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A B S T R A C T

Despite the increasing development in recent years of explainability techniques for deep neural networks, only
some are dedicated to explaining the decisions made by neural networks for similarity learning. While existing
approaches can explain classification models, their adaptation to generate visual similarity explanations is not
trivial. Neural architectures devoted to this task learn an embedding that maps similar examples to nearby
vectors and non-similar examples to distant vectors in the feature space. In this paper, we propose a post-hoc
agnostic technique that explains the inference of such architectures on a pair of images. The proposed method
establishes a relation between the most important features of the abstract feature space and the input feature
space (pixels) of an image. For this purpose, we employ a relevance assignment and a perturbation process
based on the most influential latent features in the inference. Then, a reconstruction process of the images of the
pair is carried out from the perturbed embedding vectors. This process relates the latent features to the original
input features. The results indicate that our method produces ‘‘continuous’’ and ‘‘selective’’ explanations. A
sharp drop in the value of the function (summarized by a low value of the area under the curve) indicates its
superiority over other explainability approaches when identifying features relevant to similarity learning. In
addition, we demonstrate that our technique is agnostic to the specific type of similarity model, e.g., we show
its applicability in two similarity learning tasks: face recognition and image retrieval.
. Introduction

Similarity learning is a task within computer vision that has gained
ignificant interest due to its multiple applications, such as face recog-
ition [1,2], person re-identification [3,4], image retrieval [5,6], and
ne-shot learning [7,8]. This task addresses the question of whether a
air of images is similar or to what degree they exhibit similarity. The
btained result is subsequently applied to address a specific problem.
or instance, in the context of face recognition for identity validation,
he image of an individual seeking access is compared with all stored
mages of persons in the access database, leading to either confirmation
r denial. In the scenario of image retrieval, when presented with a
uery image of an object, the goal is to locate, from a collection of
eference images, the object image that bears the highest resemblance
o the query image.

Measuring similarity requires learning an embedding space that
aptures images and reasonably reflects similarities using a defined
istance metric. In this regard, Siamese neural networks (SNNs) [9,10]
merge as a powerful approach to similarity learning. These networks
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have parallel neural networks with identical weights and parameter
settings. Each network has a different input (image), and their outputs
are combined to obtain a prediction. Therefore, SNNs learn embed-
ding vectors used to compare sub-network inputs. The cost function
determines the distance between the embedding vectors obtained by
passing images through the system. To make these systems more robust,
several variants of these architectures have been proposed, e.g., Face-
book’s DeepFace [11], Google’s Facenet [1], and ArcFace [12], among
others [13,14].

Although these computer vision models are quite powerful, they are
considered black-box models, i.e., their internal reasoning and decision-
making processes are not easily interpretable by humans. To overcome
this issue, several explanation methods have been proposed [15–17].
The rationale of these methods consists of explaining why neural
systems and other black-box AI models make their decisions. These
methods include model-agnostic approaches [18–20], i.e., approaches
that do not depend on the neural structure to be explained, only on
its input and output. There are also example-based methods, such as
vailable online 5 April 2024
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Fig. 1. Face recognition: the method explains why a neural model infers the similarity
between pairs of images.

those based on data prototypes [21], counterfactual explanations [22],
and adversarial examples [23]. Among other proposals, we found those
in [24,25] that focus on visualizing the contribution of each pixel of an
input image in the prediction using attention maps. These approaches
make it possible to explain the predictions of classification networks.
However, few works [26–31] have focused on explaining the inference
process of similarity networks. These networks learn an embedding that
maps similar images into nearby vectors of the abstract feature space
and dissimilar images into distant vectors. Consequently, there is no
inverse mapping between the embedding vectors and the corresponding
input images, i.e., we do not know the subsets of features in the input
space that correspond to some features of the embedding vector.

This paper introduces a new method, named ExplainLFS (Explaining
Neural Models from Latent Feature Space), to explain the inference
process of neural architectures for similarity learning between images.
To do that, we rely on the embedding vectors obtained by the neural
architecture for a pair of images. Each latent feature in the embedding
vector is given a weight representing the relevance of that feature in
the output predicted by the neural model. If the images are similar,
the most similar features of the embedding vectors will have a higher
relevance. If the images differ, the most dissimilar features will have a
higher relevance. Subsequently, a process of perturbation and decoding
is performed to establish a relationship between the latent features
of the embedding vectors and the input images. In other words, the
method can explain the features of the input images that most influence
the final decision from the latent feature space of a pair of images.

The computer vision tasks targeted in our paper concern face recog-
nition [1] and image retrieval [5] tasks. Figs. 1 and 2 illustrate the
visual explanations generated by ExplainLFS for these computer vision
tasks. Therefore, the main contribution of our paper is that, to the
best of our knowledge, the most successful explanation methods cannot
directly be applied to neural architectures used for similarity learning
between images. The reason is that the input space for these computer
vision tasks is composed of two images instead of a single one, as
happens in image classification problems.

To measure the quality of generated explanations, we use the crite-
ria presented in [29,32–35]. The authors assess quality based on two
properties: selectivity, quantified by measuring how fast the model
output changes when perturbing the features with the highest rele-
vance scores, and continuity, quantified by measuring the variation of
the explanations in an input domain. Furthermore, the explanations
are contrasted with the explanations generated by three approaches
adopted from the literature [26,28,31]. The former is a neural network
that directly visualizes the similarities between a pair of images. It
should be noted that this network does not infer whether one image
is similar to another, nor does it infer the similarity score between two
images. However, it produces similarity maps between similar images
2

Fig. 2. Image retrieval: the method determines the features needed to retrieve the
most similar and dissimilar image for a query image.

that can be used for comparison purposes. The latter are approaches
explicitly designed to explain SNNs.

The structure of this paper is as follows. Section 2 reviews the state-
of-the-art related to the explainability of neural models for similarity
learning. Section 3 presents the proposed explanation method. Sec-
tion 4 analyzes the quality of the explanations proposed by our method
for facial recognition and image retrieval tasks. Section 5 concludes the
paper.

2. Related work

Most of the existing visual explanation techniques in the literature
focus on explaining the inference process of neural models intended for
image classification tasks [18,19,24,25]. These techniques explain why
an object is detected in an image. This is typically done by mapping the
regions of interest in an image leading to a given class. However, when
dealing with neural models for similarity learning tasks, it is necessary
to explain what makes image A similar to image B but dissimilar to
image C. Although the literature to explain this specific type of neural
learning is relatively sparse, recent techniques to explain neural models
for similarity learning between images have been proposed [3,26–
28,30,31,36–38]. Other approaches have also been proposed to explain
similarity learning networks, but aimed at other types of data, such as
audio [29] or graphs [39].

The approaches in [3,26,27] are self-explaining neural networks
able to learn visual explanations from their inference process. While
the proposals in [3,26] apply only in pairwise similarity learning, the
approach in [27] also generates attention visualizations by similarity in
triplet and quadruplet neural models through gradient-based attention
maps. Stylianou et al. [26] proposed a method to highlight the regions
of the images that contribute most to pairwise similarity. In addition,
Tummala et al. [31] proposed a Siamese twin network with a novel
visual saliency mapping scheme to interpret their decisions.

Alternatively, in [36], an explanation method is proposed based
on textual information of the most salient attribute in image match-
ing. In contrast to previous approaches, Plummer et al. presented an
explanation method for image matching independent of the neural
model learning process. Their explanations are based on the feature
that best explains the match between attention maps generated from
the embedding vectors of the pair images. The authors in [30,37]
adapted the Grad-CAM method [25] for embedding networks. Their
approach does not try to explain the similarities in a pair of images,
only to visualize their latent features. In fact, the approach proposed
by [30] is only useful when explaining the embeddings separately,
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without considering the shared features used in the inference process.
However, their visualization can help domain experts to deduce the
reason for their similarities.

Utkin et al. [28] proposed an interesting explanation method ex-
plicitly tailored for SNNs. While effective in elucidating why an image
belongs to a specific category, the main drawback lies in its inability
to explain the distinctions between two pairs of images. The weakness
of constructing a prototype based on existing image categories becomes
apparent, as it solely addresses the individual explanation of an image’s
category, neglecting consideration of paired features between the em-
bedding vectors of image pairs. Also, this explanation method requires a
set of images belonging to the same category (e.g., of the same person)
or at least one image in the dataset belonging to the category of the
image pair. This limitation restricts the method’s utility in scenarios like
face recognition [8], where systems typically rely on a single reference
image for comparison, such as a user ID. A similar proposal to Utkin
et al. is presented by Ye et al. in [38], but suffers from the same
limitation in face recognition scenarios. Both, are useful for datasets
such as MNIST [40]. In addition, it has a high computational cost.

Many of these approaches derive their explanations from the cate-
gory to which the images belong rather than identifying latent features
in the embedding space that contribute to their similarity or dissim-
ilarity. Some approaches may be more practical, as they necessitate
additional information from the input space. However, the majority of
these techniques do not qualify as post-hoc agnostic explanation meth-
ods, which are independent of the neural model’s internal structure.
Our proposal aims to address these gaps in the existing literature.

3. Explanation of neural models for similarity learning

The agnostic post-hoc method proposed in this section is devoted
to generating explanations for similarity learning networks. Therefore,
given two images to be explained, it outputs a heatmap visualizing the
most important features in the latent feature space by which an image
is similar to another. The method comprises three main steps: (1) the
construction of a decoder from the latent feature space of each image,
(2) the relevance assignment to each latent feature according to its
importance in distinguishing between similarity and dissimilarity, and
(3) the mapping process between the most important latent features
and the input features of each image. These steps are detailed in the
following sub-sections.

3.1. Decoding process

The decoding associates the latent features (i.e., embedding vectors
obtained by the neural model in the feature extraction process) with
the original input image. The intuition behind this step is to learn
a decoding network that can reconstruct an image from its corre-
sponding embedding vector. This decoding process acts as an inverse
mapping that converts the embedding vectors into a pixel representa-
tion of the original image. This structure has the following distinctive
characteristics:

• The input layer has as many input neurons as latent features in
the embedding vector.

• The output layer has as many output neurons as input features
(pixels) in the original image.

• The loss function measures the differences between the origi-
nal image and the reconstruction obtained. Eq. (1) defines this
function,

 =
𝑀
∑

𝑖=1
‖𝑥𝑖 − �̃�𝑖‖

2
2 (1)

where 𝑀 is the number of features of the original image, and
𝑥𝑖 and �̃�𝑖 are the 𝑖th pixels that compose the original and recon-
structed images, respectively.
3

Fig. 3. Example of a decoding neural network without hidden layers. The input
layer represents the embedding vector. The output layer represents the reconstruction
neurons of the input image. It should be highlighted that this representation only
uses 10 latent features in the embedding vector and 9 units in the output layer for
visualization purposes.

Fig. 3 illustrates the proposed decoding process to reconstruct an
image from its embedding vector when the neural model is an SNN
such as FaceNet [1].

3.2. Relevance assignment process

This step identifies the latent features of a pair of images by which
a neural model discriminates between similar or dissimilar images.
By doing so, we calculate the similarity between the latent feature
that composes the embedding vectors of two images and thus deduce
their influence on the neural model decision. That is, the most similar
features of the embedding vectors of two images should also be those
that contribute the most weight to infer the similarity between the
images. Contrariwise, the most different features should be the most
relevant to conclude that the images are dissimilar.

Eq. (2) shows how to measure the relevance of the 𝑗th latent feature
of an embedding vector,

𝑗 =

{

1 − 𝑑𝑗 , if images are similar
𝑑𝑗 , if images are dissimilar

(2)

such that, 𝑑𝑗 (defined in Eq. (3)) represents the normalized distance
value between the 𝑗th feature of the embedding vectors ℎ1 and ℎ2 of a
pair of images, respectively,

𝑑𝑗 =
|ℎ1𝑗 − ℎ2𝑗 | −𝐷−

𝐷+ − 𝐷− (3)

where ℎ1𝑗 and ℎ2𝑗 are the 𝑗th values of the ℎ1 and ℎ2 embedding
vectors, and 𝐷+ and 𝐷− are the maximum and minimum distance
values between ℎ1 and ℎ2, respectively.

Next, we will develop a toy example to illustrate the inner working
of our method and the accompanying equations:

• Suppose we have the following embeddings obtained for two simi-
lar images, ℎ1 = [1.2, 1.9, 2.3, 3.1, 2.0, 2.1, 2.2] and ℎ2 =
[1.1, 3.0, 2.5, 4.0, 1.3, 1.4, 1.9], whose associated distance vector is
𝑑 = [0.1, 1.1, 0.2, 0.9, 0.7, 0.7, 0.3]. Then, according to Eq. (3), the
normalized distance vector is 𝑑 = [0, 1, 0.1, 0.8, 0.6, 0.6, 0.2], and
consequently, the relevance vector computed according to Eq. (2)
is  = [1, 0, 0.9, 0.2, 0.4, 0.4, 0.8].

• Suppose we have the following embeddings obtained for two
dissimilar images, ℎ1 = [1.2, 1.9, 2.3, 3.1, 2.0, 2.1, 2.2] and ℎ2 =
[2.0, 1.5, 2.7, 0.3, 2.5, 1.6, 2.5], whose associated distance vector is
𝑑 = [0.8, 0.4, 0.4, 2.8, 0.5, 0.5, 0.3]. Then, according to Eq. (3), the
normalized distance vector is 𝑑 = [0.2, 0.04, 0.04, 1, 0.08, 0.08, 0],
and consequently, the relevance vector computed according to
Eq. (2) is  = [0.2, 0.04, 0.04, 1, 0.08, 0.08, 0].
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Fig. 4. The basic scheme of the ExplainLFS method for an SNN architecture that compares two images. The blue cells in the embedding vectors represent the most similar features
between the embedding vectors, and the orange cells represent the most perturbed features according to the assigned relevance. In red (or orange color) are the pixels that,
according to our approach, most influence the decision that these two images are ‘‘similar’’. These pixels result from the main differences between the reconstructions of the SNN
output embeddings (𝑜) and the reconstructions of the perturbed embeddings (𝑝).
The explanation underlying Eq. (2) lies in the assumption that, in
the case of dissimilar images, the most important features are those that
are more distant from each other. In the case of similar images, the most
relevant features are those that are most similar to each other. Fig. 9
in the Experiments section demonstrates this assumption.

3.3. Mapping process

This process aims to infer which original image features are encoded
in the most important latent features of the embedding vectors. For this
purpose, we perform a perturbation process of the feature values of
the embedding vector according to their relevance. The pixel areas of
the reconstructed image that undergo the most significant change have
the closest correspondence to the most perturbed features, i.e., more
relevant latent features, since the higher the relevance of the feature,
the greater its perturbation. The perturbation process is based on
the relevance assigned to each latent feature. Thus, when the neural
model infers that the images are similar, the more similar features are
perturbed to a greater extent. Otherwise, the more dissimilar features
undergo a more significant perturbation. Eq. (4) defines how to perturb
the 𝑗th feature of an embedding vector from its relevance value 𝑗 ,

ℎ𝑗 (𝑝) = ℎ𝑗 +𝑗 ∗ 𝑝, 𝑗 = 1, 2,… , 𝑁 (4)

where 𝑁 is the length of the embedding vector. The 𝑝 parameter takes
values in the [0, 1] interval and is the same for perturbing all ℎ𝑗 values
of the latent features that compose the embedding vectors. Its value
cannot be too small (close to zero) because it vanishes the influence of
the relevance (𝑗). Also, it cannot be too high (close to one) because
it can cause the values ℎ𝑗 (𝑝) to surpass the upper boundary of the
[0, 1] interval. However, the variability of the 𝑝 value will not affect
the order of importance of the ℎ𝑗 value in the embedding vector and,
consequently, will not affect the attention maps generated from them.

As a subsequent step in our method, the mapping process between
the perturbed latent features and the original features of the image is
performed as follows:
4

(a) A reconstruction of the perturbed embedding vector (𝑝) and
the original image embedding vector (𝑜) is obtained from the
decoding neural network.

(b) The difference between the pixel values of 𝑜 and 𝑝 is calcu-
lated. Thus, the pixels in which the most significant differences
are evident (i.e., pixels where the difference exceeds a threshold
𝜉2) correspond to the most perturbed features and, consequently,
to the most relevant features. The threshold 𝜉2 is conceived as
a user-adjustable parameter. Although any value in the interval
[0, 1] is possible, it is recommended that this threshold have
a value higher than 0.7. In this way, only pixels with a high
relevance value in the inference process are displayed.

(c) An attention map (also called in the literature saliency map [41,
42]) that highlights the most relevant pixels obtained in Step 2
is built. Saliency maps provide an intuitive visual interpretation
by highlighting the regions of an image that most influence the
decision of a neural model.

Fig. 4 illustrates an example of the proposed explanation process for
an SNN that compares two images as ‘‘similar’’. The results are based
on the output of the FaceNet architecture [1] for a pair of images whose
embedding vectors have a similarity of 0.78. In addition, Algorithm 1
presents a pseudocode summarizing the technical details of our method.

4. Experiments

This section evaluates the proposed explanation method in two
similarity learning tasks: face recognition [1] and image retrieval [5].
The road map of our experimental methodology is as follows. In the
first experiment, we show the effectiveness of the ExplainLFS method
for both computer vision tasks using representative examples. Secondly,
we assess the quality of the explanations generated by our method w.r.t.
two desired explanation properties: selectivity and continuity. Finally, we
compare the quality of explanations produced by our method against
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Algorithm 1 ExplainLFS
Require: Trained Decoding Neural Network (TDNN), Trained SNN model

(TSNN), Image pair (𝐼1, 𝐼2), and Hyperparameters {𝜉1, 𝜉2, 𝑝}.
Ensure: Similarities Attention Maps.

STEP 1: {Generate Embeddings and Measure Similarity.}
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦, ℎ1, ℎ2 ← TSNN(𝐼1, 𝐼2)

STEP 2: {Determine Relevance of Latent Features.}
for 𝑗 from 1 to 𝑁 do

𝑑𝑗 ← 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(ℎ1
𝑗 , ℎ

2
𝑗 )

if 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 > 𝜉1 then
𝑗 ← 1 − 𝑑𝑗

else
𝑗 ← 𝑑𝑗

end if
end for

STEP 3: {Mapping Latent Features to Input Space.}
for 𝑗 from 1 to 𝑁 do

ℎ1
𝑗 (𝑝) ← ℎ1

𝑗 +𝑗 ∗ 𝑝
ℎ2
𝑗 (𝑝) ← ℎ2

𝑗 +𝑗 ∗ 𝑝
end for
𝑜1, 𝑜2 ← TDNN (ℎ1, ℎ2)
𝑝1, 𝑝2 ← TDNN (ℎ1(𝑝), ℎ2(𝑝))
1 ← 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑜1,𝑝1) > 𝜉2
2 ← 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑜2,𝑝2) > 𝜉2
return 1, 2

other state-of-the-art approaches and empirically demonstrate the supe-
riority of our proposal. To do that, we will resort to the ‘‘pixel-flipping
experiment’’, which is perhaps the most widely used for assessing
the quality of explanation methods that generate feature importance
scores [29,32–35,43].

4.1. Face recognition

To illustrate the effectiveness of ExplainLFS for this task, we relied
on FaceNet [1], one of the most widely used SNN architectures for face
recognition, with an accuracy of 99% on the VGGFace2 dataset [44].
During our experimentation, we used the FaceNet neural model (see
https://github.com/davidsandberg/facenet for training details), which
is pre-trained to generate embedding vectors of length equal to 512
over three million images of 9,131 people at different angles, differ-
ent times (i.e., in terms of age), various accessories, hairstyles, and
background variability.

It should be noted that training the decoder is entirely independent
of the SNN training. We take 24,000 images from the CelebFaces At-
tributes dataset [45] to train the decoder. The image size in this dataset
is 40 × 40 × 3 (size of the decoder output layer). The FaceNet architec-
ture requires a re-scaling process of the image size (i.e., 160 × 160 × 3)
to generate the embedding vectors (i.e., the input layer of the decoder).
The decoding error measured according to Eq. (1) is 0.02.

In the experiments, we arbitrarily used 𝑝 = 0.3 and 𝜉2 = 0.7.
However, our proposal is not sensitive to these hyperparameters, due to
their inherent nature. The first is a value applied equally to all features
of an embedding vector. Therefore, any variation of this parameter will
result in embeddings that have a linear relationship between them.
The second is a threshold for displaying purposes, conceived as a
user-adjustable parameter during the explainability phase. In addition,
FaceNet infers as ‘‘similar’’ images those image pairs whose similarity
value is greater than 𝜉1 = 0.3, and as ‘‘dissimilar’’ images, the opposite.

Figs. 5 and 6 depict the outcomes of ExplainLFS applied to the
inferences generated by FaceNet for four pairs of similar and dissim-
ilar images. In these figures, the first row corresponds to the pair of
images subjected to the inference process. The second row displays the
5

Fig. 5. Examples of similar images with their corresponding visual explanations
highlighting what makes these images similar.

Fig. 6. Examples of dissimilar images with their corresponding visual explanations
highlighting what makes these images dissimilar.

corresponding heatmaps, revealing pixels of higher relevance in red
or orange and those of lower relevance in blue. The similarity of the
images of the four pairs is 0.84, 0.45, −0.13, and −0.19, respectively.

These illustrative examples show that the explanations for both
similar and dissimilar images indicate that the FaceNet neural model
prioritizes certain facial features (such as the contour of the mouth,
eyes, and nose in that sequence) when distinguishing between different
categories. Additionally, as the similarity value diminishes for similar
images, the SNN model necessitates considering a larger number of
pixels to distinguish between categories effectively.

4.2. Image retrieval

To assess the effectiveness of the ExplainLFS method for this task,
we use the graphical image retrieval interface in https://github.com/
Chien-Hung/ImageRetrievalGUI, which follows the image retrieval
protocols in [5,46]. The experiments are performed using the models in
https://github.com/Confusezius/Deep-Metric-Learning-Baselines,
which report a Recall@K of 86% and 92.1% [47] on the CUB200 and
Cars-196 datasets. The former includes 11,788 images and 200 bird
classes [48], while the latter is comprised of 16,185 images and 196
car classes [49].

When it comes to training the decoder, we used 5,924 and 8,131
images from the CUB200 and Cars-196 datasets, respectively, and
embedding vectors of length equal to 512 to train the decoder. The
decoding error after the training phase is done is 0.03 and 0.05, respec-
tively. It should be noted that, although the lowest possible decoding
error is desired, the performance of the proposed method should not
be affected by this error. In other words, ExplainLFS estimates the
differences between reconstructions produced by the same decoder,
i.e., between the reconstruction of the original image embedding and
the reconstruction of the perturbed embedding.

https://github.com/davidsandberg/facenet
https://github.com/Chien-Hung/ImageRetrievalGUI
https://github.com/Chien-Hung/ImageRetrievalGUI
https://github.com/Chien-Hung/ImageRetrievalGUI
https://github.com/Confusezius/Deep-Metric-Learning-Baselines
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Fig. 7. Explanations provided by ExplainLFS for the results produced by ImageRe-
trievalGUI on the CUB200 dataset. On the one hand, the similarity of the first and
second query images with their corresponding most similar image is 0.94 and 0.96,
respectively. On the other hand, the similarity with its retrieved most dissimilar image
is 0.28 and 0.38, respectively.

Figs. 7 and 8 showcase the outcomes of ExplainLFS in elucidating
the output produced by ImageRetrievalGUI for four images sourced
from the CUB200 and Cars-196 datasets. In these figures, the ini-
tial column illustrates the query image, while the second and third
columns display the most similar and dissimilar images retrieved in
each scenario.

A close inspection of the visual explanations generated by our
method suggests that the neural model relies on distinctive features
such as the beak and plumage, contingent on the type of bird, to discern
between various bird categories. It is also noticeable that environmental
cues occasionally contribute to the network predictions. When it comes
to distinguishing between different car classes, the pivotal areas of
interest involve the shapes of the wheels and bumpers.

4.3. Evaluating the quality of explanations

The explanations of the proposed method are evaluated according
to two properties [33]: selectivity (‘‘pixel-flipping’’ experiment [32]
or area under the cumulative feature importance curve [29,35]) and
continuity (‘‘robustness’’ or local Lipschitz estimation for other authors
as [35]). In addition, as a third evaluation criterion, the neural system
proposed in [26] is used as a substitute for an expert’s judgment,
another of the criteria most commonly used in the literature to measure
the quality of the explanations [50,51]. Note that, the decision not to
conduct a direct user study is based on the fact that the experimentation
6

Fig. 8. Explanations provided by ExplainLFS for the results produced by ImageRe-
trievalGUI on the Cars-196 dataset. On the one hand, the similarity of the first and
second query images with their corresponding most similar image is 0.96 and 0.98,
respectively. On the other hand, the similarity with its retrieved most dissimilar image
is 0.28 and 0.31, respectively.

performed is not directly oriented to a real application case in which
we can interact with domain experts.

4.3.1. Explanation selectivity
‘‘A perturbation in a relevant input variable will cause a steeper decrease

in the prediction score than that of a less relevant one ’’ [29,33,35,43].
The hypothesis to be tested is that a perturbation (or noise injection
by insertion/deletion) on the most relevant pixels in the output of the
explanation method can cause a considerable change in the inference
of the neural model. To make this process more rational, we associate
areas of pixels with superpixels (i.e., of size 5 × 5). The relevance of a
superpixel is calculated based on the relevance of the pixels containing
it. Thus, perturbations in the superpixels composed of the most relevant
pixels are expected to cause significant fluctuations in the similarity
values inferred by the neural model for a pair of images.

Fig. 9 shows the average similarity values given by FaceNet after
performing multiple perturbations (exactly 20, as suggested in [24])
on those most relevant superpixels according to the proposed method.
For pairs of similar images (a), it is necessary to perform the pertur-
bations on one of the images of the pair. In contrast, for dissimilar
pairs (b), the perturbations must be performed on both images due to
their dissimilar nature. In both cases, we observe how the similarity
value between a pair of images is affected by perturbing the most
relevant superpixels, i.e., it decreases between pairs of similar images
and increases between pairs of dissimilar images. Both behaviors are
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Fig. 9. Average similarity values of FaceNet on (a) a set of similar image pairs, and
(b) a set of dissimilar image pairs. The 𝑥-axis represents the number of perturbations
performed, taking into account the order of relevance of each superpixel with respect
to the obtained inference. The 𝑦-axis represents the average similarity value obtained
after completing 𝑥 perturbations.

as expected. First, perturbing the features of one image that make
it identical to another causes its similarity to the other to decrease.
Second, introducing equivalent transformations on the features of two
images that determine their dissimilarity causes it to decrease and,
consequently, their similarity to each other to increase slightly. This
effect is accumulative as a function of the number of perturbations.

4.3.2. Explanation continuity
‘‘If two data points are nearly equivalent, then the explanations of their

predictions should also be nearly equivalent’’ [33]. The hypothesis to be
tested is that if two images 𝑥 and 𝑥′ are similar, the explanations given
by the method for their predictions should also be similar. To carry
out this experimentation, an image 𝑥 is displaced from left to right and
right to left in its input space (see Fig. 11).

From the generated image pairs, we obtain the relevance vectors
(𝑥) and (𝑥′), i.e., the output of applying the proposed method to the
FaceNet inference on a pair of images composed of the original image
𝑥 and one of its displacements 𝑥′, respectively. Then, the difference
between (𝑥) and (𝑥′) is calculated as the L2 norm among them.

Fig. 10 shows the continuity curve associated with the proposed
ExplainLFS explanation method. Observe that the difference between
the relevance vectors increases until it reaches a maximum differ-
ence (where the image disappears entirely) as the image is displaced
from left to right (1–10). In addition, the difference between the
relevance vectors (11–20) gradually decreases until reaching a displace-
ment where the original image is visualized almost entirely. This be-
havior evidences the continuity of the generated explanations, i.e., the
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Fig. 10. Continuity curve of the proposed method. The 𝑥-axis represents the 𝑥′

displacements (in Fig. 11), where the original image 𝑥 is the coordinate origin. The
𝑦-axis represents the value of  = ‖(𝑥) −(𝑥′)‖2.

more similar the images of the pair are, the closer their relevance
vectors are. Conversely, the distance between their relevance vectors
increases as their dissimilarity increases.

4.3.3. Relevance maps vs. similarity maps
Next, we compare the explanations resulting from the proposed

method with a network that visualizes the similarities between a pair of
images [26]. In this experiment, we use this network as a substitute for
an expert’s judgment, which is another criterion used in the literature
to evaluate the quality of an explanation [50,51]. This network (from
now on referred to as SIMExpert) takes a pair of images and generates
similarity maps where the image regions responsible for the pairwise
similarity are visualized. In this sense, the similarity maps provided
by SIMExpert are compared with the relevance maps produced by Ex-
plainLFS, the method of Utkin et al. [28], and the method of Tummala
et al. [31].

Figs. 12 and 13 show examples of these maps for six image pairs.
The similarity and relevance maps are presented as a heatmap, where
pixels with higher relevance (or similarity) are shown in red (or orange
color), and those with lower relevance are visualized in blue. Visually,
our approach agrees with SIMExpert that the most distinctive regions
when identifying facial similarities are the eyes and the mouth-nose
contour (i.e., the mustache area). For Tummala et al.’s method, this
area is also the most important, although, its attention map is broader.
However, in some cases, Utkin et al.’s method focuses on the edges of
the image, which is one of its weaknesses.

4.4. Comparison with the state-of-the-art

Samek et al. [32] suggested evaluating explanation method quality
through the ‘‘pixel-flipping’’ experiment. This experiment gauges the
speed at which the prediction score decreases as the features with the
highest relevance for prediction undergo perturbations. Consequently,
a rapid drop in the function value, reflected in a low area under the
curve (AUC), signals the accurate identification of relevant features [29,
34,35].

Fig. 14 illustrates performance curves for the SIMExpert, Utkin,
Tummala, and ExplainLFS methods associated with the ‘‘pixel-flipping’’
experiment. In short, these curves depict the performance of the
FaceNet architecture as an image pair is progressively perturbed (by
random insertion/deletion in the most influential pixels) according to
the explanation given by each XAI method. The quicker the classifier
performance declines following input perturbation guided by the rele-
vance analysis, the more effective the XAI method is at pinpointing the
input features responsible for the neural model’s output.
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Fig. 11. Displacements of the original image along the 𝑥-axis, i.e., from left to right (i.e., 1–10) and from right to left (i.e., 20–11).
Fig. 12. Heatmaps (pairs 1–3) obtained with SIMExpert, Utkin, Tummala, and Ex-
plainLFS methods. The first column represents the similarity maps given by SIMExpert,
while the second, third, and fourth columns represent the relevance maps provided by
Utkin, Tummala, and ExplainLFS, respectively.

The obtained AUC values clearly indicate our proposal’s superiority
over the Tummala, Utkin, and SIMExpert approaches (even taking
into account that order in the evaluation ranking). Additionally, it
is noteworthy that the similarity value experiences a significant drop
when the six most significant superpixels, as per our approach, are
perturbed.

5. Conclusions

The current research proposes an explainability method for sim-
ilarity learning networks named ExplainLFS. The proposed method
visualizes the most relevant pixels in an image pair on which these
neural models rely to infer similarity or dissimilarity. We rely on latent
features of the embedding space derived from the network learning
process. Our proposal is a post-hoc agnostic technique and applies to
8

Fig. 13. Heatmaps (pairs 4–6) obtained with SIMExpert, Utkin, Tummala, and Ex-
plainLFS methods. The first column represents the similarity maps given by SIMExpert,
while the second, third, and fourth columns represent the relevance maps provided by
Utkin, Tummala, and ExplainLFS, respectively.

any neural architecture for similarity learning on embeddings, e.g., face
recognition and image retrieval tasks. The explanations obtained on the
FaceNet architecture largely satisfy two very desirable properties:

• the ‘‘selectivity’’ property, i.e., the similarity degrees between a
pair of images are also affected by perturbing the most relevant
pixels in the inference of the neural model.

• the ‘‘continuity’’ property, i.e., similar explanations are obtained
for predictions on similar images.

Furthermore, if we use SIMExpert [26] as a neural expert to com-
pare the explanations given by ExplainLFS, Utkin [28], and Tum-
mala [31], our method is closer to the neural expert’s judgment than
these methods. Likewise, a sharp drop in the value of the similarity
function indicates the superiority of ExplainLFS over the Tummala,
Utkin, and SIMExpert approaches in identifying relevant features when
comparing a pair of images.
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Fig. 14. ROC curves obtained by the SIMExpert, Utkin, Tummala, and ExplainLFS
methods. The 𝑥-axis represents the number of perturbations performed, taking into
account the order of relevance of each superpixel with respect to the obtained
inference. The 𝑦-axis represents the average similarity value obtained after completing
𝑥 perturbations.
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