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Abstract
In this paper, the notion of the catenary curve in the sphere and in the hyperbolic
plane is introduced. In both spaces, a catenary is defined as the shape of a hanging
chain when its potential energy is determined by the distance to a given geodesic of
the space. Several characterizations of the catenary are established in terms of the
curvature of the curve and of the angle that its unit normal makes with a vector field
of the ambient space. Furthermore, in the hyperbolic plane, we extend the concept of
catenary substituting the reference geodesic by a horocycle or the hyperbolic distance
by the horocycle distance.

Keywords Hanging chain problem · Sphere · Hyperbolic plane · Catenary ·
Rotational surface · Prescribed curvature

Mathematics Subject Classification 53A04 · 53A10 · 49J05

1 Introduction and Objectives

The shape that adopts a hanging chain under its own weight when suspended from its
endpoints attracted the interest of scientists from times of Galileo and daVinci. Galileo
believed that the parabola was the shape of the chain but his argument was wrong. The
solution curve is not so simple as a parabola (a quadratic polynomial function) but the
catenary

y(x) = 1

a
cosh(ax + b) − λ, a, b, λ ∈ R, a > 0, (1)
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which is a curve involving transcendental functions as the exponential. The deriva-
tion of the solution was an independent work of R. Hooke, J. Bernoulli, G. Leibniz
and C. Huygens among others. See Behroozi (2014); Conti et al. (2017) for an account
of the history of the catenary. The catenary is a classical curve and one of the first
examples, together with the brachistochrone, that illustrates the power of the calculus
of variations (Giaquinta and Hildebrandt 2004). Related with the catenary, and also
using calculus of variations, Euler proved that the catenary is the generating curve of
the surface of revolution with minimum area and spanning to coaxial circles (Euler
1969). To be precise, if the catenary (1) rotates around the x-axis, the resulting surface
of revolution is minimal if and only if λ = 0. For other mathematical properties of
the catenary, see Coll and Harrison (2014); Coll and Dodd (2016); Kim et al. (2015);
McIlvaine (2020); Parker (2010).

The catenary appears related with different topics in science, specially in engineer-
ing and architecture. For example, it is the model of an arch where the only force
acting on the arch is its weight (Heyman 1977; Pottmann et al. 2007). This suggests
its utilization in the construction of arches and roofs of corridors, such as the Span-
ish architect A. Gaudí used in many of its constructions, as for example, the Colegio
Teresiano and La Pedrera (Barcelona). In this sense, it is very nice to read the two
articles of R. Osserman about the shape of the Gateway Arch in St. Louis, Missouri,
connecting the shape of the Gateway Arch and the catenary (Osserman 2010a, b).

Many extensions of the hanging chain problem have been investigated and the
literature is huge. Without to give a complete list of references, we point out some
of the modifications in the classical problem. For example, one can assume that: the
density of the chain changes along its length (Fallis 1997;Kuczmarski andKuczmarski
2015;O’Keefe 1996); the force vector field is radial (Denzler andHinz 1999); the chain
is made of an elastic material (Bowden 2004; Irvine 1975, 1981; Irvine and Sinclair
1976; Russell and Lardner 1997); the chain is subjected under the effect of the surface
tension of a soap film adhered to the chain (Behroozi et al. 1994, 1995); the chain is
suspended from a vertical line and rotates around this axis (Appell 1941; Mohazzabi
and Schmidt 1999; Nordmark 2007); the two ends of the hanging chain move with
stretching the chain along a path (Kajiyama 2020); and there are loads on the chain
which pulling down on its lowest point (Zapolsky 1990).

In this paper we will investigate the generalization of the concept of catenary in
the unit sphere S2 and in the hyperbolic plane H2. From the mathematical viewpoint,
it is natural to ask for the extension of the hanging chain problem to other spaces. It
is clear that the sphere and the hyperbolic plane are the first spaces to study because
they are the models of the elliptic geometry and the hyperbolic geometry, respectively.
However, it is surprising that this theme has not been considered in the literature, being
the catenary well-known for centuries, as well as the sphere and the hyperbolic plane
are classical models in geometry.

The purpose of this article is to give an approach to the generalization of the hang-
ing chain problem in these two spaces. More specifically, to formulate a suitable
problem that can be adopted as an extension of the Euclidean catenary. Once the con-
cept of catenary is defined in these spaces as a critical point of a potential energy
functional, different characterizations of the solution curve in terms of its curvature
will be obtained. Finally, and if possible, we ask if the curves obtained as solutions
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of the hanging problem are the generating curves of minimal surfaces in the three-
dimensional sphere S3 and hyperbolic spaceH3. This would extend the Euler’s result
to these spaces.

Our motivation to generalize the notion of the catenary in the sphere and in the
hyperbolic plane has its origin in the Euclidean catenary (1).Wewill recall the hanging
chain problem in the Euclidean plane R

2, pointing out which are the ingredients in
its formulation. These can give us the clues to proceed when the ambient space is the
sphere and the hyperbolic plane.

LetR2 denote the Euclidean planewhere (x, y) stands for the Cartesian coordinates
and let 〈, 〉 be the Euclidean metric. The hanging chain problem consists in finding
the shape of an inextensible chain with uniform linear mass density and suspended
from two fixed endpoints. Suppose that the chain of mass m is idealized as a curve
y : [a, b] → R

2, y = y(x). The gravitational acceleration g is constant over the chain.
The x-axis is taken as the level of zero potential energy. The gravitational potential
energy of an infinitesimal element ds of the chain at (x, y) is gy dm = σ gy ds, where
σ is the density per unit length. Since ds = √

1 + y′(x)2 dx , the total potential energy
of the chain is

∫ b

a
σ gy(x)

√
1 + y′(x)2 dx . (2)

We are assuming in (2) that y(x) > 0 for all x ∈ [a, b]. The hanging chain problem
reduces to find a curve y = y(x) that minimizes this energy among all curves with
the same ends and the same length. The latter hypothesis is due to the inextensibility
of the chain and the absence of elastic forces. Simplifying the constant σ g by 1, the
energy functional to minimize is

E[y] =
∫ b

a
y
√
1 + y′2 dx + λ

∫ b

a

√
1 + y′2 dx . (3)

The second term of E[y] is a Lagrange multiplier because all curves have the same
length. Consequently, the solution y(x) is a critical point of the energy E . Using
standard arguments of calculus of variations, the Euler–Lagrange equation of (3) is

y′′

(1 + y′2)3/2
= 1

(y + λ)
√
1 + y′2 . (4)

The solution of (4) is the catenary (1). Note that the left-hand side of (4) is the curvature
κe of the plane curve y = y(x). The right-hand side of (4) has the following geometric
interpretation. Consider the vector field ∂y which is the (constant) gravitational field
in R

2. Since the unit normal vector n of the curve y(x) is n = (−y′, 1)/
√
1 + y′2,

then 〈n, ∂y〉 = 1/
√
1 + y′2 and equation (4) can be expressed as

κe = 〈n, ∂y〉
y + λ

. (5)
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Equation (5) shows that the hanging chain problem is equivalent to a coordinate-free
prescribed curvature problem.

Motivated by the above description of the problem, the main ingredients are the
following. The first aspect concerns to the existence of a reference line which is
prescribed in the problem. In the above arguments, this line is the x-axis of R2 and at
this level, the potential is 0. A second aspect is the existence of a potential energywhich
depends on the position with respect to the reference line. In the case of the catenary,
this potential is due to the gravity. It is to this potential that we want to calculate a
minimum energy, or more exactly, a critical point. Finally, in the variational problem,
all curves of the variation have prescribed endpoints and the same length. In particular,
it is necessary to add a Lagrange multiplier to the potential energy that we want to
minimize. Based on the above discussion,wewill formulate the hanging chain problem
in the sphere S2 and in the hyperbolic plane H2.

The objectives of this paper can be divided into three specific items:

(T1) State the analogous hanging chain problem in S2 and in H2 and find the corre-
sponding Euler–Lagrange equation.

(T2) Obtain an analogous formulation of the prescribed curvature Eq. (5) in terms
of a vector field that represents the ‘gravitational vector field’.

(T3) Rotate the catenary in S
3 and H

3 and determine any unique properties of the
mean curvature of the resulting surface.

The critical points of the potential energy will be also called catenaries. Catenaries
in S

2 will be discussed in Sect. 2 where two potential energies are used, first with the
distance to a geodesic of S2 and second with the distance to a plane of R3. In the
hyperbolic planeH2, the reference lines will be geodesics as well as horocycles. This
work is carried out in Sect. 3.

After the submission of this paper, the author, together collaborators, has obtained
generalizations of the notion of the catenary in other contexts and ambient spaces. See
da Silva and López 2023; da Silva and López 2024a, b; López 2022, 2023.

2 The Hanging Chain Problem in the Sphere

In this section we will consider the hanging chain problem in the unit sphere S2. We
first state the problem and then give different characterizations of its solution.

2.1 Spherical Catenaries: Definition

Consider the unit sphere S
2 = {(x, y, z) ∈ R

3 : x2 + y2 + z2 = 1}. Let � be the
standard parametrization of S2 given by

�(u, v) = (cos u cos v, cos u sin v, sin u), u ∈ [−π

2
,
π

2
], v ∈ R. (6)

In the hanging chain problem in S
2, consider a geodesic of S2 as the reference line

to calculate the potential energy of a chain contained in S
2. Let us fix the great circle
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P = {(x, y, z) ∈ S
2 : z = 0} as the reference geodesic. Notice that on S2 we have not

a concept of gravity g due to the curvature of S2.
At this point, we assign to each point of S2 a potential which measures its distance

to the reference line P , being P the level of zero potential. This distance is realized
along all geodesics (meridians) orthogonal to P . The distance d of a point (x, y, z) =
�(u, v) to the geodesic P is d = | arcsin(z)| = |u|. We also consider the unit vector
field X ∈ X(S2) (except at the north and south poles) which is tangent to all these
geodesics. This vector field is the gradient ∇d of the distance function, which it is
∂�
∂u = �u . The vector field X can be expressed in terms of the canonical vector fields
{∂x , ∂y, ∂z} of R3 as

X(�(u, v)) = − sin u cos v ∂x − sin u sin v ∂y + cos u ∂z . (7)

As in the Euclidean case, we will consider curves of S2 that do not intersect P ,
hence u �= 0. The geodesic P separates S2 in two domains, namely the half-spheres
S
2+ = {(x, y, z) ∈ S

2 : z > 0} and S
2− = {(x, y, z) ∈ S

2 : z < 0}. Without loss of
generality, wewill assume that all curveswill be contained in the upper half-sphereS2+.
Let γ : [a, b] → S

2+ be a regular curve. Let us write γ (t) = �(u(t), v(t)), t ∈ [a, b],
with the condition u(t) ∈ (0, π/2] because γ (t) ∈ S

2+. The arc-length element of γ

is
√
u′2 + v′2(cos u)2 dt . Consequently, the potential energy of γ is

ES[γ ] =
∫ b

a
(u + λ) |γ ′(t)| dt =

∫ b

a
(u + λ)

√
u′2 + v′2(cos u)2 dt, (8)

where λ ∈ R. The second integral of ES[γ ] is a Lagrange multiplier because in the
variational problem all curves have the same length.

Definition 2.1 A critical point of ES is called a spherical catenary.

Before to find the critical points of ES , we will obtain a suitable expression for
the curvature of a curve in S

2. Here the curvature is understood to be the geodesic
curvature κs of γ in S2. The sign of κs depends on the orientation of S2 which will be
N (p) = −p, p ∈ S

2. In such a case,

κs = 〈γ ′′, γ ′ × N (γ )〉
|γ ′|3 = 〈γ, γ ′ × γ ′′〉

|γ ′|3
= 1

|γ ′|3
(
v′(2u′2 sin u + v′2(cos u)2 sin u) − cos u(u′v′′ − u′′v′)

)
.

(9)

Related to the objective T1, we have the following result.

Theorem 2.2 Let γ (t) = �(u(t), v(t)) be a regular curve in S2+. Then γ is a spherical
catenary if and only if its curvature κs satisfies

κs = v′ cos u
(u + λ)|γ ′| . (10)
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Proof We calculate the Euler–Lagrange equation of the energy (8). The Lagrangian of
ES is J [u, v, u′, v′] = (u + λ)

√
u′2 + v′2(cos u)2. Since the same computations will

be done later in a similar context (see Proposition (2.6)), we assume a more general
case of Lagrangian of type

J [u, v, u′, v′] = f (u)
√
u′2 + v′2(cos u)2. (11)

A curve γ is a critical point if and only if γ satisfies

∂ J

∂u
− d

dt

(
∂ J

∂u′

)
= 0 and

∂ J

∂v
− d

dt

(
∂ J

∂v′

)
= 0. (12)

After some computations, Eqs. (12) are, respectively,

v′ cos u
|γ ′|

(
f ′v′ cos u − f u′ sin u

) − f
d

dt

(
u′

|γ ′|
)

= 0,

f ′u′v′(cos u)2

|γ ′| + f
d

dt

(
v′(cos u)2

|γ ′|
)

= 0.

(13)

Equation (13) can be written in terms of κs as follows. Using (9), we obtain

d

dt

(
u′

|γ ′|
)

= v′ cos u
|γ ′|3

(
v′u′2 sin u − cos u(u′v′′ − u′′v′)

)

= v′ cos u
(

κs − v′ sin u
|γ ′|

)
,

(14)

and

d

dt

(
v′(cos u)2

|γ ′|
)

= −u′ cos u
|γ ′|3

(
2u′2v′ sin u + v′3 sin u(cos u)2 − cos u(u′v′′ − u′′v′)

)

= −u′κs cos u.

(15)

From (14) and (15), the Euler–Lagrange Eq. (13) can be expressed as

v′ cos u
(

f ′v′ cos u
f |γ ′| − κs

)
= 0,

u′ cos u
(

f ′v′ cos u
f |γ ′| − κs

)
= 0.

(16)
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Since γ is a regular curve, u′ and v′ cannot be simultaneously zero. Together with
cos u �= 0 and (16), we deduce

κs = f ′v′ cos u
f |γ ′| . (17)

In the particular case that f (u) = u + λ, then (17) is just (10). 	

Equation (10) is second order, but a first integration is possible because the

Lagrangian J [u, v, u′, v′] does not depend on the function v. Indeed, there is a constant
c such that

∂ J

∂v′ = (u + λ)
v′(cos u)2

√
u′2 + v′2(cos u)2

= c. (18)

If c = 0, then v′ = 0 and γ is a meridian of S2. Thus, if c �= 0, then γ is never
tangent to a meridian. In particular, γ does not across the north pole. Without loss of
generality, we can assume that u is a function of v, u = u(v). Then γ (v) = �(u(v), v)

and (18) can be rewritten as

(u + λ)
(cos u)2

√
u′2 + (cos u)2

= c.

Hence, an expression for u = u(v) is deduced, obtaining

∫ u du

cos u
√

(u + λ)2(cos u)2 − c2
= v

c
. (19)

This integral yields the following corollary.

Corollary 2.3 Let γ (v) = �(u(v), v) be a regular curve in S2+. Then γ is a spherical
catenary if and only if u = u(v) satisfies (19) for some constant c ∈ R.

Remark 2.4 Identity (18) is a type of Clairaut relation for spherical catenaries. Since
the Clairaut relation on S

2 holds for geodesics, we need to eliminate the Lagrange
constraint due to the length in the initial formulation of the variational problem. Thus,
take λ = 0 in (18). Under this assumption, the angle 	 that γ makes with the parallel
v �→ �(u, v) is

cos	 = 〈γ ′, �v〉
|γ ′||�v| = v′ cos u

√
u′2 + v′2(cos u)2

.

Then identity (18) can be expressed as

u cos u cos	 = c. (20)
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The classical Clairaut relation establishes cos u cos	 = c (Do Carmo 1976, p. 257).
In the case of spherical catenaries, identity (20) asserts that the radius of the parallel
multiplied byu andby the cosine of the intersection anglewith each parallel is constant.

Going back, Eq. (10) can be viewed as a prescribed equation of a curve γ in
the sphere. Since γ is the image of the plane curve β(t) = (u(t), v(t)) under the
parametrization (6), Eq. (10) can be reformulated in terms of the curvature κβ of β.
The curvature κβ of β is

κβ(t) = u′v′′ − u′′v′

(u′2 + v′2)3/2
. (21)

Inserting in (9), we have

κs = 1

|γ ′|3
(
2u′2v′ sin u + v′3(cos u)2 sin u − κβ cos u(u′2 + v′2)3/2

)
.

Thus, Eq. (10) can be written as

κβ = 2u′2v′ sin u + v′3(cos u)2 sin u − v′ cos u
u+λ

(
u′2 + v′2(cos u)2

)

cos u(u′2 + v′2)3/2
. (22)

This expression for κβ allows to illustrate some spherical catenaries in Fig. 1. These
plots have been made with the Mathematica software (Wolfram Research 2021). We
briefly explain the method to obtain these figures. Suppose γ (t) = �(u(t), v(t)) and
that the curveβ(t) = (u(t), v(t)) is parametrized by arc-length. Then u′(t)2+v′(t)2 =
1. So, we can write u′(t) = cos θ(t) and v′(t) = sin θ(t) for some function θ = θ(t).
According to (22), the functions u(t) and v(t) satisfy the ODE system,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u′(t) = cos θ(t)

v′(t) = sin θ(t)

θ ′(t) = sin θ

(
2(cos θ)2 tan u + (sin θ)2 cos u sin u − 1 − (sin θ)2(sin u)2

u + λ

)
.

(23)

Recall that the variation of the angle function θ(t) coincides with the curvature κβ of
β. Given initial conditions u(0) = u0, v(0) = v0 and θ(0) = θ0,Mathematica solves
numerically the ODE (23) and then the software graphically represents the solution
γ (t) = �(u(t), v(t)).

2.2 Spherical Catenaries: Characterizations

In this subsection, we give a geometric interpretation of (10) completing the objective
T2.
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Fig. 1 Spherical catenaries in S2+ (top view from the north pole) for different initial conditions in the ODE
system (23). The initial conditions are v(0) = 0, θ(0) = π/2 and different values for u(0): u(0) = 0.3
(left), u(0) = 0.6 (middle) and u(0) = 1 (right)

Theorem 2.5 Let γ be a regular curve in S
2+. Then γ is a spherical catenary if and

only if its geodesic curvature κs satisfies

κs = 〈n, X〉
d + λ

, (24)

where n is the unit normal vector of the curve γ (as a tangent vector on S2 orthogonal
to γ ′), and d is the distance to P.

Proof Since the unit normal vector to S2 along γ is N = −γ , the vector n is

n = γ ′ × N (γ )

|γ ′| = γ × γ ′

|γ ′| . (25)

From the definition of X , 〈n, X(γ )〉 = v′ cos u/|γ ′|. Equation (24) follows from (10)
because the function u in (10) is just the distance d to P . 	


Notice that Eq. (24) is the analogue of (5) for spherical catenaries of S2.
The last part of this section addresses the third objective T3. Minimal rotational

surfaces of S3 have been studied in the literature. However, there is no known geo-
metric property of the generating curves of these surfaces. More exactly, we ask if the
generating curves can be viewed as solutions of a hanging chain problem in S3.

A surface of revolution in the three-dimensional sphere S3 will be constructed by
rotating a spherical catenary around the geodesic P . Here, as in the Euclidean catenary,
we will assume λ = 0 for the Lagrange multiplier. Let S3 = {(x1, x2, x3, x4) ∈
R
4 : x21 + x22 + x23 + x24 = 1} and S

2 ↪→ S
3 be the natural inclusion defined by

(x1, x2, x3) �→ (x1, x2, x3, 0). This embedding identifies S2 with S
2 × {0} ⊂ S

3. Let
γ : I → S

2 ⊂ S
3 be a curve contained in S

2+. Denote by Sγ the surface of revolution
in S3 obtained by rotating γ with respect to P ⊂ S

2 × {0}. The one-parameter group
of rotations whose axis is P is G = {Rs : s ∈ R}, where

Rs =

⎛

⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 cos s − sin s
0 0 sin s cos s

⎞

⎟⎟
⎠ .
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In order to simplify the computations, we can assume without loss of generality
that γ is parametrized by γ (t) = �(u(t), t). Then the parametrization of Sγ is

(t, s) = Rs · γ (t)

= (cos (u(t)) cos t, cos (u(t)) sin t, sin (u(t)) cos s, sin (u(t)) sin s) ,
(26)

where t ∈ I ⊂ R and s ∈ R. We now calculate the mean curvature of Sγ . The
expression of the mean curvature of Sγ computed with the aid of (26) is

H = g11h22 − 2g12h12 + g22h11
2(g11g22 − g212)

, (27)

where, as usual, {g11, g12, g22} and {h11, h12, h22} are the coefficients of the first and
second fundamental forms of Sγ for the parametrization (26):

g11 = 〈t ,t 〉, g12 = 〈t ,s〉, g22 = 〈s,s〉,
h11 = 〈G,t t 〉, h12 = 〈G,ts〉, h22 = 〈G,ss〉.

HereG is the unit normal vector field on Sγ .Note thatG((t, s)) is not only orthogonal
to t (t, s) and s(t, s), but also to (t, s) since G is a tangent vector of S3. A
straightforward computation gives g12 = h12 = 0, g11 = |γ ′|2, g22 = (sin u)2 and

h11 = 4u′2 sin u + cos u(2u′′ + sin(2u))

2|γ ′| , h22 = − sin u(cos u)2

|γ ′| .

Thus, the mean curvature H in (27) is

H = cos u(cos u + cos 3u) + (3 cos 2u − 1)u′2 − 2u′′ sin u cos u
2 sin u|γ ′|3 . (28)

The expression (9) when v(t) = t is

κs = 1

|γ ′|3
(
2u′2 sin u + (cos u)2 sin u + u′′ cos u

)
. (29)

Equation (29) allows to write u′′ in terms of κs . By replacing u′′ in (28), the mean
curvature H becomes

H = (cos u)2 − sin u|γ ′|κs
sin u|γ ′| . (30)

Thus, H = 0 if and only if (sin u)|γ ′|κs = (cos u)2. Therefore, if γ is a spherical
catenary, the surface Sγ is not minimal.

Looking in the formula (30), we observe that the term sin u in the numerator is
just the Euclidean distance of the point �(u, v) to the plane � of equation z = 0.
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This suggests to consider the potential energy of γ calculated with respect to the
plane � instead of the geodesic P . Definitively, we will formulate a different hanging
chain problem in S2 in such a way that the critical points of the corresponding energy
functional can successfully answer to the question of the minimality of Sγ .

Consider a plane � of R3, which we can assume that it is the plane of equation
z = 0. As usual, the z-axis is the direction of the gravity when the gravitational vector
field is ∂z . Now, we replace the sphere S2 by an arbitrary surface S of the Euclidean
space R3. The extrinsic hanging chain problem in S consists in determining the shape
of a hanging chain supported on S where the potential energy of γ is calculated with
the Euclidean distance to�. A critical point of this potential will be called an extrinsic
catenary on S. Notice that the vector field ∂z is not a vector of S but of the ambient
space R3. In particular, coming back to the Euclidean context, now the chain in S is
subjected to the Euclidean gravity, which is constant. In particular, we can assert that
the potential at ds of the chain is σ gz ds as usual.

The extrinsic hanging chain problem was studied in the XIX century by Bobillier
(1829/30), although it has not yet received much interest in the literature. See also
(Appell 1941, Ch. VII) and Gudermann (1846), and more recently, Ferréol (2018). In
the particular case that S is the unit sphere S2, a solution of this problem will be called
an extrinsic spherical catenary (Bobillier coined the expression “spherical chaînette”).
In this paper, we recall this problem and its solution and, in addition, we credit to the
work of Bobillier, an almost forgotten French mathematician (Haubrichs dos Santos
2015). The potential energy of the hanging chain is

Eex
S [γ ] =

∫ b

a
(sin u + λ)|γ ′(t)| dt =

∫ b

a
(sin u + λ)

√
u′2 + v′2(cos u)2 dt, (31)

where again λ is a Lagrange multiplier.

Proposition 2.6 Let γ be a regular curve in S
2+. Then γ is an extrinsic spherical

catenary if and only if its geodesic curvature κs satisfies

κs = v′(cos u)2

(sin u + λ)|γ ′| , (32)

or equivalently, if

κs = 〈n, ∂z〉
sin u + λ

. (33)

Proof The Euler–Lagrange Eq. for (31) follows directly from (17), where now f (u) =
sin u + λ. This gives (32). Formula (33) is a consequence of (32) and the expression
(25) for n. 	


Equation (33) is analogous to (5) because the term sin u in the denominator is the
height with respect to � and the vector field ∂z is the gravitational vector field.

Finally, we answer the question ofwhen themean curvature of the rotational surface
Sγ is identically zero (objective T3).
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Corollary 2.7 Let γ be a regular curve in S2+ × {0}. Then Sγ is minimal if and only if
γ is an extrinsic spherical catenary.

Proof Without loss of generality, we can write γ as γ (t) = �(u(t), t). From (30), the
mean curvature H vanishes if and only if (cos u)2 = sin u|γ ′|κs and this identity is
just (32). 	

This result in S

3 is analogous to the relation between the catenoid of R3 and the
catenary curve obtained by Euler. Rotational surfaces in S3 with zero mean curvature
(minimal surfaces) are known: see Arroyo et al. (2019); Ripoll (1989). Among these
surfaces, the Clifford torus is the most famous example because it is the only minimal
embedded torus in S3 (Brendle 2013). In the context of extrinsic spherical catenaries,
theClifford torus corresponds to the case κs(t) = 1 and u(t) = π/4 in (32). Indeed, the

parametrization (26) is (t, s) =
√
2
2 (cos t, sin t, cos s, sin s). Thus, Sγ = S

1( 1√
2
) ×

S
1( 1√

2
) which it is the Clifford torus.

3 The Hanging Chain Problem in the Hyperbolic Plane

In this section, the hanging chain problem in the hyperbolic plane H2 is investigated.
The model for H2 will be the upper half-plane (R2+, g), where R2+ = {(x, y) ∈ R

2 :
y > 0} and the metric is g = dx2+dy2

y2
.

The hanging chain problem in the hyperbolic plane is richer than in the Euclidean
plane because there are several possibilities of reference lines and potential energies.
We will consider the situation that a horocycle is a reference line. Horocycles have
some analogies with the straight-lines of R2 and provide the so-called horospherical
geometry (Izumiya 2009). This section is divided into three parts according to this
variety of choices:

(1) Hyperbolic catenary: the reference line is a geodesic and the potential energy is
calculated along geodesics of H2.

(2) Hyperbolic horo-catenary: the reference line is a geodesic and the potential energy
is calculated along horocycles of H2.

(3) Horo-catenary: the reference line is a horocycle and the potential energy is calcu-
lated along geodesics of H2.

Let γ : [a, b] → H
2 be a regular curve parametrized by γ (t) = (u(t), v(t)). The

energy to minimize in all these situations in this section is of type

γ �−→
∫ b

a
ω(u, v)|γ ′(t)| dt =

∫ b

a
ω(u, v)

√
u′2 + v′2

v
dt (34)

whereω = ω(u, v) is a smooth function on the variablesu andv. Here
√
u′2 + v′2/v dt

is the arc-length element of H2. This energy can be interpreted as the length of γ in
the conformal metric g̃ = ω2g, and consequently, its critical points coincide with
the geodesics in the conformal space (R2+, g̃). In order to simplify the presentation
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of this section, the Euler–Lagrange equations of the energy (34) are calculated in the
following result.

Proposition 3.1 A regular curve γ (t) = (u(t), v(t)) in H
2 is a critical point of the

energy (34) if and only if its curvature κh is

κh = v

ω
√
m

(
u′ωv − v′ωu

)
, (35)

where m(t) = u′(t)2 + v′(t)2, ωu = ∂ω
∂u and ωv = ∂ω

∂v
.

Proof A straightforward computation of (12) gives, respectively

u′

v2
√
m

(
u′vωv − v′ωu − u′ω

v
− ω

u′v′′ − v′u′′

m

)
= 0,

v′

v2
√
m

(
u′vωv − v′ωu − u′ω

v
− ω

u′v′′ − v′u′′

m

)
= 0.

Since γ is regular, and using the Euclidean curvature κe given in (21), we deduce that
γ is a critical point of the energy (34) if and only if

κe = 1

ω
√
m

(
u′ωv − v′ωu − u′ω

v

)
. (36)

On the other hand, the curvature κh of γ is related to κe because the hyperbolic metric
is conformal to the Euclidean one: see (Besse 1987, Chapter 1). This relation is

κh = vκe + u′
√
m

. (37)

Then (35) is consequence of (36) and (37). 	

The identity (35) can be also expressed as follows. Consider {∂x , ∂y} the canonical

vector fields of R2. Then the gradient ∇ω of ω (in H2) is

∇ω = y2(ωx∂x + ωy∂y).

On the other hand, the unit normal vector of γ is n(t) = v(t) (−v′(t),u′(t))√
m

. Thus, we
obtain:

Corollary 3.2 A regular curve γ (t) = (u(t), v(t)) inH2 is a critical point of the energy
(34) if and only if its curvature κh satisfies

κh = g(n,∇ω)

ω
, (38)

where n is the unit normal vector of γ .
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3.1 Hyperbolic Catenaries

The first case to investigate follows the same motivation as in the Euclidean plane. For
the choice of the reference line, we take a geodesic L of H2 which we can assume to
be L = {(0, y) : y > 0}. At this level, the potential will be 0. The potential energy
at each point is determined by the hyperbolic distance to L which is calculated along
the geodesics orthogonal to L . If (x, y) ∈ H

2, its distance d to L is

d = log
x + √

x2 + y2

y
.

The geodesics orthogonal to L are half-circles of R2+ centered at the origin of R2.
Thus, the unit vector field Y ∈ X(H2) which is orthogonal to all these geodesics at
each point of H2 is

Y (x, y) = y

(
y

√
x2 + y2

∂x − x
√
x2 + y2

∂y

)

. (39)

Given a curve γ (t) = (u(t), v(t)), define the potential energy

EH [γ ] =
∫ b

a
(d + λ)|γ ′(t)| dt =

∫ b

a
(d + λ)

√
u′2 + v′2

v
dt, d = log

u + r

v
,(40)

where r(t) = √
u(t)2 + v(t)2. As in the case of the sphere S

2, in H
2 we have no

notion of (constant) gravity. Let us observe that EH is a particular case of (34) by
choosing ω(u, v) = d +λ. It will be assumed that d �= 0, that is, u �= 0. Equivalently,
the curve γ is contained in one of the domains H2+ = {(x, y) ∈ H

2 : x > 0} or
H

2− = {(x, y) ∈ H
2 : x < 0}. Since each domain is mapped into other by means

of the isometry (x, y) �→ (−x, y), it will be assumed that EH acts on the class of all
curves γ contained in H2+.

Definition 3.3 A critical point of EH is called a hyperbolic catenary.

As inR2 and S2, a hyperbolic catenarywill be characterized in terms of its curvature
κh as curve of H2.

Theorem 3.4 A regular curve γ (t) = (u(t), v(t)) in H
2+ is a hyperbolic catenary if

and only if its curvature κh satisfies

κh = − 1

d + λ

uu′ + vv′
√
u2 + v2

√
u′2 + v′2 = − r ′

(d + λ)
√
u′2 + v′2 . (41)

Proof The energy EH is a particular case of (34). Using (35) with f = d + λ, then
Eq. (41) is obtained immediately. 	
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With respect to T2, the next step consists of writing Eq. (41) in a similar manner as
the formula (5) involving the curvature κh and the vector field Y . The following result
is immediate by a direct computation or using (38) because the vector field Y is just
∇d.

Corollary 3.5 A regular curve γ in H
2+ is a hyperbolic catenary if and only if its

curvature κh satisfies

κh = g(n,Y )

d + λ
. (42)

As a consequence, Corollary 3.5 is the analogue in H2 of the statement (5) for hyper-
bolic catenaries.

3.2 Hyperbolic Horo-Catenaries

Consider a modified version of the above hanging chain problem replacing the poten-
tial calculated with the hyperbolic distance by the horocycle distance. The horocycle
distance to the geodesic L is defined as the distance of a point (x, y) ∈ H

2 to L
calculated by the horocycle passing through (x, y) and orthogonal to L . In the present
case that L is the geodesic of equation x = 0, this distance is |x |/y.

Letγ (t) = (u(t), v(t)), t ∈ [a, b], be a regular curve contained inH2+. The potential
energy of γ calculated with the horocycle distance is

EhorH [γ ] =
∫ b

a
(dhor + λ)|γ ′(t)| dt =

∫ b

a
(dhor + λ)

√
u′2 + v′2

v
dt, dhor = u

v
.

(43)

Definition 3.6 A critical point of Ehor
H is called an hyperbolic horo-catenary.

With respect to the objective T1, we prove:

Theorem 3.7 A regular curve γ (t) = (u(t), v(t)) inH2+ is a hyperbolic horo-catenary
if and only if its curvature κh satisfies

κh = − uu′ + vv′

(dhor + λ)v
√
m

. (44)

Proof The energy Ehor
H in (43) is of type (34) and formula (44) is (35) for f = dhor . 	


To answer to T2, we replace the above vector field Y by the vector fieldW ∈ X(H2)

defined as

W (x, y) = y ∂x − x ∂y .

The next result is a consequence of (38) because W = ∇dhor .
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Corollary 3.8 A regular curve γ in H2+ is a hyperbolic horo-catenary if and only if its
curvature κh satisfies

κh = g(n,W )

dhor + λ
. (45)

To conclude this subsection, we investigate problem T3 for this type of catenaries.
The hyperbolic plane H

2 is embedded into the three-dimensional hyperbolic space
H

3 = (R3+, 1
x23

(dx21+dx22+dx23 )) via the natural inclusion (x, y) ∈ H
2 �→ (x, 0, y) ∈

H
3. With this identification, the geodesic L ⊂ H

2 is the x3-axis in H3. Let Sγ denote
the surface of revolution obtained by rotating γ (t) = (u(t), 0, v(t)) with respect to
the x3-axis. In the upper half-space model of H3, the rotations that leave pointwise
fixed the x3-axis coincide with the Euclidean rotations ofR3 with the same axis. These
surfaces of revolution inH3 are called of spherical type (Do Carmo and Dajcze 1983).
Thus, a parametrization  of Sγ is

(t, s) = (u(t) cos s, u(t) sin s, v(t)), t ∈ [a, b], s ∈ R. (46)

Theorem 3.9 A regular curve γ inH2+ is a hyperbolic horo-catenary for λ = 0 if and
only the rotational surface Sγ of spherical type is minimal.

Proof In the upper half-space model of H3, the mean curvature H of a surface S can
be computed with the aid of the Euclidean mean curvature He of S when S is viewed
as a submanifold of the Euclidean space R3+. This relation is similar to (37), namely,

H(p) = x3He(p) + N3(p), (47)

where p = (x1, x2, x3) ∈ S and N = (N1, N2, N3) is the Euclidean unit normal vector
of S (Besse 1987, Chapter 1). If now S is the rotational surface Sγ parametrized by 

in (46), the value of He is

He = κe

2
+ v′

2u
√
m

, (48)

and the expression of N is

N = 1√
m

(−v′ cos s,−v′ sin s, u′).

Thus, N3 = u′/
√
m, and using (48), the mean curvature H given in (47) becomes

H = vκe

2
+ vv′

2u
√
m

+ u′
√
m

.
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Using (37),

H = κh

2
+ uu′ + vv′

2
√
m

.

Then H = 0 if and only if

κh = −uu′ + vv′
√
m

. (49)

But this identity (49) is just Eq. (44) for λ = 0 because dhor = u/v. This proves the
result. 	


We point out that do Carmo and Dajczer obtained all minimal rotational surfaces of
H

3. The statement of Theorem 3.9 gives a geometric interpretation of the generating
curves of minimal rotational surfaces of spherical type ofH3 proving that these curves
are the solutions of a hanging chain problem in H

2. As a consequence, this extends
the Euler’s result to spherical minimal rotational surfaces.

3.3 Horo-Catenaries

We investigate the hanging chain problem considering a horocycleH as reference line.
Without loss of generality, we can assumeH = {(t, 1) : t ∈ R}. The potential energy
at each point of H2 is given by its hyperbolic distance to H. In the upper half-plane
model of H2, the geodesics orthogonal to H are vertical lines of R2+. If (x, y) ∈ H

2,
the hyperbolic distance db from (x, y) to H is the length throughout the geodesic
orthogonal to H passing through (x, y). This distance is db = log(y). Note that this
distance coincides with the Busemann function in the horospherical geometry when
the ideal point is ∞ (Busemann 1955). The unit vector field V ∈ X(H2) which is
tangent to all these geodesics is given by

V (x, y) = y∂y .

We will assume again that db �= 0, that is, y �= 1. The horocycle H separates H2

in two domains, namely, H2(+) = {(x, y) ∈ H
2 : y > 1} and H

2(−) = {(x, y) ∈
H

2 : y < 1}, but both domains are not isometric. From now on, we will assume that
all curves are contained in H

2(+) and a similar work can be done in the case that all
curves are contained in H2(−).

Let γ : [a, b] → H
2+ be a regular curve, γ (t) = (u(t), v(t)). The potential energy

of γ is

Ehor [γ ] =
∫ b

a
(db + λ)|γ ′(t)| dt =

∫ b

a
(db + λ)

√
u′2 + v′2

v
dt . db = log v, (50)

where λ ∈ R is a Lagrange parameter.

123



   75 Page 18 of 23 Journal of Nonlinear Science            (2024) 34:75 

Definition 3.10 A critical point of Ehor is called a horo-catenary.

We characterize the horo-catenaries in terms of their curvatures κh .

Theorem 3.11 A regular curve γ (t) = (u(t), v(t)) inH2(+) is a horo-catenary if and
only if its curvature κh satisfies

κh = u′

(db + λ)
√
m

. (51)

Proof Expression (51) is just (35) for f = db + λ. 	

The Lagrangian J of Ehor is

J [u, v, u′, v′] = (db + λ)

√
u′2 + v′2

v
, (52)

which does not depend on u. Thus, a first integration of the Euler–Lagrange equation
can be deduced.

Corollary 3.12 A regular curve γ in H2(+) is a horo-catenary if and only if γ can be
locally expressed as

γ (v) =
(∫ v cτ

√
(log τ + λ)2 − c2τ 2

dτ, v

)

, (53)

where c ∈ R is a constant of integration.

Proof From (52), there exists a constant c such that ∂ J
∂u′ = c. This identity is

u′(log v + λ)

v
√
u′2 + v′2 = c. (54)

Without loss of generality, we can assume that γ writes locally as γ (v) = (u(v), v).
Then (54) is

u′(log v + λ)

v
√
1 + u′2 = c.

Hence, it follows (53). 	

With respect to the objective T2, we have the following characterization of horo-

catenaries which is a consequence of (38) and the fact that V = ∇db.

Corollary 3.13 A regular curve γ inH2(+) is a horo-catenary if and only if its curva-
ture κh satisfies

κh = g(n, V )

db + λ
. (55)
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Fig. 2 Catenaries in H
2 considering the upper half-plane model: hyperbolic catenary (left), hyperbolic

horo-catenary (middle), horo-catenary (right). These curves are solutions of (59) and the initial conditions
(60) are: u0 = 1, v0 = 3 and θ0 = π/2 (left and middle); u0 = 0, v0 = 1.8 and θ0 = 0 (right)

Equation (55) is the analogue of the formula (5) in the context of horo-catenaries.
We finish this section with some pictures of the three types of catenaries for λ =

0. See Fig. 2. The process to plot these curves with Mathematica is the following.
Suppose that γ (t) = (u(t), v(t)) is parametrized by the Euclidean arc-length. Then
γ ′(t) = (cos θ(t), sin θ(t)) for some function θ = θ(t), where θ ′(t) = κe(t) is the
Euclidean curvature of γ . For each type of catenary, the value of κe is obtained by
combining (37) and each one of the expressions for κh in (41), (44) and (51):

κe = − 1

v
√
m

(
uu′ + vv′

rd
+ u′

)
, (hyperbolic catenary), (56)

κe = − 1

v
√
m

(
uu′ + vv′

vdhor
+ u′

)
, (hyperbolic horo-catenary), (57)

κe = 1

v
√
m

1 − db
db

u′, (horo-catenary). (58)

It follows that the functions u(t), v(t) and θ(t) satisfy the ODE system

⎧
⎪⎨

⎪⎩

u′(t) = cos θ(t)

v′(t) = sin θ(t)

θ ′(t) = κe(t).

(59)

Finally, and distinguishing the three types of catenaries of H2, the system (59) has
been numerically solved withMathematica once initial conditions

u(0) = u0, v(0) = v0, θ(0) = θ0 (60)

have been prescribed.
As a consequence of these plots, we observe that the horo-catenary (Fig. 2, right)

is a graph on the x-axis. This is not a coincidence, but it holds in general.
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Proposition 3.14 If γ is a horo-catenary, then γ is a vertical line or γ is a bounded
entire graph on the x-axis.

Proof Suppose that γ is parametrized by γ (t) = (u(t), v(t)), t ∈ I ⊂ R, where t is
the Euclidean arc-parameter and I is the maximal domain. Since γ is a horo-catenary,
the curvature κe of γ satisfies (58). Thus, the ODE system (59) is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u′(t) = cos θ(t)

v′(t) = sin θ(t)

θ ′(t) = 1 − log v

v log v
u′.

(61)

We distinguish two cases.

(1) Suppose there exists t0 such that u′(t0) = 0. The first Eq. of (61) implies
cos θ(t0) = 0. Without loss of generality, we suppose that θ(t0) = π/2. Thus,
at t = t0, the initial conditions (60) are (u(t0), v(t0), π/2). By uniqueness of
(61)-(60), γ is a vertical straight-line.

(2) Suppose u′(t) �= 0 for all t . This implies that γ is a graph on some interval
I = (a, b) of the x-axis. Reparametrizing γ , the curve γ can be expressed by
γ (x) = (x, v(x)), x ∈ I and it will be proved that I = R. Equation (54) for κe
becomes

log v

v
√
1 + v′2 = c. (62)

Since c �= 0 and γ is contained in H
2(+), we have log(v) > 0. From (62) we

deduce

0 < c = log v

v
√
1 + v′2 ≤ log v

v
. (63)

The function t �→ log t/t is bounded in (1,∞) with the property

lim
t→∞

log t

t
= lim

t→1

log t

t
= 0. (64)

From (63) and (64), we conclude that v′ is a bounded function. Moreover, there
exist two constants m1,m2 ∈ R such that 1 < m1 < m2 and m1 ≤ v(x) ≤ m2
for all x ∈ (a, b). The fact that the function v′(t) is bounded proves finally that
all solutions of (61) are defined in the entire real line R.

	


4 Conclusions and Outlook

The catenary is the solution of the hanging chain problem in R
2 and this makes it

so attractive in other fields of science, engineering and architecture. However, the
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hanging chain problem has not been formulated in spaces other than Euclidean one.
Among these spaces, the sphere S2 and the hyperbolic planeH2 are the natural choices
to extend this problem. It has been formulated this problem in S2 and in H2, defining
in each case a potential energy that depends on the distance of a point with respect to
a reference line. The resulting critical points of these energies (for different reference
lines) have generalized the concept of catenary in both spaces.

A remarkable result is the characterization of the generating curves of minimal
rotational surfaces of S3 proving that these curves are chains on S

2 suspended by
its weight where the force vector field is really the gravity of R3. In this particular
situation, the initial hanging chain problem formulated in S2 must be replaced by other,
which was called ‘extrinsic’, because the force field is a vector of R3, not of S2. Then
it was proved that the generating curves are solutions of an old problem formulated by
Bobillier in the nineteenth century and that it has been revisited in the present paper.

There are a number of problems in which this article could be expanded. For exam-
ple, a question concerns to investigate the existence of closed spherical catenaries. In
view of the pictures of Fig. 1, it seems plausible that such catenaries do exist. This
problem was investigated in Arroyo et al. (2019) for extrinsic spherical catenaries in
the context of rotational surfaces of S3 with constant mean curvature. Besides the
closed catenaries, there are other catenaries which never close up and they are turning
around the north pole of S2. The problem that arises here is that, although the curvature
function is periodic, this is not enough to ensure that the corresponding catenary will
be closed: see a discussion of this problem in Arroyo et al. (2008).

As in S
2, it would be interesting to classify the catenaries in the hyperbolic plane.

Proposition 3.14 is just an example, but the work to be done goes beyond that. Accord-
ing to Fig. 2, several questions are reasonable to ask. For example, (i) when does a
catenary intersect the ideal boundary of H2? and in such a case, determine whether
the intersection is orthogonal; (ii) is every horo-catenary periodic? (iii) Which are the
properties of the horo-catenaries contained in H

2(−)?
Another extension of the paper would be to consider the shape of a hanging surface

in S
3 and H

3. In the Euclidean space, the analogue of the catenary in the two-
dimensional case is called a singular minimal surface (Böhme et al. 1980; Dierkes
and Huisken 1990). The extension is straightforward using the characterization (5).
So, it suffices to replace the curvature of the catenary κe by the mean curvature H of
the surface and the unit normal n of the curve by the unit normal vector field G to the
surface. For example, in the three-dimensional unit sphere S3, the shape of a hanging
surface with respect to S2×{0} is characterized by the equation H = 〈G, X〉/(d+λ),
λ ∈ R. Here d is the distance to S2×{0} and X ∈ X(S3) is the unit vector field tangent
to the meridians of S3 which are orthogonal to S2 × {0}.

Finally, it could be interesting to obtain some geometric properties of the rotational
surfaces inS3 and inH3 constructedby catenaries in its different possibilities.Although
initially the hanging chain problem has no relation to the problem for rotational sur-
faces with minimum area, in some cases we have proved a connection between both
problems (Corollary 2.7 and Theorem 3.9). It seems interesting to investigate geo-
metric properties of the rotational surfaces of S3 and H3 whose generating curves are
catenaries of S2 and H

2, respectively.
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