The published version of this accepted manuscript can be found at
https://doi.org/10.1016/j.as0c.2022.108871

Electric demand forecasting with neural networks and
symbolic time series representations

D. Criado-Ramén®*, L.G.B. Ruiz®, M.C. Pegalajar®

@ Department of Computer Science and Artificial Intelligence, University of
Granada, Granada, Spain
b Department of Software Engineering, University of Granada, Granada, Spain

Abstract

This paper addresses the electric demand prediction problem using neural
networks and symbolization techniques. Symbolization techniques provide a
time series symbolic representation of a lower length than the original time
series. In our methodology, we incorporate the use of encoding from ordinal
regression, preserving the notation of order between the symbols and make
extensive experimentation with different neural network architectures and
symbolization techniques. In our experimentation, we used the total electric
demand data in the Spanish peninsula electric network, taken from 2009 to
2019 with a granularity of 10 minutes. The best model found making use
of the symbolization methodology offered us slightly worse quality metrics
(1.3655 RMSE and 0.0390 MAPE instead of the 1.2889 RMSE and 0.0363
MAPE from the best numerical model) but it was trained 6826 times faster.

Keywords: time series, forecasting, symbolic representation, energy
demand, artificial neural networks

1. Introduction.

Energy has become one of the most important resources of our time. It
is present in most aspects of our time and, due to its relevance, has a big en-
vironmental impact and heavily affects our economy. As such, finding ways

*Corresponding author at: ¢/Periodista Daniel Saucedo Aranda s.n, 18071, Granada,
Spain.
Email addresses: davidcr96@correo.ugr.es (D. Criado-Ramén), bacaruizOugr.es
(L.G.B. Ruiz), mcarmen@decsai.ugr.es (M.C. Pegalajar)

Preprint submitted to Applied Soft Computing March 16, 2022

to produce and distribute energy in a sustainable and efficient way has been
one of the main objectives of many governments, institutions and private
parties over the last decade. Advances in storage and sensor technology have
conducted a wide availability of energy data from different sources that result
in really large time series. This huge amount of information may sometimes
be useful but also presents some disadvantages, mainly the computational
power required to process them. Thus, it is frequent to add a preprocessing
stage to reduce the length of the time series.

A common approach to reduce the computational complexity when work-
ing with time series is the use of techniques that reduce the number of vari-
ables used (dimensionality reduction) or reduce the length of the time series
(numerosity reduction). Syan et all [1] evaluated different feature extraction
methods for dimensionality reduction (PCA, ICA, tSNE and UMAP, among
others) to make a short-term forecast of the London Households dataset.
Elsworth and Giittel [2] used a symbolization technique named ABBA to
reduce the length of the time series and evaluated its performance when used
in conjunction with LSTM neural networks. Symbolization techniques trans-
form the original time series to a lower length sequence of discrete symbols
from a finite alphabet, trying to preserve the most relevant information. In
our study, we evaluate two symbolization techniques (SAX [3] and aSAX [4])
to create a short-term forecasting model for the Spanish electric demand.
Using this approach, we evaluate whether the symbolization offers us faster
training, better forecasts and the differences between various ways of training
different neural network architectures (MLP [5], Elman [6] and LSTM [7])
with different hidden activation functions.

Neural networks are a popular approach to forecast energy demand and
production as they usually offer better forecasts but are usually harder to
train. Siridhipakul and Vateekul [8] used a Dual-Stage Attentional LSTM
to forecast Thailand’s power consumption. Their model outperformed ev-
ery other traditional model for that task. Azadeh, Ghadrei, and Nokhandan
[9] used seasonal artificial neural networks to do short-term load forecast-
ing of the energy consumption in Iran one day ahead. Ehsan Simon and
Venkateswaran [10] used a multilayer perceptron architecture to predict the
energy output of a solar photovoltaic power plant one day ahead.

Symbolization techniques have been previously used in the energy sector.

2

However, they are not commonly used for forecasting task but for pattern
extraction/recognition related tasks. Reinhardt and Koessler [11] created a
SAX-based method to extract consumption patterns from distributed power
systems. Chen and Wen [12] used SAX to find similar weather patterns in
a database and use it in a PCA model to detect HVAC system faults in
buildings. Miller, Nagy and Schlueter [13] used SAX to detect infrequent
daily consumption patterns that could represent faults in energy systems in
buildings.

However, up to date, there is only one unpublished work [2] on the use
of symbolization techniques for forecasting tasks in which they use LSTM
neural networks to forecast different datasets with the symbolic time series
being provided to the neural network with one-hot encoding. The goal of
our research is to find how suitable symbolization techniques to forecast a
massive amount of energy data and expand upon the preprocessing ideas
used in the previously mentioned paper by making a comparative analysis
of how different approaches in the model training pipeline (sample selection,
data encoding, symbolization technique and neural network architecture) can
improve the obtained results.

The rest of the paper is structured as follows: the data, algorithms and
methodology used are described in section 2; the results obtained are shown
and discussed in section 3; and section 4 compiles the conclusions obtained
from this research.

2. Materials and Methods.

2.1. Data Analysis and Preparation.

For this paper, the historical record of Spanish energy consumption was
scrapped from the official REE website [14], which provides data from 2007
to present of the amount of electricity demanded every 10 minutes in the
Spanish peninsula electric network. A first exploratory visual analysis pro-
vides us with information about the seasonality of the data.

As we can observe in the figure 1, the data presents seasonal patterns in

three levels: daily, weekly and annually. This is due to the fact that we can
observe high autocorrelation values for each 144-time step (24 hours) on the

3

Autocorrelation Autocorrelation (daily mean) Autocorrelation{weekly mean)

10 1.0 1.00
0.8 08 075
il 06 0.50
04

04 s
02

0.2 0.00
0.0

00 -
i -0.25

0 250 500 780 100C 0 10 20 0 0 2% 5 75 100

Figure 1: Autocorrelation function plots (ACF). On the left, ACF every 10 minutes. In
the middle, daily mean demand ACF. On the right, weekly mean demand ACF.

left one, each 7-time step on the middle one (1 week) and every 52 weeks
on the right one (1 year). Furthermore, by evaluating figure 2 we observe
two relevant factors about the daily and weekly seasonality. Most days, peak
demand is reached between 12 and 13 hours or between 20 and 21 hours.
Sunday is the day of the week with the least electric demand followed by
Saturday while the rest of the days have a quite similar demand, hinting
that workdays may be an important factor in electric demand.

45 L ———— =
a0 [40
B 3B
2 et pnE =
] a Q
E 30 m ips E 0
& 0 &
25 25
20 | 20
01 234567 8910112131415 1617 1819 2021 22 23 Mon Tue Wed Thu Fri Sat Sun
Hour Day of the week

Figure 2: Box plots. On the left, the hourly demand box plot. On the right, box plot of
the demand each day of the week.

The data for the experimentation was gathered from January 1st 2009
to December 31th 2019. A first preprocessing stage was made to fix any
missing values and unwanted data. Issues with missing hours and repeated
hours from daylight saving time (DST) were solved by adding an extra hour

4

with the mean of the previous and the next one if the clock is advanced or by
keeping the mean of the repeated hour if the clock is turned back to standard
time. The dataset was divided into three partitions preserving chronological
order: 70 % training data, 10 % validation data and 20 % test data.

2.2. Artificial Neural Networks (ANN).

Artificial neural networks (ANN) are machine learning models inspired by
the human nervous system. An ANN consists of many computational nodes,
named neurons, and weighted connections between them. Usually, these neu-
rons are aggregated into layers where the first layer (or input layer) provides
the input data for training or forecasting, and the last layer (or output layer)
provides the corresponding output. During the training process, the ANN
optimizes its weights to minimize a loss function between the output from
the last layer and the desired output. In our experimentation, we tried out
three architectures of ANNs frequently used for time series forecasting, each
with its own advantages and disadvantages.

Multilayer perceptrons (MLP) are one of the most simple and widely
used feed-forward artificial neural networks. Due to lower complexity, they
are easier to train and perform fast operations. The architecture of the MLP
consists of at least three sequential layers: one input layer, one or more
hidden layers and the output layer. Every neuron in a MLP model is fully
connected, which is, each neuron is connected to all neurons from the pre-
vious and next layer. Associated with those connections there is a weight
that the neural network will learn during the training process. Each neuron
J (except those on the input layer) performs the sum of the inputs from the
previous layer multiplied by their respective weights wj; and applies a non-
linear activation function f to the output.

hy = f(;wﬁxi) (1)

A recurrent neural network (RNN) is a type of ANN in which the connec-
tions between nodes from a graph along a temporal sequence, allowing them
to use their internal state (memory) to process sequences of variable length.
The Elman Recurrent Neural Network [6] is a RNN that adds a new type
of layer: the context layer. The context layer contains as many neurons as
the hidden layer and serves as a memory by storing the output of the hidden

)

layer from the previous time point h;_; and sending it back to all neurons
on the hidden layer on the current time point ¢ alongside the corresponding
element of the sequence ;. Mathematically, the Elman Neural Network can
be described as follows:

hj,t = f(whjil:t + wc]. h’j,t—l —+ bhj) (2)

where h;; is the output of the unit j from the hidden layer at time point ¢, f
an activation function (usually tanh), wy; the learned weights on that unit
for the input, w,; the learned weights on that unit for its own output on the
previous time point (stored in the context unit) and b, the bias of the unit.

Long-Short Term Memory (LSTM) [7] neural networks were created by
Hochreiter and replace the standard hidden neuron with LSTM units. Each
LSTM unit is formed by two recurrent data vectors: the hidden state and
the cell state; and three gates: input gate, forget gate and output gate. The
hidden state works as a short-term memory whilst the cell state works as long-
term memory. The three gates work as masks that control the information
flow in and out of the cell state. All three gates have their own weights
and use the sigmoid function to ensure the [0,1] range. Mathematically, the
LSTM cell works as follows:

e Forget gate: f, = o(Wy-[h_1, 2] + by) (3)
e Input gate: iy =a(W; - [l 1, 2] + b;) (4)
e Candidate cell state: C, = tanh(W, - [hy_1, z,] + b.) (5)
e Output gate: o; = o(W, - [hy_1, 2] + b,) (6)
e Cell state: C; = f;-Cy_1 + iy - C, (7)
e Hidden state: h, = o, - tanh(C}) (8)

2.3. Time series symbolization.

Time series symbolization techniques transform a raw numerical time-
series T' = [Ty, T1, T3, ..., T, to a sequence of symbols of lower length S =
[So, 51,52, ..., Sm]. Symbolization is used as a numerosity reduction tech-
nique in many time series data mining tasks, especially those that rely on
distance computation, such as pattern mining and anomaly detection. Their

6

objective is to provide a simpler representation of time series that reduce
computational complexity and storage requirements while preserving rele-
vant information.

Time series symbolization often relies on a two-step process based on time
series segmentation and extracting symbols that represent the relevant infor-
mation from each segment. Symbolic Aggregate approXimation (SAX) [3] is
the most used symbolization technique in the literature. The segmentation
in SAX is made making use of Piecewise Aggregate Approximation (PAA),
which divides the original time series into equidistant segments and returns
the mean value from each segment. Then, the mean value from each segment
is discretized making use of an interval-based lookup table. Each interval is
an equiprobable area under the Gaussian curve. The number of intervals
in the lookup table corresponds to the number of unique symbols that can
appear on the resulting sequence (size of the alphabet). SAX works under
the assumption of normality in the original time series and two parameters
provided by the algorithm user: the size of the alphabet and the size of the
segments.

While SAX has offered great results in many applications [15, 16], it is
a common opinion from various authors the information from just the mean
may not suffice depending on its application. Thus, there are many propos-
als of SAX variants that try to address some of its issues. Extended SAX
(ESAX) [17] uses the minimum, maximum and mean of every segment in-
stead of just the mean. Trend-based SAX (TSAX) [18] uses the mean and
a new symbol to represent the trend. The trend is calculated by splitting
each segment in half and looking at the subtraction of the means of the sub-
segments. It can take three values: stable (the absolute difference is lower
than a minimum value), up or down. TFSAX [19] incorporates a new sym-
bol that represents the trend. The trend is calculated as the arctangent of
the ratio between the trend distance and the number of turning points in
the segment and is discretized by using the same procedure as SAX’s mean
value. Adaptive SAX (aSAX) [4] uses the Lloyd algorithm to find a new
set of breakpoints that should resemble better the original data distribution
than the assumption of normality from SAX.

In our experimentation, we implemented the SAX and aSAX symbol-
ization techniques. The use of other SAX variants was discarded because

7

they use more than one symbol per segment. While the use of more sym-
bols per segment preserves more information, it also makes the prediction
harder since we would need to forecast accurately multiple symbols at the
same time. Furthermore, most proposals do not offer a way to transform the
symbolic representation into a numerical one as they were designed for other
data mining tasks, such as classification or clustering, providing almost no
benefit for the forecasting task and requiring more time to train.

2.4. Methodology

! Neural network training |_
!{MLF' | Eiman | LSTM | GRU) | }

Evaluation and

Symbolization Encoding
(W | asm {One-Hot | Ordinal)
Comparison
Models trained without symbolization

| Neuralnetwork raining)
(MLP | Elman | LSTM | GRU)

Figure 3: Applied methodology flowchart.

In order to see which approach works better (neural networks with or
without symbolization), we trained models under similar conditions, as we
can observe in figure 3. In the case of models without symbolization, after the
data was cleaned, a model is trained with the samples provided by a sliding
window whose size corresponds to two days and the next sample is obtained
moving the sliding window either to the next observation (1-step) or the
number of observations corresponding to two days (daily-step). Then, the
selected neural network architecture is trained by making use of the mean
squared error as loss function. In the case of models with symbolization,
prior to the sliding window, the corresponding symbolization technique is
applied and an encoding algorithm transforms the symbolic representation
into a suitable input for the neural network. Afterwards, the sliding window
and neural network will be applied in the same way that models without
symbolization except by the fact that the loss function will be determined by

the encoding algorithm used. Once all models were trained, we made a com-
parative analysis to compare both the differences between models with and
without symbolization and what parameters in the preprocessing pipeline
lead to better models. In this section, we will provide and explain the differ-
ent parameters tested in the methodology.

2.4.1. Symbolization parameters.

The selected symbolization techniques, SAX and aSAX require the user
to provide a segment size and an alphabet size. Finding those values is a
non a non-trivial task. Longer segments will speed up the posterior training
process but could offer less accurate forecasts while extremely short segments
will barely give any benefit over using the time series without symbolization.
High cardinality alphabets will represent better the original time series but
could make the forecasting task more difficult. Particularly cases in which
some symbols appear too many times in comparison with the others or some
symbols barely used. However, if the alphabet size is too small we may be
losing relevant information.

The selection of these parameters has a huge impact on the interpretation
of the symbolic time series. In our experimentation, we decided to use a
segment size of 6, since each symbol of the time series will be representing
the mean demand during an hour and can provide a considerable speedup
while preserving enough information. For the alphabet size, we tested two
values: 7 and 13. These two values correspond to the largest alphabet size
in which each symbol is observed in at least 10% and 5% of the observations,
respectively. We decided not to use larger alphabets since, for our data,
they lead to excessively imbalanced distributions in which some symbols may
appear too many times and other symbols may not appear at all.

2.4.2. Encoding.

A well-known way to train an artificial neural network with a symbolic
sequence is by using a hot-encoding representation. Each symbol s of the a
different symbols is represented by a unique vector of all zeros except a one
in the s** position of the vector. This is a common and successful approach
in a task such as text mining, where this encoding is combined with the soft-
max activation in the output layer and the cross-entropy loss function to
train neural networks. This approach usually leads to high accuracy models

but does not take into account how far each predicted symbol is from the
expected symbol.

In the case of energy demand, we deem more useful forecasts that may
be slightly less accurate but penalize the distance between predicted and
expected value. This is the reason we propose the incorporation of the ordinal
regression encoding proposed by Cheng et al. [20] to forecast symbolic time
series. In this approach, the neural network is trained to learn the probability
0 = (01,09, ...,04, ...,04) of a given value z being lower than the i'® symbol,
where 0;(i < a) is close to one and 0;(i > a) is near zero. The encoding
represents the i'" symbol with a vector of a numbers with all ones up to
position number ¢ filled with zeros afterwards and requires the use of the
sigmoid activation on the output layer and the mean squared error as loss
function.

2.4.8. Sliding Window.

Since our objective is to make daily forecasting with an univariate time
series, a sliding window algorithm was used to extract the samples. The size
of the sliding window was set to two days. The observations corresponding
to the first 24 hours are provided to neural network as the input signals and
the next 24 hours are the desired output signals. This was set after trying
out multiple input sizes from the use of just a few hours to an entire week
Two values were selected for the sliding window step during our experimen-
tation. Choosing a step size of 1 provides us with the maximum amount of
training samples, giving us more information at the expense of more training
time. This approach also creates flexible models that can be used to forecast
the next 24 hours independently of the hour the sample start. Choosing a
daily step size (24 for symbolic representations or 144 for numerical repre-
sentations) will provide us with fewer samples, thus granting faster training
and a lower risk of overfitting. This approach makes models that only work
properly when the first observation of a sample is at 0:00. The daily step
size was used for the validation and testing partitions.

2.4.4. Neural network parameters.

All neural networks models were trained using a many-to-many approach
using the samples providing by the sliding window. We tested topologies with
one hidden layer with a number of hidden units between 10 to 60 neurons
(each value every 5 neurons was tested). Three different hidden activation

10

functions where tested: hyperbolic tangent, sigmoid and ReLLU. Models were
trained during up to 75 epochs with early stopping if the results do not
improve for 10 epochs. We use the cross entropy loss function for the symbolic
time series and mean squared error for the numeric time series. The learning
rate when working with the symbolic representation was raised to 0.005 since
with the default value of 0.001 it was not converging. All other parameters
were kept to the default value of the TensorFlow Keras [21] framework, which
was used for all experimentation. All calculations were made on a desktop
computer with 8 GB of RAM and an AMD Ryzen 5 2600x running at 3.6
GHz. For reproducibility purposes, the random seed to initialize the weights
of each model was set to 1996.

3. Discussion.

3.1. Forecasting performance metrics.

To evaluate the performance of the models we used the training time,
three metrics for models with symbolization and two metrics for models with-
out symbolization. For models with symbolization, we used the root mean
squared error (RMSE), MINDIST and accuracy. Since RMSE was used for
models with and without symbolization, we will refer to the RMSE used for
models with symbolization as RMSE (Sym) for the remainder of the paper
while RMSE alone refers to the numeric representation. In order to calculate
the RMSE (Sym), since the metric requires a numerical value, each symbol is
replaced with the integer that represents its position on the alphabet. For ex-
ample, the first symbol, A, would be replaced with integer 1. The best model
with symbolization for a specific alphabet size was selected making use of this
metric, while the others are used to provide complementary information for
the discussion. RMSE is defined as follows:

_ sz\; (?]z - yi)z
RMSE = \/ i (9)

where y; is the predicted value, y; is the expected value and N is the
sample size.

MINDIST [3] is a distance measure proposed alongside SAX that lower
bounds the euclidean distance of the corresponding PAA representation of

11

the time series. The benefit from it is that it allows us to compare results
even if we make use of different alphabet size or segment size. MINDIST is
calculated as follows:

MINDIST(a,b) = \/7 > (dist(as, by) (10)
1=1

where a and b are two SAX (or aSAX) sequences, n is the numeric time
series length, w is the symbolic time series length and dist is defined as
follows:

0, iflr—c <1

. 11
Bmam(nc)fl - Bmm(r,c); oltherwise ()

dist(r,c) = {

where 8 is a breakpoint from the symbolization lookup table.

The accuracy metric tells us the percentage of correct predictions and its
purpose is to complement the RMSE metric. Accuracy is defined as follows:

Number of correct predictions

Accuracy = (12)

Total number of predictions

In the case of models without symbolization, we made use of the RMSE
and MAPE metric. MAPE is defined as follows:

1 y—7
MAPE = — == 1
N; ; (13)

Since we cannot directly compare models with and without symbolization,
it is required to transform the representation after the forecast is done. We
can evaluate how well a model with symbolization forecasts the numerical
time series by transforming each symbol to the central value of the interval it
represents and repeating that value as many times as long as the segment size,
and we can evaluate how well the models without symbolization (numerical)
can provide a symbolic forecast by using the symbolization technique after
the forecast is done.

3.2. Preprocessing pipeline.

The preprocessing pipeline proposed in our methodology features mul-
tiple alternatives in each of its steps, such as the use of different encoding

12

algorithms. The first part of the discussion will be focused on the study of
this preprocessing pipeline and, particularly, if there is any alternative that
always outperforms the others. A summary of the models trained using the
SAX symbolization algorithm is shown in table 1. For clarity reasons, the
table only shows the model with the best number of neurons and activation
(according to the RMSE (Sym) metric) per combination of all other param-
eters.

Table 1: Best topologies found for SAX based training. Bold values represent best metrics
found for each alphabet size.
Alphabet Architecture = Window Neurons Activation RMSE MINDIST Accuracy

size and Encoding step (Sym)
7 MLP [One-Hot] Daily 40 ReLU 0.6903 1.0549 0.7021
7 Elman [One-Hot) Daily 60 sigmoid 0.7421 1.1977 0.6759
7 LSTM [One-Hot] Daily 25 ReLU 0.705 1.0249 0.682
7 MLP [One-Hot] 1 60 ReLU 0.8116 1.4945 0.6548
7 Elman [One-Hot] 1 45 sigmoid 0.906 1.8182 0.6085
7 LSTM [One-Hot] 1 60 ReLU 0.7592 1.272 0.6674
13 MLP [One-Hot] Daily 50 tanh 1.188 1.7053 0.5566
13 Elman [One-Hot) Daily 55 sigmoid 1.2734 1.8804 0.5166
13 LSTM [One-Hot| Daily 60 ReLlU 1.1936 1.6802 0.5421
13 MLP [One-Hot] 1 60 ReLU 1.4039 2.2482 0.5068
13 Elman [One-Hot] 1 60 sigmoid 1.4129 2.2889 0.484
13 LSTM [One-Hot) 1 55 ReLlU 1.3105 1.9718 0.4952
7 MLP [Ordinal] Daily 60 sigmoid 0.6366 0.7121 0.6888
7 Elman [Ordinal] Daily 45 ReLU 0.704 0.8755 0.6469
7 LSTM [Ordinal] Daily 60 ReLU 0.6678 0.7472 0.6676
7 MLP [Ordinal] 1 55 sigmoid 0.7638 1.1066 0.6195
7 Ehnan [Ordinall 1 50 sigmoid 0.7866 1.1643 0.6077
7 LSTM [Ordinal] 1 60 ReLU 0.7279 1.0484 0.655
13 MLP [Ordinal] Daily 60 ReLU 0.9893 1.1032 0.5584
13 Ehnan [Ordinal] Daily 50 ReLU 1.1399 1.417 0.4591
13 LSTM [Ordinal] Daily 55 ReLU 1.0132 1.1006 0.5133
13 MLP [Ordinal] 1 45 sigmoid 1.2852 1.795 0.4451
13 Elman [Ordinal] 1 50 sigmoid 1.3575 2.0101 0.4402
13 LSTM [Ordinal] 1 60 ReLU 1.1763 1.5321 (0.4888

The summary table shows that for every pair of models that share archi-
tecture, alphabet size and sliding window step but have different encoding,
most models with one-hot encoding provide better accuracy than ordinal
models while all models with ordinal encoding provide better RMSE (Sym)
than models with ordinal encoding. This was the expected behaviour and
verifies that whenever how far away the prediction is from the expected value

13

is relevant the ordinal encoding should be preferred. In the case of the slid-
ing window, the use of a daily step outperforms the use of a step size of
one. Therefore, the use of a daily step sliding window offers both better met-
rics and faster training time, since the daily step size will generate a lower
amount of samples to use for training. Also, the most simple neural network
architecture, the MLP, provides better results than all the other recurrent
architectures.

While the RMSE (Sym) metric allows us to compare models with the
same alphabet size, we cannot directly use it to compare models with al-
phabet sizes that differ. The MINDIST metric, on the other hand, is suit-
able to compare different alphabet sizes but is only a lower bound of their
true PAA euclidean distance. The MINDIST metric is usually worse for the
models that use symbolization with alphabets of 13 symbols than 7. This
is expected since a higher alphabet size makes the forecast more difficult.
However, since it is a lower bound, it is completely possible that an alphabet
size of 13 outperforms the alphabet size of 7 if we compare the results after
transforming the symbolic representation back to a numerical one.

3.3. Comparison between SAX and aSAX.

With aSAX, the use of daily step size for the sliding window and the use
of the ordinal encoding did also outperform the other alternatives. Table 2
contains a summary of the best models found making use of aSAX.

Table 2: Best topologies found for aSAX. All models in this table use ordinal encoding
and a daily sliding window step.

Alphabet Architecture Neurons Activation RMSE MINDIST Accuracy

size (Sym)
7 MLP 45 ReLU 0.6181 0.6678 0.6664
7 Elman 45 ReLU 0.6794 0.8843 0.6322
7 LSTM 40 ReLU 0.6496 0.6356 0.6303
13 MLP 25 ReLU 0.9548 1.088 0.525
13 Elman 35 ReLU 1.1094 1.4289 0.4258
13 LSTM 55 ReLU 0.9873 1.0948 0.4698

The use of aSAX instead of SAX leads us to models that forecast better
their symbolic representation than their SAX counterparts. They also make

14

use of a lower amount of neurons, providing lower complexity models. The
best models with aSAX always make use of the ReLU activation function.
Since the only difference between SAX and aSAX, is the interval each sym-
bol covers, we can understand the reason behind the better performance by
taking a closer look into them.We can observe the interval breakpoints for
our training data in table 3 and how many times each symbol appears on the
training data in figure 4.

Table 3: SAX and aSAX breakpoints for our training data.
1 2 3 4 5 6 7

Lower bound —oo 23.3326 25.8686 27.8197 29.6381 31.5909 34.1268
Upper bound 23.3326 25.8686 27.8197 29.6381 31.5909 34.1268 00
Lower bound —oo 222939 24.9574 27.7179 30.4538 33.148 36.287
Upper bound 22.2939 24.9574 27.7179 30.4538 33.148 36.287 00

SAX

aSAX

a5AXK

10000

8000

G000

4000

2000

Figure 4: Symbol distribution on training data for symbolization techniques with an al-
phabet size of 7.

While using the SAX symbolization technique, the symbols that cover
the extreme values appear many more times than symbols that cover areas
in the center of the distribution. The selection of these breakpoints is a
byproduct of the fact that the original data did not have a normal distri-
bution and will result in a bias towards predicting symbols 1 and 7. Since

15

aSAX does not require the normality assumption we can observe how the
algorithm finds a more balanced set of breakpoints that deals with the im-
balance problem although it creates certain imbalance particularly against
forecasting the symbols of highest electric demand. Another way to see the
impact of this interval selection is to observe the density plot provided in
figure 5, where the area between two vertical lines (including the vertical
edges of the figure) represents the density covered by each symbol). In SAX,
we can easily observe how most density is under the extreme symbols while
aSAX provides a much more balanced interval distribution.

SAX a5AXx

002 4

001 ~

0.00 T T T

Figure 5: Comparison of intervals provided by SAX and aSAX.

3.4. Comparison between models with and without symbolization.

After concluding that for models with symbolization, the use of ordinal
encoding, a sliding window with a daily step size, the MLP architecture and
aSAX provided better symbolic forecasts, we need to train models without
symbolization in order to compare both approaches. Table (table 4) displays
the metrics of the best models trained without symbolization.

The best model found when training models without symbolization tech-

niques is a LSTM with 55 units in its hidden layer and the hyperbolic tan-
gent activation function, which provides an RMSE of 1.2889 on our test data.

16

Table 4: RMSE and MAPE on test partition for the best models without symbolization.
Architecture Window step Neurons Activation RMSE MAPE

MLP Daily 60 ReLU 1.5542 0.0434
Elman Daily 30 ReLU 2.0766 0.0601
LSTM Daily 20 ReLU 1.8408 0.0531

MLP 1 25 ReLLU 1.553 0.0445
Elman 1 55 ReLlU 2.0146 0.0591
LSTM 1 55 tanh 1.2889 0.0363

Contrary to the use of the symbolic representation, the best models with the
numerical representation make use of a step size of one. Thus, the models
without symbolization required the use of a much higher amount of training
samples and, therefore, a higher training time. Lastly, we will compare the
performance of the trained models with and without symbolization. This
comparison will be split in two parts: the forecast of the symbolic represen-
tation and the forecast of the original time series. Table 5 shows the perfor-
mance that the models trained without symbolization offered to forecast the
symbolic representation. This implies that after the model did the forecast
with the numerical representation the symbolization techniques were applied.

As expected, when working with models trained without symbolization,
the best performance to forecast the symbolic representations is provided by
the best model found to forecast the numeric representation (LSTM with
55 units in its hidden layer and the hyperbolic tangent activation function).
However, it underperforms in comparison with the models trained with sym-
bolization. For example, a MLP with 60 neurons, the sigmoid activation
function, ordinal encoding and a daily step sliding window (table 1) scored
a symbolic RMSE of 0.6366 and an accuracy of 68.88 % being trained with
SAX and an alphabet size of 7. However, its counterpart trained without
symbolization and being symbolized according to SAX algorithm after the
numeric forecast only scored a symbolic RMSE of 0.7209 and an accuracy of
59.99 %, much better than the 0.7209 and 59.99 %. Similar situations occur
when comparing each model without symbolization against the correspond-
ing model with symbolization. Therefore, whenever the symbolic output can
be interpreted in a useful way models with symbolization should be preferred
as they work better and faster.

17

Table 5: Symbolic forecast metrics for the best models trained without symbolization.
Symbolization Window Architecture Neurons Activation RMSE MINDIST Accuracy

(Alphabet size) step (Sym)

SAX (7 symbols) Daily MLP 60 RelLU 0.8166 1.3498 0.5193
SAX (13 symbols) Daily MLP 60 ReLU 1.3535 2.2961 0.3646
aSAX (7 symbols) Daily MLP 60 ReLU 0.7195 0.8507 0.564

aSAX (13 symbols) Daily MLP 60 ReLU 1.2293 1.8506 0.3799
SAX (T symbols) Daily Elman 30 ReLU 1.0485 2.582 0.4218
SAX (13 symbols) Daily Elman 30 ReLLU 1.8149 3.7256 0.2821
aSAX (7 symbols) Daily Elman 30 ReLU 0.9165 1.7876 0.4476
aSAX (13 symbols) Daily Elman 30 ReLU 1.6416 3.0854 0.2866
SAX (7 symbols) Daily LSTM 20 ReLU 0.91 1.9002 0.4755
SAX (13 symbols) Daily LSTM 20 ReLU 1.5608 2.9747 0.3148
aSAX (7 symbols) Daily LSTM 20 ReLLU 0.8221 1.2837 0.4869
aSAX (13 symbols) Daily LSTM 20 ReLU 1.4237 2.4285 0.3027
SAX (7 symbols) 1 MLP 25 ReLU 0.8586 1.466 0.4915
SAX (13 symbols) 1 MLP 25 ReLU 1.4244 2.4491 0.3319
aSAX (7 symbols) 1 MLP 25 ReLU 0.7514 0.9146 0.5347
aSAX (13 sywbols) 1 MLP 25 ReLU 1.2873 1.9861 0.3522
SAX (7 symbols) 1 Elman 55 ReLU 0.9908 2.3953 0.4693
SAX (13 symbols) 1 Elman 55 ReLU 1.7386 3.4882 0.3144
aSAX (7 symbols) 1 Elman 55 ReLU 0.8771 1.6637 0.4907
aSAX (13 symbols) 1 Elman 55 ReLU 1.5838 2.901 0.3204
SAX (7 sywbols) 1 LSTM 55 tanh 0.7209 1.0039 0.5999
SAX (13 symbols) 1 LSTM 55 tanh 11581 1.7187 0.4419
aSAX (7 symbols) 1 LSTM 55 tanh 0.6502 0.6281 0.6297
aSAX (13 symbols) 1 LSTM 55 tanh 1.0597 1.3673 0.456

Another use case of the symbolization techniques is to provide a fast
approximation to forecast the numeric time series. In this case, after the
symbolization technique is applied each symbol is replaced by the central
value of the interval it represents and the same value is repeated as many
times as long was the segment size. Table 6 showcases the scored offered by
the models trained with symbolization after transforming them to a numer-
ical representation as well as different models without symbolization

With the use of the daily step sliding window, symbolization techniques
outperform the numerical representation while the opposite happens with
the use of a step of one. The use of a bigger alphabet size improves the
performance of the symbolic models. The best performing symbolic model
is a MLP with 25 hidden neurons and the ReLU activation making use of
the aSAX symbolization method with an alphabet size of 13 unique symbols
offering a RMSE of 1.3655 and a MAPE of 0.0390 on test data. The best
numeric model offers slightly better performance with an RMSE of 1.2889

18

Table 6: Original time series forecast and training time for the best numeric and symbolic
models.

Representation Window Architecture Neurons Activation RMSE MAPE Training
(Alphabet size) step time (s)
SAX (7 symbols) Daily MLP [Ordiual| 60 sigmoid 1.6291 0.0475 4.9495
SAX (13 symbols) Daily MLP [Ordinal 60 ReLU 14307 0.0408 5.0936
aSAX (7 symbols) Daily MLP [Ordinal] 45 ReLU 1.6618 0.0484 3.4701
aSAX (13 symbols) Daily MLP [Ordinal] 25 ReLU 1.3655 0.0390 6.8402
SAX (7 symbols) 1 LSTM [Ordinal] 60 ReLU 1.8391 0.0532 667.5387
SAX (13 symbols) 1 LSTM [Ordinal] 60 ReLU 1.5903 0.0454 584.8650
aSAX (7 symbols) 1 MLP [Ordinal] 55 ReL.U 1.8384 0.0531 58.4093
aSAX (13 symbols) 1 MLP [Ordinal] 25 ReLU 1.7743 0.0503 100.6284
Nuweric Daily MLP 60 ReLU 1.5542 0.0434 8.5964
Numeric 1 LSTM 55 tanh 1.2889 0.0363 40959.7513
Representation ‘Window Prediction model Optimal parameters* RMSE MAPE Training
step time (s)
Numeric 1 Decision Tree max depth: 15 2.6410 0.0733 87.4397

max_depth:20
n_estimators: 150
max_depth: 20
Numeric 1 Gradient Boosting Trees n_estimators: 150 1.4900 0.0422 22284.1009
learning rate: 0.1
*Parameters evaluated: max depth € [10, 15, 20,25, 30]: n_estimators € [50, 100, 150, 200]; learning rate € [0.05,0.1,0.15,0.2,0.3].
*Any other parameter not mentioned correspond to scikit-learn default values. Multi-step forecast is done recursively.

Numeric 1 Random Forest 1.7465 0.0492 15484.5837

and a MAPE of 0.0363. However, the training time required for the numeric
model was 40599.7513 seconds while the best symbolic model required only
6.8402 seconds to train. However, the best symbolic model still outperforms
other algorithms that can be used for forecasting such as Random Forests or
Gradient Boosting Tress [22] while being trained faster than them. Figure
6 depicts the accuracy differences between the symbolic forecast and the
numeric forecast over the span of a week. Further improvements may be
accomplished by exploring different alphabet and segment sizes and other
symbolization techniques.

3.5. Advantages, limitations and use cases of the proposed approach.

As we can observe in the conducted experimentation, the main advantage
of using symbolization techniques for time series forecasting is the training
time speedup. The ideal scenario to apply the symbolization techniques
happens whenever the symbolic forecast can be used in a posterior decision-
making process. For example, with the data we studied, since each symbol
represents an interval for the mean demand during an hour, the symbolic
forecast could help plan the production and importation of energy as long as
an expert can establish a relationship between the symbols and the available
production and importation for the electric grid or if instead of the proposed

19

3 4 —— Observations 1 —— Observations
=== Symbaolic Forecast === Numeric Forecast
32 32
ri
o 30 4] ll
: &
\
28 25 4 I
26 26 .
]
24 ! 24
L] [t Il i ; " 4 u
22 - = = = 22 - u
1Y h
mq " ¢ 20 4

Figure 6: Prediction plot over the span of one week of the test partition.

algorithms the intervals were already provided by an expert.

Nevertheless, the main use case for these techniques is to speed up the
training of models when we have massive amounts of data. The use of any
symbolization technique will usually lead to slightly worse but relatively ac-
curate performance metrics [2]. This is due to the fact that when are using
symbolization techniques we are limited to the forecasting of an approxima-
tion of the time series.

Lastly, this approach is not appropriate for all kind of data. Due to the
fact that the symbolization will always lead to some information loss, there
will be an instance in which transforming the symbolic forecast to a numerical
one will barely resemble the expected results. This will usually happen when
the difference between consecutive observations is too big, hence the mean
value will not properly represent the segment. Therefore, obtaining good
results with symbolization techniques require a certain degree of smoothness
from the time series used.

4. Conclusion.

In this paper, we studied the use of symbolization techniques for electric
demand forecasting. Experimentation made use of the demand data of the
main Spanish electric network with observations taken from 2009 to 2019
every 10 minutes. We evaluated different ways to train neural networks with

20

symbolic time series and compared our best symbolic models with our best
numeric models. The use of an ordinal encoding, preserving the notion of
order, improved the performance metrics when compared to the classical one-
hot encoding. We evaluated which approach performed better to forecast the
time series symbolic and numerical representations. Symbolic models out-
performed numerical models when forecasting the symbolic representation.
When forecasting the numerical representation, symbolic models provided us
with a comparable but slightly worse forecast. However, symbolic models had
a lower complexity and trained much faster than the best numerical models.
Future improvements may be made with the development of new symboliza-
tion techniques, other machine learning models, including the symbolization
on more complex methodologies or by adding relevant external information
for our problem.

Acknowledgments

We acknowledge financial support from the Ministerio de Ciencia e Inno-
vacion (Spain) (Research Project PID2020-112495RB-C21) and the I4+D+i
FEDER 2020 project B-TTC-42-UGR20. LGB Ruiz was supported by “Next
Generation EU” Margaritas Salas aids.

Abbreviations

ANN Artificial Neural Network

aSAX Adaptive SAX

LSTM Long-Short Term Memory

MLP Multi-Layer Perceptron

SAX Symbolic Aggregate Approximation

References

[1] D. Syed, S. S. Refaat, H. Abu-Rub, O. Bouhali, Short-term power fore-
casting model based on dimensionality reduction and deep learning tech-
niques for smart grid, in: 2020 IEEE Kansas Power and Energy Confer-
ence (KPEC), 2020, pp. 1-6. doi:10.1109/KPEC47870.2020.9167560.

[2] S. Elsworth, S. Giittel, Time series forecasting using lstm networks: A
symbolic approach, Unpublished results (Preprint). (03 2020).

21

[3] J. Lin, E. Keogh, L. Wei, S. Lonardi, Experiencing sax: A novel symbolic
representation of time series, Data Mining and Knowledge Discovery 15
(2007) 107-144. doi:10.1007/s10618-007-0064-z.

[4] N. D. Pham, Q. L. Le, T. K. Dang, Two novel adaptive symbolic rep-
resentations for similarity search in time series databases, in: 2010
12th International Asia-Pacific Web Conference, 2010, pp. 181-187.
d0i:10.1109/APWeb.2010.23.

[5] L. B. Almeida, Multilayer perceptrons, in: Handbook of Neural Com-
putation, IOP Publishing Ltd and Oxford University Press, 1997.

[6] J. Elman, Finding structure in time, Cognitive Science 14 (1990) 179-
211. doi:10.1016/0364-0213(90)90002-E.

[7] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural com-
putation 9 (1997) 1735-80. doi:10.1162/neco.1997.9.8.1735.

[8] C. Siridhipakul, P. Vateekul, Multi-step power consumption forecasting
in thailand using dual-stage attentional Istm, in: 2019 11th International
Conference on Information Technology and Electrical Engineering (ICI-
TEE), 2019, pp. 1-6. doi:10.1109/ICITEED.2019.8929966.

[9] A. Azadeh, S. Ghadrei, B. P. Nokhandan, One day ahead load forecast-
ing for electricity market of iran by ann, in: 2009 International Con-

ference on Power Engineering, Energy and Electrical Drives, 2009, pp.
670-674. doi:10.1109/POWERENG.2009.4915144.

[10] R. Ehsan, S. P. Simon, P. R. Venkateswaran, Day-ahead forecasting
of solar photovoltaic output power using multilayer perceptron, Neural
Computing and Applications 28 (2016) 3981-3992.

[11] A. Reinhardt, S. Koessler, Powersax: Fast motif matching in distributed
power meter data using symbolic representations, in: 39th Annual [EEE
Conference on Local Computer Networks Workshops, 2014, pp. 531-538.
d0i:10.1109/LCNW.2014.6927699.

[12] Y. Chen, J. Wen, Whole building system fault detection based on
weather pattern matching and pca method, in: 2017 3rd IEEE Inter-

national Conference on Control Science and Systems Engineering (ICC-
SSE), 2017, pp. 728-732. doi:10.1109/CCSSE.2017.8088030.

22

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

C. Miller, Z. Nagy, A. Schlueter, Automated daily pattern filtering of
measured building performance data, Automation in Construction 49
(2015) 1-17. doi:10.1016/j.autcon.2014.09.004.

Red Eléctrica de Espana, Spanish peninsula electric network demand,
https://demanda.ree.es/visiona/peninsula/demanda/total
(accessed 21 June 2021).

S. Benabderrahmane, N. Mellouli, M. Lamolle, On the predictive anal-
ysis of behavioral massive job data using embedded clustering and deep
recurrent neural networks, Knowledge-Based Systems 151 (03 2018).
d0i:10.1016/j.knosys.2018.03.025.

N. Potha, M. Maragoudakis, D. Lyras, A biology-inspired,
data mining framework for extracting patterns in sexual cy-
berbullying data, Knowledge-Based Systems 96 (01 2016).
d0i:10.1016/j.knosys.2015.12.021.

B. Lkhagva, Y. Suzuki, K. Kawagoe, New time series data rep-
resentation esax for financial applications, 2006, pp. x115 — x115.
d0i:10.1109/ICDEW.2006.99.

K. Zhang, Y. Li, Y. Chai, L. Huang, Trend-based symbolic ag-
gregate approximation for time series representation, in: 2018 Chi-
nese Control And Decision Conference (CCDC), 2018, pp. 2234-2240.
do0i:10.1109/CCDC.2018.8407498.

Y. Yu, Y. Zhu, D. Wan, H. Liu, Q. Zhao, A novel symbolic aggregate
approximation for time series, in: Proceedings of the 13th International
Conference on Ubiquitous Information Management and Communica-
tion, IMCOM 2019, 2019, pp. 805-822. doi:10.1007/978-3-030-19063-
7_65.

J. Cheng, G. Pollastri, A neural network approach to ordinal re-
gression, in: IEEE Int. Jt. Conf. Neural Networks 2008 IJCNN
2008 IEEE World Congr. Comput. Intell, 2008, pp. 1279-1284.
do0i:10.1109/TJCNN.2008.4633963.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,

23

[22]

A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kud-
lur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, X. Zheng, Tensorflow (version 2.0.4), Zenodo,
2021. doi:10.5281/zenodo.4725924.

A. Galicia, R. Talavera-Llames, A. Troncoso, I. Koprinska, F. Martinez-
Alvarez, Multi-step forecasting for big data time series based on
ensemble learning, Knowledge-Based Systems 163 (2019) 830-841.
doi:https://doi.org/10.1016/j.knosys.2018.10.009.

24

