furthermore, we particularize Corollary 5.7 to give the hypotheses under which ∇̃ is normal,

Theorem 5.12. Finally, we assume λ(t, r) = r and can give the following characterization,

Corollary 5.15.

Let Ψ :M → B×rF be a totally umbilical codimension two spacelike immersion

through an integral hypersurface L of Dξ. Then, (T , T 1, g̃, ∇̃) is normal if and

only if Ricg = (n− 1)∥H∥2 g. Furthermore, for dimension n ≥ 3, the immersion

Ψ has parallel mean curvature vector field.

We finish the thesis with Chapter 6. The planning of this Chapter is as follows. Starting

from a Riemannian conformal structure (M, c), by setting a metric g ∈ c and an admissible

1-parameter family γ : R → T(1,1)M , see Definition 6.6, we construct a (n + 2)-dimensional

Lorentzian manifold (M̃, g̃), see Proposition 6.8, such that

1. there is a distinguished lightlike hypersurface Q ⊂ M̃ and

2. every metric in the conformal class e2ug ∈ c is the induced metric of an immersion from

M to M̃ through Q. Such immersions are defined in (6.12) and are denoted by Ψu.

This construction is inspired by the Fefferman and Graham ambient metric for conformal struc-

tures in the 1980s, [30] (see also [31]). Roughly speaking, the Fefferman and Graham construc-

tion proceeds as follows. Starting from a Riemannian conformal structure (M, c), the space

of scales Q consists of the rays of metrics y := t2gx on TxM where x ∈ M , t ∈ R>0 and

g ∈ c. The ambient metric g̃ is defined so that (M̃, g̃) is a Lorentzian manifold that admits Q

as an embedded lightlike hypersurface. The original Fefferman-Graham metric requires certain

normalisation condition (see Remark 6.4).

In this thesis, we will adopt the weaker notion of pre-ambient space given in [19], Definition

6.3. The aforementioned manifold (M̃, g̃) provided in Proposition 6.8 is a pre-ambient space
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where g̃ is a pre-ambient metric as defined in (6.2). Note that g̃ is not a warped product metric

in general, see Remark 6.9.

Now, every spacelike immersion Ψu has codimension two in (M̃, g̃) and its normal bundle

is spanned by the lightlike vector fields vector fields ξu and ℓu given in (6.14). The main aim

of this Chapter is to show Theorem 6.20 which states that:

Assume the admissible 1-parameter family γ satisfies trace(γ(0)) = Sg

n−1
, where

Sg is the scalar curvature of the fixed metric g. Then, the assignment

D : c→ T(0,2)M, e2ug 7→ e2ug (Aℓu(−),−) ,

defines a Möbius structure for the Riemannian conformal structure (M, c), where

Aℓu denotes the Weingarten endomorphism of ℓu. Moreover, every Möbius struc-

ture for a Riemannian conformal structure (M, c) arises in this way. Even more, if

we remove the trace hypothesis, what we are doing is recovering all the “Schouten

type-tensors” from spacelike immersions, see Remark 6.21.

The content of this Chapter is distributed as follows. In Section 6.1, we recall the no-

tion of Möbius structure on Riemannian conformal structures (M, c) given in Definition 3.24.

Then, we show some properties from the Lorentzian geometry perspective of the notion of pre-

ambient space. Section 6.2 provides an explicit method to construct examples of pre-ambient

spaces and includes several curvature properties of these pre-ambient spaces. In particular,

we give conditions which permit to assure that the Ricci tensor of these pre-ambient spaces

vanishes along Q, Corollary 6.14.

The main results are in Section 6.3, where, as mentioned, it is essentially shown that Möbius

structures agree with certain Weingarten endomorphisms of codimension two spacelike im-

mersions in these pre-ambient spaces, Theorem 6.20. This result is remarkable for conformal

structures in surfaces. In fact, there is no preferred Möbius structure on a two dimensional Rie-

mannian conformal structure. Thus, Theorem 6.20 provides an explicit method to construct

such structures. Section 6.3 also includes several properties on the family of spacelike immer-

sions Ψu. In fact, Corollary 6.18 shows that the normal curvature tensor of such immersions

always vanishes. Also, as a consequence of Remark 6.19, the mean curvature vector field of

an isometric immersion Ψu with induced metric e2ug satisfies

∥Hu∥2 = Se
2ug

n(n− 1)
,



34 Introduction

see details in Remark 6.26. We want to highlight that this formula has already appeared several

times earlier in the thesis, playing a fundamental role. Note that the causal character of Hu in

the Lorentzian manifold M̃ is determined by the sign of the scalar curvature of the metric

e2ug. Remark 6.26 also includes that ∇⊥Hu = 0 if and only if Se
2ug is constant (compare

with [56, Cor. 3.10]). In particular, when M is compact, the positive answer to the Yamabe

problem (see [41]) implies that there exists an immersion Ψu with parallel mean curvature

vector field. Recall that the positive solution to the Yamabe problem states that on every (n ≥

3)-dimensional compact Riemannian conformal structure (M, c) there is a metric g ∈ c with

constant scalar curvature.

Section 6.4 focusses in the two dimensional case, we write down the Codazzi equation

in terms of the Cotton-York tensor, Lemma 6.27. Then, Proposition 6.29 shows that tangent

spaces of M along these immersions are invariant under the curvature tensor of (M̃, g̃) if and

only if the Cotton-York tensor of c vanishes. In the terminology of [15], [60], this means that

the Möbius structure D on (M, c) is flat.
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Preliminaries

In this preliminary Chapter we review the necessary definitions and background that will be

used throughout the thesis.

2.1 Semi-Riemannian geometry

For semi-Riemannian geometry our basic reference is [51]. All geometric objects of interest

will be considered smooth unless otherwise specified. The manifolds are assumed to be Haus-

dorff, satisfying the second axiom of countability and without boundary. For a manifold M ,

we denote by C∞(M) the algebra of smooth functions on M , by X(M) the Lie algebra and

C∞(M)−module of its tangent vector fields and by Ω1(M,R) the C∞(M)−module of its real

valued 1-forms. We write TxM for the tangent vector space of M at x ∈ M and TM for the

total space of the vector tangent bundle. For a smooth function f : M → M̃ between two

manifolds M and M̃ we denote by Txf : TxM → Tf(x)M̃ the differential map of f at x ∈M .

Let (M, g) be an n-dimensional semi-Riemannian manifold. That is, M is a manifold

endowed with a metric tensor g of signature (p, q) where p + q = n. Here, p and q denote

the number of − and + that appear in the matrix representation of the metric g with respect

to any orthonormal basis, respectively. Unless stated otherwise, we assume n ≥ 2 along this

thesis. We write ∇ for the Levi-Civita connection on the semi-Riemannian manifold (M, g).

Recall that the Levi-Civita connection is the unique linear connection on TM that preserves

the metric g and is torsion-free. Finally, we denote the quadratic form corresponding to g by

∥ · ∥2.

We can distinguish the following types of vectors in a semi-Riemannian manifold with

35
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p ≥ 1. Let Vx ∈ TxM be a tangent vector at a point x ∈M , then we say that Vx is

• spacelike if ∥Vx∥2 > 0 or Vx = 0,

• timelike if ∥Vx∥2 < 0 and

• lightlike if ∥Vx∥2 = 0 and Vx ̸= 0.

If ∥Vx∥2 ≤ 0 and Vx ̸= 0 the tangent vector Vx is said to be causal. These definitions can be

extended to the case of a tangent vector field V ∈ X(M) considering that V is spacelike (resp.

timelike, lightlike, causal) if Vx := V (x) is a spacelike (resp. timelike, lightlike, causal) vector

at every point x ∈M .

In addition, let us also recall the definition of conformal vector field. A vector field Z ∈

X(M) is said to be conformal if

LZg = 2hg,

where L denotes the Lie derivative and h is a function defined on M . Equivalently, this condi-

tion can be written

g(∇VZ,W ) + g(V,∇WZ) = hg(V,W )

for every V,W ∈ X(M). A conformal vector field Z is called a Killing vector field when

h = 0. On the other hand, if h is a non-zero constant function, the vector field Z is said to be

homothetic.

Below we include the definitions of some differential operators and tensors associated to

the metric g. The gradient vector field, ∇h, of a function h ∈ C∞(M) is the vector field

metrically equivalent to the 1-form dh ∈ Ω1(M,R), that is, it is defined by the relation

g(∇h, V ) = V (h) = dh(V ),

for every V ∈ X(M). Notice that we use the same notation for both the Levi-Civita connection

and the gradient operator. The divergence, div(V ), of a vector field V ∈ X(M) is the smooth

function defined by

div(V ) = trace(W 7→ ∇WV ).

The Hessian operator Hess(h) of a function h ∈ C∞(M) is defined as

Hess(h) : X(M)× X(M) → C∞(M), (V,W ) 7→ g(∇V∇h,W ).
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Lastly, we want to introduce the Laplace operator, ∆h, of a function h ∈ C∞(M). This is the

smooth function defined as

∆h = div(∇h).

Our assumption on the sign of the Riemann curvature tensor is

R(U, V )W = ∇U∇VW −∇V∇UW −∇[U,V ]W,

for every U, V,W ∈ X(M). Let us also recall the definitions of the Ricci tensor and the scalar

curvature. In terms of a local orthonormal basis (E1, . . . , En), we define the Ricci tensor of g

as

Ricg(V,W ) =
n∑
i=1

ϵig (R(Ei, V )W,Ei) ,

where ϵi = g(Ei, Ei), and the scalar curvature

Sg =
n∑
i=1

ϵiRic(Ei, Ei).

When p = 0 and q = n, the pair (M, g) is said to be a Riemannian manifold. In this case,

we will adopt the same notation shown along this Section.

When p = 1 and q = n − 1, the pair (M, g) is said to be a Lorentzian manifold. For each

x ∈M , it is well-known that the subset of timelike vectors in TxM (resp. causal, lightlike) has

two connected parts and each one of these parts will be called timelike cone (resp. causal cone,

lightlike cone). A Lorentzian manifold is said to be time-orientable if there exists a smooth

choice of one of the timelike cones. Being time-orientable is equivalent to the existence of a

globally defined timelike vector field on (M, g) (see [51, Lemma 5.32]). A connected time-

orientable n-dimensional Lorentzian manifold is called a spacetime [51, Chap. 6]. Unless

stated otherwise, throughout this work we will use widetilde notation when we are working in

Lorentzian signature, that is, we write M̃, g̃, ∇̃, R̃, R̃ic . . . We also denote the quadratic form

corresponding to g̃ by ∥ · ∥2.

To conclude this Section we would like to recall the notion of involutive distribution and the

well-known Frobenius Theorem (see [66, Chap. 1]). Let d be an integer such that 1 ≤ d ≤ n.

A d-dimensional distribution D on an n-dimensional manifold M is a smooth choice of a d-

dimensional subspace D(x) of TxM for every x ∈ M . A vector field V ∈ X(M) is said to lie

in the distribution D if Vx ∈ D(x) for every x ∈ M . A distribution is called involutive if for

any two vector fields V,W ∈ X(M) that lie in the distribution D, the Lie bracket [V,W ] lies

in the distribution D as well.
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Definition 2.1. A smooth immersion Ψ : N → M is said to be an integral manifold of a

distribution D on M if

TpΨ · (TpN) = D(Ψ(p)),

for every p ∈ N .

Now we can state the Frobenius Theorem ([66, Theor. 1.60]).

Theorem 2.2. Let D be a d-dimensional involutive distribution on M and x ∈M . Then there

exists an integral manifold Ψ : N → M passing trough x, that is, it exists a point p ∈ N such

that Ψ(p) = x.

Finally, we give the notion of maximal integral manifold.

Definition 2.3. A maximal integral submanifold Ψ : L → M of a distribution D on M is

a connected integral manifold of D whose image in M is not a proper subset of any other

connected integral manifold of D.

As a consequence of the Frobenius Theorem we have the following result ([66, Theor.

1.64]).

Theorem 2.4. Let D be a d-dimensional involutive distribution on M and x ∈ M . Then

through x there passes a unique maximal connected integral manifold L of D, and every con-

nected integral manifold of D through x is contained in L.

2.2 Immersions in Lorentzian manifolds

In this Section our basic references are [51] and [24]. A smooth immersion Ψ : M → (M̃, g̃)

of a connected n-dimensional manifold M in an (m+2)-dimensional Lorentzian manifold M̃

is said to be spacelike if the induced metric g := Ψ∗(g̃) is Riemannian. Here, Ψ∗(g̃) denotes

the pullback of g̃ by the immersion Ψ. The spacelike immersions have been studied for a

long time, both from the physical and mathematical points of view (see for instance [61] and

references therein).

Let X(M) be the C∞(M)−module of vector fields along the spacelike immersion Ψ, that

is, V ∈ X(M) when for every x ∈ M we have Vx ∈ TΨ(x)M̃ . Every vector field X ∈ X(M̃)

provides, in a natural way, the vector field X|Ψ := X ◦ Ψ ∈ X(M). The set of vector fields

X(M) may be seen as a C∞(M)−submodule of X(M) by meaning of

X(M) → X(M), V 7→ TΨ · V,
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where (TΨ · V )(x) := TxΨ · Vx for all x ∈M .

As usual, for V ∈ X(M), we have the decomposition

V = TΨ · V ⊤ + V ⊥,

where V ⊤
x ∈ TxM and V ⊥

x ∈ (TxΨ · TxM)⊥ for all x ∈ M . We call V ⊤ the tangent part of V

and V ⊥ the normal part of V . The C∞(M)−submodule of X(M) of all normal vector fields

along Ψ is denoted by X⊥(M), that is,

X⊥(M) = {V ∈ X(M) : V ⊤ = 0}.

In order to avoid ambiguities, we explicitly write the immersions and differential maps when

necessary.

As we have stated in the previous Section, we write ∇̃ and ∇ for the Levi-Civita connec-

tions of g̃ and g, respectively. As usual, we also denote by ∇̃ the induced connection on M .

The decomposition of the induced connection ∇̃, into tangent and normal parts, leads to the

Gauss and Weingarten formulas of Ψ as follows (see [51, Chap. 4])

∇̃VW = ∇VW + II(V,W ) and ∇̃V ζ = −AζV +∇⊥
V ζ, (2.1)

for every tangent vector fields V,W ∈ X(M) and ζ ∈ X⊥(M). Here ∇⊥ denotes the normal

connection on M , II the second fundamental form and Aζ the Weingarten endomorphism (or

shape operator) associated to ζ . Every Weingarten endomorphism Aζ is self-adjoint and the

second fundamental form is symmetric. They are also related by the following formula

g (AζV,W ) = g̃ (II(V,W ), ζ) . (2.2)

A normal vector field or normal direction ζ is said to be umbilic if Aζ = µ · Id for a smooth

function µ ∈ C∞(M). We say that Ψ is totally umbilical when every normal direction is

umbilic. On the other hand, when the second fundamental form II is identically zero at every

point on M , the immersion Ψ is said to be totally geodesic.

The mean curvature vector field is defined by H = 1
n
tracegII where trace g denotes the

trace with respect to the metric g. From (2.2) we have

trace(Aζ) = ng̃(H, ζ).

We say that the immersion Ψ has parallel mean curvature vector field when ∇⊥
VH = 0 for

every V ∈ X(M).
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Taking into account that our convention on the sign of the Riemann curvature tensor is the

opposite to [51], the Gauss equation is given by (e.g., [51, Chap. 4])

g(R(U, V )W,X) = g̃(R̃(U, V )W,X)−g̃(II(U,W ), II(V,X))+g̃(II(U,X), II(V,W )), (2.3)

for any U, V,W,X ∈ X(M). Also, we let

(∇U II)(V,W ) := ∇⊥
U(II(V,W ))− II(∇UV,W )− II(V,∇UW ). (2.4)

The Codazzi equation reads as follows (see for instance [51, Prop. 4.33])

(∇U II)(V,W )− (∇V II)(U,W ) =
(
R̃(U, V )W

)⊥
. (2.5)

The normal curvature tensor R⊥ is given by

R⊥(V,W )ζ = ∇⊥
V∇⊥

W ζ −∇⊥
W∇⊥

V ζ −∇⊥
[V,W ]ζ.

A particular case occurs when, working with a codimension two spacelike immersion Ψ,

that ism = n, we are able to find a global lightlike normal frame {ξ, ℓ} along Ψ. That is, ξ and ℓ

are two globally defined normal vector fields along Ψ which are lightlike with the normalization

condition g̃(ξ, ℓ) = −1. Let Aξ and Aℓ be the associated Weingarten endomorphisms. Then,

for every V,W ∈ X(M), the second fundamental form can be written as

II(V,W ) = −g(AℓV,W )ξ − g(AξV,W )ℓ. (2.6)

Taking traces in this expression, we obtain for the mean curvature vector field that

H = − 1

n

(
trace (Aℓ)ξ + trace (Aξ)ℓ

)
. (2.7)

On the other hand, we would also like to recall the notions of lightlike manifold and light-

like hypersurface. A lightlike manifold is a pair (N, h̄) where N is an (m + 1)-dimensional

manifold and is equipped with a lightlike metric h̄. That is, h̄ is a symmetric (0, 2)-tensor field

on N such that

1. h̄(ξ, ξ) ≥ 0 for all ξ ∈ X(N) and

2. for every y ∈ N , the radical Rad(h̄)(y) = {ξy ∈ TyN : h̄(ξy,−) = 0} defines a

1-dimensional distribution on N .
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A smooth immersion Ψ: N → (M̃, g̃) in an arbitrary (m+2)-dimensional Lorentzian manifold

is said to be a lightlike hypersurface when the induced tensor Ψ∗(g̃) is a lightlike metric. The

terminology lightlike manifolds stems from General Relativity where lightlike hypersurfaces

are models of various types of horizons. Roughly speaking, the horizon of a set A marks the

limit of the region of such spacetime controlled by a set A [51, Chap. 14]. Also in General

Relativity, the existence of smooth closed achronal totally geodesic lightlike hypersurfaces

(the Null Splitting Theorem) [32, Theor. IV.1] has important consequences in order to obtain

rigidity results (see for instance [32, Theor. IV.3]). Being achronal means that the timelike

curves of the ambient cut at most once to the lightlike hypersurface (see [51, p. 413]). For the

notion of totally geodesic lightlike hypersurface see Remark 4.5.

A classical example of a lightlike hypersurface is the lightlike cone with vertex at the origin

of the Minkowski spacetime Lm+2, defined as

Λ := {v ∈ Lm+2 : ⟨v, v⟩ = 0, v ̸= 0}.

Recall that the Minkowski spacetime Lm+2 is the Lorentzian manifold
(
Rm+2, ⟨·, ·⟩

)
, where

⟨·, ·⟩ = −dx21 + dx22 + . . . + dx2m+2 with respect to the canonical coordinate system. At

times, we treat Lm+2 purely as a Lorentzian vector space. In such instances, we label it as

the Minkowski vector space and also denote its scalar product by ⟨·, ·⟩. Its canonical basis is

represented by (e1, . . . , em+2), where ei = (0, . . . , 0, 1
î
, 0, . . . , 0).

2.3 Warped product manifolds

Although the definition of warped product is more general, we particularize on the family we

are interested in. Let (B, gB) be a two dimensional oriented Lorentzian manifold and (F, gF )

be an m-dimensional connected Riemannian manifold. Fix λ ∈ C∞(B) with λ > 0, we define

the Lorentzian warped product manifold given by the product manifold M̃ = B × F endowed

with the Lorentzian metric

g̃ = π∗
B(gB) + (λ ◦ πB)2π∗

F (gF ),

where πB and πF are the natural projections on B and F , respectively [51, Chap. 7]. As usual,

we denote the Lorentzian manifold (M̃, g̃) as B ×λ F and λ is called the warping function.

The sets of vector fields X(B) and X(F ) can be lifted to X(M̃) in a natural way. We denote the

sets of all lifts as L(B) and L(F ), respectively. We use the same notation for a vector field and
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its lift and then, every vector field E ∈ X(M̃) has a unique expression as E = X + V where

X ∈ L(B) and V ∈ L(F ).

Let us recall that the Levi-Civita connection of g̃ is given in [51, Prop. 7.35] as follows.

For X, Y ∈ L(B) and V,W ∈ L(F ), we have

∇̃XY = ∇B
XY, ∇̃XV = ∇̃VX =

Xλ

λ
V, ∇̃VW = − g̃(V,W )

λ
∇Bλ+∇F

VW, (2.8)

where ∇B and ∇F are the Levi-Civita connections of B and F , respectively. For every h ∈

C∞(B), we write ∇Bh for the gradient of h with respect to the metric gB. Besides we have

∇̃(h ◦ πB) = ∇Bh ◦ πB, [51, Lemma. 7.34]. As was mentioned in the introduction, there are

several very relevant examples in this family.

Example 2.5. The (m + 2)-dimensional Minkowski spacetime Lm+2 can be described in two

ways as a warped product of this type.

• For the first one we take (B, gB) = L2 with canonical coordinates (t, r), λ(t, r) = 1 and

(F, gF ) = Em, where Em denotes the m-dimensional Euclidean space. Hence, we have

Lm+2 = L2 × Em.

• The second one is obtained by taking (B, gB) = R×R>0 ⊂ L2 with the same coordinate

system as above, λ(t, r) = r and (F, gF ) = Sm ⊂ Em+1. Thus, the smooth map

ϕ : (R× R>0)×r Sm → Lm+2, (t, r, x) 7→ (t, rx) (2.9)

provides an isometry with the open subset {(t, p) ∈ Lm+2 : p ̸= 0}, see Figure 2.1.

Figure 2.1: Coordinates on Lm+2 induced by ϕ.
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The family of warped products we are interested in is given in Definition 1.1. That is,

the generalized Schwarzschild spacetimes. This family includes the warped products given in

Example 2.5 and, as was mentioned, the exterior Schwarzschild spacetime.

Let I be an open interval in R and (F, gF ) be a connected Riemannian manifold, the space-

times (I × F,−dt2 + λ2(t)gF ) are called generalized Friedmann-Lemaître-Robertson-Walker

spacetimes. The study of spacelike hypersurfaces in such spacetimes goes back to the seminal

work [7]. Since then, many other researchers have continued this approach. From our point

of view, a next natural step could be to study spacelike immersions in warped products where

(I,−dt2) is replaced by a two dimensional oriented Lorentzian manifold (B, gB). To be pre-

cise, in Chapter 4 we will study spacelike immersions in the still quite general ambient of the

generalized Schwarzschild spacetimes.

Let us recall that for every q0 ∈ B, the spacelike immersion F ↪→ B ×λ F given by

x 7→ (q0, x) is called the slice at level q0. From [51, Prop. 7.35 (3)], we know that the normal

part of ∇̃VW for V,W ∈ L(F ) is

II(V,W ) = − g̃(V,W )

λ
∇Bλ,

so the mean curvature vector field of the slice at level q0 is

H = −∇Bλ

λ
(q0). (2.10)

In particular, the slices are totally umbilical spacelike embedded immersions.

2.4 Riemannian conformal geometry

For conformal geometry our basic references are [9] and [11, Chap. 1]. First, we make precise

the notion of Riemannian conformal structure.

Definition 2.6. Two Riemannian metrics g and g′ on an n-dimensional manifold M are said

to be conformally equivalent when g′ = e2ug for a smooth function u on M . The set of

all conformally equivalent metrics to a Riemannian metric g is called the conformal class

c = [g] of g. A Riemannian conformal structure (M, c) is the pair formed by an n-dimensional

manifold M endowed with a conformal class c of Riemannian metrics.

It is a well-known result that the Levi-Civita connections of two metrics in the same con-

formal class are related as follows (see [11, Theor. 1.159])

∇e2ug
V W = ∇g

VW + du(V )W + du(W )V − g(V,W )∇gu,
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for every V,W ∈ X(M). Here ∇e2ug and ∇g denote the Levi-Civita connections of e2ug and

g, respectively. Thus, we have the following conformal transformation law

Rice
2ug = Ricg − (n− 2)Hess(u)− (∆u)g − (n− 2)∥∇u∥2g + (n− 2)du⊗ du (2.11)

where all operators on the right-side of the equality are taken with respect to g. As a conse-

quence we have

e2uSe
2ug = Sg − 2(n− 1)∆u− (n− 2)(n− 1)∥∇u∥2. (2.12)

For (n ≥ 3)-dimensional Riemannian manifolds (M, g), we would like to introduce the

Schouten tensor. It is defined by

P g =
1

n− 2

(
Ricg − Sg

2(n− 1)
g
)
. (2.13)

Let us note that the Schouten tensor is not defined for dimension n = 2 and, furthermore, it

satisfies tracegP
g = Sg

2(n−1)
. Also, as consequence of (2.11) and (2.12), the Schouten tensor

satisfies the following conformal transformation law

P e2ug = P g − ∥∇u∥2

2
g − Hess(u) + du⊗ du. (2.14)

The Schouten tensor plays a fundamental role in conformal geometry, this is clear from the

following decomposition formula for the Riemann curvature tensor (see Section 1G in [11]).

Proposition 2.7. The Riemann curvature tensor of a (n ≥ 3)-dimensional Riemannian mani-

folds (M, g) admits a decomposition of the form

Rg = W g − P g ⃝∧ g (2.15)

with a tensor W so that

W e2ug = e2uW g.

W is called the Weyl-tensor. Here ⃝∧ denotes the Kulkarni-Nomizu product of symmetric bilin-

ear forms. That is,

(τ1 ⃝∧ τ2)(U, V,W,X) : = τ1(U,W )τ2(V,X)− τ1(V,W )τ2(U,X) + τ1(V,X)τ2(U,W )

− τ1(U,X)τ2(V,W ),

where τ1 and τ2 are symmetric bilinear forms.
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A Riemannian manifold (M, g) is said to be (locally) conformally flat if for any point x ∈

M there exists an open neighborhood x ∈ U ⊂ M with local coordinate system (x1, . . . , xn)

such that g|U = e2u(dx21 + . . . + dx2n) for some smooth function u ∈ C∞(M). In dimension

(n ≥ 4), the vanishing of the Weyl-tensor W characterizes local conformal flatness, see for

instance [5]. Thus, Proposition 2.7 implies that for conformally flat metrics and dimension

n ≥ 4, the Riemann curvature tensor is governed by the Schouten tensor.

2.5 Principal fiber bundles and associated vector bundles

In this Section our basic references are [9] and [39]. Let p : P →M be a principal fiber bundle

with structure group G. We denote by ζX the fundamental vector field of the G-action on P

defined by the element X ∈ g, where g is the Lie algebra of G. That is, for every u ∈ P , the

vector field ζX is given by

ζX(u) :=
d

dt

∣∣∣∣
t=0

(
u · exp(tX)

)
.

Let u ∈ Px := p−1(x) ⊂ P be a point in the fiber of P over x ∈M . The subspace

VuP := TuPx = {ζX(u) : X ∈ g} ⊂ TuP

is called the vertical tangent space in u ∈ P . A linear subspace Hu ⊂ TuP is said to be hori-

zontal if TuP = Hu ⊕ VuP . A general connection on p : P → M is a horizontal distribution

H ⊂ TP , that is, for every u ∈ P we have that Hu is horizontal. General connections can be

defined in more general fiber bundles, not necessarily principal ones.

A principal connection on P is a general connection whose horizontal distribution is in-

variant with respect to the principal action of the structure group G, i.e.,

Hu·g = Tur
g · Hu

for every u ∈ P and g ∈ G, where rg is the (principal) right multiplication by g. It is easy

to prove that this definition of principal connection can be rewritten in another way. Let us

consider a 1-form γ ∈ Ω1(P , g) with values in the Lie algebra g, which satisfies the conditions

(1) (rg)∗(γ) = Ad(g−1) ◦ γ for all g ∈ G and

(2) γ(u)(ζX(u)) = X for all X ∈ g and u ∈ P ,
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where Ad denotes the adjoint representation of G on g. The 1-form γ defines a right invariant

horizontal distribution Hγ on P by

Hγ : u ∈ P → Hγ
u := Ker γ(u) ⊂ TuP .

Reciprocally, any right invariant horizontal distribution H : u ∈ P → Hu ⊂ TuP gives us a

1-form γ ∈ Ω1(P , g) as above by setting

γ(u) (Y + ζX(u)) := X ∈ g,

where Y ∈ Hu. Therefore, we have a one-to-one correspondence between principal connec-

tions and 1-forms γ ∈ Ω1(P , g) satisfying (1) and (2).

Now, let ρ : G → GL(V ) be a representation of the Lie group G over a k-dimensional

(real) vector space V . There is a standard way to associate a vector bundle E over M to the

principal fiber bundle P by means of ρ. The total space E is defined to be the orbit space of

the right action of G on P × V given by

(u, v) · g := (u · g, ρ(g−1)v), (u, v) ∈ P × V, g ∈ G.

We denote this orbit space by

E := P ×G V := (P × V )/G

and the elements of E by [u, v] := {(u · g, ρ(g−1)v) : g ∈ G}. Thus, E is a vector bundle over

M with fiber type V and projection pE([u, v]) := p(u) . Any point u in the fiber Px of P over

x ∈M gives rise to a linear isomorphism

[u] : v ∈ V → [u, v] ∈ Ex := p−1
E (x) (2.16)

between the fiber type V and the fiber Ex of E.

Definition 2.8. Let p : P → M be a principal fiber bundle with structure group G and

ρ : G → GL(V ) be a representation of the Lie group G over a vector space V . Then, the

vector bundle pE : E →M is called the associated vector bundle for the representation ρ.

Conversely, starting from a rank k real vector bundle πE : E → M with fiber type V . We

define the following set

Px := {u = (u1, . . . , uk) : u is a basis of Ex} ,
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for every x ∈ M . For simplicity, we assume a fixed basis in V . Then, we have the following

isomorphism

Px ≃ {Lu : V → Ex linear isomorphisms} .

Let us note that we denote by Lu the linear isomorphism associated with the basis u. Thus,

P :=
⋃
x∈M

Px can be endowed, in a natural way, with a smooth manifold structure and a right

action by G = GL(V ) as follows

u · g := Lu ◦ g,

where u ∈ P and g ∈ GL(V ). Note that this action comes from considering

V
g−→ V

Lu−→ Ex.

Thus, the natural projection p : P →M is a principal fiber bundle with structure groupGL(V )

and the original vector bundle πE : E →M can be recovered as the associated vector bundle

P ×GL(V ) V → E, [u, v] 7→ Lu(v), (2.17)

for the (standard) representation ρ = IdGL(V ). Furthermore, the principal fiber bundle p : P →

M is called the frame bundle of E.

Remark 2.9. Assume πE : E → M is a rank k real vector bundle endowed with a bundle

metric h of Lorentzian signature (1, k − 1) on E. Without loss of generality, we consider the

fiber type V to be the Minkowski vector space Lk with the canonical basis (e1, . . . , ek) fixed

(see end of the Section 2.2). For each x ∈M , we define the set

O(Ex) : = {u = (u1, . . . , uk) : u is an hx-orthonormal basis of Ex with u1 timelike}

≃
{
Lu : Lk → (Ex, hx) orthogonal maps

}
.

Now, we have that O(E) :=
⋃
x∈M

O(Ex)
p→ M is a principal fiber subbundle of the frame

bundle P ofE with structure groupO(1, k−1), where p is the natural projection andO(1, k−1)

acts on O(E) in a natural way. Here the action comes from considering

Lk g−→ Lk Lu−→ (Ex, hx),

where u ∈ O(Ex) and g ∈ O(1, k − 1). The vector bundle πE : E → M can be recovered as

the associated vector bundle O(E)×O(1,k−1) Lk for the standard representation. The principal

bundle O(E) is called the orthonormal frame bundle. It should be noted that the orthonormal

frame bundle for a bundle metric of signature (p, q) is defined in the same way.
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Let us return to the general case E = P ×G V . The set of smooth sections of the vector

bundleE is denoted by Γ(E). Any section σ ∈ Γ(E) can locally be represented as σ|U = [s, v],

where U is an open subset in M , s : U → P is a smooth local section of the principal fiber

bundle P and v ∈ C∞(U, V ) is a smooth function on U with values in the vector space V . Any

principal connection γ ∈ Ω1(P , g) induces a linear connection ∇γ : Γ(E) → Γ(T ∗M ⊗ E)

given by

(∇γ
Wσ)|U := [s, W (v) + ρ′ (γ(Ts ·W )) (v)] , (2.18)

where W ∈ X(M) and ρ′ denotes the differential map at the identity element of the represen-

tation ρ, that is, ρ′ : g → gl(V ). It is not difficult to show that the linear connection ∇γ is

well-defined. This linear connection is called the induced connection by γ.

Let us focus on the following particular case. Let (πE : E → M,h) be a rank k real

vector bundle endowed with a bundle metric h of Lorentzian signature (1, k − 1). Now, we

consider it as the associated vector bundle to its orthonormal frame bundle O(E), that is,

E ≃ O(E) ×O(1,k−1) Lk (see Remark 2.9). Then, the induced connection ∇γ by a principal

connection γ ∈ Ω1(O(E), o(1, k − 1)) given in formula (2.18) can be reinterpreted in this

context as follows. We write

γ =


γ11 · · · γ1k

... . . . ...

γk1 · · · γkk

 with γij ∈ Ω1
(
O(E),R

)
.

Since γ takes values in o(1, k − 1), it follows that γii = 0 for i ∈ {1, . . . , k}. Let σ ∈

Γ(O(E)×O(1,k−1)Lk) be a section that is locally given by σ|U = [s, v], where s = (s1, . . . , sk)

and si ∈ Γ(E|U) for i ∈ {1, . . . , k}. Note that we can identify si with the local section

[s, Ei] ∈ Γ
(
(O(E) ×O(1,k−1) Lk)|U

)
by means of (2.17), where Ei(x) = ei for every x ∈ U .

Recall that ei denotes the i-th element of the canonical basis of Lk. Then, taking in mind (2.17)

and formula (2.18), it has sense to compute

∇γ
wsi =

k∑
j=1

γji(s(x))(Txs · w)sj(x) ∈ Ex, (2.19)

for every x ∈ U and w ∈ TxM . Furthermore, since γ takes values in o(1, k − 1), it follows

that the linear connection ∇γ given in (2.19) is metric for the bundle metric h, that is,

W
(
h(σ1, σ2)

)
= h (∇γ

Wσ1, σ2) + h (σ1,∇γ
Wσ2) ,

for all sections σ1, σ2 ∈ Γ(E) and vector fields W ∈ X(M). This equation is equivalent to

∇γh = 0.
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Remark 2.10. Let us outline how a principal connection γ ∈ Ω1(O(E), o(1, k − 1)) is con-

structed from a metric linear connection. Let ∇ be a metric linear connection on a rank k real

vector bundle (πE : E →M,h), where h is a bundle metric of Lorentzian signature (1, k− 1).

We consider a local section s : U → O(E) with s = (s1, . . . , sk) and we define for each x ∈ U

and w ∈ TxM ,

∇wsi =
k∑
j=1

ωsji(x)(w)sj(x).

Since ∇ is a metric linear connection, we have

ωs =


ωs11 · · · ωs1k

... . . . ...

ωsk1 · · · ωskk

 ∈ Ω1
(
U, o(1, k − 1)

)
,

where ωsji(x)(w) = ϵjhx
(
∇wsi, sj(x)

)
being ϵj = hx

(
sj(x), sj(x)

)
. In particular, it follows

that ωsii = 0 for i ∈ {1, . . . , k}. We have the local trivialization of p : O(E) → M associated

to s given by

p−1(U)
ψs−→ U ×O(1, k − 1)

u 7−→ (p(u), g(u)),

where g(u) is determinated by the condition s(p(u)) · g(u) = u. Now, we define

γs(u)(ξ) := Ad(g(u)−1) ◦ ωs(p(u))(Tup · ξ) + ωO(1,k−1)(g(u))(Tug · ξ), (2.20)

where u ∈ p−1(U), ξ ∈ TuO(E) and ωO(1,k−1) denotes de Maurer-Cartan form of O(1, k− 1).

It is not difficult to show that γs does not depend on the section s taken at the beginning.

Therefore, the formula (2.20) defines a principal connection γ ∈ Ω1
(
O(E), o(1, k − 1)

)
.

Additionally, the connection ∇ is recovered by means of the induced linear connection ∇γ

given in (2.19).

From Remark 2.10, we can state the following result.

Theorem 2.11.
(
See [20, Sec. 1.3.5]

)
Let πE : E →M be a rank k real vector bundle endowed

with a bundle metric h of Lorentzian signature (1, k − 1) on E. Then, there is a bijective

correspondence between:

Metric linear connections ∇ on (πE : E →M,h)
KS

��

Principal connections γ ∈ Ω1
(
O(E), o(1, k − 1)

)
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The above Theorem works for any bundle metric on πE : E → M of arbitrary signature

(p, q). We have stated this Theorem in this way to meet the requirements of this thesis.



Chapter 3

Cartan geometries and tractor conformal

bundles

Several problems faced in our work have the roots in Riemannian conformal geometry. In par-

ticular, the description of conformal geometry from the point of view of Cartan connections

will be a milstone to understand some results here. Therefore, we will give a short introduction

to the notion of Cartan geometry and several of its properties. Subsequently, we will introduce

the Cartan geometries that interest us. Specifically, we are referring to the so-called Möbius

geometries. Finally, we will explore the relation between Möbius geometries and tractor con-

formal bundles. In this Chapter the basic references are [9] and [20].

3.1 Cartan geometries, tractor conformal bundles and Rie-

mannian conformal structures

Unless stated otherwise, we assume n ≥ 2 for our purposes.

Definition 3.1. ([20]) Let H ⊂ G be a closed Lie subgroup in a Lie group G, and let g be the

Lie algebra of G. A Cartan geometry of type (G,H) on an n-dimensional manifold M is a

principal fiber bundle p : P → M with structure group H , which is endowed with a g-valued

1-form ω ∈ Ω1(P , g), called the Cartan connection. We require that ω is H-equivariant,

reproduces the generators of fundamental vector fields and defines an absolute parallelism.

More formally, this means that

1. (rh)∗(ω) = Ad(h−1) ◦ ω for all h ∈ H , where rh is the right multiplication by h,

51
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2. ω(ζX) = X for all X ∈ h ⊂ g and

3. ω(u) : TuP → g is a linear isomorphism for all u ∈ P .

Note that the third condition implies that the homogeneous space G/H has the same di-

mension as the base manifold M . Contrary to usual connections, Cartan connections do not

allow one to distinguish a right invariant horizontal distribution on P , see Section 2.5. Let us

consider the trivial example of Cartan geometry of type (G,H):

Example 3.2. Let G be a Lie group and ωG ∈ Ω1(G, g) its Maurer-Cartan form:

ωG(g) : X ∈ TgG→ Tgλg−1 ·X ∈ TeG = g,

where λg denotes the left multiplication by g ∈ G. If H ⊂ G is a closed subgroup, then the

projection p : G→ G/H gives rise to a principal fiber bundle with structure group H over the

homogeneous space M = G/H . The Maurer-Cartan form ωG is a Cartan connection of type

(G,H) on this homogeneous bundle. The manifold M is the homogeneous model for Cartan

geometries of type (G,H). The homogeneous model for Cartan geometries of type (G,H) is

also known as the Klein geometry of that type.

Definition 3.3. ([9]) Let (p : P → M,ω) be a Cartan geometry of type (G,H). Let ρ : G →

GL(V ) be a representation of the group G on a k-dimensional vector space V . By restriction,

this gives a representation of H on V and an associated vector bundle

E := P ×H V.

The vector bundle pE : E → M is called the tractor bundle for the representation ρ. Let us

note that the representation is for the large group G.

Tractor bundles are fundamental in the theory of Cartan geometries since contrary to the

case of arbitrary associated vector bundles, on a tractor bundle there is a linear connection

associated to the Cartan connection ω. To see this, we extend the principal fiber bundle P

with structure group H to a principal fiber bundle P̄ with structure group G as follows. Since

H ⊂ G is a closed Lie subgroup, we have the action

H ×G→ G, (h, g) 7→ hg.

The total space P̄ is defined to be the orbit space of the right action of H on P ×G given by(
P ×G

)
×H → P ×G,

(
(u, g), h

)
7→ (u · h, h−1g).



Cartan geometries and tractor conformal bundles 53

That is, the total space is P̄ := P ×H G := (P ×G)/H and we have the canonical embedding

ι : u ∈ P → [u, e] ∈ P̄ . Now, we can extend the Cartan connection ω on P to a principal

connection ω̄ on P̄: First we use the Cartan connection ω on P and the Maurer-Cartan form

ωG of G (see Example 3.2) to define a 1-form ω̂ ∈ Ω1(P ×G, g) by

ω̂(u, g) := Ad(g−1) ◦ (π∗
P(ω))(u, g) + (π∗

G(ωG))(u, g),

where πP and πG are the projections from P × G onto P and G, respectively. The 1-form ω̂

is invariant under the H-action on P × G and hence it projects to a 1-form ω̄ ∈ Ω1(P̄ , g). A

direct calculation shows that ω̄ is indeed a principal connection on the principal fiber bundle P̄

with structure group G. Moreover, for the embedding ι, we have that ι∗(ω̄) = ω.

Since ρ : G → GL(V ) is a representation of the group G, we have a natural vector bundle

isomorphism

E = P ×H V ≃ P̄ ×G V.

Therefore, a Cartan connection ω ∈ Ω1(P , g) defines a linear connection ∇ω on E via its

extension to the principal connection ω̄ on P̄ defined by ∇ω := ∇ω̄. Let σ be a smooth section

of the vector bundle E, according to formula (2.18), ∇ω is given by

(∇ω
Wσ)|U := [s, W (v) + ρ′ (ω̄(Ts ·W )) (v)] , (3.1)

where W ∈ X(M) and σ|U = [s, v] for a local section s : U ⊂M → P and a smooth function

v ∈ C∞(U, V ).

Any G-invariant scalar product ⟨·, ·⟩V on V induces a well-defined
(
by means of (2.16)

)
bundle metric h on the vector bundle E given by

h([u, v1], [u, v2]) := ⟨v1, v2⟩V , (3.2)

where [u, v1], [u, v2] ∈ E. By definition, ∇ω is a metric linear connection with respect to any

metric h as above.

Definition 3.4. Let (p : P → M,ω) be a Cartan geometry of type (G,H). Let pE : E → M

be the tractor bundle for the representation ρ : G → GL(V ). The linear connection ∇ω given

in (3.1) is called the tractor connection. Furthermore, ∇ω is metric with respect to any bundle

metric on E that comes from a G-invariant inner product defined on V in the sense of (3.2).

From now on until the end of this Chapter, we will focus on the Cartan geometries we are

interested in. We consider V to be the Minkowski vector space Ln+2 with the canonical basis
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fixed. Also, we take G = O+(1, n+ 1) the orthochronous group. Letting

Λ+ =
{
v ∈ Ln+2 : ⟨v, v⟩ = 0, v1 > 0

}
for the future lightlike cone with vertex at the origin of Ln+2. Then, the action of O+(1, n+1)

descends to a transitive action on the space of rays in Λ+ seen as a subset in the projective

space RP n+1. Note that this space of rays is topologically the sphere Sn. If we fix the lightlike

line generated by a vector ℓ ∈ Λ+ and consider H ⊂ G to be its stabiliser subgroup, then we

get the homogeneous space description

Sn = O+(1, n+ 1)/H.

Here, O+(1, n+1) acts as the group of global conformal transformations of Sn with respect to

the conformal class containing the canonical round metric. We denote this conformal class by

c0. In this setting, (Sn, c0) is called the Möbius space.

Now, from Definition 3.4, we state the following particular case of tractor bundle, see [62]

and [19].

Definition 3.5. (1) A Möbius geometry on a manifold M is a Cartan geometry

(p : P →M,ω)

of type (G,H), where G = O+(1, n+1) and H ⊂ G is the stabiliser subgroup of a fixed

lightlike line generated by a vector ℓ ∈ Λ+ as above.

(2) Let T := P ×H Ln+2 →M be the tractor bundle for the restriction of the standard rep-

resentation ρ : G→ GL(n+2,R). The tractor bundle T is called the tractor conformal

bundle of the Möbius geometry (p : P → M,ω). We write ∇T for the corresponding

tractor connection ∇ω on T .

The name tractor conformal bundle is early justified. By construction, this bundle carries a

canonical bundle metric h of Lorentzian signature given by

h([u, v1], [u, v2]) = ⟨v1, v2⟩,

where ⟨ , ⟩ is the scalar product on Ln+2 and [u, v1], [u, v2] ∈ T . As a particular case of (3.1),

the following formula holds for the tractor connection

(
∇T
Wσ

)∣∣
U
= [s, W (v) + ω̄(Ts ·W )(v)] , (3.3)
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where W ∈ X(M) and σ|U = [s, v] for a local section s : U ⊂M → P and v ∈ C∞(U,Ln+2).

The lightlike line generated by ℓ in Ln+2 used to define H leads to a subbundle T 1 ⊂ T

with fiber type the lightlike line as follows

T 1 := {[u, aℓ] : u ∈ P , a ∈ R} ⊂ T .

We will write (T , T 1,h,∇T ) to denote the tractor conformal bundle of the Möbius geometry

(p : P →M,ω) endowed with the lightlike subbundle T 1, the bundle metric h and the tractor

connection ∇T .

As was mentioned, let us see that every tractor conformal bundle (T , T 1,h,∇T ) naturally

induces a conformal class of Riemannian metrics on the manifold M . In order to do this, we

take σ ∈ Γ(T 1|U) a nonvanishing local section. Then, we have h(σ, σ) = 0 and then,

0 = W
(
h(σ, σ)

)
= 2h

(
∇T
Wσ, σ

)
, (3.4)

for everyW ∈ X(M). As consequence of (3.4), we conclude that ∇T
Wσ ∈ Γ

(
(T 1)⊥

)
for every

W ∈ X(M) and σ ∈ Γ(T 1). Taking into account that T 1 ⊂
(
T 1

)⊥, we can consider the rank

n real vector bundle Hom
(
T 1, (T 1)⊥/T 1

)
→ M . Thus, the fiber over any point x ∈ M is

given by {
λ : T 1

x → (T 1
x )

⊥/T 1
x such that λ is linear

}
.

Now, we have the well-defined C∞(M)-bilinear bundle map

TM Hom
(
T 1, (T 1)⊥/T 1

)

M

β

given by

β(Wx)
(
[u, aℓ]

)
= ∇T

Wx
σ + T 1

x ,

where x ∈ M , Wx ∈ TxM, [u, aℓ] ∈ T 1
x and σ ∈ Γ(T 1) is any section with σ(x) = [u, aℓ].

From formula (3.3), it can be deduced that β is injective and then, it is an isomorphism of

vector bundles on M .

Every nonvanishing local section σ ∈ Γ(T 1|U) provides the vector bundle isomorphism

βσ : TU →
(
(T 1)⊥/T 1

)
|U , Wx 7→ ∇T

Wx
σ + T 1

x . (3.5)
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Thus, every nonvanishing local section σ ∈ Γ(T 1|U) produces a Riemannian metric hσ on U

by means of the formula

hσ(V,W ) := h(βσ(V ), βσ(W )), (3.6)

for V,W ∈ X(U). Any other nonvanishing local section σ̄ ∈ Γ(T 1|U) can be written as σ̄ = fσ

for some nonvanishing smooth function f on U . From (3.5), it follows that βσ̄ = βf ·σ = f ·βσ.

Therefore, different choices of the section σ induce conformally related metrics on U and then,

a conformal class c on U . Hence, from a standard argument, we have that (T , T 1,h,∇T )

induces a conformal class c on M .

Definition 3.6. Let (M, c) be a given Riemannian conformal structure and (T , T 1,h,∇T )

be the tractor conformal bundle of a Möbius geometry (p : P → M,ω). When the induced

conformal class on M by means of (T , T 1,h,∇T ) agrees with c, we say that (T , T 1,h,∇T )

is a standard tractor conformal bundle for (M, c).

This construction for the tractor conformal bundle (T , T 1,h,∇T ) starting from a Möbius

geometry (p : P → M,ω) can be reversed. This fact motivated the authors of [18] to give an

alternative and direct definition for a tractor conformal bundle. We can find it in [18] in a more

general context and specialized for ours in [19]. It is important to note that this idea comes

from Thomas’s work in the 1920s, [63].

Definition 3.7. ([19]) A (Riemannian) tractor conformal bundle on an n-dimensional manifold

M is a rank n + 2 real vector bundle T → M endowed with a bundle metric h of Lorentzian

signature and with a distinguished oriented lightlike line subbundle T 1 ⊂ T .

Likewise, the definition of tractor connection can be revisited from this new point of view.

Definition 3.8. ([19]) A tractor connection ∇T on a tractor conformal bundle T → M is a

linear connection such that ∇T h = 0 and the following map β is an isomorphism of vector

bundles on M

TM Hom
(
T 1, (T 1)⊥/T 1

)

M

β

given by

β(Wx)
(
ξ
)
= ∇T

Wx
σ + T 1

x , (3.7)

where x ∈M , Wx ∈ TxM , ξ ∈ T 1
x and σ ∈ Γ(T 1) is any section with σ(x) = ξ.
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Let us note that (T , T 1,h,∇T ), when viewed from this new perspective, also induces a

conformal class c on M in a similar way.

As previously mentioned, by considering (T , T 1,h,∇T ) from this new vantage point, it

is possible to construct a Möbius geometry (p : P → M,ω) such that the tractor conformal

bundle constructed from this Möbius geometry (p : P → M,ω) agrees with (T , T 1,h,∇T ).

For the sake of completeness, we include this construction here.

Consider the Riemannian conformal structure c induced onM from the data (T , T 1,h,∇T ).

Every choice of a metric g ∈ c provides us with a decomposition of T as follows. The metric

g ∈ c is determined by an oriented section σ ∈ Γ(T 1) by the condition g = hσ, where hσ is

given by (3.6). Then, we obtain the decomposition

T
g
≃ R⊕ TM ⊕ R,

where R denotes the trivial bundle M × R → M . The first trivial bundle M × R → M arises

from the trivialization of T 1 deduced from σ. The copy of TM is given by means of

F : TM → T , Wx 7→ ∇T
Wx
σ.

for every x ∈ M . The second trivial bundle M × R → M comes from the unique lightlike

section δ ∈ Γ(T ) such that h(σ, δ) = 1 and h(δ, F (TM)) = 0. Using this decomposition, any

smooth section T of T →M can be written as follows

T =


α

W

β

 , with α, β ∈ C∞(M) andW ∈ X(M),

and the bundle metric h, which will be denoted by hg under this decomposition, is given by

hg



α1

W1

β1

 ,


α2

W2

β2


 := α1β2 + β1α2 + g(W1,W2).

This decomposition will be extensively used in this Chapter.

On the other hand, from Remark 2.9 and Theorem 2.11, there exists a principal fiber bundle

P̄ → M with structure group G = O+(1, n + 1) such that T ≃ P̄ ×G Ln+2 and, in addition,

it can be endowed with the principal conecction γ ∈ Ω1(P̄ , g) corresponding to the linear

connection ∇T . Also, let us note that P̄ → M is the bundle of h-orthonormal frames which
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apply the usual time orientation of Ln+2 to the time orientation on every (Tx,hx) induced from

the oriented lightlike line subbundle T 1 ⊂ T . In this context, we denote O+(T ) rather than

P̄ . That is,

O+(Tx) =
{
u ∈ O(Tx) such that Lu : Ln+2 → (Tx,hx) preserves the time orientation

}
.

With the intention of being used later, we are going to describe the Lie algebra g = o(1, n+

1) of G using an appropriate basis. Let Ln+2 be the Minkowski vector space and consider the

Witt basis given by(
ℓ− :=

1√
2
(en+2 − e1), e2, . . . , en+1, l+ :=

1√
2
(en+2 + e1)

)
, (3.8)

where (e1, . . . , en+2) is the canonical (orthonormal) basis of Ln+2. Then, the Lie algebra g

using this Witt basis reads as follows

g =



−a Z 0

Y A −Zt

0 −Y t a

 : a ∈ R, A ∈ o(n), Y ∈ Rn, Z ∈ (Rn)∗

 ,

see ([9,Sec. 2.2.1]). We are also interested in describing, in the Witt basis given in (3.8), the

Lie algebra of the following subgroup of G. Let H ⊂ G be the stabiliser subgroup of the

lightlike line R · ℓ− in Ln+2. Then, we have

H =



a−1 V −a

2
∥V t∥2

0 σ −aσV t

0 0 a

 : a ∈ R>0, σ ∈ O(n), V ∈ (Rn)∗

 ,

where ∥ · ∥2 denotes here the usual Euclidean norm on Rn. Therefore, its Lie algebra h ⊂ g is

given by

h =



−a Z 0

0 A −Zt

0 0 a

 : a ∈ R, A ∈ o(n), Z ∈ (Rn)∗

 .

We continue with the construction of the principal fiber bundle with structure group H ,

which supports the desired Cartan connection and is defined in this manner. For each x ∈ M ,

we define

Px :=
{
u ∈ O+(Tx) : Lu(ℓ−) ∈ T 1

x

}
.
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We let P :=
⋃
x∈M

Px ⊂ O+(T ). Thus, p : P → M is a principal fiber bundle with structure

group H as follows. We take h ∈ H and u ∈ Px, then the right action is given by

u · h := Ln+2 h−→ Ln+2 Lu−→ (Tx,hx).

Clearly, we have that (u · h)(ℓ−) ∈ T 1
x and therefore, the element u · h ∈ Px. Note that this

action is the restriction of the action that we have in the principal fiber bundle O+(T ) with

structure group G to H .

Theorem 3.9. Let (T , T 1,h,∇T ) be a tractor conformal bundle as above (Definitions 3.7 and

3.8) and γ ∈ Ω1
(
O+(T ), o(1, n+ 1)

)
be the principal connection corresponding to the linear

connection ∇T . Then, ω := γ|P is a Cartan connection of type (G,H) on p : P ⊂ O+(T ) →

M , where G = O+(1, n+ 1) and H ⊂ G is the stabiliser subgroup of the lightlike line R · ℓ−
in Ln+2.

Proof. Recall that a Cartan connection of type (G,H) satisfies that

(1) (rh)∗(ω) = Ad(h−1) ◦ ω for all h ∈ H ,

(2) ω(ζX) = X for all X ∈ h ⊂ g and

(3) ω(u) : TuP → g is a linear isomorphism for all u ∈ P .

For (1) and (2), the proofs are a direct consequence of the analogous properties for γ. In fact,

for each h ∈ H , u ∈ P and ξ ∈ TuP we have by definition

ω(u · h)
(
Tur

h · ξ
)
= γ(u · h)

(
Tur

h · ξ
)
.

Since γ is a principal connection it follows that

γ(u · h)
(
Tur

h · ξ
)
= Ad(h−1) ◦ γ(u)(ξ) = Ad(h−1) ◦ ω(u)(ξ),

and therefore ω(u · h)
(
Tur

h · ξ
)
= Ad(h−1) ◦ ω(u)(ξ). In order to proof (2) we take X ∈ h,

then

ω(u)(ζX(u)) = γ(u)(ζX(u)) = X.

We have used again that γ is a principal connection.

Property (3) is the only one that does not have a direct proof, let us see it. First, we take a

metric g ∈ c and for each x ∈M , we can construct a g-orthonormal local frame (s2, . . . , sn+1)
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defined in an open set U ⊂ M with x ∈ U . The choice of this metric g allows us to write a

local section τ : U → O+(T ) as follows

x 7→ τ(x) :=
(
τ1(x), τ2(x), . . . , τn+1(x), τn+2(x)

)
:=

 1√
2


−1

0

1

 ,


0

s2(x)

0

 , . . . ,


0

sn+1(x)

0

 ,
1√
2


1

0

1


 .

Let us note that τ(x) ∈ Px. In fact,

Lτ(x)(ℓ−) =
1√
2
Lτ(x)(en+2 − e1) =

1√
2


1√
2


1

0

1

− 1√
2


−1

0

1




=
1

2


2

0

0

 =


1

0

0

 .

We can consider the “Witt basis” write as follows

τ̂ =

(
τ− :=

1√
2
(τn+2 − τ1), τ2, . . . , τn+1, τ+ :=

1√
2
(τn+2 + τ1)

)
.

Taking into account (1), we need to show the property (3) only on τ(U). Now, for each

τ(x) ∈ P with x ∈ U and each ξ ∈ Tτ(x)P we give the following descomposition

ξ = ζX(τ(x)) + Txτ · w,

where X ∈ h and w ∈ TxM . As a consequence, we get

ω(τ(x))(ξ) = X + ω(τ(x))
(
Txτ · w

)
.

From Remark 2.10, let us recall how ω = γ|P is constructed. We consider the local trivial-

ization ψτ associated to the local section τ for the principal bundle p : O+(T ) → M . That

is,

p−1(U)
ψτ−→ U ×O+(1, n+ 1)

u 7−→ (p(u), g(u)),

where τ(p(u)) · g(u) = u. Since g(τ(x)) = e ∈ O+(1, n+ 1), it follows that

ω(τ(x))
(
Txτ · w

)
= ωτ (x)(w) + ωO+(1,n+1)(e)(Txg ◦ τ · w) = ωτ (x)(w).
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Recall that ωτ is determined by ∇T
wτi =

n+2∑
j=1

ωτj,i(x)(w)τj(x), and then

ωτ =


ωτ1,1 · · · ωτ1,n+2

... . . . ...

ωτn+2,1 · · · ωτn+2,n+2

 ,

where ωτj,i(x)(w) = ϵjhx
(
∇T
wτi, τj(x)

)
. As a consequence,

ω(τ(x))(ξ) = X +


ωτ1,1(x)(w) · · · ωτ1,n+2(x)(w)

... . . . ...

ωτn+2,1(x)(w) · · · ωτn+2,n+2(x)(w)

 ,

where ξ = ζX(τ(x)) + Txτ · w. We know that the Lie algebra g in the Witt basis (3.8) is

represented by

g =



−a Z 0

Y A −Zt

0 −Y t a

 : a ∈ R, A ∈ o(n), Y ∈ Rn, Z ∈ (Rn)∗

 .

Taking w = 0, it is clear that h ⊂ Imωτ(x). On the other hand, taking X = 0 we have

ω(τ(x))(ξ) =


ωτ1,1(x)(w) · · · ωτ1,n+2(x)(w)

... . . . ...

ωτn+2,1(x)(w) · · · ωτn+2,n+2(x)(w)

 ∈ g.

Then, the element ω(τ(x))(ξ) in this Witt basis is given by

hx
(
∇T
wτ−, τ+(x)

)
hx

(
∇T
wτ2, τ+(x)

)
· · · 0

hx
(
∇T
wτ−, τ2(x)

)
hx

(
∇T
wτ2, τ2(x)

)
· · · hx

(
∇T
wτ+, τ2(x)

)
...

... . . . ...

hx
(
∇T
wτ−, τn+1(x)

)
hx

(
∇T
wτ2, τn+1(x)

)
· · · hx

(
∇T
wτ+, τn+1(x)

)
0 hx

(
∇T
wτ2, τ−(x)

)
· · · hx

(
∇T
wτ+, τ−(x)

)


.

To conclude that ω defines an absolute parallelism we only need to prove that

TxM → Rn, w 7→
(
hx(∇T

wτ−, τ2(x)), . . . ,hx(∇T
wτ−, τn+1(x))

)T
is a linear isomorphism. In fact, assume hx(∇T

wτ−, τi(x)) = 0 for all i ∈ {2, . . . , n + 1}, then

β(w)(τ−(x)) = 0 and therefore β(w) = 0. Taking into account that β is an isomorphism of

vector bundles on M , we get w = 0.
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The construction given in Theorem 3.9 is the inverse of the given in Definition 3.5 and

conversely. The work done in this Section could be summarized as follows:

Möbius geometry (p : P →M,ω)
KS

��

Tractor conformal bundle with tractor connection (T , T 1,h,∇T )

��

Riemannian conformal structure (M, c)

3.2 From Riemannian conformal structures to standard trac-

tor conformal bundles

Maybe the most difficult point in the study of Cartan geometries is to state the equivalence

between a certain Cartan geometry and an underlying geometric structure on a manifold M .

In particular, these difficulties arise in the setting of Riemannian conformal structures (M, c).

In fact, there are many Möbius geometries (p : P → M,ω) or, equivalently, tractor conformal

bundles with tractor connections (T , T 1,h,∇T ) that induce the same conformal structure on

M . To address the equivalence problem between Riemannian conformal structures and Möbius

geometries, we introduce the following definition.

Definition 3.10. A standard tractor conformal bundle (T , T 1,h,∇T ) for a Riemannian con-

formal structure (M, c) is said to be admissible when for every metric g ∈ c and its respective

decomposition T
g
≃ R⊕ TM ⊕ R, the tractor connection satisfies

(1)

∇T
V


α

0

0

 =


V (α)

αV

0

 ,

and
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(2) there exists a symmetric tensor D(g) ∈ T(0,2)(M) such that

∇T
V


0

W

0

 =


−D(g)(V,W )

∇VW

−g(V,W )

 ,

where α ∈ C∞(M) and V,W ∈ X(M). Let us note that ∇ denotes the Levi-Civita

connection of the respective metric g ∈ c.

Remark 3.11. The other positions of the tractor connection ∇T of an admissible standard

tractor conformal bundle are determined by the metric condition. In fact, for every metric

g ∈ c, it is not difficult to show that

∇T
V


α

W

β

 =


V (α)−D(g)(V,W )

∇VW + αV + βD̂(g)(V )

V (β)− g(V,W )

 ,

where D̂(g)(V ) is the endomorphisms field defined by the equation

g
(
D̂(g)(V ),W

)
= D(g)(V,W ).

For a different choice of the metric e2ug in the same conformal class c, the corresponding

symmetric tensor D(e2ug) satisfies the following conformal transformation law

D(e2ug) = D(g)− ∥∇u∥2

2
g − Hess(u) + du⊗ du, (3.9)

where ∇u and Hess(u) are the gradient and the Hessian of the function u ∈ C∞(M) for the

metric g, respectively. Here, ∥ · ∥ denotes the norm with respect to g. To see this Remark in

detail, see [9, Proposition 2.25].

As was mentioned, the aim of this Section is to construct a Möbius geometry from a Rie-

mannian conformal structure (M, c). This Möbius geometry will correspond to a standard

tractor conformal bundle for (M, c). Taking into account Definition 3.10 and Remark 3.11, we

need to introduce one more object, that is, a “Schouten type-tensor” D, and give an explicit

construction of a standard tractor conformal bundle for (M, c) from the triple (M, c,D). For

this construction, we will follow the one briefly stated in [20], made explicit in [8], and de-

scribed in greater detail in [9]. It is worth noting that other constructions for a standard tractor

conformal bundle from a Riemannian conformal structure exist as was described in [17] and

[35].
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Definition 3.12. Let (M, c) be an (n ≥ 2)-dimensional Riemannian conformal structure. A

“Schouten type-tensor” D for c is a map such that:

1. D : c→ T(0,2)M such that for every g ∈ c, the tensor D(g) is symmetric and

2. D satisfies the conformal transformation law (3.9).

Also, we denote by D̂(g) the (1, 1)-tensor induced by D(g), that is, D̂(g) is given by the

relation g
(
D̂(g)(V ),W

)
= D(g)(V,W ), for every V,W ∈ X(M). Let us note that D̂(g)

satisfies a similar conformal transformation law given by

D̂(e2ug)(V ) = e−2u

[
D̂(g)(V )− ∥∇u∥2

2
V −∇V∇u+ V (u)∇u

]
, (3.10)

for every V ∈ X(M).

Remark 3.13. For an (n ≥ 3)-dimensional Riemannian conformal structure (M, c), the con-

formal transformation law (2.14) for the Schouten tensor implies that D(g) = P g provides a

“Schouten type-tensor” for c.

3.2.1 Construction of the g-tractor vector bundle

Let (M, c) be an n-dimensional Riemannian conformal structure and D be a “Schouten type-

tensor” for c. Now, for every g ∈ c, we can construct the following vector bundle from

(M, g,D(g)) endowed with a linear connection and a bundle metric:

1. Let Tg be the rank n+ 2 real vector bundle over M given by

Tg := R⊕ TM ⊕ R,

where R denotes the trivial bundle M × R → M . For any smooth section σ : M → Tg
we write

σ =


α

W

β

 , with α, β ∈ C∞(M) andW ∈ X(M).

2. On Tg we consider the linear connection ∇Tg defined by

∇Tg
V


α

W

β

 :=


V (α)−D(g)(V,W )

∇VW + αV + βD̂(g)(V )

V (β)− g(V,W )

 ,
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where ∇ is the Levi-Civita connection of g, and the bundle metric hg of Lorentzian

signature given by

hg



α1

W1

β1

 ,


α2

W2

β2


 := α1β2 + β1α2 + g(W1,W2).

Definition 3.14. Let (M, c) be an n-dimensional Riemannian conformal structure and D be a

“Schouten type-tensor” for c. For every g ∈ c, the triple (Tg,hg,∇Tg) is called the g-tractor

associated to (M, g,D(g)).

For a Riemannian conformal structure (M, c), the g-tractor associated to (M, g,D(g)) depends

on g and D(g). However, with the help of the g-tractor, we will be able to define a standard

tractor conformal bundle for (M, c) that depends on the choice of D but not on g ∈ c.

Lemma 3.15. Let (M, g) be a Riemannian manifold. For any section σ ∈ Tg we define

σ′ := Dg,u · σ with Dg,u =


e−u −e−udu −e−u∥∇u∥

2

2

0 e−uId e−u∇u

0 0 eu

 ,

where u ∈ C∞(M). Then, for every σ, σ1, σ2 ∈ Γ(Tg) we have

(1) ∇Tg′
V σ′ = Dg,u∇Tg

V σ and

(2) hg
′
(σ′

1, σ
′
2) = hg(σ1, σ2),

where g′ = e2ug and V ∈ X(M).

Proof. Let us start by proving (1). Note that both members of the equality are R-linear in “σ”.

Hence, we can check (1) for sections of R and TM .

• For a section
(
α, 0, 0

)t ∈ Γ(Tg), we have

∇Tg′
V Dg,u


α

0

0

 = ∇Tg′
V


e−uα

0

0

 =


V (α)e−u − αe−uV (u)

e−uαV

0


and

Dg,u∇Tg
V


α

0

0

 = Dg,u


V (α)

αV

0

 =


V (α)e−u − αe−uV (u)

e−uαV

0

 .
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• For a section
(
0, 0, β

)t ∈ Γ(Tg), we compute

∇Tg′
V Dg,u


0

0

β

 = ∇Tg′
V


−e−u∥∇u∥

2

2
β

e−uβ∇u

euβ



= V (β)


−e−u∥∇u∥

2

2

e−u∇u

eu



+ β


e−uV (u)

∥∇u∥2

2
− e−ug(∇V∇u,∇u)− e−uD(g′)(V,∇u)

e−u
∥∇u∥2

2
V + e−u∇V∇u+ V (e−u)∇u+ euD̂(g′)(V )

0

 .

As consequence of conformal transformations laws (3.9) and (3.10), we have

∇Tg′
V Dg,u


0

0

β

 = V (β)


−e−u∥∇u∥

2

2

e−u∇u

eu

+ β


−e−uD(g)(V,∇u)

e−uD̂(g)(V )

0

 .

For the right-hand side, we have

Dg,u∇Tg
V


0

0

β

 = Dg,u


0

βD̂(g)(V )

V (β)

 =


−e−uV (β)

∥∇u∥2

2
− e−uβD(g)(V,∇u)

e−uV (β)∇u+ e−uβD̂(g)(V )

euV (β)

 .

• Lastly, for a section
(
0,W, 0

)t ∈ Γ(Tg), a similar computation, by means of the confor-

mal transformations laws (3.9) and (3.10), ends the proof.

Now, we are going to proof (2). Let us consider σ1 =
(
α1,W1, β1

)t and σ2 =
(
α2,W2, β2

)t.
Then, a direct computation gives

hg
′
(σ′

1, σ
′
2)

= hg
′



e−uα1 − e−uW1(u)− e−u

∥∇u∥2

2
β1

e−uW1 + e−uβ1∇u

euβ1

 ,


e−uα2 − e−uW2(u)− e−u

∥∇u∥2

2
β2

e−uW2 + e−uβ2∇u

euβ2




= α1β2 + β1α2 + g(W1,W2) = hg(σ1, σ2).
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Although the proof has been a direct calculation, it is important to highlight the importance

of D satisfying the conformal transformation law. We finish this Subsection by stating the

following result.

Lemma 3.16. Let (M, g) be a Riemannian manifold. Then, the linear connection ∇Tg is metric

for hg. That is,

V
(
hg(σ1, σ2)

)
= hg

(
∇Tg
V σ1, σ2

)
+ hg

(
σ1,∇Tg

V σ2

)
,

for every V ∈ X(M) and σ1, σ2 ∈ Γ(Tg).

The proof of the previous Lemma is a straightforward computation.

3.2.2 Standard tractor conformal bundles from conformal geometry

Let (M, c) be an n-dimensional Riemannian conformal structure and D be a “Schouten type-

tensor” for c. For every g ∈ c and D(g) we are able to build a g-tractor. Now, we are going

to contruct a standard tractor conformal bundle T for (M, c) which will be independent of the

choice of g ∈ c. In order to do so we introduce the following notation. Let us take g ∈ c and

we consider (Tg,hg,∇Tg) the g-tractor associated to (M, g,D(g)) . For each x ∈M , we write

the fiber of Tg over x by

(Tg)x =




a

w

b

 , gx

 : a, b ∈ R, w ∈ TxM

 .

From Lemma 3.15, we know that there is an isomorphism of vector bundles given by

(Tg,hg)
Dg,u //

##

(Tg′ ,hg
′
)

zz
M

,

which is an isometry on each fiber, where g′ = e2ug. Now, we consider T :=
⋃
g∈c

Tg and define

the following equivalence relation. Take
((
a, w, b

)t
, gx

)
∈ (Tg)x and

((
a′, w′, b′

)t
, g′x

)
∈

(Tg′)x, 

a

w

b

 , gx

 ∼



a′

w′

b′

 , g′x

 ⇐⇒


a′

w′

b′

 = Dg,u(x)


a

w

b

 .
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Definition 3.17. We denote the quotient set T/∼ by T and its elements by

a

w

b

 , gx

 ,
where a, b ∈ R, x ∈M and w ∈ TxM .

Lemma 3.18. Let (M, c) be an n-dimensional Riemannian conformal structure and D be a

“Schouten type-tensor” for c. Then, T has a canonical structure of vector bundle over M .

Proof. For every metric g ∈ c, we consider the map

T Φg−→ Tg

a

w

b

 , gx

 7−→



a

w

b

 , gx

 .

This map Φg is one-to-one and, since Tg is a vector bundle, T can be endowed with a vector

bundle structure by means of Φg. Furthermore, this vector bundle structure is independent of

the choice of g ∈ c. In fact, taking g, g′ ∈ c such that g′ = e2ug, we have the following

commutative diagram

T
Φg

��

Φg′

  
Tg

Dg,u // Tg′ .
Given that Dg,u is an isomorphism of vector bundles, we conclude the proof.

Further we can see that ∇Tg and hg induce analog structures on T :

1. On T we consider the linear connection ∇T defined by

∇T
V



α

W

β

 , g

 :=

∇Tg
V


α

W

β

 , g

 ,
for every V ∈ X(M) and

[(
α,W, β

)t
, g
]
∈ Γ(T ). Additionally, we introduce the bundle

metric h of Lorentzian signature given by

h




α1

W1

β1

 , g

 ,


α2

W2

β2

 , g


 := hg



α1

W1

β1

 ,


α2

W2

β2


 ,
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where
[(
α1,W1, β1

)t
, g
]
,
[(
α2,W2, β2

)t
, g
]
∈ Γ(T ). As consequence of Lemma 3.15,

we have that the connection ∇T and the bundle metric h are well-defined.

2. Also, we have the following line subbundle given by

T 1 := R ·



1

0

0

 , g

 ⊂ T .

It is not difficult to show that T 1 is well-defined and h
(
T 1, T 1

)
= 0.

Lemma 3.19. The linear connection ∇T is metric for h. That is,

V
(
h(σ1, σ2)

)
= h

(
∇T
V σ1, σ2

)
+ h

(
σ1,∇T

V σ2
)
,

where V ∈ X(M) and σ1, σ2 ∈ Γ(T ).

Proof. This result is direct from Lemmas 3.15 and 3.16.

As a consequence, we have that (T , T 1,h,∇T ) satisfies Definitions 3.7 and 3.8. Further-

more, as we saw in the previous Section, (T , T 1,h,∇T ) induces a conformal class of Rieman-

nian metrics on M . It is a direct computation, from the definitions of T 1, h and ∇T , that we

recover the one from which we started, that is, the conformal class c. In other words, we have

constructed an admissible standard tractor conformal bundle (T , T 1,h,∇T ) for (M, c) from

(M, c) by means of D. That is, we have the following equivalence:

Admissible standard tractor conformal bundle (T , T 1,h,∇T )
KS

��

(M, c,D)

3.3 Normal Cartan connections and normal tractor connec-

tions

As was wentioned, each “Schouten type-tensor” allows us to construct a Möbius geometry

and a standard tractor conformal bundle from a given n-dimensional Riemannian conformal

structure (M, c). A natural problem is to find a way to assign a unique Möbius geometry to

each Riemannian conformal structure. In other words, finding normalization hypotheses for
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the Cartan connections such that there is a one-to-one correspondence between Riemannian

conformal structures and Möbius geometries. For dimension n ≥ 3, there is a canonical

choice for the “Schouten type-tensor” by means of the Schouten tensor defined in (2.13) for

each metric g ∈ c. That is, the “Schouten type-tensor” P : c→ T(0,2)M given by P (g) := P g.

Definition 3.20. Let (M, c) be an (n ≥ 3)-dimensional Riemannian conformal structure and

P be the Schouten tensor. Let (T , T 1,h,∇T ) be the standard tractor conformal bundle con-

structed from (M, c, P ). Then, (T , T 1,h,∇T ) is called the normal standard tractor conformal

bundle and the tractor connection ∇T is said to be the normal tractor connection. The Möbius

geometry (p : P → M,ω) constructed, by means of Theorem 3.9, from (T , T 1,h,∇T ) is

called the normal Möbius geometry and the connection ω is said to be the normal Cartan

connection.

Remark 3.21. In the normal case, both (T , T 1,h,∇T ) and (p : P → M,ω) are uniquely

determined by the underlying conformal structure up to isomorphism. This is an old result of

Elie Cartan that Riemannian conformal structures of dimension ≥ 3 admit a canonical normal

Cartan connection. See, for example, [20, Theor. 1.6.7].

Thus, we have the following diagram:

Normal Möbius geometry (p : P →M,ω)
KS

��

Normal standard tractor conformal bundle (T , T 1,h,∇T )
KS

��

(n ≥ 3)-dimensional Riemannian conformal structure (M, c)

If we take an arbitrary standard tractor conformal bundle (T , T 1,h,∇T ) or equivalently

an arbitrary Möbius geometry (p : P →M,ω), a difficult problem arises in determining when

the connection ∇T or the connection ω is normal. This problem was addressed and resolved

in different ways. Here, we are going to present one of them.

Theorem 3.22. ([19, Sec. 2.2]) Let (T , T 1,h,∇T ) be a standard tractor conformal bundle for

an (n ≥ 3)-dimensional Riemannian conformal structure (M, c). Then, ∇T is the normal

tractor connection if and only if the following conditions hold:
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(1) Its curvature RT satisfies

RT (V,W )σ := ∇T
V∇T

Wσ −∇T
W∇T

V σ −∇T
[V,W ]σ ⊂ Γ(T 1),

for every V,W ∈ X(M) and σ ∈ Γ(T 1).

Note that (1) implies that RT (V,W ) induces an endomorphism on (T 1)⊥/T 1. In fact,

by means of any section σ ∈ Γ(T 1), we can consider W ∈ Γ(Λ2T ∗M ⊗ L(TM, TM))

as follows

W(U, V )W = (βσ)
−1
(
RT (U, V )βσ(W )

)
, U, V,W ∈ X(M),

where βσ is given in (3.5). Note that W does not depend on the choice of σ ∈ Γ(T 1).

(2) The Ricci type contraction of W ∈ Γ(Λ2T ∗M ⊗ L(TM, TM)) vanishes on M . That is,

the following equation holds

n∑
i=1

hσ
(
W(Ei, V )W,Ei

)
=

n∑
i=1

h
(
RT (Ei, V )βσ(W ), βσ(Ei)

)
= 0,

for any V,W ∈ X(M) and σ ∈ Γ(T 1), where (E1, . . . , En) is a local orthonormal frame

with respect to the Riemannian metric hσ ∈ c as in (3.6).

In Chapter 5, starting from a Riemannian conformal structure (M, c) we will study when

the standard tractor conformal bundle with the normal tractor connection determined by (M, c)

can be realized by means of a codimension two spacelike immersion of M in a Lorentzian

manifold.

Remark 3.23. There are different ways to construct the normal Cartan connection. One of

them is the given in Definition 3.20 by means of the Schouten tensor. Another way to give

the normal Cartan connection is defining a “Cartan curvature function” and assuming certain

normalization hypotheses over this function, see [20, Def. 1.6.7]. This last point of view

is the one originally given. In fact, the proof of Theorem 3.22 consists of translating these

normalization hypotheses into terms of the curvature of the tractor connection. We have not

included this way because it is technically very complicated and we do not believe it helps to

understand our work.

As we have seen, in dimension n ≥ 3 there is a canonical choice to construct (T , T 1,h,∇T )

and (p : P → M,ω) from (M, c) by means of the Schouten tensor P . However, this is not
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the case for two dimensional Riemannian conformal structures where the Schouten tensor is

not defined. As we already know, conformal geometry in this dimension is more exotic than

in higher dimensions since conformal geometry in dimension two carries no local information.

So, a problem that looks interesting from our point of view is to study the family of “Schouten

type-tensors” in this case. In chapter 6, we will see how each “Schouten type-tensor” can be re-

covered by means of certain Weingarten endomorphisms associated with spacelike immersions

of M in a family of Lorentzian manifolds, Remark 6.21.

Furthermore, as a consequence of (2.13), we know that

tracegP
g =

Sg

2(n− 1)
,

for every g ∈ c. Therefore, this additional property can be imposed on the “Schouten type-

tensors” in order to normalize, in some sense, the family of tensors that we are interested in

studying. This additional property leads to the following definition.

Definition 3.24. ([15], [60]) A Möbius structure on an (n ≥ 2)-dimensional manifold M is

a triple (M, c,D), where (M, c) is a Riemannian conformal structure and D is a “Schouten

type-tensor” for c (Definition 3.12) which, in addition, satisfies that

tracegD(g) =
Sg

2(n− 1)
,

where Sg is the scalar curvature of the metric g ∈ c and tracegD(g) denotes the trace with

respect to the metric g of the corresponding tensor D(g).

The conformal transformation law implies that a Möbius structure (M, c,D) is completely

determined by the value of D at a single g ∈ c. In fact, the relationship between the scalar

curvatures of two conformally related metrics (see formula (2.12)) and the conformal transfor-

mation law imply that

tracee2ugD(e2ug) =
Se

2ug

2(n− 1)
.



Chapter 4

Generalized Schwarzschild spacetimes

The generalized Schwarzschild spacetimes have been introduced as warped manifolds where

the base is an open subset of R2 equipped with a Lorentzian metric and the fiber is a Rie-

mannian manifold, Definition 1.1. This family includes physically relevant spacetimes closely

related to models of black holes. The generalized Schwarzschild spacetimes are endowed

with involutive distributions which provide foliations by lightlike hypersurfaces. As was men-

tioned in the Introduction, in this Chapter we study spacelike immersions in the generalized

Schwarzschild spacetimes, mainly, under the assumption that such immersions lie in a leaf of

the above foliations. In this scenario, we provide an explicit formula for the mean curvature

vector field and establish relationships between the extrinsic and intrinsic geometry of these

immersions. We have derived several characterizations of the slices, and we delve into the spe-

cific case where the warping function is the radial coordinate in detail. This subfamily includes

the Schwarzschild and Reissner-Nordström spacetimes.

4.1 Involutive distributions

Although, we are interested here in the class of spacetimes given in Definition 1.1, there are

several properties which can be stated in a more general setting. Let (B, gB) be a two di-

mensional oriented Lorentzian manifold and (F, gF ) a m-dimensional connected Riemannian

manifold. Fix λ ∈ C∞(B) with λ > 0, we are interested in the Lorentzian warped product

manifold (M̃, g̃) = B ×λ F given by the product manifold M̃ = B × F endowed with the

Lorentzian metric

g̃ = π∗
B(gB) + (λ ◦ πB)2π∗

F (gF ),

73
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see Section 2.3. Recall that every E ∈ X(M̃) has a unique expression as E = X + V where

X ∈ L(B) and V ∈ L(F ).

For our aims here, we assume there exists a global lightlike vector field ξ ∈ X(B). That is,

we have gB(ξ, ξ) = 0 and ξq ̸= 0 for all q ∈ B. Taking into account that dimB = 2, it is not

difficult to show that there exists a 1-form α ∈ Ω1(B,R) such that

∇Bξ = α⊗ ξ. (4.1)

The assumption on the existence of the vector field ξ has the following key consequence.

Lemma 4.1. The distribution Dξ = {E ∈ X(M̃) : g̃(E, ξ) = 0} on M̃ is involutive.

Proof. For X + V, Y +W ∈ Dξ a straightforward computation gives

g̃([X + V, Y +W ], ξ) = gB([X, Y ], ξ) ◦ πB.

Taking into account that X + V ∈ Dξ if and only if gB(X, ξ) = 0, we obtain from (4.1) that

gB([X, Y ], ξ) = −gB(∇B
Xξ, Y ) + gB(∇B

Y ξ,X) = 0.

Therefore, as consequence of Theorem 2.4 we have that through every point (q, x) ∈ M̃

passes a maximal integral submanifold L of the distribution Dξ and we have a foliation of the

manifold M̃ by hypersurfaces. If we write γ : I → B for the maximal integral curve of the

vector field ξ with initial condition γ(0) = q ∈ B, then the hypersurface L is given by

L = {(γ(t), x) ∈ B × F : t ∈ I , x ∈ F}.

L inherits a degenerate metric tensor from g̃ whose radical is spanned by the vector field ξ|L
and therefore it is a lightlike hypersurface. Every smooth section σ = (σB, IdF ) of the natural

projection L → F provides a spacelike immersion in M̃ with induced metric g = σ∗(g̃) =

(λ ◦ σB)2gF . Hence, the induced metric g belongs to the same conformal class of gF . In

particular, L is a subset of the bundle of scales of F for the conformal class of gF [20, Chap.

1].

Remark 4.2. The projection B ×λ F → B is a semi-Riemannian submersion [50] (see also

[51, Chap. 7]). In the terminology of semi-Riemannian submersions, every maximal integral

submanifold L of the distribution Dξ is the horizontal lift of a maximal integral curve of the

vector field ξ on B.
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Now let Ψ : M → B ×λ F be an arbitrary spacelike immersion. The immersion Ψ can be

written

Ψ = (ΨB,ΨF ),

where ΨB = πB ◦Ψ and ΨF = πF ◦Ψ. For the vector field ξ|Ψ we have

0 = g̃(ξ|Ψ, ξ|Ψ) = g̃(TΨ · ξ⊤, TΨ · ξ⊤) + g̃(ξ⊥, ξ⊥).

Hence, ξ⊥ does not vanish at any point of M and g̃(ξ⊥, ξ⊥) ≤ 0, in other words, ξ⊥ is a causal

normal vector field. On the other hand, the vector field ξ⊤ vanishes identically if and only if

M ⊂ L. In this case, we say that M factors through an integral hypersurface L of Dξ.

Remark 4.3. Let recall that the two dimensional manifoldB is assumed to be orientable. Thus,

the existence of the lightlike vector field ξ implies that there is another lightlike vector field

η ∈ X(B) which is uniquely determined by the normalization condition gB(ξ, η) = −1. As

for ξ, we have ∇Bη = −α⊗ η and the corresponding distribution Dη is also involutive. Every

each maximal integral submanifold N of Dη inherits a degenerate metric tensor from g̃ whose

radical is now spanned by the restriction of η to N .

In order to be used later, let us recall the notion of parabolic Riemannian manifold.

Definition 4.4. A (non necessary complete) Riemannian manifold is parabolic if the only sub-

harmonic functions bounded from above that it admits are the constants. That is, a Rieman-

nian manifold (M, g) is parabolic when ∆h ≥ 0 and supM h < +∞ for a smooth function

h ∈ C∞(M) implies h must be constant (see, for instance, [38] and [36]).

Note that ∆ denotes the Laplace operator of the metric g. From a physical point of view,

the parabolicity is equivalent to the recurrence of the Brownian motion on a Riemannian man-

ifold [36]. Let us also recall that every complete Riemannian surface with non-negative Gaus-

sian curvature is parabolic [37]. Even more, every complete Riemannian surface with finite

total curvature is parabolic [37]. In arbitrary dimension there is no clear relation between

parabolicity and sectional curvature. Nevertheless, there exist sufficient conditions to ensure

the parabolicity of a Riemannian manifold of arbitrary dimension based on the volume growth

of its geodesic balls [6].
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4.2 Generalized Schwarzschild spacetimes

From now on B ×λ F is a generalized Schwarzschild spacetime, Definition 1.1. In order to

facilitate reading, let us recall the definition. A Lorentzian warped product manifold (M̃, g̃) =

B ×λ F is said to be an (m+ 2)-dimensional generalized Schwarzschild spacetime when B is

an open subset of R2 with canonical coordinates (t, r) and metric

gB = −f 2(r)dt2 +
1

f 2(r)
dr2,

where f(r) > 0, (F, gF ) is a m-dimensional connected Riemannian manifold and λ ∈ C∞(B)

with λ > 0 is the warping function.

We can give two lightlike vector fields in B as follows

ξ =
1

f 2
∂t + ∂r and η =

1

2
(∂t − f 2∂r) (4.2)

with g̃(ξ, η) = −1. The Levi-Civita connection ∇B is directly computed from (1.1) as follows

∇B
∂t∂t = f 3f ′∂r, ∇B

∂t∂r =
f ′

f
∂t and ∇B

∂r∂r = −f
′

f
∂r

where f ′ = ∂rf . The Gauss curvature of the metric gB is KB = − ((f ′)2 + ff ′′) . The 1-form

defined in (4.1) satisfies

α = f ′
(
fdt− 1

f
dr

)
. (4.3)

In particular, α(ξ) = α(η) = 0 and then ξ and η are geodesic vector fields. Straightforward

computations show for the natural coordinates t and r on B and for the warping function λ that

∇Bt = − 1

f 2
∂t, ∇Br = f 2∂r, ∇Bf = f 2f ′∂r and ∇Bλ = −λt

f 2
∂t + f 2λr∂r.

Remark 4.5. Let L be an integral hypersurface of the distribution Dξ. Recall that the null-

Weingarten map bξ is defined for every point p ∈ L as

bξ : TxL/ξx → TxL/ξx, [v] 7→ [∇̃vξ],

where [ ] denotes the class in the quotient vector space TxL/ξx, see [32]. The lightlike manifold

L is said to be totally geodesic when bξ = 0. A direct computation from (2.8) gives bξ([v]) =
ξλ
λ
[v]. This formula implies that L is a totally geodesic lightlike hypersurface if and only

if ξλ = 0. In a similar way, the integral hypersurfaces of Dη are totally geodesic lightlike

hypersurfaces if and only if ηλ = 0.



Generalized Schwarzschild spacetimes 77

Remark 4.6. Lorentzian manifolds admitting a global parallel and lightlike vector field ξ were

introduced in [13]. Such a Lorentzian manifolds are called Brinkmann spacetimes Hence, a

generalized Schwarzschild spacetime is a Brinkmann spacetime if and only if α = 0. Recall

that a Lorentzian manifold (M̄, ḡ) is said to be static when admits a Killing vector field K with

ḡ(K,K) < 0. The timelike vector field ∂t in a generalized Schwarzschild spacetime is Killing

if and only if λt = 0. This is the case of the classical Schwarzschild spacetime.

Remark 4.7. In a general setting, given a semi-Riemannian manifold (M̄, ḡ), a vector field

X ∈ X(M̄) is said to be recurrent when there is a 1-form α on M̄ such that ∇̄X = α ⊗ X ,

where ∇̄ is the Levi-Civita connection of ḡ. In particular, equations (4.1) and (2.8) imply

that the vector fields ξ and η are recurrent. This property widely generalizes the Brinkmann

spacetimes. Lorentzian manifolds with recurrent lightlike vector fields have been studied in

[42].

Let M be an (n ≥ 2)-dimensional manifold such that m ≥ n. For Ψ : M → B ×λ F a

spacelike immersion in a generalized Schwarzschild spacetime, we have the smooth functions

on M given by u = t ◦ΨB and v = r ◦ΨB. We have for the gradients of these functions with

respect to the induced metric g that

∇u = − 1

(f ◦ΨB)2
∂⊤t and ∇v = (f ◦ΨB)

2∂⊤r (4.4)

and therefore

ξ⊤ =
1

(f ◦ΨB)2
∇v −∇u and η⊤ = −1

2

(
∇v + (f ◦ΨB)

2∇u
)
. (4.5)

These formulas (4.5) lead to the following characterization for spacelike immersions through

integral submanifolds of the distributions Dξ or Dη.

Lemma 4.8. A spacelike immersion Ψ :M → B ×λ F in a generalized Schwarzschild space-

time factors through an integral hypersurface L (resp. N ) of the distribution Dξ (resp. Dη) if

and only if

∇v = (f ◦ΨB)
2∇u (resp.∇v = −(f ◦ΨB)

2∇u).

Remark 4.9. Slices are totally umbilical spacelike embedded immersions (see Section 2.3).

Note that every spacelike immersion which factors through an integral hypersurface ofDξ and,

at the same time, through an integral hypersurface of Dη must factors through a slice.
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Example 4.10. As was mentioned in the Introduction (see also Example 2.5), the (m +

2)-dimensional Minkowski spacetime Lm+2 can be described in two ways as a generalized

Schwarzschild spacetime.

• The first one is B = R2, f(r) = 1, λ(t, r) = 1 and (F, gF ) = Em. The lightlike vector

fields in (4.2) are ξ = ∂t + ∂r and η = 1
2
(∂t − ∂r). Hence, the leaves of the lightlike

foliations are lightlike hyperplanes in Lm+2.

• The second one is obtained by takingB = R×R>0, f(r) = 1, λ(t, r) = r and (F, gF ) =

Sm. The lightlike vector fields in (4.2) are ξ = ∂t+∂r and η = 1
2
(∂t−∂r). The foliations

by lightlike hypersurfaces given in Lemma 4.1 correspond via the isometry (2.9) given

in Example 2.5 with the lightlike cones with vertex at the points (t, 0) ∈ Lm+2.

4.3 Immersions in generalized Schwarzschild spacetimes

Along this Section

Ψ :M → B ×λ F

is a fixed spacelike immersion which does not necessary factors through an integral submani-

fold of Dξ or Dη. For every vector field V ∈ X(M) and x ∈M , we denote

V B
x = TxΨB · Vx and V F

x = TxΨF · Vx.

Since we agree to ignore the differential map of Ψ, this means that V = V B +V F . We get that

V B = g(V,∇u)∂t|Ψ + g(V,∇v)∂r|Ψ, (4.6)

and from (4.4), we have

(V B)⊤ = −(f ◦ΨB)
2V (u)∇u+ 1

(f ◦ΨB)2
V (v)∇v. (4.7)

As a consequence of (2.8), we get

∇̃V (ξ|Ψ) = α(V B)ξ|Ψ +
(ξλ
λ

◦ΨB

)
V F .

The Gauss and Weingarten formulas (2.1) imply that

∇V ξ
⊤ + II(V, ξ⊤)− Aξ⊥V +∇⊥

V ξ
⊥ = α(V B)ξ|Ψ +

(ξλ
λ

◦ΨB

)
V F . (4.8)
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In particular for the tangent parts to M , we get

∇V ξ
⊤ − Aξ⊥V = α(V B)ξ⊤ +

(ξλ
λ

◦ΨB

)
(V F )⊤. (4.9)

From (4.7) and taking into account that (V F )T = V − (V B)T , the equation (4.9) reduces to

∇V ξ
⊤ − Aξ⊥V = α(V B)ξ⊤ +

(ξλ
λ

◦ΨB

)(
V + (f ◦ΨB)

2V (u)∇u− 1

(f ◦ΨB)2
V (v)∇v

)
and then,

div(ξ⊤)− n g̃(H, ξ⊥) =
(ξλ
λ

◦ΨB

)[
n+ (f ◦ΨB)

2∥∇u∥2 − 1

(f ◦ΨB)2
∥∇v∥2

]
+ (Ψ∗

Bα)(ξ
⊤).

(4.10)

Note that (Ψ∗
Bα)(ξ

⊤) = α((ξ⊤)B). A straightforward computation from (4.5) and (4.6) gives

(ξ⊤)B =
( 1

(f ◦ΨB)2
g(∇u,∇v)− ∥∇u∥2

)
∂t|Ψ +

( 1

(f ◦ΨB)2
∥∇v∥2 − g(∇u,∇v)

)
∂r|Ψ

and then, from (4.3), we have

(Ψ∗
Bα)(ξ

⊤) = −(ff ′ ◦ΨB)∥ξ⊤∥2.

On the other hand, one can compute that

traceg(Ψ
∗
BgB) = −(f ◦ΨB)

2∥∇u∥2 + 1

(f ◦ΨB)2
∥∇v∥2 = −2g(ξ⊤, η⊤),

where traceg(Ψ
∗
BgB) =

∑n
i=1(Ψ

∗
BgB)(Ei, Ei) for a local orthonormal frame in M .

Remark 4.11. Taking into account that n = traceg(g) = traceg(Ψ
∗
BgB)+(λ◦ΨB)

2traceg(Ψ
∗
FgF ),

we get g(ξ⊤, η⊤) > −n/2.

From (4.10), the above computations give the following result.

Lemma 4.12. Let Ψ :M → B×λ F be a spacelike immersion in a generalized Schwarzschild

spacetime. Then the following formula holds

div(ξ⊤)− n g̃(H, ξ⊥) =
(ξλ
λ

◦ΨB

) [
n+ 2g(ξ⊤, η⊤)

]
− (ff ′ ◦ΨB)∥ξ⊤∥2.

Remark 4.13. We know that ξ⊤ = 0 for a spacelike immersion which factors through an

integral hypersurface L of Dξ. In this case, the above Lemma reduces to

g̃(H, ξ) = −ξλ
λ

◦ΨB.
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The following result provides an integral characterization for compact spacelike immer-

sions through integral hypersurfaces of Dξ.

Theorem 4.14. Assume M is compact and Ψ : M → B ×λ F is a spacelike immersion in a

generalized Schwarzschild spacetime with f ′ ◦ΨB > 0 (resp. f ′ ◦ΨB < 0). Then, we have∫
M

[
n g̃(H, ξ⊥) +

(ξλ
λ

◦ΨB

) [
n+ 2g(ξ⊤, η⊤)

] ]
dµg ≥ 0. (resp. ≤ 0). (4.11)

The equality holds if and only if M factors through an integral hypersurface L of Dξ.

Proof. Suppose the case f ′ ◦ΨB > 0. The inequality (4.11) is a direct consequence of Lemma

4.12 and the classical divergence theorem. Furthermore, (4.11) becomes an equality if and

only if ∫
M

(ff ′ ◦ΨB)∥ξ⊤∥2 dµg = 0.

Since f ′ ◦ΨB > 0 and the immersion is spacelike, we get ξ⊤ = 0 and this fact ends the proof.

The proof for f ′ ◦ΨB < 0 works in a similar way.

Remark 4.15. We have for the family of functions given in (1.2) that

(ff ′)(r) =
−2Λr2m +m(m2 − 1)(Mrm−1 − q2)

m(m+ 1)r2m−1
.

Therefore, the assumption f ′◦ΨB > 0 is satisfied when Λ ≤ 0 and Mvm−1 > q2. In particular,

it holds for the exterior Schwarzschild spacetime.

We just sketch the proof of Lemma 4.12 for the lightlike vector field η. The condition

g̃(ξ, η) = −1 implies ∇Bη = −α⊗ η (see Remark 4.3) and then

∇̃V (η|Ψ) = −α(V B)η|Ψ +
(ηλ
λ

◦ΨB

)
V F .

From the Gauss and Weingarten formulas we have

∇V η
⊤ + II(V, η⊤)− Aη⊥V +∇⊥

V η
⊥ = −α(V B)η|Ψ +

(ηλ
λ

◦ΨB

)
V F , (4.12)

and taking tangent parts, we get

∇V η
⊤ − Aη⊥V = −α(V B)η⊤ +

(ηλ
λ

◦ΨB

)
(V F )⊤. (4.13)
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Hence we have

div(η⊤)− n g̃(H, η⊥) =
(ηλ
λ

◦ΨB

)[
n+ (f ◦ΨB)

2∥∇u∥2 − 1

(f ◦ΨB)2
∥∇v∥2

]
− (Ψ∗

Bα)(η
⊤).

A straightforward computation from (4.3) shows that

(Ψ∗α)(η⊤) =
(ff ′

2
◦ΨB

)
traceg(Ψ

∗
BgB).

Therefore, the corresponding version of Lemma 4.12 to the vector field η reads as follows.

Lemma 4.16. Let Ψ :M → B×λ F be a spacelike immersion in a generalized Schwarzschild

spacetime. Then the following formula holds

div(η⊤)− n g̃(H, η⊥) =
(ηλ
λ

◦ΨB

) [
n+ 2g(ξ⊤, η⊤)

]
+ (ff ′ ◦ΨB)g(ξ

⊤, η⊤). (4.14)

When Ψ(M) factors through an integral hypersurface N of Dη, we have

g̃(H, η) = −ηλ
λ

◦ΨB.

Remark 4.17. From (4.14) and for M compact, we get∫
M

[
n g̃(H, η⊥) +

(ηλ
λ

◦ΨB

) [
n+ 2g(ξ⊤, η⊤)

] ]
dµg = −

∫
M

(ff ′ ◦ΨB)g(ξ
⊤, η⊤) dµg.

The right-hand side of this integral formula has no prescribed sign although we impose f ′ ◦

ΨB ̸= 0. Hence, a similar result to Theorem 4.14 does not hold for the vector field η.

4.4 Immersions through lightlike integral hypersurfaces

In this Section, we will focus on spacelike immersions Ψ : M → B ×λ F through lightlike

integral hypersurfaces of the distributions Dξ or Dη. Recall that we write L (resp. N ) for

a general integral hypersurface of Dξ (resp. Dη). The following results specialize several

formulas of the above sections for theses cases. For example, the formula (4.5) using Lemma

4.8. From now on until the end of this Chapter we are going to avoid writing the immersion |Ψ.

Lemma 4.18. Let Ψ :M → B×λF be a spacelike immersion through an integral hypersurface

L of Dξ. The following formulas hold

1. α(V B) = 0 for every V ∈ X(M).
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2. η⊤ = −∇v.

3. V B = g(V,∇v)ξ. In particular, we get (V B)⊤ = 0 and (V F )⊤ = V.

4. When M has codimension two, the normal bundle TM⊥ is spanned by the normal light-

like vector fields ξ and

ℓξ = −∥∇v∥2

2
ξ + η⊥.

We also have g̃(ξ, ℓξ) = −1.

Lemma 4.19. Let Ψ :M → B×λF be a spacelike immersion through an integral hypersurface

N of Dη. The following formulas hold

1. α(V B) = −
(
2f ′

f
◦ΨB

)
g(V,∇v) for every V ∈ X(M).

2. ξ⊤ =
2

(f ◦ΨB)2
∇v.

3. V B = − 2

(f ◦ΨB)2
g(V,∇v)η. In particular, we get (V B)⊤ = 0 and (V F )⊤ = V.

4. When M has codimension two, the normal bundle TM⊥ is spanned by the normal null

vector fields η and

ℓη = ξ⊥ − 2∥∇v∥2

(f ◦ΨB)4
η.

We also have g̃(η, ℓη) = −1.

Remark 4.20. In these cases, the projection ΨF : M → F is also an immersion. Indeed, from

Lemma 4.18, the equality TxΨF · v = 0 for x ∈ M with v ∈ TxM and Ψ(M) ⊂ L give

g(v, v) = 0 and then v = 0 . The same argument works for N . For spacelike immersions

Ψ : M → B ×λ F through these lightlike integral hypersurfaces, we have that the induced

metric is g = (λ ◦ΨB)
2Ψ∗

F (gF ).

Lemma 4.21. Let Ψ :M → B×λF be a spacelike immersion through an integral hypersurface

L of Dξ. For every V ∈ X(M), we have

AξV = −
(ξλ
λ

◦ΨB

)
V and Aη⊥V = −

(ηλ
λ

◦ΨB

)
V − ∇V∇v.

In particular, we get g̃(H, η⊥) = −ηλ
λ
◦ΨB − 1

n
∆v.

Proof. Under our assumptions ξ⊤ = 0 and by means of Lemma 4.18, the equation (4.9) re-

duces to the announced formula for Aξ. From Lemma 4.18 we have η⊤ = −∇v. Hence,

formula (4.13) ends the proof.
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In a similar way we have.

Lemma 4.22. Let Ψ :M → B×λF be a spacelike immersion through an integral hypersurface

N of Dη. For every V ∈ X(M), we have

AηV = −
(ηλ
λ

◦ΨB

)
V and Aξ⊥V = −

(ξλ
λ

◦ΨB

)
V +

2

(f ◦ΨB)2
∇V∇v.

In particular, we get g̃(H, ξ⊥) = − ξλ
λ
◦ΨB + 2

n(f◦ΨB)2
∆v.

In order to avoid ambiguities, we add the following terminology. A function h with values

in R is said to be signed when h ≥ 0 or h ≤ 0 on whole domain. The assumptions on the

functions ξλ and ηλ in the statements of the following results are only required along Ψ.

Corollary 4.23. Assume ηλ (resp. ξλ) signed and let Ψ :M → B×λF be a compact spacelike

immersion through an integral hypersurface L (resp. N ) of the distributionDξ (resp. Dη) with

H = 0. Then M factors through a slice with u = t0 and v = r0 such that ∇Bλ(t0, r0) = 0 and

M is minimal in F .

Proof. We give the proof only for the case of Dξ. From Lemma 4.21, we have

ηλ

λ
◦ΨB +

1

n
∆v = 0.

The assumption regarding the sign of ηλ implies that ∆v is also signed. As a consequence of

Hopf’s Theorem (see, for example, [2]), we know that the compactness of M implies that v is

a constant function r0. Furthermore, Lemma 4.8 implies that u is also a constant function t0.

Now, consider the string of smooth maps

M
ΨF−→ F ↪→ B ×λ F,

where the second map is the slice at level (t0, r0). From [23, Chap. 3], we know that for an

orthonormal local frame (E1, · · · , En) of the induced metric g, we have

H = H′ +
1

n

n∑
i=1

II(TΨF · Ei, TΨF · Ei),

where H′ denotes the mean curvature vector field of ΨF and II is the second fundamental form

of the slice at (t0, r0). Therefore, as a consequence of (2.10) and Remark 4.20, we get that

H = H′ − ∇Bλ

λ
(t0, r0).

Hence H = 0 provides that H′ = 0 and ∇Bλ(t0, r0) = 0.
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As a direct consequence of Lemmas 4.21 and 4.22, for a spacelike immersion through an

integral hypersurface of Dξ (resp. Dη), the normal vector field η⊥ (resp. ξ⊥) is umbilic if and

only if there is h ∈ C∞(M) such that

∇V∇v = hV, (4.15)

for every V ∈ X(M). Then, in both situations, we have L∇vg = 2hg and therefore ∇v is a

conformal vector field in (M, g).

Theorem 4.24. Let Ψ : M → B ×λ F be a compact spacelike immersion through an integral

hypersurface L (resp. N ) of Dξ (resp. Dη) with Ricg(∇v,∇v) ≤ 0, where Ricg is the Ricci

tensor of the induced metric g. Then η⊥ (resp. ξ⊥) is an umbilic direction if and only if M

factors through a slice.

Proof. Since ∇v is a conformal vector field and Ricg(∇v,∇v) ≤ 0 it follows that ∇v is a

Killing vector field (see [59, Chap. 5]). This necessarily implies that h = 0 in (4.15) and

therefore ∆v = 0. Taking into account that M is assumed to be compact, we get that v is a

constant function. Furthermore, from Lemma 4.8 the function u must also be a constant. The

converse is obvious.

Equation (4.15) implies that ∇v is a conformal gradient vector field on the Riemannian

manifold (M, g). From a classic result by Obata [48], the existence of such vector fields on

compact Riemannian manifolds has been address in [27, Theor. 1]. As a direct consequence

of this result, we have.

Theorem 4.25. Let Ψ : M → B ×λ F be a compact spacelike immersion through an integral

hypersurface L (resp. N ) of Dξ (resp. Dη) with η⊥ (resp. ξ⊥) an umbilic direction. Assume

the Ricci tensor of the induced metric g satisfies

0 < Ricg ≤ (n− 1)

(
2− nc

λ1

)
c,

for a constant c where λ1 is the first non-trivial eigenvalue of the Laplace operator of the metric

g. If ∇v is a nonzero vector field, then (M, g) is isometric to the sphere Sn(c) of constant

sectional curvature c.

Remark 4.26. A careful reading of [27, Theor. 1] shows that we only need the above condition

on the Ricci tensor for the vector field ∇(∆v
n

+ cv).
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Remark 4.27. From [68, Chap. 1], we know that for every conformal vector field V in an

n-dimensional Riemannian manifold, the following formula holds

V (Sg) = −2(n− 1)

n
∆(div(V ))− 2

n
div(V ) · Sg,

where Sg is the scalar curvature of g. Under the assumptions of Theorem 4.25, the vector field

∇v is conformal and the manifold (M, g) is isometric to the sphere Sn(c). Therefore, the above

formula reduces to

0 = ∆(∆v) + nc∆v.

This implies that ∆v + nc v = k ∈ R. Hence for w := v − k
nc

, we have that ∆w + ncw =

0 and either v = k
nc

or w is an eigenfunction of the Laplace operator of the sphere Sn(c)

corresponding with nc. This is the well-known value of the first non-trivial eigenvalue λ1 of

the Laplace operator of the sphere Sn(c), [22, Chap. 2]. The space of homogeneous harmonic

polynomial of Rn+1 of degree 1 restricted to Sn(c) constitutes the eigenspace corresponding to

λ1. In other words, there is a ∈ Rn+1 such that v(x) = ⟨x, a⟩ + k
nc
, where ⟨ , ⟩ is the usual

Euclidean inner product.

Proposition 4.28. Let Ψ : M → B ×λ F be a spacelike immersion through an integral

hypersurface L of Dξ. For every V ∈ X(M), we have

∇⊥
V ξ = −

(
ξλ

λ
◦ΨB

)
g(∇v, V )ξ and ∇⊥

V η
⊥ = −

(
ηλ

λ
◦ΨB

)
g(∇v, V )ξ + II(∇v, V ).

Proof. The first assertion is a direct computation from equation (4.8) from Lemmas 4.18 and

4.21 taking into account that V F − V = −V B. On the other hand, Lemmas 4.18 and 4.21

reduce equation (4.12) to

−II(V,∇v) +
(ηλ
λ

◦ΨB

)
V +∇⊥

V η
⊥ =

(ηλ
λ

◦ΨB

)
V F .

and again from V F − V = −V B, the above formula ends the proof.

In a similar way we obtain the following lemma.

Proposition 4.29. Let Ψ : M → B ×λ F be a spacelike immersion through an integral

hypersurface N of Dη. For every V ∈ X(M), we have

∇⊥
V η =

2

(f ◦ΨB)2

(
ff ′ ◦ΨB +

ηλ

λ
◦ΨB

)
g(∇v, V )η
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and

∇⊥
V ξ

⊥ =
2

(f ◦ΨB)2

[
g(∇v, V )

(
− (ff ′ ◦ΨB) ξ

⊥ +

(
ξλ

λ
◦ΨB

)
η

)
− II(∇v, V )

]
.

As a direct consequence of Propositions 4.28 and 4.29 we have.

Theorem 4.30. Let Ψ :M → B×λ F be a spacelike immersion through an integral hypersur-

face L (resp. N ) of Dξ (resp. Dη). Assume ξλ ̸= 0 (resp. ff ′ + ηλ
λ

̸= 0), then the following

assertions are equivalent

1. ∇⊥
V ξ = 0 (resp. ∇⊥

V η = 0) for every V ∈ X(M).

2. M factors through a slice.

Remark 4.31. In order to study the applicability of this result to the caseB×r Sm where f 2(r)

is given in (1.2), recall ξλ = 1 and a direct computation shows that ff ′ + ηλ
λ
̸= 0 if and only if

−2Λrm+1 +m(m+ 1)(2mM− rm−1 − (2m− 1)q2r1−m) ̸= 0.

For the exterior Schwarzschild spacetime with mass M, we have

ff ′ +
ηλ

λ
=

2mM− rm−1

2rm
.

Therefore, the assumption in Theorem 4.30 is always satisfied for the distribution Dξ but the

condition for Dη holds if and only if the value 2mM is not achieved for the function vm−1 ∈

C∞(M).

4.5 Codimension two spacelike immersions

From now on, we assume m = n, that is, the spacelike immersion Ψ :M → B×λ F has codi-

mension two. We begin this Section with a topological result on such spacelike immersions.

Proposition 4.32. Let Ψ :M → B ×λ F be a codimension two compact spacelike immersion

through an integral hypersurface L (resp. N ) of Dξ (resp. Dη). Then the map ΨF : M → F

is a covering map. In particular, F is also compact and when F is simply-connected, ΨF is a

diffeomorphism.

Proof. We give the proof only for the case of the distribution Dξ. We claim that the map

ΨF : M → F is a local diffeomorphism. Indeed, we know that ΨF : M → F is an immersion

between manifolds of the same dimension. The compactness of M and the connectedness of

F imply that ΨF is a covering map (see [28, Proposition 5.6.1] for details).
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Remark 4.33. Under the assumptions of Theorem 4.25, if F is simply-connected necessarily

must be a topological sphere.

Remark 4.34. The map ΨF : M → F is not a Riemannian covering, in general. In fact, as was

mentioned for Ψ = (ΨB,ΨF ), the induced metric on M is given by g = (λ ◦ ΨB)
2Ψ∗

F (gF ).

Also, taking into account the relation between the scalar curvatures of two conformally related

metrics (see formula (2.12)), we have that

SΨ∗
F (gF ) = (λ ◦ΨB)

2
(
Sg + 2(n− 1)∆ log(λ ◦ΨB)− (n− 2)(n− 1)∥∇ log(λ ◦ ψB)∥2

)
,

where SΨ∗
F (gF ) and Sg are the scalar curvatures of Ψ∗

F (gF ) and g, respectively. For λ(t, r) = r,

we have λ◦ΨB = v and from a straightforward computation the above formula reads as follows

SΨ∗
F (gF ) = v2

(
Sg +

2(n− 1)

v
∆v − n(n− 1)

v2
∥∇v∥2

)
. (4.16)

Proposition 4.35. Assume λ(t, r) = r and let Ψ : M → B ×λ F be a compact codimension

two spacelike immersion through an integral hypersurface of Dξ or Dη. Then∫
M

(
SΨ∗

F (gF ) − v2Sg
)
dµg ≤ 0

and the equality holds if and only if M factors through a slice.

Proof. From (4.16), a direct computation gives that∫
M

(
SΨ∗

F (gF ) − v2Sg
)
dµg = (n− 1)

∫
M

(2v∆v − n∥∇v∥2)dµg.

Taking into account that ∆v2 = 2v∆v + 2∥∇v∥2, the above formula reduces to∫
M

(
SΨ∗

F (gF ) − v2Sg
)
dµg = −(n− 1)(n+ 2)

∫
M

∥∇v∥2dµg.

Then, Lemma 4.8 ends the proof.

As a direct consequence of Corollary 4.23 and Proposition 4.32 we have.

Corollary 4.36. Assume ηλ (resp. ξλ) signed. Then every codimension two compact spacelike

immersion through an integral hypersurface L (resp. N ) of Dξ (resp. Dη) with H = 0 factors

through a slice and ΨF : (M, g) → (F, λ(t0, r0)
2gF ) is a Riemannian covering space.

Proposition 4.37. Let Ψ : M → B ×λ F be a codimension two spacelike immersion through

an integral hypersurface L (resp. N ) of Dξ (resp. Dη). Then the normal bundle TM⊥ is
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spanned by the vector fields ξ⊥ and η⊥. When M factors through an integral hypersurface L

of Dξ, the mean curvature vector field is

H =

[
ηλ

λ
◦ΨB −

(ξλ
λ

◦ΨB

)
∥∇v∥2 + 1

n
∆v

]
ξ +

(ξλ
λ

◦ΨB

)
η⊥ (4.17)

and when M factors through an integral hypersurface N of Dη we have

H =
(ηλ
λ

◦ΨB

)
ξ⊥ +

[
ξλ

λ
◦ΨB −

(4 ηλ
λf 4

◦ΨB

)
∥∇v∥2 − 2

n(f ◦ΨB)2
∆v

]
η.

Proof. The assertion on the normal bundle is a direct consequence of ξ⊥ = ξ (resp. η⊥ = η)

and g̃(ξ, η) = −1. Hence, there are smooth functions a, b ∈ C∞(M) such that

H = aξ + bη⊥

where b = −g̃(H, ξ) and from Lemma 4.18 we can compute that a = g̃(H, ∥∇v∥2ξ − η⊥).

Now formula (2.2) and Lemma 4.21 imply that

g̃(H, ξ) = −ξλ
λ

◦ΨB and g̃(H, η⊥) = −ηλ
λ

◦ΨB − 1

n
∆v.

This completes the proof for the case of spacelike immersions through integral hypersurfaces

of Dξ. Slight changes in the proof show the formula for the mean curvature vector field in the

case Dη.

Under the same assumptions of Proposition 4.37 and from Lemmas 4.18 and 4.19, we have.

Corollary 4.38. For a spacelike immersion Ψ : M → B ×λ F which factors through an

integral hypersurface L of Dξ, we have

H =

[
ηλ

λ
◦ΨB −

(ξλ
2λ

◦ΨB

)
∥∇v∥2 + 1

n
∆v

]
ξ +

(ξλ
λ

◦ΨB

)
ℓξ.

In case that M factors through an integral hypersurface N of Dη,

H =
(ηλ
λ

◦ΨB

)
ℓη +

[
ξλ

λ
◦ΨB −

(2 ηλ
λf 4

◦ΨB

)
∥∇v∥2 − 2

n(f ◦ΨB)2
∆v

]
η.

Remark 4.39. This Corollary extends the formulas for the mean curvature vector field of codi-

mension two spacelike immersions through lightlike hyperplanes and cones in the Minkowski

spacetime, [4] and [56]. For immersions through lightlike hyperplanes, we particularize Corol-

lary 4.38 for f(r) = 1 and λ(t, r) = 1 (see Example 4.10), then H = 1
n
∆v ξ for M in the

lightlike hyperplane

Πξ := {x ∈ Ln+2 : ⟨x, ξ⟩ = 0}.
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Similarly, we obtain H = − 2
n
∆v η when M factors through the lightlike hyperplane Πη. It can

be easily seen that our formulas for H coincides with the formula (8.2) given in [4, Sect. 8].

For immersions through lightlike cones we need to take f(r) = 1 and λ(t, r) = r, then we

compute the mean curvature as follows

H =
(−1− ∥∇v∥2

2v
+

∆v

n

)
ξ +

1

v
ℓξ, Dξ case

and

H = − 1

2v
ℓη +

(1 + ∥∇v∥2

v
− 2∆v

n

)
η, Dη case.

Theses formulas agree with [56] and [4, Sect. 6]. In fact, taking Λ+ ⊂ Ln+2 the future lightlike

cone with vertex at 0 ∈ Ln+2, we know from (2.9) that ξ̂ := rξ satisfies Tϕ · ξ̂ is the position

vector field in Λ+. Therefore, if we rescale l̂ := 1
r
lξ, the first formula of H expressed in terms

of ξ̂ and l̂ coincides with the formula given in [56] and [4, Sect. 6].

Remark 4.40. Assume the warping function λ depends only on the radial coordinate r. Ac-

cording to (4.17), the existence of a codimension two spacelike immersion with H = 0 through

an integral hypersurface L ofDξ implies λr ◦ΨB = 0. In particular, there are no such spacelike

immersions in the exterior Schwarzschild spacetime with mass M. The same result remains

true for spacelike immersions through an integral hypersurface N of Dη.

Remark 4.41. Let Ψ : M → B ×λ F be a codimension two spacelike immersion through an

integral hypersurface L of Dξ with λ(t, r) = r. Proposition 4.28 and Corollary 4.38 give that

the normal lightlike vector field ℓ := v ξ satisfies

g̃(ℓ,H) = −1 and ∇⊥ℓ = 0. (4.18)

In the case that the spacelike immersion lies in an integral hypersurface N of Dη, the lightlike

normal vector field ℓ := −2v
(f◦ΨB)2

η satisfies g̃(ℓ,H) = −1 and ∇⊥ℓ = 0. Assuming that M is

compact and F is the round sphere, the existence of a normal lightlike vector field ℓ such that

(4.18) holds implies that M lies in an integral lightlike hypersurface of Dξ or Dη, [65]. The

authors of [65] call these hypersurfaces as null hypersurfaces of symmetry. In other words, the

null hypersurfaces generated by the round sphere.

Taking into account formulas (2) in Lemmas 4.18 and 4.19, we obtain the following result

from Proposition 4.37.
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Corollary 4.42. Under the same assumptions of Proposition 4.37, for a spacelike immersion

through an integral hypersurface L of Dξ, we have

∥H∥2 = −2 ηλ ξλ

λ2
◦ΨB −

(2 ξλ
nλ

◦ΨB

)
∆v +

(ξ λ
λ

◦ΨB

)2

∥∇v∥2

and, for a spacelike immersion through an integral hypersurface N of Dη, we have

∥H∥2 = −2 ηλ ξλ

λ2
◦ΨB +

( 4 ηλ

nλf 2
◦ΨB

)
∆v + 4

( η λ
λf 2

◦ΨB

)2

∥∇v∥2,

where ∥H∥2 denotes g̃(H,H).

Corollary 4.43. Assume ξλ ̸= 0 (resp. ηλ ̸= 0). Then, every codimension two compact

spacelike immersion through an integral hypersurface L (resp. N ) of Dξ (resp. Dη) with

∥H∥2 = −2 ηλ ξλ

λ2
◦ΨB

factors through a slice.

Proof. We give the proof only for the case of Dξ. As a consequence of Corollary 4.42, we

have (2 ξλ
nλ

◦ΨB

)
∆v =

(ξ λ
λ

◦ΨB

)2

∥∇v∥2.

Since ξλ ◦ΨB ̸= 0, we deduce that ∆v is also signed. We can now proceed analogously to the

proof of Theorem 4.24.

Remark 4.44. Assume λ(t, r) = r. Corollary 4.42 provides a formula which relates the mean

curvature vector field and the scalar curvatures SΨ∗
F (gF ) and Sg. In fact, for a codimension two

spacelike immersion through an integral hypersurface of Dξ or Dη, one computes from (4.16)

that

∥H∥2 = 1

v2

(
(f ◦ΨB)

2 − SΨ∗
F (gF ) − v2Sg

n(n− 1)

)
. (4.19)

If we specialize this formula for the case n = 2, we get that

∥H∥2 = 1

v2
(
(f ◦ΨB)

2 −KΨ∗
F (gF ) + v2Kg

)
.

Hence, if we assume M compact, the Gauss-Bonnet formula implies∫
M2

∥H∥2 dµg =
∫
M2

(f ◦ΨB)
2

v2
dµg,

where dµg is the canonical measure associated to the metric g.
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Let us recall the following terminology in General Relativity.

Definition 4.45. Let Ψ : M → (M̃, g̃) be a codimension two spacelike immersion of a man-

ifold M in a spacetime (M̃, g̃). M is said to be trapped when H is timelike. M is called

marginally (resp. weakly) trapped if H is lightlike (resp. causal) on M .

Remark 4.46. Assume λ(t, r) = r. Under the hypotheses of Corollary 4.42, we have ∥H∥2 ≤

0 for a spacelike immersion through an integral hypersurface of Dξ or Dη if and only if

2

n
∆v ≥ (f ◦ΨB)

2 + ∥∇v∥2

v
.

In particular, there are no compact weakly trapped immersions in this case. Taking into account

that for this choice of λ, the manifold B ×λ F is stationary, this result is only a particular case

of [43, Theor. 2]. In fact, recall that [43, Theor. 2] states that there is no compact weakly

trapped immersions in a stationary spacetime.

From Remark 4.40, there is no point on M where H = 0 and then, from (4.16), we have.

Corollary 4.47. Assume λ(t, r) = r and let Ψ :M → B×λF be a codimension two spacelike

immersion through an integral hypersurface of Dξ or Dη. Then, the following assertions are

equivalent.

1. M is marginally trapped.

2. The function v satisfies the equation

2v∆v − n
[
(f ◦ΨB)

2 + ∥∇v∥2
]
= 0.

3. The scalar curvature of M satisfies

SΨ∗
F (gF ) = v2Sg + n(n− 1)(f ◦ΨB)

2.

Definition 4.48. An immersion Ψ : F → B ×λ F is said to be an (entire) spacelike graph on

F when

Ψ(x) = (ΨB(x), x)

and the induced metric Ψ∗(g̃) is Riemannian.
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Recall that if a spacelike graph on F factors through an integral hypersurface of Dξ or Dη, the

induced metric is g = (λ ◦ ΨB)
2gF . Assume λ(t, r) = r. Taking into account that ΨF = IdF

for spacelike graphs, formula (4.19) implies that for every graph factoring through an integral

hypersurface of Dξ or Dη, the mean curvature vector field H and the scalar curvatures SgF and

Sg are related by

∥H∥2 = 1

v2

(
(f ◦ΨB)

2 − SgF − v2Sg

n(n− 1)

)
. (4.20)

Remark 4.49. In the particular case of the exterior Schwarzschild spacetime with mass M, the

above formula reduces to

∥H∥2 = Sg

n(n− 1)
− 2M

vn+1
.

Then, a spacelike graph factoring through a lightlike hypersurface of Dξ or Dη is marginally

trapped if and only if Sg = 2Mn(n−1)
vn+1 . Also, taking into account the second description of the

Minkowski spacetime in Example 4.10, a spacelike graph factoring through a lightlike cone in

the Minkowski spacetime is marginally trapped if and only if Sg = 0.

Theorem 4.50. Assume λ depends only on the radial coordinate r and F is a non-compact

parabolic Riemannian manifold (see Definition 4.4). Let Ψ : F → B ×λ F be a spacelike

graph through an integral hypersurface L (resp. N ) of Dξ (resp. Dη) with H = 0. Then,

Ψ(F ) is a totally geodesic slice.

Proof. We give the proof only for L since the case of N is similar. From formula (4.17), we

get that λ ◦ΨB is a constant k ∈ R>0 and ∆v = 0. Then (4.20) implies that

(k2 − v2)Sg

n(n− 1)
= (f ◦ΨB)

2.

There are two possibilities. The first one is Sg > 0 and v2 < k2, then the parabolicity of F

gives that v is constant. The other possibility is Sg < 0 and k2 < v2. Therefore, −v < −k

or v < −k with ∆v = 0, again the parabolicity of F shows that v is constant. Now, formula

(2.10) ends the proof.

4.6 Parallel mean curvature

Lemma 4.51. Let Ψ : M → B ×λ F be a codimension two spacelike immersion through an

integral hypersurface L of Dξ. For every V ∈ X(M), we have

g̃(∇⊥
VH, ξ) = −g(∇v, V )

(
ξ(ξλ)

λ
◦ΨB

)
.
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For the case of an integral hypersurface N of Dη, we have

g̃(∇⊥
VH, η) = 2g(∇v, V )

(
η(ηλ) + ff ′ ηλ

λf 2
◦ΨB

)
.

When λ(t, r) = r, the above formulas reduce to g̃(∇⊥
VH, ξ) = 0 and g̃(∇⊥

VH, η) = 0, respec-

tively.

Proof. From Propositions 4.28 and 4.37, we derive

g̃(∇⊥
VH, ξ) = −V

(
ξλ

λ
◦ΨB

)
−
(
ξλ

λ
◦ΨB

)2

g(∇v, V ). (4.21)

A direct computation from Lemma 4.18 shows that

V

(
ξλ

λ
◦ΨB

)
= V B

(
ξλ

λ

)
= g(∇v, V )

(
ξ

(
ξλ

λ

)
◦ΨB

)
.

Substituting this formula in (4.21), we get

g̃(∇⊥
VH, ξ) = −V

(
ξλ

λ
◦ΨB

)
−

(
ξλ

λ
◦ΨB

)2

g(∇v, V ) = −g(∇v, V )
(ξ(ξλ)

λ
◦ΨB

)
.

In a similar way, from Propositions 4.29 and 4.37, we have

g̃(∇⊥
VH, η) = −V

(
ηλ

λ
◦ΨB

)
+

2

(f ◦ΨB)2

(
ηλ

λ
◦ΨB

)(
ff ′ ◦ΨB +

ηλ

λ
◦ΨB

)
g(∇v, V )

and Lemma 4.19 ends the proof.

Theorem 4.52. Assume the warping function satisfies ξ(ξλ) ◦ ΨB ̸= 0 at every point and let

Ψ :M → B×λF be a codimension two spacelike immersion through an integral hypersurface

L of Dξ. Then, the following assertions are equivalent

1. g̃(∇⊥
VH, ξ) = 0 for every V ∈ X(M).

2. M factors through a slice.

3. ∇⊥H = 0.

Proof. Assume that g̃(∇⊥
VH, ξ) = 0. Then from Lemma 4.51 it is directly follows that v is a

constant function. From Lemma 4.8, the function u is also constant and thenM factors through

a slice. The mean curvature vector field of an immersion Ψ which factors through a slice is

computed from (4.17) as follows

H =
(ηλ
λ

◦ΨB

)
ξ +

(ξλ
λ

◦ΨB

)
η.

Hence as a direct consequence of Lemma 4.18 and Proposition 4.28, we get ∇⊥H = 0. The

rest of the proof is obvious.
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In a similar way we have.

Theorem 4.53. Assume
(
η(ηλ) + ff ′ηλ

)
◦ ΨB ̸= 0 at every point and let Ψ : M → B ×λ F

be a codimension two spacelike immersion through an integral hypersurface N of Dη. Then,

the following assertions are equivalent

1. g̃(∇⊥
VH, η) = 0 for every V ∈ X(M).

2. M factors through a slice.

3. ∇⊥H = 0.

Remark 4.54. The proof of Theorems 4.52 and 4.53 does not work for λ(t, r) = r. In this

case, Lemma 4.51 gives g̃(∇⊥
VH, ξ) = 0 for a codimension two spacelike immersion through

an integral hypersurface L of Dξ. Hence, the mean curvature vector field is parallel if and only

if g̃(∇⊥
VH, η

⊥) = 0. Let us note that this last equation is equivalent to ∥H∥2 being a constant

function. A similar result is achieved for codimension two spacelike immersions through an

integral hypersurface N of Dη.



Chapter 5

Normal tractor conformal bundles

For every codimension two spacelike immersion in a Lorentzian manifold and each choice

of a normal lightlike vector field, we introduce a canonical way to construct a tractor con-

formal bundle. We characterize when the induced connection of a such immersion defines a

tractor connection and then, in this case, when this tractor conformal bundle with the induced

connection is standard for the induced metric. Finally, the normality conditions for this trac-

tor conformal bundle, endowed with the induced connection, are characterized in terms of a

strong relationship between the intrinsic and the extrinsic geometry of the starting spacelike

immersion.

5.1 Tractor conformal bundles induced via spacelike immer-

sions

Let M be an (n ≥ 2)-dimensional manifold and (M̃, g̃) be an (n+ 2)-dimensional Lorentzian

manifold. Throughout this Chapter we are interested in working with an arbitrary codimension

two spacelike immersion Ψ : M → (M̃, g̃) simply assuming that it admits a lightlike normal

vector field ξ ∈ X⊥(M) along Ψ. Under these assumptions, there is a natural choice of a

tractor conformal bundle on M as follows, see Defintion 3.7. The vector bundle is T → M

where T = Ψ∗(TM̃), that is, T → M is the pullback bundle (or induced bundle) via Ψ

of the tangent bundle TM̃ → M̃ . The Lorentzian bundle metric h is the metric g̃ and the

distinguished lightlike line subbundle T 1 is given by Span(ξ).As usual, we denote the induced

connection by ∇̃. It is well-known that ∇̃g̃ = 0. Taking into account that Ψ : M → (M̃, g̃) is

a codimension two spacelike immersion, there is ω ∈ Ω1(M,R) such that ∇⊥ξ = ω ⊗ ξ.

95
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Proposition 5.1. Let Ψ : M → (M̃, g̃) be a spacelike immersion and consider (T , T 1, g̃, ∇̃)

as above. Then, ∇̃ is a tractor connection (Definition 3.8) if and only if the Weingarten endo-

morphism Aξ is non-singular at every point x ∈ M. In this case, the induced metric g on M

by Ψ is in the conformal class of the Riemannian conformal structure deduced from the tractor

connection ∇̃ if and only if there is a smooth function µ ∈ C∞(M) such that A2
ξ = µ2 · Id

(where µ is a nonvanishing function on M ). Under these circumstances, (T , T 1, g̃, ∇̃) is a

standard tractor conformal bundle for (M, c), where c is the conformal class of g.

Proof. As was mentioned, the condition ∇̃g̃ = 0 always holds. In our case, by means of the

Weingarten formula, the vector bundle homomorphism β given by (3.7) is determined by

β(V )(ξ) = ∇̃V ξ + T 1 = −Aξ(V ) + ω(V )ξ + T 1 = −Aξ(V ) + T 1, (5.1)

where V ∈ X(M). That is, βξ(V ) = −Aξ(V ) + T 1. From (5.1), it is clear that β is an

isomorphism of vector bundles if and only if Aξ is non-singular at all points of M . In such

case, from formulas (3.6) and (5.1), every section σ = h ξ ∈ Γ(T 1) (where h is a nonvanishing

function on M ) produces the Riemannian metric

h2 g
(
Aξ(V ), Aξ(W )

)
= h2 g

(
A2
ξ(V ),W

)
, (5.2)

where V,W ∈ X(M). Then, the metric given in (5.2) belongs to the conformal class of the

induced metric g if and only if there is µ ∈ C∞(
M,R \ {0}

)
with A2

ξ = µ2 · Id.

Definition 5.2. Let Ψ : M → (M̃, g̃) be a spacelike immersion and ξ ∈ X⊥(M) a fixed

lightlike normal vector field. Assume there is a nonvanishing smooth function µ ∈ C∞(M)

such that A2
ξ = µ2 · Id. The standard tractor conformal bundle (T , T 1, g̃, ∇̃) for (M, c),

where T = Ψ∗(TM̃) and T 1 = Span(ξ), is said to be the associated tractor to the pair

(Ψ :M → M̃, ξ).

Remark 5.3. For associated tractors to codimension two spacelike immersions as above, the

induced metric satisfies g = g̃
1
µ
ξ, according to the notation in (3.6). Moreover, any metric e2ug

in the conformal class c of g satisfies e2ug = g̃
eu

µ
ξ.

Under the assumptions of Proposition 5.1 and taking into account that M is assumed to be

connected, there are two mutually disjoint possibilities. Namely, ξ is an umbilic direction, that

is, Aξ = µ · Id on M or the tensor field P := 1
µ
· Aξ defines an almost product structure (with
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P ̸= ±Id) on the Riemannian manifold (M, g). That is, we have P 2 = Id and g(PV, PW ) =

g(V,W ) for any V,W ∈ X(M).

Recall that Ricg and Sg are the Ricci tensor and the scalar curvature on (M, g), respectively.

For a fixed almost product structure (M,P, g) on a Riemannian manifold, the P -Ricci tensor

Ric∗ and the P -scalar curvature S∗ are defined by (see [44])

Ric∗(V,W ) =
n∑
i=1

g (R(Ei, V )W,PEi) , S∗ =
n∑
i=1

Ric∗(Ei, Ei), V,W ∈ X(M),

where (E1, . . . , En) is a local orthonormal frame.

In order to shorten the statement of the following result, we will write P = 1
µ
Aξ in both

cases, namely, when ξ is an umbilic direction (i.e., P = Id) and for the (proper) almost product

structure. Of course, when ξ is an umbilic direction, we have Ric∗ = Ricg and S∗ = Sg. From

Theorem 3.22, we arrive to the following result.

Theorem 5.4. Let (T , T 1, g̃, ∇̃) be the associated tractor to the pair (Ψ : M → M̃, ξ) with

A2
ξ = µ2 · Id, where µ is a nonvanishing function on M . Assume there is a lightlike normal

vector field ℓ ∈ X⊥(M) such that g̃(ξ, ℓ) = −1. Then, ∇̃ is a normal tractor connection

(Theorem 3.22) if and only if the following conditions hold:

1. For every V,W ∈ X(M), we have

(∇VAξ)(W )− (∇WAξ)(V ) = ω(V )AξW − ω(W )AξV. (5.3)

2. For every V,W ∈ X(M), the P -Ricci tensor satisfies

Ric∗(V,W ) = −trace(Aξ ◦ Aℓ) g(V, PW )− (n− 2)µ g(V,AℓW ). (5.4)

Proof. A direct computation shows for the curvature tensor of ∇̃,

R̃(V,W )ξ = ∇̃V ∇̃W ξ − ∇̃W ∇̃V ξ − ∇̃[V,W ]ξ

= dω(V,W )ξ −∇V (AξW )− II(V,AξW )− ω(W )AξV

+∇W (AξV ) + II(AξV,W ) + ω(V )AξW + Aξ([V,W ]),

where V,W ∈ X(M). Also we have

g̃(−II(V,AξW ) + II(AξV,W ), ξ) = −g(AξV,AξW ) + g(AξV,AξW ) = 0.
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Now, taking into account thatM is a codimension two spacelike immersion, the term −II(V,AξW )+

II(AξV,W ) must be collinear with ξ. Therefore, the first normality condition for ∇̃ reduces to

−∇V (AξW )− ω(W )AξV +∇W (AξV ) + ω(V )AξW + Aξ([V,W ]) = 0

which is equivalently written as (5.3).

Assume now equation (5.3) holds. From (5.1) and Remark 5.3, the second normality con-

dition for ∇̃ is equivalent to

n∑
i=1

g
(
W(Ei, V )W,Ei

)
=

1

µ2

n∑
i=1

g̃
(
R̃(Ei, V )AξW,AξEi

)
= 0,

where (E1, . . . , En) is a local orthonormal frame with respect to g. By means of the Gauss

equation (2.3), we have

n∑
i=1

g̃
(
R̃(Ei, V )AξW,AξEi

)
=

n∑
i=1

g
(
R(Ei, V )AξW,AξEi

)
+ g̃

(
II(Ei, AξW ), II(V,AξEi)

)
− g̃

(
II(Ei, AξEi), II(V,AξW )

)
.

Now, taking into account (2.6), straightforward computations show that

n∑
i=1

g̃
(
II(Ei, AξW ), II(V,AξEi)

)
= −2µ2g(V,Aℓ(AξW ))

and
n∑
i=1

g̃
(
II(Ei, AξEi), II(V,AξW )

)
= −µ2

(
trace(Aξ ◦ Aℓ)g(V,W ) + ng(V,Aℓ(AξW ))

)
.

On the other hand, for the curvature term we get

n∑
i=1

g
(
R(Ei, V )AξW,AξEi

)
= µ2

n∑
i=1

g
(
R(Ei, V )PW,PEi

)
= µ2Ric∗(V, PW ).

Therefore, the second normality condition for ∇̃ writes as follows

Ric∗(V, PW ) + trace(Aξ ◦ Aℓ)g(V,W ) + (n− 2)g(V,Aℓ(AξW )) = 0.

Since P 2 = Id, one easily shows that this formula is equivalent to (5.4).

Remark 5.5. Although the conditions (5.3) and (5.4) make sense for two dimensional Rie-

mannian conformal structures (i.e., n = 2), in such a case, neither of the conditions provides

uniqueness for the tractor connection.
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Remark 5.6. For a Lorentzian manifold (M̃, g̃) of constant sectional curvature, the equation

(5.3) is a direct consequence of the Codazzi equation. Therefore, for a codimension two space-

like immersion Ψ : M → (M̃, g̃) with a fixed lightlike normal vector field ξ ∈ X⊥(M),

where (M̃, g̃) has constant sectional curvature, we have that the associated tractor to the pair

(Ψ :M → M̃, ξ) has normal tractor connection if and only if (5.4) holds.

In the particular case that ξ is an umbilic direction with Aξ = µ · Id, we have µ = g̃(H, ξ)

and then, Theorem 5.4 reads as follows.

Corollary 5.7. Let (T , T 1, g̃, ∇̃) be the associated tractor to the pair (Ψ :M → M̃, ξ) with ξ

an umbilic direction with Aξ = µ · Id, where µ is a nonvanishing function on M . Assume there

is a lightlike normal vector field ℓ ∈ X⊥(M) such that g̃(ξ, ℓ) = −1. Then, ∇̃ is a normal

tractor connection if and only if ω = 1
µ
dµ and for every V,W ∈ X(M) the Ricci tensor of g

satisfies

Ricg(V,W ) =
n

2
∥H∥2g(V,W )− (n− 2)g̃(H, ξ)g(V,AℓW ). (5.5)

Remark 5.8. Taking in mind formula (2.7) let us note that equation (5.5) implies that the scalar

curvature of g is given by Sg = n(n − 1)∥H∥2. This formula widely generalizes to [52, Cor.

4.5]. Moreover, for dimension n = 2, the equation reduces to Ricg(V,W ) = ∥H∥2g(V,W ).

Therefore, in this dimension the equation (5.5) holds if and only if ∥H∥2 = Kg, where Kg is

the Gauss curvature of the induced metric g.

Remark 5.9. We assume that we are in the hypotheses given in Corollary 5.7 and also that ∇̃

is normal. Then, there exists a smooth function h on M such that Ricg = hg if and only if

Ψ :M → M̃ is totally umbilical. In such a case, we have Ricg = (n−1)∥H∥2 g. Furthermore,

from Exercise 21 on [51, p. 96 ], for dimension n ≥ 3 we have that ∥H∥2 is a constant function

and (M, g) must be Einstein.

Remark 5.10. Let us consider M̃ = Ln+2, where Ln+2 denotes the (n + 2)-dimensional

Minkowski spacetime. Then, the condition dω = 1
µ
dµwith µ > 0 is equivalent to Ψ :M → M̃

factors, up to a translation, through the lightlike cone Λ, see [56]. A classical result due to

Brinkmann [12] states that a simply connected Riemannian manifold (M, g) with n ≥ 3 is

conformally flat if and only if can be isometrically immersed into Ln+2 through the lightlike

cone Λ (see [5] for a proof in a modern form). It is a direct consequence of the Uniformization

Theorem that every two dimensional simply connected Riemannian manifold (M, g) can be
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isometrically immersed into L4 through the three dimensional lightlike cone Λ. For spacelike

immersions Ψ: M → Ln+2 through the lightlike cone Λ, the position vector field Ψ ∈ X⊥(M)

is lightlike with AΨ = −Id. Therefore, for ξ = −Ψ and from the Gauss equation, we have for

the Ricci tensor of the induced metric g (see [52] and take into account that the normalization

condition in [52] is g̃(ξ, ℓ) = 1),

Ricg(V,W ) = ng(AHV,W ) + 2g(V,AℓW ). (5.6)

Now, since µ = 1, a direct computation shows that equations (5.5) and (5.6) are the same.

Hence, for simply connected conformally flat Riemannian manifolds, we get a tractor normal

connection by means of an isometric immersion through the lightlike cone of the Minkowski

spacetime.

5.2 Application to generalized Schwarzschild spacetimes

In this Section we give an application to the generalized Schwarzschild spacetimes. Let us

recall that this family is given by Lorentzian warped products B ×λ F , where B is an open

subset of R2 and (F, gF ) is a n-dimensional connected Riemannian manifold, Definition 1.1.

The assumptions on the functions ξλ and ηλ in the statements of the following results are only

required along Ψ. As a consequence of Proposition 5.1 and using Lemmas 4.21 and 4.22, we

have.

Proposition 5.11. Let Ψ : M → B ×λ F be a codimension two spacelike immersion through

an integral hypersurface L (resp. N ) of Dξ (resp. Dη). Then, (T , T 1, g̃, ∇̃) is the associated

tractor to the pair (Ψ : M → B ×λ F, ξ)
(
resp. (Ψ : M → B ×λ F, η)

)
if and only if ξλ ̸= 0

(resp. ηλ ̸= 0).

Taking in mind the normal lightlike frames given in Lemmas 4.18 and 4.19, we particularize

Corollary 5.7 for the generalized Schwarzschild spacetimes.

Theorem 5.12. Assume ξλ ̸= 0 and let Ψ : M → B ×λ F be a codimension two spacelike

immersion through an integral hypersurface L of Dξ. Let (T , T 1, g̃, ∇̃) be the associated

tractor to the pair (Ψ : M → B ×λ F, ξ). Then, ∇̃ is a normal tractor connection if and only

if
(
ξ(ξλ) ◦ΨB

)
dv = 0 at every point, where dv is the exterior derivative of v := r ◦ΨB, and,
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for every V,W ∈ X(M), the Ricci tensor of g satisfies

Ricg(V,W ) = (n− 1)

[
∥H∥2 +

(
2ξλ

nλ
◦ΨB

)
∆v

]
g(V,W )−

[(
ξλ

λ
◦ΨB

)
∆v

]
g(V,W )

− (n− 2)

(
ξλ

λ
◦ΨB

)
Hess(v)(V,W ).

Theorem 5.13. Assume ηλ ̸= 0 and let Ψ : M → B ×λ F be a codimension two spacelike

immersion through an integral hypersurface N of Dη. Let (T , T 1, g̃, ∇̃) be the associated

tractor to the pair (Ψ :M → B×λF, η). Then, ∇̃ is a normal tractor connection if and only if(
(η(ηλ) + ff ′ηλ) ◦ΨB

)
dv = 0 at every point and, for every V,W ∈ X(M), the Ricci tensor

of g satisfies

Ricg(V,W ) = (n− 1)

[
∥H∥2 −

(
4ηλ

nλf 2
◦ΨB

)
∆v

]
g(V,W ) +

[(
2ηλ

λf 2
◦ΨB

)
∆v

]
g(V,W )

+ (n− 2)

(
2ηλ

λf 2
◦ΨB

)
Hess(v)(V,W ).

Remark 5.14. Assuming that we are in the hypotheses given in Theorem 5.12 (resp. Theorem

5.13), when η⊥ (resp. ξ⊥) is an umbilic direction, the normalization condition given by the

equation for the Ricci curvature reduces to Ricg = (n − 1)∥H∥2 g. This formula agrees with

the given in Remark 5.9. Moreover, let us note that the hypotheses
(
ξ(ξλ) ◦ ΨB

)
dv = 0 and(

(η(ηλ) + ff ′ηλ) ◦ ΨB

)
dv = 0 are satisfied when λ(t, r) = r or when M factors through a

slice.

Although it is directly deduced from Remarks 4.54, 5.9 and 5.14, we will state the following

result for clarity.

Corollary 5.15. Assume λ(t, r) = r and let Ψ :M → B×λ F be a totally umbilical codimen-

sion two spacelike immersion through an integral hypersurface L of Dξ. Let (T , T 1, g̃, ∇̃) be

the associated tractor to the pair (Ψ : M → B ×λ F, ξ). Then, ∇̃ is a normal tractor connec-

tion if and only if Ricg = (n− 1)∥H∥2 g. Furthermore, for dimension n ≥ 3, the immersion Ψ

has parallel mean curvature vector field.

Similarly, this result can be adapted to the case of factoring through an integral hypersurface

N of Dη.





Chapter 6

Möbius structures

Starting from a Riemannian conformal structure (M, c), we provide a method to construct a

family of Lorentzian manifolds. The construction relies on the choice of a metric in the confor-

mal class and a smooth 1-parameter family of self-adjoint tensor fields. Then, every metric in

the conformal class corresponds to the induced metric on M by a codimension two spacelike

immersion into these Lorentzian manifolds. Under suitable choices of the 1-parameter family

of tensor fields, there exists a lightlike normal vector field along such spacelike immersions

whose Weingarten endomorphism provide a Möbius structure on the Riemannian conformal

structure. Conversely, every Möbius structure on a Riemannian conformal structure arises in

this way. Flat Möbius structures are characterized in terms of the extrinsic geometry of the

corresponding spacelike surfaces.

6.1 Möbius structures and pre-ambient spaces

Unless stated otherwise, we assume n ≥ 2. Let us recall that a Möbius structure (Definition

3.24) on an n-dimensional manifold M is a triple (M, c,D), where (M, c) is a Riemannian

conformal structure and

1. D is a map D : c → T(0,2)M such that for every g ∈ c, the tensor D(g) is symmetric

with

tracegD(g) =
Sg

2(n− 1)
.

2. Furthermore, D satisfies the following conformal transformation law

D(e2ug) = D(g)− ∥∇u∥2

2
g − Hess(u) + du⊗ du.
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We mean the map D as a Möbius structure for the conformal class c. As suggested in Section

3.3, for (n ≥ 3)-dimensional Riemannian conformal structures (M, c) there is a preferred

Möbius structure defined by means of the Schouten tensor given in (2.13). The conformal

transformation law (2.14) for the Schouten tensor implies that D(g) = P g provides a Möbius

structure for the conformal class c. Therefore, for conformal structures on (n ≥ 3)-dimensional

manifolds, the Schouten tensor gives a canonical Möbius structure.

Remark 6.1. The Uniformization Theorem states that a two dimensional Riemannian manifold

(M, g) admits a metric g′ conformal to g with constant Gauss curvature k. This fact leads

to a choice of the Möbius structure determinated by D(g′) = (k/2) g′ and the conformal

transformation law. On the other hand, recall that for a connected oriented two dimensional

manifold M , there is a well-known one-to-one correspondence between conformal classes and

complex structures. A Riemann surface is a such two dimensional manifold endowed with a

particular choice of conformal or complex structure. Thus, a Möbius structure on a connected

oriented two dimensional manifold M is equivalent to specifying a complex structure and a

“Schouten type-tensor” on M .

Remark 6.2. For n ≥ 3 and taking into account 2 div (Ricg) = d Sg (see for instance [51, Cor.

3.54]), one gets that div (Pg) = 1
2(n−1)

d Sg. This property is not satisfied for Möbius structures,

in general.

Let (M, c) be an n-dimensional Riemannian conformal structure. Let us consider the R>0-

principal fiber bundle π : Q → M defined as the ray fiber subbundle in the fiber bundle of

Riemannian metrics given by metrics in the conformal class c. Thus, the fiber over x ∈ M is

formed by the values of gx for all metrics g ∈ c. Every section of π provides a Riemannian

metric in the conformal class c and the principal R>0-action on Q is given by φ(τ, gx) = τ 2gx,

x ∈M . Let us denote by ZQ the fundamental vector field for the action φ, that is,

ZQ(gx) =
d

dt

∣∣∣∣
t=0

φ(et, gx) =
d

dt

∣∣∣∣
t=0

(e2tgx).

The principal bundle π : Q →M is called the scale bundle of (M, c).

Definition 6.3. ([31]) A pre-ambient space for a Riemannian conformal structure (M, c) is an

(n+ 2)-dimensional Lorentzian manifold (M̃, g̃) such that

1. There is a free R>0-action φ̃ on M̃ and an embedding ι : Q → M̃ such that the following
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diagram commutes

R>0 ×Q
idR>0

×ι
−−−−→ R>0 × M̃

φ

y yφ̃
Q −−−→

ι
M̃

(6.1)

Hence, the fundamental vector field Z ∈ X(M̃) for the action φ̃ and the vector field

ZQ ∈ X(Q) are ι-related, i.e., Tgxι · ZQ(gx) = Z(ι(gx)) for all gx ∈ Q.

2. For Z we have LZ g̃ = 2g̃, where L is the Lie derivative.

3. For any gx ∈ Q and ξ, η ∈ TgxQ, the following equality holds

ι∗(g̃)gx(ξ, η) = gx(Tgxπ · ξ, Tgxπ · η).

In particular, we have ι∗(g̃)(ZQ,−) = 0.

For a pre-ambient space (M̃, g̃) the metric g̃ is called a pre-ambient metric. The condition

LZ g̃ = 2g̃ tells us that the vector field Z is homothetic with respect to the pre-ambient metric

g̃.

Remark 6.4. The notion of ambient metric in [31] satisfies a normalisation condition. In fact,

in order to obtain the uniqueness of the ambient Lorentzian metric g̃, the ambient metric by

Fefferman and Graham imposes that the Ricci tensor of the metric g̃ vanishes to a certain order

(depending on the dimension) on Q, see [31] for details. The pre-ambient space has been used

by Čap and Gover in order to establish the relationship with the standard tractor conformal

bundles, see [19].

We end this Section with several comments from the point of view of Lorentzian geometry

of the notion of pre-ambient space. Let (M, c) be an n-dimensional Riemannian conformal

structure and (M̃, g̃) a pre-ambient space for (M, c). Then, condition (3) in Definition 6.3

implies that ι : Q → M̃ is a lightlike hypersurface. Moreover, the induced lightlike metric

h̄ := ι∗(g̃) does not depend on the particular pre-ambient metric g̃. In the terminology of

[31], the lightlike metric h̄ is called the tautological tensor. The radical distribution Rad(h̄) is

globally generated by the vector field ZQ.

Recall that every choice of a metric g ∈ c provides a section of π : Q →M and conversely.

The following result is well-known. We include here a proof for the sake of completeness.
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Lemma 6.5. Let (M, c) be a Riemannian conformal structure and (M̃, g̃) a pre-ambient space

for (M, c). For every g ∈ c, the map

Ψg := ι ◦ g : M → (M̃, g̃)

is a codimension two spacelike immersion with induced metric (Ψg)∗(g̃) = g. Moreover, the

vector field ξ := Z|Ψg is normal and lightlike along Ψg with Aξ = −Id.

Proof. For every x ∈M a direct computation gives

(Ψg)∗(g̃)x = g∗(ι∗(g̃)gx) = g∗(π∗(g)gx) = (π ◦ g)∗(g)x = gx.

Taking into account that ξx = Z(Ψg(x)) = Tgxι · ZQ(gx), we get ξ ∈ X⊥(M) (for the immer-

sion Ψg) and g̃(ξ, ξ) = 0. In order to see that Aξ = −Id, recall that the condition LZ g̃ = 2g̃ is

equivalent to

g̃(∇̃XZ, Y ) + g̃(X, ∇̃YZ) = 2g̃(X, Y ), X, Y ∈ X(M̃).

Using the previous equation for V,W ∈ X(M) and as consequence of the polarization identity

we arrive to

g̃
(
∇̃VZ,W

)
= g̃(V,W ).

We are in position to compute ∇̃V ξ as follows

∇̃V ξ = ∇̃V (Z|Ψg) = (∇̃V (Z|Ψg))⊤ + (∇̃V (Z|Ψg))⊥ = V +∇⊥
V ξ

and now the assertion Aξ = −Id is clear.

6.2 A method to construct pre-ambient spaces

Let (M, c) be an n-dimensional Riemannian conformal structure.

Definition 6.6. A smooth 1-parameter family γ : R → T(1,1)M is called admissible when

1. γ(r) is a self-adjoint tensor field with respect to any representative g ∈ c,

2. γ(0) = Id,

3. there is δ > 0 such that γ(r) is not singular for |r| < δ.
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Here, the smoothness of γ means that for every V ∈ X(M) and x ∈M , there exists

γ̇(r)(Vx) = lim
ε→0

γ(r + ε)(Vx)− γ(r)(Vx)

ε
∈ TxM.

In particular, we have γ̇(0) ∈ T(1,1)M .

Remark 6.7. The condition 3 in the above definition can be deleted when M is compact and,

at least locally, δ always exists in the general case.

Let us fix a metric g ∈ c and an admissible smooth 1-parameter family γ : R → T(1,1)M .

For every r ∈ R, we define the following symmetric tensor on M ,

⟨V,W ⟩gr = g
(
γ(r)(V ),W

)
.

Clearly, ⟨ , ⟩g0 = g and so ⟨ , ⟩gr can be seen as a 1-parameter deformation of the metric g.

Moreover, ⟨ , ⟩gr is positive definite on M for |r| < δ. Henceforth, let us consider the manifold

M̃ := B ×M , where B := R>0 × (−δ,+δ) with coordinates (t, r). This manifold M̃ can be

endowed with the Lorentzian metric

g̃ = d(rt)⊗ dt+ dt⊗ d(rt) + t2⟨−,−⟩gr (6.2)

and with the free R>0-action φ̃(τ, (t, r, x)) = (τt, r, x). The choice of the metric g ∈ c provides

the global trivialization of π : Q →M given by

t2gx ∈ Q 7→ (t, x) ∈ R>0 ×M

and the following embedding of Q in M̃ at r = 0,

ιg : Q → M̃, t2gx 7→ (t, 0, x). (6.3)

A direct computation shows that ιg ◦φ(τ, t2gx) = φ̃◦ (idR>0 × ιg)(τ, t2gx) = (τt, 0, x) . On the

other hand, the fundamental vector field Z ∈ X(M̃) corresponding to the action φ̃ is Z = t∂t

and one directly checks that LZ g̃ = 2g̃. Finally, for t2gx ∈ Q and ξ, η ∈ Tt2gxQ, we have

(ι∗gg̃)t2gx(ξ, η) = g̃(t,0,x)(Tt2gxιg · ξ, Tt2gxιg · η) = t2gx(Tt2gxπ · ξ, Tt2gxπ · η).

Hence, (M̃ = B×M, g̃) where the metric g̃ is given in (6.2) is a pre-ambient space for (M, c).

We have thus led to the following result.

Proposition 6.8. Let (M, c) be an n-dimensional Riemannian conformal structure. For every

choice of a metric g ∈ c and an admissible smooth 1-parameter family γ : R → T(1,1)M , the

manifold M̃ = B ×M is a pre-ambient space for (M, c).
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Remark 6.9. In the particular case that γ(r) = h2(r) Id with h : (−δ,+δ) → R, h(0) = 1 and

h > 0, the pre-ambient space (M̃, g̃) with metric g̃ = d(rt)⊗ dt+ dt⊗ d(rt) + (th(r))2g is a

warped product.

Remark 6.10. The one-form ω̄ metrically equivalent to the vector field Z is

ω̄ = t2dr + 2trdt,

thus, we have dω̄ = 0.

As a Lorentzian manifold, the pre-ambient space (M̃, g̃) is timelike orientable, that is, there

exists a globally defined timelike vector field, namely,

T :=
1

t
∂t −

(
1 +

r

t2

)
∂r ∈ X(M̃), (6.4)

which satisfies g̃(T, T ) = −2. To be used later, we also introduce the spacelike vector field

E :=
1

t
∂t +

(
1− r

t2

)
∂r ∈ X(M̃), (6.5)

with g̃(E,E) = 2 and g̃(T,E) = 0. The set of all natural lifts of vector fields V ∈ X(M) to

X(M̃) is denoted by L(M). For a vector field V ∈ X(M), its lift is also denoted by V .

As was mentioned in Remark 6.9, the metrics g̃ in (6.2) are not warped product metrics,

in general. Hence, the formulas for the Levi-Civita connection of warped products metrics in

(2.8) do not work.

Proposition 6.11. The Levi-Civita connection ∇̃ of (M̃, g̃) satisfies

∇̃∂t∂t = ∇̃∂r∂r = 0, ∇̃∂t∂r = ∇̃∂r∂t =
1

t
∂r, (6.6)

∇̃∂tV =
1

t
V, ∇̃∂rV =

1

2
γ(r)−1(γ̇(r)(V )), (6.7)

∇̃VW |ιg(Q) = − 1

2t
g̃(γ̇(0)(V ),W )∂t −

1

t2
g̃(V,W )∂r +∇VW, (6.8)

where V,W ∈ L(M).

Proof. A direct consequence of Koszul formula for the Levi-Civita connection of (M̃, g̃) shows

∇̃∂t∂t = ∇̃∂r∂r = 0 and ∇∂t∂r =
1

t
∂r. On the other hand, the Koszul formula also implies

g̃(∇̃∂tV, ∂t) = g̃(∇̃∂tV, ∂r) = 0 and 2g̃(∇̃∂tV,W ) = ∂tg̃(V,W ). By definition of the metric g̃,

∂tg̃(V,W ) = 2tg(γ(r)(V ),W ) =
2

t
g̃(V,W ),
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and then we get ∇̃∂tV =
1

t
V. In the same manner, we compute

2g̃(∇̃∂rV,W ) = ∂r

(
t2g(γ(r)(V ),W )

)
= t2g(γ̇(r)(V ),W ) = g̃

(
γ(r)−1(γ̇(r)(V )),W

)
.

From (6.7), it follows that

g̃(∇̃VW,∂t) = −g̃(∇̃V ∂t,W ) = −1

t
g̃(V,W ), g̃(∇̃VW,∂r) = −1

2
g̃
(
γ(r)−1(γ̇(r)(V )),W

)
.

In order to compute g̃(∇̃VpW,Up) for U ∈ L(M) and p = (t, 0, x) ∈ ιg(Q), we can assume

U, V,W ∈ L(M) so that all their brackets are zero at the point p. Then, the Koszul formula

yields

2g̃(∇̃VpW,Up) = Vp g̃(W,U) +Wp g̃(V, U)− Up g̃(V,W )

= t2
(
Vx g(W,U) +Wx g(V, U)− Ux g(V,W )

)
= 2t2g(∇VxW,Ux) = 2g̃

(
(∇VW )p , Up

)
.

Therefore, we conclude that

∇̃VW |ιg(Q) = −1

2
g̃(∇̃VW,T )T +

1

2
g̃(∇̃VW,E)E +∇VW

= − 1

2t
g̃(γ̇(0)(V ),W )∂t −

1

t2
g̃(V,W )∂r +∇VW.

Remark 6.12. Let us fix (t, r) ∈ B and consider the spacelike submanifold

F := {(t, r)} ×M ⊂ M̃.

The vector fields T |F and E|F span the normal bundle of F and Proposition 6.11 implies

∇̃V T |F =
1

t2
V − 1

2

(
1 +

r

t2

)
γ(r)−1(γ̇(r)(V )) and

∇̃VE|F =
1

t2
V +

1

2

(
1− r

t2

)
γ(r)−1(γ̇(r)(V )),

for every V ∈ L(M). Therefore, the second fundamental form IIF for F is given by

IIF(V,W ) = − 1

2t
g̃
(
γ(r)−1(γ̇(r)(V )),W

)
∂t −

1

t2

(
g̃(V,W )− rg̃

(
γ(r)−1(γ̇(r)(V )),W

))
∂r

where V,W ∈ X(M). Thus, on the contrary to the warped products metrics, the slices F are not

totally umbilical, in general. It is not difficult to show that for a fixed (t, r), the corresponding

slice F is totally umbilical if and only if the endomorphism field γ(r)−1 ◦ γ̇(r) = h · Id for

some h ∈ C∞(M).
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Remark 6.13. For γ(r) = h2(r) Id with h > 0, the metric g̃ is a warped metric with warping

function λ(t, r) = th(r). In this case, the formula given in Remark 6.12 reduces to

IIF(V,W ) = − g̃(V,W )

th(r)

(
h′(r)∂t +

h(r)− 2rh′(r)

t
∂r

)
.

A direct computation shows that the above formula agrees with (2.8).

From [19], the Ricci tensor R̃ic of any pre-ambient space (M̃, g̃) restricted to ιg(Q) satisfies

R̃ic|ιg(Q)(∂t, ∂t) = R̃ic|ιg(Q)(∂t, V ) = 0, V ∈ L(M) (6.9)

if and only if dω̄|ιg(Q) = 0. As consequence of Remark 6.10, this formula (6.9) holds for the

metric g̃ in (6.2). The following result provides the other component of R̃ic on ιg(Q).

Corollary 6.14. The Ricci tensor R̃ic of (M̃, g̃) satisfies

R̃ic|ιg(Q)(V,W ) = Ricg(V,W )− trace(γ̇(0))

2
g(V,W )−

(
n− 2

2

)
g (γ̇(0)(V ),W ) , (6.10)

where V,W ∈ L(M). For ξ, η ∈ X(Q), we have

• If n = 2,

R̃ic|ιg(Q)(Tιg · ξ, T ιg · η) = 0

if and only if trace(γ̇(0)) = 2Kg, where Kg is the Gauss curvature of g.

• If n ≥ 3,

R̃ic|ιg(Q)(Tιg · ξ, T ιg · η) = 0

if and only if g(γ̇(0)(−),−) = 2P g, where P g is the Schouten tensor of g.

Proof. Let (e1, . . . , en) be an orthonormal local frame on (M, g) and consider the orthonormal

local frame for (M̃, g̃) on r = 0 given by(
1√
2
T,

1√
2
E,E1, . . . , En

)
,

where Ei = 1
t
ei and the vector fields T,E are given in (6.4) and (6.5), respectively. Then, we

get

R̃ic|ιg(Q)(V,W ) =
n∑
i=1

g̃
(
R̃(Ei, V )W,Ei

)
+

1

2
g̃
(
R̃(E, V )W,E

)
− 1

2
g̃
(
R̃(T, V )W,T

)
=

n∑
i=1

g̃
(
R̃(Ei, V )W,Ei

)
+

1

t

(
g̃
(
R̃(∂t, V )W,∂r

)
+ g̃

(
R̃(∂r, V )W,∂t

))
.
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For every vector field X ∈ X(M̃), we have the following decomposition

X =
n∑
i=1

fiEi +
1

2
g̃ (X,E)E − 1

2
g̃ (X,T )T

=
n∑
i=1

fiEi +
1

t
(g̃ (X, ∂t) ∂r + g̃ (X, ∂r) ∂t)−

2r

t2
g̃ (X, ∂r) ∂r

where fi ∈ C∞(M̃). Let us note that fi|r=0 = g̃(X,Ei). Now, a straightforward computation

from Proposition 6.11 gives

g̃
(
R̃(∂t, V )W,∂r

)
+ g̃

(
R̃(∂r, V )W,∂t

)
= 0. (6.11)

Finally, it is a standard computation, from Proposition 6.11 and (6.11), to check that

R̃ic|ιg(Q)(V,W ) =
n∑
i=1

g (∇ei∇VW, ei)−
n∑
i=1

g (∇V∇eiW, ei)−
n∑
i=1

g
(
∇[ei,V ]W, ei

)
− 1

2
g(V,W )

n∑
i=1

g(γ̇(0)(ei), ei)−
n

2
g(γ̇(0)(V ),W )

+
1

2

n∑
i=1

g(ei,W )g(γ̇(0)(V ), ei) +
1

2

n∑
i=1

g(V, ei)g(γ̇(0)(ei),W )

= Ricg(V,W )− trace(γ̇(0))

2
g(V,W )−

(
n− 2

2

)
g(γ̇(0)(V ),W ).

The vanishing properties of the Ricci tensor on ιg(Q) are direct consequences of (6.9) and

(6.10).

6.3 Constructing Möbius structures from spacelike immer-

sions

At the beginning of this Section it is important to distinguish when we view a vector field

V as a lift along an immersion V |Ψu or when we view it simply as vector field V ∈ X(M).

Henceforth, we assume that (M, c) is an n-dimensional Riemannian conformal structure and

we have fixed

1. a metric g ∈ c and

2. an admissible smooth 1-parameter family γ : R → T(1,1)M .
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Thus, we have the pre-ambient space (M̃, g̃) as in Proposition 6.8. For every u ∈ C∞(M), the

spacelike immersion Ψe2ug in Lemma 6.5 satisfies

Ψe2ug :M → (M̃, g̃), x 7→ (eu(x), 0, x) (6.12)

and (Ψe2ug)∗(g̃) = e2ug. For simplicity of notation, from now on, we write Ψu instead of Ψe2ug.

The differential map of Ψu is

TΨu · V = V (u)eu∂t|Ψu + V |Ψu , (6.13)

where V ∈ X(M). A direct computation from (6.13) shows that the vector fields

ξu = eu∂t|Ψu and ℓu = e−u
∥∇u∥2

2
∂t|Ψu − e−2u∂r|Ψu + e−2u∇u|Ψu (6.14)

span the normal bundle of Ψu and one easy checks that {ξu, ℓu} is a global lightlike normal

frame.

Remark 6.15. The lightlike normal vector field ξu agrees with Z|Ψu where Z ∈ X(M̃) is the

fundamental vector field corresponding to the action φ̃.

Lemma 6.16. Let Ψu : M → (M̃, g̃) be the immersion given in (6.12). For every V ∈

L(M) ⊂ X(M), the following formulas hold

V ⊤ = V and ∂⊤r = ∇u⊤.

Proof. From (6.13) and (6.14), it is easy to check that

TΨu · V ⊤ = V |Ψu + g̃
(
V |Ψu , ξu

)
ℓu + g̃

(
V |Ψu , ℓu

)
ξu

= V |Ψu + V (u)eu∂t|Ψu = TΨu · V.

Note that V to the right of the equality is V ∈ X(M). In a similar way we compute the tangent

parts of ∂r|Ψu and ∇u|Ψu .

Proposition 6.17. Let Aξu , Aℓu be the Weingarten endomorphisms associated to the lightlike

normal vector fields ξu, ℓu given in (6.14), then Aξu = −Id and

Aℓu = e−2u

[
γ̇(0)− ∥∇u∥2 Id

2
+ g(∇u, Id)∇u −∇∇u

]
, (6.15)

where ∇∇u(V ) := ∇V∇u for all V ∈ X(M).
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Proof. The first assertion is a direct consequence of Lemma 6.5. On the other hand, according

again to (6.13) and Proposition 6.11, we have for V ∈ X(M),

∇̃V

(
e−u

∥∇u∥2

2
∂t|Ψu

)
= V

(
e−u

∥∇u∥2

2

)
∂t|Ψu + e−2u∥∇u∥2

2
V |Ψu , (6.16)

∇̃V (e
−2u∂r|Ψu) = −2e−2uV (u) ∂r|Ψu +

e−2u

2

(
γ̇(0)(V )

)
|Ψu (6.17)

and

∇̃V (e
−2u∇u|Ψu) = −2e−2uV (u)∇u|Ψu + e−2u

(
∇̃V∇u

)
|Ψu . (6.18)

We know that ∂⊤t = 0 and, from Lemma 6.16,
(
∂r − ∇u

)⊤
= 0. Then, from (6.16), (6.17)

and (6.18), we arrive to(
∇̃V ℓ

u
)⊤

= e−2u

[
∥∇u∥2

2
V ⊤ − 1

2

(
γ̇(0) (V )

)⊤
+
(
∇̃V∇u

)⊤
]
.

Now, the proof ends by means of a straightforward computation from (6.8) and Lemma 6.16.

Corollary 6.18. Let Ψu : M → (M̃, g̃) be the immersion given in (6.12). The normal vector

fields ξu and ℓu are parallel with respect to the normal connection. In particular, the normal

curvature tensor vanishes, that is, R⊥(V,W ) = 0 for every V,W ∈ X(M).

Proof. From Proposition 6.17, we know that Aξu = −Id. Then, the Weingarten formula reads

as follows

∇̃V ξ
u = TΨu · V +∇⊥

V ξ
u = V (u)eu∂t|Ψu + V |Ψu +∇⊥

V ξ
u.

On the other hand, from (6.7), we get

∇̃V ξ
u = ∇̃V (eu∂t|Ψu) = V (u)eu∂t|Ψu + eue−u V |Ψu = V (u)eu∂t|Ψu + V |Ψu ,

and therefore ∇⊥
V ξ

u = 0. Now, taking into account that {ξu, ℓu} is a global lightlike normal

frame, we have V g̃(ξu, ℓu) = g̃(ξu,∇⊥
V ℓ

u) = 0 for every V ∈ X(M). Thus, since Ψu is

a codimension two spacelike immersion, there is a smooth function h ∈ C∞(M) such that

∇⊥
V ℓ

u = h ξu and then 0 = g̃(ℓu,∇⊥
V ℓ

u) = −h and so ∇⊥
V ℓ

u = 0.

Remark 6.19. From Proposition 6.17 and formula (2.6), one obtains the second fundamental

form IIu of Ψu as follows

IIu(V,W ) = −g
( γ̇(0)(V )− ∥∇u∥2 V

2
+ V (u)∇u −∇V∇u,W

)
ξu + e2ug(V,W )ℓu,
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for every V,W ∈ X(M). In particular, the corresponding mean curvature vector field is

Hu =
e−2u

n

(
∆u− trace(γ̇(0))− (n− 2)∥∇u∥2

2

)
ξu + ℓu, (6.19)

where ∆ denotes the Laplace operator of the metric g.

Now, we are in position to state the main result of this Chapter. Assume (M, c) is an n-

dimensional Riemannian conformal structure and γ : R → T(1,1)M is an admissible smooth

1-parameter family. By means of Proposition 6.17, we have Aℓ0 = γ̇(0)
2

and then, for every

u ∈ C∞(M),

Aℓu = e−2u

[
Aℓ0 −

1

2
∥∇u∥2 Id + g(∇u, Id)∇u −∇∇u

]
.

Hence, for every V,W ∈ X(M), we get

e2ug (Aℓu(V ),W ) = g(Aℓ0(V ),W )− ∥∇u∥2

2
g − Hess(u) + du⊗ du.

In other words, the assignment

D : c→ T(0,2)M, e2ug 7→ e2ug (Aℓu(−),−) , (6.20)

satisfies the conformal transformation law (3.9). In addition, if we assume traceg(Aℓ0) =

Sg

2(n−1)
, the map D defines a Möbius structure for the conformal class c. Therefore, we have

obtained the following result.

Theorem 6.20. Let (M, c) be an n-dimensional Riemannian conformal structure. Assume the

admissible smooth 1-parameter family γ : R → T(1,1)M satisfies trace(γ̇(0)) = Sg

n−1
. Then, the

assignment D given in (6.20) defines a Möbius structure for the conformal class c.

Conversely, every Möbius structure (M, c,D) can be constructed (at least locally) from the

above Theorem. In fact, fix g ∈ c and consider

γ(r) = Id + 2r D̂(g),

where D(g)(V,W ) = g(D̂(g)(V ),W ) for V,W ∈ X(M). For any x ∈ M , there is an open

subset x ∈ O ⊂ M such that γ is an admissible smooth 1-parameter family on T(1,1)O. It

is easily checked (O, c,D) is obtained from γ by means of Theorem 6.20. Note that γ(r) =

Id + 2rD̂(g) can be replaced for any curve with γ(0) = Id and γ̇(0) = 2D̂(g).
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Remark 6.21. If we remove the hypothesis trace(γ̇(0)) = Sg

n−1
in Theorem 6.20, the assign-

ment D given in (6.20) recovers (at least locally) all the “Schouten type-tensors” in the sense

of Definition 3.12.

Remark 6.22. When M is compact, every Möbius structure (M, c,D) is globally recovered

from suitable Weingarten endomorphisms as in Theorem 6.20. As a consequence of Remark

6.21, the same can be asserted for the “Schouten type-tensors”.

Corollary 6.23. Let (M, g) be an (n ≥ 3)-dimensional Riemannian manifold. Then, the

Schouten tensor P g is given by P g = g(A(−),−) (at least locally) where A is the Weingarten

endomorphism of a suitable isometric codimension two immersion of (M, g) in a Lorentzian

manifold (M̃, g̃).

Remark 6.24. This result could be compared with the classical Brinkmann result [12] which

is stated in Remark 5.10.

Remark 6.25. Since, there is no preferred Möbius structure on a two dimensional manifold,

Theorem 6.20 provides an explicit method to construct such structures. Moreover, by means

of Corollary 6.14, the condition trace(γ̇(0)) = 2Kg, where Kg is the Gauss curvature of the

fixed metric g, implies that the Ricci tensor of g̃ satisfies R̃ic|ιg(Q)(Tιg · ξ, T ιg · η) = 0 for all

ξ, η ∈ X(Q).

Remark 6.26. Under the assumption trace(γ̇(0)) = Sg

n−1
and by means of the relationship

between the scalar curvature of conformally related metrics, formula (6.19) reduces to

Hu = − 1

2n(n− 1)
Se

2ug ξu + ℓu,

and therefore, ∥Hu∥2 = Se
2ug

n(n−1)
. This formula widely generalizes [52, Cor. 4.5] and [56, Cor.

3.7]. Therefore, the causality of Hu is determined by the sign of Se2ug. For two dimensional

compact Riemannian conformal structures (M, c) and, as direct consequence of the Gauss-

Bonnet theorem, we get ∫
M

e2u∥Hu∥2 dµg = 2πχ(M),

where χ(M) is the Euler characteristic of the manifold M and dµg is the canonical measure

associated to g. Also, from Corollary 6.18, the condition ∇⊥Hu = 0 is equivalent to Se
2ug

being constant (compare with [56, Cor. 3.10]). The positive solution to the Yamabe problem

(see [41]) states that on every (n ≥ 3)-dimensional compact Riemannian conformal structure

(M, c) there is a metric g ∈ c with constant scalar curvature. Therefore, in the compact case,

there exists an immersion Ψu as in (6.12) with parallel mean curvature vector field.
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6.4 An Application

For a Möbius structure (M, c,D) on a two dimensional manifold M , the Cotton-York tensor

for g ∈ c has been introduced in [15] and [60] as follows

C(g)(U, V,W ) = g
((

∇UD̂(g)
)
(V )−

(
∇V D̂(g)

)
(U),W

)
, U, V,W ∈ X(M). (6.21)

This definition formally agrees with the usual Cotton-York tensor defined from the Schouten

tensor of an (n ≥ 3)-dimensional Riemannian manifold (M, g). The Cotton-York tensor given

in (6.21) for n = 2 satisfies C(g) = C(e2ug) (e.g., [60]).

In this Section, we assume (M, c,D) is a Möbius structure on a two dimensional manifold

M which is achieved by means of Theorem 6.20.

Lemma 6.27. Let (M, c,D) be a Möbius structure on a two dimensional manifold M . Then,

the Cotton-York tensor satisfies

C(g)(V, U,W )ξu = (∇U II
u)(V,W )− (∇V II

u)(U,W ),

for Ψu as in (6.12). Hence, the Codazzi equation (2.5) reduces to(
R̃(U, V )W

)⊥
= C(g)(V, U,W )ξu.

Proof. According to Remark 6.19, the second fundamental form of Ψu is

IIu(V,W ) = −D(e2ug)(V,W )ξu + e2ug(V,W )ℓu. (6.22)

From Corollary 6.18, we have ∇⊥
U ξ

u = ∇⊥
U ℓ

u = 0 and then, a direct computation gives

∇⊥
U(II

u(V,W )) = −e2ug
((

∇e2ug
U D̂(e2ug)

)
(V ),W

)
ξu.

where ∇e2ug is the Levi-Civita connection of e2ug. Now, the derivative of the second fundamen-

tal form in (2.4) is easily computed. The proof ends by means of (6.21) and C(g) = C(e2ug)

for n = 2.

Definition 6.28. ([15], [60]) A Möbius structure (M, c,D) on a two dimensional manifold M

is called flat when C(g) = 0 for every g ∈ c.

As a direct consequence of Lemma 6.27, we have the following result.
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Proposition 6.29. A Möbius structure (M, c,D) on a two dimensional manifold M is flat if

and only if for every immersion Ψu : M → (M̃, g̃) as in (6.12), the curvature tensor R̃ of the

pre-ambient manifold (M̃, g̃) satisfies

R̃(U, V )W ∈ X(M) ⊂ X(M),

for all U, V,W ∈ X(M).

Remark 6.30. For a flat Möbius structure (M, c,D), Proposition 6.29 states that tangent spaces

ofM along Ψu are invariant under the curvature tensor of (M̃, g̃).As far as we know, the theory

of immersions satisfying this condition appeared for the first time in [49]. K. Ogiue called these

immersions as invariant immersions. This condition generalizes properties of the immersions

into manifolds of constant sectional curvature. The existence of curvature invariant tangent

subspaces in a general Riemannian manifold is related with the existence of totally geodesic

immersions (see [64] for more details).





Conclusiones

En esta tesis hemos explorado la intersección entre la geometría lorentziana y la geometría con-

forme riemanniana. La teoría de subvariedades ha demostrado ser una herramienta realmente

potente para mostrar con claridad las conexiones tan profundas que tienen ambas subramas

de la Geometría Diferencial. Para ser precisos, hemos visto cómo, por medio de inmersiones

espaciales de codimensión dos que factoricen a través de hipersuperficies luminosas de cier-

tos espacio-tiempos, somos capaces de reconstruir objetos muy relevantes desde el punto de

vista de la geometría conforme riemanniana. En resumen, esta investigación ha contribuido a

ampliar nuestra visión sobre la geometría del espacio-tiempo y su conexión con la geometría

conforme, destacando la riqueza y la profundidad de estos campos interrelacionados.
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