Information and Software Technology 172 (2024) 107467

Contents lists available at ScienceDirect

INFORMATION
AND
SOFTWARE
TECHNOLOGY

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Check for

Automatic test cases generation from formal contracts o

Samuel Jiménez Gil?, Manuel I. Capel >, Gabriel Olea Olea”

a SatixFy Space Systems UK, Trident Unit 2, Styal Road, Manchester, M22 5XB, UK
Y Department of Software Engineering, ETSIIT, Universidad de Granada, 18071 Granada, Spain

ARTICLE INFO ABSTRACT

Keywords:

Automatic test cases generation
Software testing

Formal methods

Software verification

Context: Software verification for critical systems is facing an unprecedented cost increase due to the large
amount of software packed in multicore platforms generally. A substantial amount of the verification efforts
are dedicated to testing. Spark/Ada is a language often employed in safety-critical systems due to its high
reliability. Formal contracts are often inserted in Spark’s program specification to be used by a static theorem
prover that checks whether the specification conforms with the implementation. However, this static analysis
has its limitations as certain bugs can only be spotted through software testing.

Objective: The main goal of our work is to use these formal contracts in Spark as input for a test oracle — whose
method we describe — to generate test cases. Subsequent objectives consist of a) arguing about the traceability
to comply with safety-critical software standards such as DO-178C for civil avionics and b) embracing the
best-established software testing methods for these systems.

Method: Our test generation method reads Spark formal contracts and applies Equivalence Class Partitioning
with Boundary Analysis as a software testing method generating traceable test cases.

Results: The evaluation, which uses an array of open-source examples of Spark contracts, shows a high level
of passed test cases and statement coverage. The results are also compared against a random test generator.
Conclusion: The proposed method is very effective at achieving a high number of passed test cases and
coverage. We make the case that the effort to create formal specifications for Spark can be used both for
proof and (automatic) testing. Lastly, we noticed that some formal contracts are more suitable than others for
our test generation.

1. Introduction

Software verification is a challenging and labor-intensive task for
dependable systems that may reach around 60% of the overall software
development cost. Thus, the software industry has shown a significant
interest in reducing this expense and automation is arguably the most
promising solution. Software verification can be carried out either by
code review, proof or testing [1].

Code review is normally the least preferred approach as it may
involve some manual and sometimes informal justification. On the
one hand, software proof applies deductive reasoning through formal
specification analysis [1]. These formal specifications usually consist of
preconditions to be met by the input data of a program and postcondi-
tions for the output one. These verification conditions along with the
implementation are used by a theorem prover or verifier [2] to determine
whether postconditions are always satisfied.

The latter form induces the concept of “design by contract”, which
can be understood in simple terms as the mandatory specification of
verifiable interfaces for each software component at design time. The

* Corresponding author.

definition of these interfaces is done by defining the above-mentioned
preconditions, postconditions, and invariants.

The downside of proof is that a design by contract requires sig-
nificant cost and effort from a business point of view. In addition,
the limitations of this approach emerge when it underpins unverified
assumptions [1,3] such as the absence of hardware errors, consis-
tency of memory, or even when interfacing with unanalyzable external
libraries [4].

Alternatively, software testing is an intrinsic inductive reasoning
that consists of collecting observations from real hardware or an equiv-
alent simulator. As a consequence, this test data may be representative
of the real behavior of the system when deployed, and run-time bugs
or errors such as failure to open a file may become apparent.

Software testing is based on the construction and execution of test
cases that are derived from a specification or verifiable requirements.
Such test cases consist of a combination of input data, paired with their
expected outputs. At the end of a test execution, the actual output is
compared with the expected ones to determine whether a test passes

E-mail addresses: Samuel.Gil@satixfy.com (S.J. Gil), manuelcapel@ugr.es (M.I. Capel), gabrieloo@correo.ugr.es (G.O. Olea).

https://doi.org/10.1016/j.infsof.2024.107467

Received 3 May 2023; Received in revised form 2 April 2024; Accepted 3 April 2024

Available online 16 April 2024

0950-5849/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nec-nd/4.0/).

https://www.elsevier.com/locate/infsof
https://www.elsevier.com/locate/infsof
mailto:Samuel.Gil@satixfy.com
mailto:manuelcapel@ugr.es
mailto:gabrieloo@correo.ugr.es
https://doi.org/10.1016/j.infsof.2024.107467
https://doi.org/10.1016/j.infsof.2024.107467
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2024.107467&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

S.J. Gil et al.

or fails. The resulting evidence serves to argue about the confidence in
the program’s correctness.

A widely accepted method known as Equivalence Class Partitioning
(ECP) with Boundary Analysis [5] partitions the input domain into
disjoint classes depending on the expected output and then picks values
strategically i.e., mainly in the transition of two disjoint classes. The
underlying rationale is that these points are more likely to contain
bugs [6], e.g., typing < instead of < in the implementation of a software
component may cause an unforeseen error.

The limitations of software testing become apparent when con-
sidering the non-exhaustiveness due to its intrinsic tractability. Con-
sequently, some input-output combinations and paths are untested.
Despite the disadvantages, software testing is often deemed as the gold
standard for software verification [6].

Automated approaches to generating test input data have gained
momentum in recent years. In 2002, Tracey [7] estimated that automat-
ing test case generation for jet engine controllers may save between £1
and £1.5 million per project. These savings are, in all likelihood, a lot
higher in nowadays embedded systems considering the amount of code
that is flashed in chips.

Despite the importance of automatic test generation, only a few
works focus on generating true test cases, i.e., providing input data
along with expected results in the form of test cases or test suites [3].
Most of the available approaches are code-driven, meaning that source
code is read to generate only test data and therefore the requirements or
specifications are disregarded. Consequently, these approaches are not
acceptable for certain software quality standards, as these tests cannot
be traced back to requirements [8-10].

Moreover, the technology implemented in Spark/Ada programming
language — perhaps the most popular programming language for safety-
critical applications — enables to integrate the formal contracts inside
the specification of functions or procedures (also called subprograms
in Ada terminology). The most similar state-of-the art work [11] advo-
cated to produce test cases derived from Spark contracts has significant
limitations as they do not embrace standard testing methods such as
ECP, they have not laid out an explicit method for test cases generation
and their approach does not support contracts with First-order Logic
relations and quantifiers. The latter are found in modern versions of
the Spark programming language.

In this work, we also take the task of generating test cases from
formal Spark contracts. More specifically, our contributions are:

— To use standardized ECP supplemented with Parameter Domain
Boundary Analysis to generate test cases automatically.

— To propitiate the derivation of test cases from formal contracts
that include First-order Logic predicates.

— To provide an empirical study from representative open source
benchmarks, the results of which indicate a high success rate in
test cases execution and high statement coverage compared to
using a random test generator only.

The rest of the paper is organized as follows: Section 2 provides an
overview of software testing and formal methods approaches. Section 3
lays out the test generation method followed by simple examples of
application, Section 4 explains the results of the experiments and
discusses the threats to validity of the conclusions. Section 5 addresses a
literature survey. Finally, in Section 6 conclusions are offered followed
by future work in Section 7.

2. Background

Software testing is a broad area. A test plan must always have one
or more goal properties of the system to evaluate. For instance, per-
formance testing [3] is orientated to measure the execution or response
time and is often employed in Real-Time Systems to derive the Worst-
Case Execution Time of a task. This data is later used to compute the

Information and Software Technology 172 (2024) 107467

Worst-Case Response Time for a task set. Whilst this testing process
was more focused on providing test data to stress paths leading to the
largest execution times, more recent approaches to analyze the timing
of the multicore processors employ microbenchmarks — small low-level
programs — which run in parallel with the tasks under analysis [12].
The aim is to collect inflated response or execution times by producing
contention on shared hardware resources such as memory buses [12].

In the realm of cybersecurity [13], penetration testing aims to de-
termine whether the system allows unauthorized access to restricted
data or code. This process is agreed in a consensual manner with the
system owner and starts by collecting publicly available information
i.e., open source intelligence, and then setting up an attack plan. Next, a
vulnerability analysis is carried out to identify weak areas of the system
followed by the exploitation phase where malware or pathological in-
put data are fed into it. The process culminates with a post-exploitation
stage when an attempt to scale the attack is perpetrated. Lastly, a report
of the overall process is filed to improve the security of the overall
system [14].

When it comes to requirements-driven testing, probably the most
popular testing techniques are: ECP, boundary analysis, decision tables
and combinatorial testing [6]. ECP is based on splitting the input space
of a program into disjoint (and exhaustive) sets depending on the
expected output and then choosing test cases located somewhere within
and/or at the boundaries of these sets (boundary analysis) [5]. To
achieve this, per the Equivalence Class, we must define a corresponding
binary equivalence relation, this is, a binary relation that is reflexive,
symmetric, and transitive. In this way, we ensure we split the domain
into disjoint and exhaustive regions. Decision tables organize a list of
conditions or actions in the first column along with the expected output
in subsequent columns. An upside of this approach is the ability to
identify software bugs by evaluating impossible combinations of input
data [15].

Given that the number of plausible input data combinations is the
cartesian product of the range of each input data, combinational testing
is orientated to handle this exponential explosion when it is not possible
to reduce the number of input parameters. This approach carefully
picks input data combinations by pairing some parameters to reduce
the resulting combinations [15].

Software quality standards provide guidance and objectives to give
confidence that the final software product is fit for purpose. They also
serve as a legal basis for good practice in the event of an accident or
damage. A central software concept for these standards is the Safety
Integrity Level (SIL) of a piece of software which takes into account
the potential consequences of a software malfunction as well as the
likelihood of that event to occur. The ultimate goal is to determine
whether the system is acceptably safe.

These levels are named differently depending on the quality stan-
dard. The aerospace standard DO-178C [8] is named ‘Design Assurance
Level’ and it ranges from A to E being A the most critical level, ‘Auto-
motive Safety Integrity Level’ in the automotive standard 1S026262 [9]
ranging from A to D being D the most critical level. Finally ‘Critical-
ity’ is employed in the ECSS (space standards) [10] using a similar
convention to aerospace but removing the last E level.

These SILs have important implications in the level of assurance
required and therefore the verification goals. In this respect, structural
code coverage or just code coverage lay out some criteria to quantify the
extent to which the requirements are implemented in the code using
tests. Though some caveat exists across the standards [16], in general,
we can enumerate the following criteria: statement or block coverage
measures whether all blocks of code have been hit at least once, branch
or decision coverage measures whether all decisions have been reached
at least once, and Modified Condition/Decision Coverage (MC/DC), which
requires that each condition in a decision to be evaluated at least once
to true, once to false; and make this assignment to affect the decision’s
output [11]. Lastly, MC/DC is only applied for testing software up to
the highest SIL criticality level.

S.J. Gil et al.

Test coverage and code coverage are terms often intertwined. Test
coverage refers more to checking the degree to which each requirement
has been verified by test cases rather than verifying that all the code has
been executed. Logically, a single requirement may have been verified
by multiple test cases and a few requirements can be verified by a
single test, so there is no bijective relationship between requirements
and tests.

Despite code coverage being widely used in software quality stan-
dards and providing a systematic and scientific method to verify a soft-
ware implementation, some renowned software testers [17] have pre-
vented their limitation. For example, detecting bugs related to missing
code, or identifying code incompatibility with the platform’s hardware
or software configuration and memory leaks.

Techniques based on automatic generation of input data have be-
come popular in recent years [3] for automated software testing. The
three main surveyed approaches are: (a) Random Testing (RT) consists
of simply generating random test data; (b) Search-Based Testing in-
tegrates meta-heuristics and requires defining an objective or fitness
function that evaluates the goodness of the generated solution. In the
scope of our problem, the input to the fitness function comes from the
test run. Lastly, (c) Constraint-Based Testing, which collects a list of
constraints from the Software Under Test (SUT), is later passed to a
constraint solver to determine whether some test data can be generated
or not.

Aside from that, software proof relies on a formal specification that
applies preconditions (or hypotheses, H;), for the input data and post-
conditions (or conclusions, C;) for the output one. These are also called
Verification Conditions (VCs) or contracts [1]. Barnes [18] argues that
the role of the automatic prover is to check whether the following
general expression is always true:

k 1
AH,- = _/\Ocj ¢h)
i=l Jj=!

Provided that all hypotheses are evaluable and none of them can
be falsified. Designing formal contracts can be challenging and ideally,
they should have weak preconditions to accept a wide array of inputs
and strong postconditions i.e., accurate, to guarantee no wrong output
is produced [2]. Software proof can be applied both to functional
programming and imperative programming [2]. However, in safety-
critical systems [6] only the imperative approach is used, as they often
have to satisfy strict reliability requirements and real-time constraints.

A recent addition to Spark 2014 [1] has included the notion of
contract cases which is the extrapolation of ECP to software proof.

Lastly, it is worth mentioning that the Spark compiler provides the
option for inserting precondition checks before the body is reached
at run-time. This defensive code can be enabled by including certain
compilation flags.

3. Test cases generation method

Our approach hinges on Constraint-Based Testing. Any constraint
satisfaction problem will have some input data list (D,), in our case,
this may match the test vector (some global variables may need to be
set as well) along with a list of constraints (C,). Constraint Optimization
Problems also require an optimization function but that is not relevant
for our problem domain.

For our test generation process, it is assumed that there is a speci-
fication file (Listing 1.1 at Section 3.2 could be an example) that holds
the information about the target subprogram variables and includes a
formal contract.

One of our main contributions is the domain ECP guided by the
contract cases found in such specification: contract cases determine an
ECP as they are disjoint and exhaustive. Consequently, we hold that the
local precondition (guard) of each contract case found in the specification
of the subprogram serves as a binary equivalence relation (it is reflexive,

Information and Software Technology 172 (2024) 107467

Part 1

Package
Spec

Code Parser

Data <«—— AST ——> Constraints

Types/Subtypes

Global Variables/Constants
Implicit Constraints
Returned data type (type/subtype derived)

Parameters name and type Global Precondition

Local Postconditions (Contract Local Preconditions

Cases)

Global Postcondition

Fig. 1. Data and constraints mapping to generate a constraint satisfaction problem.
AST stands for Abstract Syntax Tree.

symmetric, and transitive) to apply ECP, as these constraints indeed lead to
splitting the input domain as disjoint and exhaustive regions. If there are
no contract cases, then the domain will be considered to have a trivial
partition with a single equivalence class. Note that some equivalence
classes may have a single or only a few input values.

We would like to remark that the complete process we propose is
carried out automatically, from the data/constraints collection to the
Constrained Oracle creation. From the specification file, an Abstract
Syntax Tree (AST) is derived. Next, our search process traverses the
AST to collect the right data for test generation, see Fig. 1, by taking
into account the node types of the derived AST.

On the left-hand side, we have depicted the necessary data to
document the test vector and the expected output of the test cases. The
postconditions are mapped similarly to the pass/fail criterion for the
test cases. Another important remark here is that postconditions do not
undergo any constraint solving but they are inserted in the resulting
unit test. In addition, postconditions can be categorized as unambiguous
where the exact returned value is known and is equality and ambiguous
otherwise. The latest case is normally the call to a checker function in
the code. In this case, the pass/fail criterion is delegated to a call of the
checker function.

On the right-hand side of Fig. 1, we have all constraints data related
mostly to preconditions. Based on these definitions, our test generation
algorithm selects the test cases using ECP which, if the user wants to,
can be supplemented with parameter domain boundary analysis. As
it was previously mentioned, this ECP comes directly from the local
preconditions of each contract case found in the AST.

For a better understanding of the terms used in Fig. 1, especially to
distinguish between local and global preconditions/postconditions, see
Fig. 2, where we can observe a possible formal contract for a square
root function.

Global preconditions dictate the conditions specified to be met by all
input data of the subprogram. Similarly, global postconditions impose
that the stipulated conditions must be met all output data. However,
when we refer to local pre/postconditions, these predicates may only
consider a subset of the input/output space. Thus, their scope is more
local than global. If the conditions are expressed outside of the Contract
Cases, they refer to global preconditions/postconditions. Conversely,
they allude to local preconditions when reflected on the left part
(“guard”) of a contract case or local postconditions when appearing
on the right part (“consequence”) of the contract case.

3.1. Constraint-based test case generation algorithm

Once the previous data and constraints have been automatically
gathered from the AST, which correspond to the Input Data list (D,) and

S.J. Gil et al.

type myFloat is

Information and Software Technology 172 (2024) 107467

Implicit Constraint

function Square_Root (X : myFloat) return myFloat with

Pre=> X>= 0,
Contract_Cases =>

(| X< 1| =>|Square_Root’Result < X],

Local Preconditions

X = 1| =>[Square Root’Result = 1], Local Postconditions

X >1|=>|Square_Root’Result > X}),

Post =>((Square_Root’Result >= 0 and
Square_Root’Result * Square_Root’Result =

Global
XJ); Postcondition

Fig. 2. Elements of a program specification.

Part 2

SMT Solvel

Libraries and auxiliary functions

Data

If there are Contract Cases

For each contract case

Local Solver| = Solver

|
—» Local Preconditions

Constraints

Solve the model

Data —> Local Post mapped

Global Variables and Constants

‘’ Model variables (function parameters)
Implicit Constraints of each model variable }
Global Precondition

Constraints

If there is a Global Postcondition

Solve the model

Global Post mapped <—j Data

Raw Tests

Fig. 3. Algorithm 1 diagram.

the Constraint List (C,) shown in Algorithm 1, our Constraint Oracle
(CO), based on the Satisfiability Modulo Theory (SMT), completes
the test vectors with inputs that obey the Constraint List (C,) and is,
therefore, able to generate the test cases that are needed by pairing
these concrete inputs with the corresponding mapped outputs.

Fig. 3 shows how our CO integrates an SMT solver provided by the
GNAT framework — the Ada toolchain — to produce solutions with the
guidance of our method.

This method consists of a natural adaptation of the “Standard Case
Analysis” from ECP [15]. Such a testing method selects N distinct test
cases per equivalence class, found in the input data domain of the
software to be tested, where N is a parameter entered by the user.
Consequently, since our process is automatic, the outputs provided by
the CO consist of N unit tests for each equivalence class found in
the input domain, where N is a user-defined parameter. To continue,
we provide the steps necessary to create such CO, as can be seen in
Algorithm 1:

1. Declare the global variables/constants found in the target func-
tion package specification. Usually, these are global constants
meant to configure the state of the subprogram and consequently
play an important role in the preconditions of the specification
under study.

2. Declare the model variables, whose resulting values will be as-
signed to test vectors. These values correspond to the parameters
of the subprogram under test.

3. Add the implicit constraints associated with each model variable,
regarding its corresponding parameter type, to the solver. The
most typical example of this would be restricting an Integer to a
certain range as specified via the user-defined type declaration,
such as:

type Array_Index is Integer range 0 .. 5;

Failing to comply with these restrictions would lead to an error
during the subprogram compilation.

4. Add the explicit constraints or global preconditions. These con-
straints will be common to all contract cases that may appear
later and reflect requirements that input data must meet. Failing
to comply with these restrictions would lead to a run-time error.

5. For each contract case, create a local SMT solver to add the
local preconditions of the actual contract case so that these
local preconditions do not interfere with other (disjoint) contract
cases. Note that local preconditions do not restrict the input data
i.e., actual subprogram parameter values, as global precondi-
tions do, but from the value detected in the processing of the
input data, the possible execution paths of the subprogram under
test are obtained.

S.J. Gil et al.

Algorithm 1: Constraint Oracle Test Case Generation Algorithm

Function ConstraintOracleTestGenera-
tor(D,,, C,, num_solutions):
RawTestN « @;
Solver « CreateS M T Solver();
Solver < IncludeGlobalV ariables And Constants(Dn);
/* Target function parameters */
Solver « Solver U IncludeM odelV ariables(Dn);

foreach FunctionParameter € D, do
Solver < Solver U

ParamT ypelmplicitConstraints(Function Parameter, C,);
end
Solver < Solver U Global Precondition(C,);
/* If there are Contract Cases */
if JLocalPreconditions € C, then
foreach LocalPrecondition € C, do
Local Solver « Solver;
Local Solver < LocalSolver U Local Precondition;
N « 0;
while N < num_solutions A
ConstraintProblemIsSatisfiable(LocalSolver) do
Model < SolveConstraint Problem(Local Solver);
TestVector «— ;
foreach ModelVariable € Model do
TestVector < TestVector U Modelvariable;
end
Local Postcondition «—

Local Post Associated(Local Precondition, C,);
RawTest « (TestVector, Local Postcondition);
RawTestN < RawTestN U RawTest;

Local Solver < Local Solver U

ConstraintsToObtainDi f ferentSolutions();

N <« N +1;
end
end

end
if 3GlobalPostcondition € C, then
Global Postcondition < Global Postcondition(C,);
N < 0;
while N < num_solutions A
ConstraintProblemlIsSatisfiable(Solver) do
Model < SolveConstraint Problem(Solver);
TestVector « @;
foreach ModelVariable € Model do
TestVector < TestVector UModelvariable;
end
RawTest « (TestVector,Global Postcondition);
RawTestN < RawTestN U RawTest;
Solver «
Solver U ConstraintsToObtainDi f ferentSolutions();
N <« N +1;

end
end
return RawTestsN;

In step 5, it is worth noting that a particular contract case solution
should not affect the other contract cases. The disjoint and exhaustive
nature of the contract cases allows us to treat each one in isolation, and
this compositional feature of the specifications can be exploited in the
testing of any software [19], greatly reducing the number of test cases.
Also, note that the previous steps (1-4) allude to some common aspects
of all contract cases. Once all the constraints have been added to the
solver, for each different test the CO will yield:

Information and Software Technology 172 (2024) 107467

6. A solution consisting of concrete values for the model variables
obtained by running the created solver.

7. Print the test vector obtained (model variables solved) along
with the associated expected outcome mapped. They may come
from local (contract case) or global postconditions.

8. Ensure different solutions for the next iteration by adding a
new constraint to the solver to obtain a different test vector.
SMT solvers usually act deterministically so we need to add
constraints simply to exclude previously generated values.

A diagram that summarizes, illustrates, and helps to understand the
proposed Algorithm 1 is shown in Fig. 3. To clarify the diagram,
contract cases, and global postconditions are not mutually exclusive but
they should be considered individually as test cases should only focus
on “one concern at a time”.

3.2. Algorithm application example

To illustrate the algorithm, we will apply it to the following Spark
example belonging to the region_checks spec package from GNAT-
Studio, the current Ada Integrated Development Environment:

Listing 1.1: Sign benchmark with Ada syntax.
subtype Sign_Type is Integer range —1 .. 1;

function Sign (X : in Integer) return Sign_Type
with Contract_Cases =>

(X < 0 = Sign’Result = —1,

X = 0 => Sign’Result 0,

X > 0 => Sign’Result = 1);

Before the Constrained Oracle creation, we need to gather all the
data and constraints needed from the package specification as shown
in Fig. 1 by automatically analyzing the node types and content of
the AST derived from this specification. Firstly, it is assumed that the
current information is available in an AST and the target function is
Sign. Secondly, the user-defined data subtype Sign Type is processed.
Following that, by using the target function name we would isolate the
function Sign subtree inside the AST and begin with the subprogram
declaration/specification analysis.

The first step of this analysis involves collecting the parameter X
along with its correspondent data type and the subprogram returned
data type. Then, three different Equivalence Classes (EC) are automat-
ically identified as the formal contract has 3 different contract cases
(note we have a discrete domain), which later on will lead to the
creation of three different local SMT solvers:

ECl ={X€ Z|X <0}
EC2 =({0} 2
EC3={X€Z|X>0}

As a reminder, the mathematical binary equivalence relations used
to automatically identify the EC come directly from the local pre-
conditions (left part) of each contract case found in the subprogram
specification.

To continue with, if we consider that integers are represented in our
experimental set-up using 4 bytes (implicit constraint), an EC diagram
would look like:

Boundary

Boundary Boundary

At this point, we meet the data/constraint requirements shown
in Fig. 1 and consequently the CO creation may begin. Firstly, the

S.J. Gil et al.

Information and Software Technology 172 (2024) 107467

Listing 1.2: Binary search benchmark with Ada syntax.

type Ar is array (1 10) of Integer;
function Search (A : Ar; 1
— A is sorted
Pre => (for all I1 in A’Range =>

(for all I2 in I1 A’Last = A (I1) <= A (12))),

— If I exists in A, then Search’Result indicates its

Contract_Cases => (
(for some Index in A’Range => A(Index) = [) =

Search ’Result in A’Range and A(Search’Result) = I,

(for all Index in A’Range => A(Index) /= [) =
Search ’Result = 0);

SMT model variable associated with the target function parameter X
will be defined as an integer. Following that, considering the implicit
constraints of the parameter data type, we would restrict the domain of
X to —231..231 — 1 (4 bytes). Next, the three previously mentioned local
solvers are automatically created. Note that each local solver would
return as many values as desired by the user-defined parameter N that
aims to emulate Standard Case Analysis.

The first local solver takes into account EC1 to produce the test
vector, along with its corresponding local postcondition as the first
contract case reflects:

X< 0=> Sign’Result = -1

Consequently, the local precondition X < 0 is added. Then, the SMT
local solver would be executed and return, for example, X = —1, which
paired with the corresponding local mapped postcondition will lead to
the test case:

Test_Vector = —1, Expected Output = -1

Next, to obtain a different test vector for the next iteration and
eventually supply N different test cases for this EC, it is necessary to
exclude the already produced X = -1 so the constraint X # —1 is added
back.

A completely similar rationale can be applied to the resting equiv-
alence classes, resulting in the test cases:

Test_Vector =0, Expected Output =20

Test_Vector =1, Expected Output =1

Finally, if parameter domain boundary analysis was enabled, the
first and third local solvers will return the test cases:

Test_Vector = —231, Expected_Output = —1

Test_Vector =23 — 1, Expected Output =1

3.3. First order logic example

The following specification belongs to an array binary search func-
tion (see Listing 1.2):

Following the previous example steps, first, we would automatically
generate the AST and gather the data/constraints needed to create
the constrained oracle. In this case, we would identify the function
parameters A, I, and integer as the returned data type.

After that, the specification analysis would report a global precon-
dition that imposes a non-strict ascending order in the array:

VI1e(l,..,10}, AUl) <A(I2) VI2 € {1, ..., 10} 3)

Then, 2 different ECs are identified: belonging to the array or not.
Next, the CO creation begins by creating an array, A, composed of
10 integer variables and an integer variable I. Since all the model

Integer) return Integer with

position

variables are integers, we would consider the implicit constraint of
restricting their domains to —231.. 231 — 1.

After that, we would add the global precondition of having a
sorted array, and finally, 2 local solvers would be created as there
are 2 different contract cases. The first one will consider the local
precondition:

(for some Index in A’ Range => A(Index) = I) => Search’ Result in
A’ Range and A(Search’ Result) =1

The translation of ‘for all/some’ is as simple as imposing an
And/Or clause respectively to a set of elements. Once the first lo-
cal solver is finished, it would return a combination of a sorted
array and an element belonging to such array, which paired with its
corresponding local postcondition would result in, for example:
Test_Vector = ([0, 1,2,...,9],0),
“Search’Result in A’'Range and A(Search’Result) = I”

Expected Output =

Remember that postconditions are not subject to any translation
process, as they are simply mapped to pass/fail criteria through a run-
time check inside the unit tests. Therefore, the SMT solver does not
consider them. Moreover, note that this first contract case with a local
postcondition is ambiguous since the array order is non-strict, repeated
elements could exist, and pre-fixing an expected output before calling
the function could lead to a mistake if various array indexes comply
with the postcondition and the one returned mismatches the pre-fixed.

Applying a completely similar rationale to the second equivalence
class, the second local solver would return a test vector composed of a
sorted array and an element not belonging to it. When paired with the
local postcondition of this contract case, we could for example obtain
the following test case:

Test_Vector = ([0,1,2,...,9],—-1), Expected_Output =0

As we can observe, this second contract case does have an unambiguous
local postcondition that lets us pre-fix the index O as the expected
output.

4. Empirical study

The objective of the empirical study is to evaluate the impact of our
CO. To achieve that, we follow usual industrial practices for software
testing which include (a) running test cases and observing the number
of test cases passing or failing i.e., success rate, and (b) measuring
code coverage. The latest is a metric to verify and quantify how the
requirements are implemented in the code as well as observing which
pieces of the code are untested [6].

More accurately, the two main research questions are:

— Research Question 1 — Effect of using the Constraint Oracle
on the measured success rate for all generated test cases.

S.J. Gil et al.

Test cases must conclude whether they pass or fail. What is the
success rate of the test cases generated from the CO which take
into account the formal contracts?

— Research Question 2 — Effect of using the Constraint Oracle
on statement coverage. In our study we employ statement cover-
age which was also used in similar research works [11]. Branch
coverage was discarded for the reasons laid out in Section 4.3. An
effective test oracle should reach a high percentage of statement
coverage. Is this hypothesis true in the case of our proposal?

Spark/Ada is a programming language employed in high-criticality
applications. Its toolchain is well-equipped with compiler flags, theo-
rem provers, and flow examiners to provide a thorough static analysis.
Spark is endowed with formal contracts and they can be integrated
into the specification of a software package. In addition, Spark may
employ additional run-time checks (implemented by the user) that may
be helpful for theorem prover or just as a defensive code to events only
discovered at run-time e.g., failure at opening a file [1].

Given that these readable contracts are inserted in the source code,
we have implemented a test generation tool to provide some compelling
evidence for our test generation method. This tool employs Z3py [20]
as a constraint solver. Run-time checks are not read by our test gener-
ator since the information contained in them is — to our knowledge —
not very useful for the generation of traceable test cases.

By definition, a subprogram can contain several equivalence classes
which, in turn, can contain an array of values useful for generating
test cases. In this respect, our Oracle creates test cases in two iterative
configurations that are set up by the user. In iteration 1 it creates, with
a limit of 1000 per EC, test cases using the Standard Case Analysis
testing method [15]. The number of tests generated per EC is by default
1 and is regulated with the N parameter set by the user. In iteration 2,
Boundary Analysis testing [15] kicks in generating as many test cases
as possible depending on the number of boundaries.

To evaluate the statistical significance of the CO, we have imple-
mented a random test generator which consists of using the same SMT
solver with minimum guidance from the information of the specifi-
cation. More precisely, it chooses a random test vector for the input
domain and matches it with a random output of the returned data type
to build a full test case.

This choice was motivated by the simplicity of the implementation
given the fact that our libraries were already interfacing with Z3py [20]
SMT solver. As a result, random numbers could be generated inside the
bounds of the data types that conform to the test vector. These limits
are used in the specification of solver execution constraints. Random
test oracle is oblivious to any formal contract. The only constraints
added from the formal contracts are those of data type ranges i.e., im-
plicit constraints, since assigning values beyond such bounds would
result in a compilation error.

This randomized method was evaluated using 15 different seeds to
provide confidence in the results to be obtained. By contrast, due to its
nature the CO presented here is purely deterministic.

To evaluate the statistical significance we have employed the Ex-
act Wilcoxon-Mann-Whitney [21] test as it is a common practice for
this kind of evaluation where the resulting random distributions are
unknown, this is, a non-parametrical test. The idea behind this statistical
test is to take advantage of the rank-sum strategy to claim whether
two samples come from the same population (null hypothesis) or not.
To achieve this, the test procedure involves pooling the observations
from the two samples into one combined sample, keeping track of
which sample each observation comes from, and then ranking these
observations from lowest to highest. The threshold to accept the null
hypothesis is the standard p-value > 0.05.

The following subsections are dedicated to discussing the character-
istics of the examples followed by a discussion of the empirical results
of each research question.

Information and Software Technology 172 (2024) 107467
4.1. Benchmarks

The downside of choosing Spark/Ada benchmarks is that it is signifi-
cantly harder to find open-source examples, in contrast to more popular
programming languages such as C or C++. An additional requirement
is that Spark benchmarks have to be written with formal contracts.
A quick search into Spark examples from AdaCore IDE, GNAT Stu-
dio [22], returned that only 26% of the subprograms of this repository
contained formal contracts that can be used for our test generation
method.

All benchmarks were mathematically verified using the available
contracts before generating the tests, with the assistance of the GNAT-
Prove — Spark’s theorem prover or verifier — provided in GNATStudio.
Such proofs assure us that the preconditions hold in the function call
and the postconditions are always satisfied in the function output.

Benchmarks deployed in the study

— Accept Offer is a benchmark described in the previous section and
is referenced in software testing books to apply ECP [15] as well
as dealing with a fixed-point definition.

— Sign and In Unit Square also come in a popular Spark book [1]
as an example of “contract cases”, which is similar to equivalence
classes with formal contracts expressions.

— Binary Search is a key benchmark for formal contracts [1] that
includes universal and existential quantifiers.

— Compute Speed is a control system that computes the speed of a
rocket exhibiting more complex floating-point management.

— Lastly, the examples To Green, To_Yellow and To_Red belong to a
Traffic Lights benchmark from GNAT Studio examples of safety-
critical signaling systems that provide an elaborate formal con-
tract including universal and existential quantifiers, complex con-
straints along with more elaborate data structures.

The available formal contracts employed on these benchmarks pro-
vide some representative examples for our CO given the wide array of
constructs for a fair evaluation.

To lay out the complexity of the input and subsequently, the formal
contracts in our case study the following metrics and their rationale are
used in the study:

1. Number of Equivalence Classes found to represent the com-
plexity of the ECP of the specification domain. Logically, the
more ECs, the more complex the test generation becomes. As it
was previously mentioned in Section 3, the absence of contract
cases, namely the absence of local preconditions, will lead us
to consider the formal contract domain as a trivial ECP with a
single EC.

2. Number of constraints added to the CO quantifies the number
of restrictions that are needed by our CO to yield a single
solution, as well as the number of test cases to be produced per
class. This is a measure of the burden for the CO test generator.
The result is directly proportional to the N parameter defined
by the user which dictates the number of test cases per EC and
the idiosyncrasies of the Standard Case Analysis.

3. Universal Quantifiers indicate the deployment of universal
quantifiers in the formal contract specification. Universal quan-
tifiers enhance the expressivity of the boolean predicates, how-
ever, they also impose additional challenges from the proof or
test generation perspective.

4. Lines of Code quantifies the number of lines of code in the
implementation of the subprogram. It is a standard measure of
the amount of code.

Regarding the first 2 rows of Table 1, benchmarks Sign and In
Unit Square domains contain 3 and 5 EC respectively, according to the
number of contract cases found in their specification. Each Sign EC adds
1 constraint to the solver (check the local preconditions of Listing 1.1),

S.J. Gil et al.

Table 1

Complexity of the input space and formal contract for each benchmark. N is the user-
defined number of test cases to be generated for each EC and n is the size of the array
or list (if any).

Benchmark EC found Constraints added Univ. quantifier Lines of code
Sign 3 3N X 5

In Unt. Sqr. 5 20-N X 10

Accept Offer 2 3+ 2N X 4

Compute Spd. 1 8 + 5N X 13

To Green 1 16 + (9n + 1)-N \AY 1

To Red 1 16 + (4n + 2)-N v,V 1

To Yellow 1 16 + (4n + 2)-N VA 1

Binary Srch. 2 Yiln—i+ (@n)-N 3V 16

which repeated N times leads to a total of 3:-N constraints added to the
underlying SMT solver. On the other hand, each EC found in In Unit
Square formal contract adds 4 constraints, leading to 20-N constraints
overall.

With respect to the next 2 rows, Accept Offer and Compute Speed,
a completely analogous reasoning can be applied with the difference
of considering the implicit constraints added at the beginning, which
are related to the user-defined types range and/or floating-point preci-
sion used in the formal contracts. Besides this, Accept Offer has 2 EC
each adding 1 constraint per iteration, and Compute Speed single EC
stacks 5 constraints per iteration. Lastly, bearing in mind that implicit
constraints (as well as global preconditions) do not stack per iteration
of the Standard Case Analysis, the final formulae for the number of
constraints added to the underlying SMT solver of our CO by these
benchmarks would be: 3 + 2-N and 8 + 5-N, respectively.

Next, the Traffic Lights package benchmarks display implicit con-
straints too and introduce universal quantifiers, which are especially
useful when applying restrictions over an array of elements. Within
this package, the benchmark “To Green” implies a higher complexity
as its specification must ensure a harder safety property for swapping
the traffic lights’ color to green, as would be expected.

To continue with, Binary Search formal contract (see Listing 1.2)
includes 2 different EC as well as a strong global precondition. Firstly,
imposing an ascending order over an array of size n implies adding
Z;:l] n — i constraints as each element must be smaller than its subse-
quent array components. Then, checking whether an element I belongs
or not to an array of size n means adding another n constraints, joined
by “or” clauses if we are looking for a positive answer (a; = I Va, =
IV ...) or joined by “and” clauses otherwise (a; # I Aay, # I A ...).
Note that the conventional strategy used to reduce the cost of finding
an element in an ordered array is part of the implementation of the
subprogram, but is not reflected in the specification itself which is our
target.

Again, considering that global preconditions do not stack per iter-
ation of the Standard Case Analysis, the final formula for the number
of constraints added to the underlying SMT solver of our CO by this
benchmark would be: ¥/~ n—i + (2n)-N.

We would like to highlight that even though In Unit Square has the
highest number of EC found in the domain, the Traffic Lights package
benchmarks raise more complex problems for the SMT solver as they
add more constraints (even for the base case n = 1) despite having a
single EC.

Finally, the last column is dedicated to listing the lines of code
ranging from 1 to 16. Admittedly, they are very sizable subprogram
bodies. It is worth noting that when selecting the benchmarks we
picked examples with different complexities and features of the input
space and the formal contracts, as that is what would give confidence
in the validation of our CO method.

Information and Software Technology 172 (2024) 107467

Boxplots for the Test Results: First 3 Case Studies
CO: A. Offer CO: In Unit Sqr CO: Sign

1000-
750-
500-
250-

N —— results
Rnd: A. Offer Rnd: In Unit Sqr Rnd: Sign m FAIL
1000- B PASS

750-

#Test Cases Generated

250-

FAIL PASS FAIL PASS FAIL PASS

Fig. 4. Number of test cases produced and their execution results (success rate) by
Constraint Oracle (CO) and Random method (Rnd). These case studies consist of Accept
Offer (A.Offer), In Unit Square (Sqr), and Sign.

Table 2
Number of test cases generated for each benchmark by the two testing methods.
Benchmark A. Offer Sign In unit square
Standard case 1000 1000 1009
Boundary A. 2 2 4
Boxplots for the Test Results: 2 Case Studies
CO: Binary Search CO: Compute Speed
1000-
750-
E 500- E—
©
@ 250-
c
o)
o 0 results
3 Rnd: Binary Search Rnd: Compute Speed m FAIL
Ϩ- B3 PASS
(6]
@ 750-
9]
[
#* 500- S
250-

FAIL PASS FAIL PASS

Fig. 5. Number of test cases produced and their execution results (success rate) by
Constraint Oracle (CO) and Random method (Rnd). CO produced 1069 test cases for
Binary Search. Only 500 test cases were produced for Compute Speed as it had a single
ECP.

4.2. Success rate: Pass/fail results

The first effect to measure is the success rate i.e., the number of
pass vs. fail test cases, of the resulting test suite. Given that the test
suite is derived from the formal contracts and the code is also proved,
we would expect to see a high ratio of passing test cases for the CO.
This process of testing proven code may look redundant, nonetheless,
static analysis has its limitations and certain run-time bugs can only be
spotted by testing e.g., bugs embedded in the software, the compiler or
even faulty hardware. In addition, a theorem prover can only replace
testing for safety-critical systems if the tool is qualified [6] which is
extremely costly.

Fig. 4 displays the success rate for the first 3 case studies. As
expected, CO returned pass for all test cases. By contrast, the results
for the random test generator were roughly the same in the first case

S.J. Gil et al.

Table 3
Number of test cases generated for each benchmark by the two testing methods.

Benchmark Binary search Compute speed
Standard case 1000 500
Boundary A. 60 1
Boxplots for the Test Results: Last 3 Case Studies
CO: To Green CO: To Red CO: To Yellow
1000-
750-
- 500
L
©
5 250-
[
o]
o 0 — == =i results
8 Rnd: To Green Rnd: To Red Rnd: To Yellow = FAIL
g 1000- E3 PASS
O
2 750
8
* 500
250
FAIL PASS FAIL PASS FAIL PASS

Fig. 6. Number of test cases produced and their execution results (success rate) by
Constraint Oracle (CO) and Random method (Rnd). Traffic Lights Case Studies. CO
generated all (16) plausible (passing) test cases.

because Accept Offer only had two equivalence classes, whereas in In
Unit Square and Sign most of the test cases produced failed. This was
because both benchmarks had more equivalence classes that made it
more unlikely to build a passing test case. Table 2 shows the number
of test cases generated in each configuration. In the case of In Unit
Square and Sign for the Boundary Analysis method, a central EC was
omitted as there was a single value separating adjacent classes that
were previously considered in the Standard Case. For example, Sign has
3 different EC as shown in Listing 1.1, where we can appreciate how the
central EC is composed of the single value 0. Consequently, Boundary
Analysis coincides with Standard Case Analysis in those ECs that are
composed of a single element.

The second group of benchmarks are depicted in Fig. 5 which is
composed of Binary Search and Compute Speed. Again, CO produced a
test suite that returns pass in every case. The accuracy of the CO is
evidenced in Binary Search where an accepted input entails feeding a
sorted numeric vector and an element included in such a data structure.
On the contrary, the random method fails to generate a sorted test
vector and therefore it did not meet the precondition to call the
function.

On the right-hand side in Fig. 5, it can be also observed the results
from the Compute Speed are the same for both testing methods. This
is because there is a single EC along with a widely accepted postcon-
dition that is contrary to design prescriptions that advocate for precise
postconditions [2].

Table 3 outlines the number of test cases produced by each method.
For Binary Search 60 test cases evaluating the boundaries were pro-
duced which was motivated by the number of resulting bounds for the
11 input parameters. On the contrary, for Compute Speed only a single
test case was produced given its only EC.

Finally, the last 3 case studies from a traffic light control system are
portrayed in Fig. 6. Each benchmark controls the light of a usual traffic
light system that takes into account the state of abstract adjacent traffic
lights. CO oracle succeeds at generating all plausible test cases (126)
and all of them finally report a passing result. In this case, Boundary
Analysis did not produce any test cases since Standard Case Analysis
achieved exhaustive testing. By contrast, the randomized method strug-
gles to achieve a few passing ones whilst most of them were failing
tests. The complexity of the verification conditions was the cornerstone

Information and Software Technology 172 (2024) 107467

Table 4
Wilcoxon-Mann-Whitney test results. (HO hypothesis: there is no significant difference
in pass rate between the randomized method and CO).

Benchmark A. Offer Sign In unit square Binary search

p-value 6.657 - 1078 6.657 - 1078 6.657 - 1078 6.657-1078

Benchmark C. Speed To Red To Yellow To Green

p-value H, accepted 6.657-107% 6.657-107% 6.657-107%
Table 5

Resulting statement coverage for Constraint Oracle (CO) and Random (Rnd) in each
case study.

Test generator\Benchmark Accept offer In unit square Sign
Cco 100% 100% 100%
Rnd 100% 93.33% 88.89%

to show the difference in the usefulness of the results produced by each
of the methods.

Last but not least, Table 4 shows the statistical significance from
Wilcoxon-Mann-Whitney test. Results concluded statistical significance
when comparing all FAIL and PASS distributions between both test
generators except Compute Speed. The reason behind it is that given
the wide acceptability of the postcondition (a safety-invariant) and the
fact there is a single EC, many test cases produced were successful and
subsequently, the success rate distributions were very similar.

Finally, to clarify the p-values obtained in Table 4, we need to
realize that the Wilcoxon-Mann-Whitney test is based on the sum of
signs resulting from computing the subtraction of the data from both
distributions, just like every “rank sum” test computes, and if there is
a distribution that always acts as an upper unreachable bound for the
other, the sign sum will be constant and will conclude independence as
expected.

4.3. Code coverage

This subsection is dedicated to assessing the results of code cover-
age, a standardized measure of completeness for requirements-driven
testing. For this evaluation, we employed gcov [23] as a coverage tool.

As mentioned before, branch coverage was relinquished because it
was not a controllable variable from the experimental point of view.
From the technical point of view, to achieve 100% branch coverage
test cases must be run to evaluate all decisions once to true and once to
false. Some of the benchmarks employed implemented run-time checks
whose decisions must be negated to raise branch coverage. After a
careful look, we noticed that the conditions to trigger these run-time
checks were mutually exclusive with the software contracts, which are
proved statically before running our test oracle. As a result, some dead
branches may become apparent, and reaching 100% branch coverage is
not feasible.

Last but not least, branch coverage reports may be inaccurately
derived by gcov, as the compiler may introduce additional and hidden
decisions related to run-time checks, exceptions, or subroutines. In
conclusion, statement coverage is deemed our main code coverage
measure whereas branch coverage is more secondary.

The first case study results are displayed in Table 5 and they
encompass Accept Offer and In Unit Square benchmarks. Firstly, Accept
Offer achieved 100% statement coverage with just 2 test cases. Branch
coverage data also reported 100% for Accept Offer for both methods.
The simplicity of the benchmark was a key contributing factor to this
result. Secondly, In Unit Square returned 100% statement coverage for
CO and 93.33% for random. The available constraints for this bench-
mark were dealt with successfully by the CO, whereas the randomized
method struggled with one of the branches as the input data were very
specific to be generated randomly. Branch coverage resulted in 94.4%
for CO and 83.33% for the random approach.

S.J. Gil et al.

Statement Coverage

To_Green

100 -
5 [|
o
© 80+
(4] S (R T S
>
o
O 60
c
[]
€ 40
5}
8
O 20+

Conétraint Random

Information and Software Technology 172 (2024) 107467

Statement Coverage

To_Yellow
100 * .

a’ ‘
)}
S 801
[}
>
o ‘
O 60
c
[0}
E 404
5]
8
O 204

Constraint Random

Fig. 7. To green and to yellow statement coverage results in boxplots.

Table 6
Resulting statement coverage for Constraint Oracle (CO) and Random (Rnd) in each
case study.

Table 8
Wilcoxon-Mann-Whitney test results. (HO hypothesis: there is no significant difference
in pass rate between the randomized method and CO).

Test generator\Benchmark Binary search Compute speed Benchmark A. Offer Sign In unit square Binary search
co 91.3% 100% p-value H, accepted 6.657 - 1078 6.657-107% 6.657-107%
Rnd 21.74% 100% Benchmark C. Speed To Red To Yellow To Green
p-value H, accepted 6.657 - 1078 6.657 - 1078 6.657-107%
Table 7

Resulting statement coverage for Constraint Oracle (CO) and Random (Rnd) in each
case study.

Test generator\Benchmark To Red
co 100%
Rnd 100%

The next case study data is populated in the third column in Table 5.
The statement coverage data was high for both methods but only CO
reached 100%. In the Sign case study, the random method converges to
88.89% statement coverage because there is a branch x = 0 in the code
followed by a statement that is never reached. As for branch coverage,
CO achieved 100% and random method 80%.

Binary Search case study results are listed in Table 6 where CO
did not reach 100% statement coverage but converged to 91.3%.
The underlying reason is that there was one statement that was not
exercised that contained arithmetic manipulation of the array index.
The random method remained constant at 21.74% because the random
test generator failed to provide a sorted test vector. Therefore, the
precondition check halted the execution before reaching the body of
the function. This statement coverage can be considered measurement
noise as the input data never reaches the body of the function.

Branch coverage data resulted in 51.56% for CO and 0% for random
for the reason stated above. Perhaps an interesting observation of this
case study is the fact that even though the code was proven and, to
the best of our efforts, although the CO made full use of the formal
contracts, there was still one branch that could not be covered. That is
why it belonged to an unspecified subpath included in the Binary Search
that corresponded to the second contract case which in turn specified
that the item to be searched does not belong to the array (see Listing
1.2).

Results for Compute Speed displays 100% statement coverage in
Table 6 for both methods as it contained a large block of code in
the body of the function. This block did not contain branches apart
from the preexistent run-time checks. Branch coverage results reported
50% branch coverage for both oracles. Paradoxically, this result is
great news considering the implementation is packed with assertions
that include secondary branches for run-time checks that were just not
stressed.

10

The last group of benchmarks included the traffic lights benchmarks
with 3 subprograms, namely To_Green, To_Yellow and To_Red. The
results of the first two subprograms mentioned above are shown in
Fig. 7, while Table 7 collects the evidence from the third. Similarly
to Binary Search, these subprograms were equipped with preconditions
that prevented random data from being accepted and reaching the body
of the function. In all cases, CO achieved 100% sentence coverage in
the first solution, whereas the random technique usually takes several
iterations to obtain a result and only gets to execute the function body
if it is lucky. Not for all seeds was possible to reach the body of the
function and, subsequently, to reach 100% coverage. This is epitomized
in the results from the random test generator in Fig. 7.

Branch coverage data reported 100% for CO and 0% for random
method. Again, the random method struggled to hit the body of the
function due to the elaborate preconditions.

Table 8 shows the statistical significance results of the statement
coverage distributions. Except for Accept Offer and Compute Speed,
where statement coverage distributions were similar, Wilcoxon-Mann—
Whitney concluded statistical significance for all case studies.

Finally, we should remark that when applying our method based
on the information from the specification, if the test cases obtained
do not cover the code as expected, then the function programmer
should consider refining the specification as it may contain too general
contract cases that make the oracle to struggle through a blend of
unspecified subpaths. Perhaps alternative implementation of different
testing techniques may attain better code coverage results.

4.4. Threats to validity

Almost no empirical study is perfect and this is not an exception to
the rule. In this respect, two types of threats can be outlined.

— Threats to internal validity comes from the implementation of
the random test generator which only considers the input and
output ranges. Other possible implementations of the random test
generator may consider the contracts. However, to the best of
our knowledge, there is no convention on the implementation of
random test generators, and to our knowledge, this is the most
common [3]. Another threat comes from the statement coverage

S.J. Gil et al.

results as provided by the gcov tool. Some statement coverage
was counted even though in some cases the execution flow did not
reach the body of the function, e.g., random test generation for
binary search. In these cases, statement coverage is not accurate.

— Threats to external validity. Perhaps the greatest threat to ex-
ternal validity comes from the benchmarks employed for the case
studies. These are open-source benchmarks that are relatively
small. Ideally, a more complete study would have encompassed
industrial large-scale benchmarks. However, this representative
software is protected by Intellectual Property (IP) clauses and is
seldom shared with strong non-disclosure agreements. In addi-
tion, SatixFy group, does not use at present Spark or Ada for the
software of its satellite payloads.

Despite the above threats, in our estimation, the empirical study
here presented included a wide array of formal contracts that can be
found in industrial benchmarks. Moreover, both coverage and success
rate data give some compelling evidence that automated test case
generation from formal contracts is possible, effective, and promising.

5. Related work

The seminal works on test data generation date back to the 70s, in
one of these papers [24] J.C. King applies (static) symbolic execution,
which consists of a special software execution by which input data
are replaced by symbols and then the constraints are gathered during
the process. These constraints are analyzed by a solver to generate
input data to stress new paths in the SUT. The analysis was applied to
benchmarks with relatively small data sets and, in addition, processing
power was quite limited at the time.

In 2002, Henzinger et al. [25] derived input data statically using
Constraint-Based Testing (CBT) and a detailed graph derived from
SUT written in C. Unfortunately, this resulting graph may contain
statements that do not impact the flow of the program and therefore is
suboptimal for CBT [3]. Their evaluation included some small drivers
for Windows and Linux for which a few bugs were identified in concur-
rent code. The tool implemented for the evaluation had common static
limitations such as the inability to deal with pointers operations.

Later on, Holzer et al. [26] create the so-called query-driven testing
underpinning Henzinger et al.’s. [25] work. By using the scanned graph
from the SUT, this framework enables you to generate test vectors for
specific user-defined areas of the code by using queries. The empirical
study included both code-generated industrial engine controllers and
open-source examples. The evaluation was more orientated to compare
the efficiency with a similar and slower test generation tool at achieving
block coverage.

Symbolic execution can be applied either statically or dynami-
cally [27]. The static strand reasons at the source code level by using
symbols to replace input data. Still, significant issues become apparent
when the source code of external libraries is not available (which
is common in the software industry due to IP protection), or when
constraints are not processable by the constraint solver in the symbolic
execution engine e.g., hash functions.

The other strand is known as dynamic symbolic execution or con-
colic testing. The testing process employs concrete values rather than
symbols and constraints representing paths or branches. These values
are gathered during software execution, fed back to the constraint
solver, and new inputs that stress new code paths are computed.
This approach is argued to be more accurate than the static counter-
part [27] as it has managed to test branches that would have been
impossible to analyze statically due to the above-mentioned obscure
implementations [28].

The results of the concolic testing achieved significant confidence
around 2010 provided the fact that it detected bugs in large-scale soft-
ware programs. For instance, Godefroid et al. in 2008 [29], successfully
tested the popular Microsoft Excel which requires 45.000 bytes as a

11

Information and Software Technology 172 (2024) 107467

test vector and nearly a billion x86 instructions from the SUT. Later in
2011, the same author reported that concolic testing unveiled around
one-third of bugs in Windows 7 by file fuzzing saving millions of dollars
in patches. Unfortunately, the sophisticated instrumentation to gather
constraints was tailored for x86 machines and therefore is of very
limited use in the embedded systems industry where a wide array of
architectures are employed.

Fuzzing testing is a variant of symbolic execution whose purpose
is to identify input data that raise exceptions, run-time errors, security
vulnerabilities, or similar bugs. This technique has started to be applied
in aerospace security by recent commercially available tools for Ada
programming with only some demo examples publicly available [13].

So far we have described code-driven test input generation. In essence,
these testing activities shed light on the behavior of the SUT by reveal-
ing pathological input data. In principle, they would not be acceptable
since the software quality standards [8-10] impose tracing tests back-
ward to software requirements. Only recently have these test oracles
begun to be accepted in the realm of aerospace security [13] because
even elaborate requirements and specifications can rarely cover all
possible run-time behaviors and that security vulnerabilities may be
embedded in the code.

The most compliant techniques are concerned with specification-
driven test cases generation and they are described next. Back in the
2000s Claessen and Hughes [30] developed QuickCheck, a random
test generator that considers formal verification conditions in Haskell,
a functional programming language, to derive test cases following a
distribution. As part of the testing process the programmer was in
charge of (a) providing the right predicates to define the correctness
of a program and (b) deciding whether the resulting random distribu-
tion matches the actual one. It is worth remembering that functional
programming is not used in safety-critical systems.

Dafny is another so-called “verification-ready” programming lan-
guage that employs theorem provers regularly and it supports both
functional and imperative programming [2].

In 2023, Fedchin et al. [4] developed an extensive library for testing
Dafny programs, which includes unit testing, mocking (code isolation
for testing), and test generation modules. Their idea of deriving test
cases from formal contracts is similar to the one in this work. Their
test case generation derives the expected output from postconditions
— similar to our approach — and test vectors from counterexamples
produced by the verifier. The latest is produced artificially by inserting
some ‘“trap assertions” in strategic decision areas in an intermediate
proof language (Boogey) advocated to fail the proof and produce these
counterexamples.

The evaluation included two industrial benchmarks from a well-
known web services provider, and the automatically generated test
cases managed to unveil a significant bug in an external library that
could not identified statically by the verifier. The downside of their
approach becomes apparent in the extensive need of using mocks
i.e., simple functions implementations returning test values to isolate
the SUT, and occasional redundant test cases that are later mitigated
by an additional form of cleaning process.

Returning to imperative programming, the idea of combining Spark/
Ada contract test cases is not new, in fact in 2012 Comar et al. [31]
investigated the idea of incorporating proofs and tests as part of the
verification system in the Ada toolchain, although the test cases, in the
only case study presented in this paper, were produced manually.

Later on, in 2017, Sun et al. [11] applied a Constraint-Based Test
Generation using an MC/DC method with boundary analysis to de-
rive test cases from Spark contracts. To the best of our knowledge,
MC/DC is applied in code coverage analysis but it is not used as a
standard testing method. Unfortunately, their test generation does not
seem to support universal or existential quantifiers normally available
in Spark contracts. Likewise, the evaluation uses a C model checker
library that seems coupled with their test generation process. Two
industrial case studies were performed. MC/DC was not measured on

S.J. Gil et al.

the software under test despite using their industrial instrumentation
tool supporting MC/DC analysis. Eventually, the statistical significance
of the experimental results could not be determined.

In 2021, Jaramillo et al. [32] apply test case generation from formal
contracts driven by Meta-heuristics and mutation testing. In particular,
they used a method based on Particle Swarm Optimization. However,
they did not disclose how they mapped the VCs to the fitness function.
Another important issue is the fact that the VCs mutated to influence
the mutation score. This decision, in our view, is not acceptable from a
methodological point of view, since the VCs serve as a ground truth to
compare the implementation against. The correct process would have
been, if necessary, to change the implementation to fit the specification,
but not the opposite.

In the bigger picture of the bug-fixing process, there are some works
dedicated to automatic program repair. In his 2019 survey, Gazzola
et al. [33] pointed to the abundance and quality of test cases as a key
element to spot bugs that can later be fixed automatically. These self-
repairing methods rely on properly detecting and isolating bugs as a
prerequisite for which a good combination of tests and code coverage
data is needed.

In a nutshell, our research work differs in several aspects from
the state-of-the-art: First and foremost, our approach targets the test
coverage of the formal contract from the ECP with boundary analysis
perspective, whereas other approaches aim for maximizing code cov-
erage [28], or to find pathological inputs to break the program [13].
Secondly, our method is not bothered with the implementation details
(this is often known as black-box testing), which makes it oblivious
to the intractable paths handling that are identified as a research
challenge [3,27], or any other graph derivation from the SUT.

Thirdly, unlike similar works in functional programming using
Dafny [4], our test generator does not rely on a pre-existent verifier
to derive test cases. Theoretically speaking, our oracle can produce
test cases by supplying a formal contract even though the underlying
language toolchain is not equipped with a verifier. Fourthly, our test
generation process is intended to comply with industrial software
quality standards by embracing ECP with boundary analysis which is
perhaps the friendliest testing method [6]. Although, to our under-
standing, testing methods are not normalized in these standards. The
traceability of the testing process is also preserved which makes this
activity compliant with the standards.

Regarding our evaluation, it is done systematically and scientifi-
cally, choosing open source examples and measuring statistical signif-
icance by incorporating random test data. Admittedly, unlike other
state-of-the-art work, we have not been able to evaluate our testing
method on an industrial scale.

6. Conclusion

Automation is a very promising and probably the only solution
to the escalation of software verification costs. Automatic test case
generation is a considerable challenge that can help to alleviate this
problem. A substantial body of research is dedicated to code-driven
input data generation which is normally not accepted in software
quality standards for dependable systems, given that test cases — which
must include an expected output — must be traced to requirements.

The fact that Spark/Ada programming language enables the inte-
gration of a formal specification provides a traceability source for test
case generation. This feature, paired with the observation that CBT has
become increasingly used and computationally affordable in the last
few years, has motivated our work.

As part of our contributions we have derived a Constraint-Based Test
Generator Oracle that produces test cases from Spark/Ada formal con-
tracts. Unlike state-of-the-art approaches [11], our method automates
a well-established testing method i.e., ECP with Boundary Analysis. In
addition, it copes with First-order Logic predicates, it is a reproducible
test case generation method, and is independent of the SMT solver.

12

Information and Software Technology 172 (2024) 107467

Our evaluation has given some supporting evidence that the test cases
derived are always successful when it comes to the pass/fail ratio that
we named ‘success rate’ along with statement coverage figures, all
of them above 90% indicating a high completion result for software
testing. Threats to validity, however, have pointed out the need to
evaluate our method to larger industrial benchmarks but this is also
very challenging to access due to proprietary and confidential IP.

In conclusion, the reported evidence in this paper along with the
work from Sun et al. [11] and Fechin et al. [4] serves as a starting
argument that a design by contract can be used both for proving the
code and generating test cases automatically. As a result, we believe
that the greatest possible level of confidence in the verification process
can be achieved by combining software proof for the abstract domain
and testing for the empirical one.

7. Future work

Future work can be centered on provisioning formal contracts that
are useful both for verifiers and test generators. One line of inquiry
can look at scenarios where program proof is not feasible due to
unanalyzable external dependencies [4] and study whether this form
of contract-driven test generation can detect bugs or whether standard
manual testing can be effective enough [1].

Another line of inquiry may also consider a range of formal con-
tracts quality ranging from underspecified contracts to the ones
equipped with weak preconditions and strong post-conditions [2]. This
is based on our observation that some contract constructs i.e., contract
cases from Spark 2014, are more friendly to our approach whereas
others with weaker verification conditions were not that useful for
testing purposes.

Another approach may consider the C/C++ programming asserts
[34] which are similar, to some extent, to Spark/Ada verification
conditions and occasionally in “debug” build configurations. A test
oracle may feed test cases to assess the available or absent asserts to
give confidence in the functional correctness.

Lastly, another research idea consists of extending the usual func-
tionality of test generators (data generation) to generate stubs (data and
code generation). Stubs are relatively similar to mocks and consist of
testing code that returns a specified value to replace external depen-
dencies. As a result, this increases the isolation of the SUT, raises the
controllability of the testing process, and enables greater code coverage
results. For example, in C-written Linux Kernel Drivers, isolation is
needed to test error-handling code [35]. Ada technologies [22] are
equipped with stub function generators (gnatstub) and test-harness
(gnattest) generation but to our understanding the stub returned
values are to defined by the user.

CRediT authorship contribution statement

Samuel Jiménez Gil: Writing — original draft, Validation, Soft-
ware, Methodology, Investigation, Formal analysis, Conceptualization.
Manuel I. Capel: Writing — review & editing, Validation, Supervi-
sion, Resources, Project administration, Methodology, Investigation,
Funding acquisition, Formal analysis, Conceptualization. Gabriel Olea
Olea: Writing — original draft, Validation, Software, Investigation, Data
curation.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Manuel 1. Capel reports that travel expenses for the communication
of first results, in an initial phase of this study, at a national confer-
ence were provided by the Concurrent Systems Research Group of the
University of Granada.

S.J. Gil et al.

Data availability

Data will be made available on request.

Acknowledgments

Funding of the open access fee: University of Granada / CBUA.

References

[1] John W. McCormick, Peter C. Chapin, Building High Integrity Applications with
SPARK, Cambridge University Press, 2015.

[2] K. Rustan, M. Leino, Program Proofs, MIT Press, 2023.

[3] Samuel Jiménez Gil, Constraint-Based Testing and Tail Tests for Measurement-
Based Probabilistic Timing Analysis, (Ph.D. thesis), University of York,
2020.

[4] Aleksandr Fedchin, A toolkit for automated testing of dafny, 2023.

[5] Stephen Brown, et al., Essentials of Software Testing, Cambridge University Press,
2021.

[6] Leanna Rierson, Developing Safety-Critical Software: A Practical Guide for
Aviation Software and DO-178C Compliance, CRC Press, 2013.

[7] Nigel James Tracey, A Search-Based Automated Test-Data Generation Framework
for Safety-Critical Software, (Ph.D. thesis), 2002.

[8] RTCA, DO-178c, software considerations in airborne systems and equipment
certification, 2011.

[9] 1S026262, Road vehicles — functional safety, 2018.

[10] ECSS-E-ST-40C, Space engineering: Software, 2009.

[11] Youcheng Sun, et al., Functional requirements-based automated testing for
avionics, CoRR (2017).

[12] Raul de la Cruz, et al., MASTECS multicore timing analysis on an avionics vehicle
management computer, 2022.

[13] Paul Butcher, Guidelines and Consideration Around ED-203A / DO-356A Security
Refutation Objectives, AdaCore Whitepaper, 2021.

[14] Georgia Weidman, Penetration testing: A hands-on introduction to hacking, 2018.

[15] J.J. Shen, Software testing: Techniques, Princ. Pract. (2019).

13

[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Information and Software Technology 172 (2024) 107467

https://www.rapitasystems.com/difference-between-decision-coverage-and-
branch-coverage.

Cem Kaner, et al., Lessons Learned in Software Testing: A Context Driven
Approach, Wiley, 2002.

John Barnes, The Proven Approach to High Integrity Software, Altran Praxis,
2012.

https://www.nasa.gov/content/tech/rse/research/compositional.
https://github.com/Z3Prover/z3.

M. Hollander, D.A. Wolfe, Nonparametric Statistical Methods, second ed., John
Wiley and Sons, New York, 1999.

https://alire.ada.dev/.

https://gcc.gnu.org/onlinedocs/gec/Geov.html.

James C. King, Symbolic execution and program testing, Commun. ACM (1976).
Thomas A. Henzinger, et al., Lazy abstraction, in: Proceedings of the 29th
ACM SIGPLAN-SIGACT, in: Symposium on Principles of Programming Languages,
2002.

Andreas Holzer, et al., FShell: Systematic test case generation for dynamic
analysis and measurement, in: Computer Aided Verification, 20th International
Conference, in: CAV 2008, Princeton, 2008.

Patrice Godefroid, Test generation using symbolic execution, in: IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer
Science, FSTTCS, 2012.

Patrice Godefroid, Higher-order test generation, 2011.

P. Godefroid, M.Y. Levin, D. Molnar, Automated whitebox fuzz testing, in:
Network and Distributed Systems Security, 2008.

Koen Claessen, John Hughes, QuickCheck: A lightweight tool for random testing
of haskell programs, 2000.

Cyrille Comar, et al., Integrating formal program verification with testing,
Open-Do (2012).

Romén Jaramillo Cajica, et al., Automatic generation of test cases from formal
specifications using mutation testing, 2021.

Gazola, et al., Automatic software repair: A survey, IEEE Trans. Softw. Eng.
(2019).

G. Kudrjavets, et al., Assessing the relationship between software assertions and
faults: An empirical investigation, 2006.

Bai Jia-Ju, et al., Testing error handling code in device drivers using
characteristic fault injection, 2016.

http://refhub.elsevier.com/S0950-5849(24)00072-7/sb1
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb1
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb1
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb2
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb3
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb3
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb3
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb3
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb3
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb4
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb5
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb5
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb5
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb6
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb6
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb6
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb7
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb7
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb7
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb8
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb8
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb8
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb9
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb10
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb11
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb11
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb11
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb12
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb12
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb12
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb13
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb13
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb13
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb14
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb15
https://www.rapitasystems.com/difference-between-decision-coverage-and-branch-coverage
https://www.rapitasystems.com/difference-between-decision-coverage-and-branch-coverage
https://www.rapitasystems.com/difference-between-decision-coverage-and-branch-coverage
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb17
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb17
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb17
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb18
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb18
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb18
https://www.nasa.gov/content/tech/rse/research/compositional
https://github.com/Z3Prover/z3
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb21
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb21
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb21
https://alire.ada.dev/
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb24
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb25
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb25
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb25
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb25
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb25
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb26
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb26
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb26
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb26
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb26
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb27
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb27
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb27
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb27
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb27
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb28
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb29
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb29
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb29
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb30
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb30
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb30
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb31
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb31
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb31
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb32
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb32
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb32
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb33
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb33
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb33
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb34
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb34
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb34
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb35
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb35
http://refhub.elsevier.com/S0950-5849(24)00072-7/sb35

	Automatic test cases generation from formal contracts
	Introduction
	Background
	Test Cases Generation Method
	Constraint-Based Test Case Generation Algorithm
	Algorithm application example
	First Order Logic Example

	Empirical Study
	Benchmarks
	Benchmarks deployed in the study

	Success Rate: Pass/Fail Results
	Code Coverage
	Threats to Validity

	Related Work
	Conclusion
	Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

