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A B S T R A C T

In this paper, we propose a family of 𝐶1 non-uniform cubic quasi-interpolation schemes.
The construction used here is mainly based on directly establishing the BB-coefficients by a
suitable combination of the data values. These combinations generate masks for each of the
BB-coefficients. These masks can contain free parameters, which allow us to write a quasi-
interpolation schemes defined from a large stencil as a non-negative convex combination of
others defined from sub-stencils of small sizes, which coincide with the concept of WENO, which
we will use the deal with non-smooth data, or data with jumps. We consider an application of
the proposed technique for real measured data related to memristors fabricated with hafnium
oxide as a dielectric.

1. Introduction

Approximating data using splines is a common technique in numerical analysis and data interpolation. A spline is a piecewise-
defined function that consists of polynomial segments joined together smoothly at specific points called knots.

Interpolation seeks a function that precisely aligns with specified data values, achieving an exact match that involves solving
a linear system with as many unknowns as the spline space’s dimension, but this approach is not suitable for efficient real-time
processing of extensive data streams. Moreover, exact data point matching may be problematic, particularly when dealing with
noisy data. From this point of view, local methods, such as spline quasi-interpolation, which do not need to solve any linear
system, are advantageous. In fact, spline quasi-interpolation is a technique that involves fitting a spline to the data values without
the requirement that the spline matches all the data values exactly, which makes it a useful technique for various types of data
approximation problems. This technique was first introduced in a seminal works of Schoenberg [39,40] and referred to as smoothing
interpolation.

A linear quasi-interpolation operator 𝑄 maps a function 𝑓 to an element

𝑄𝑓 =
𝑛
∑

𝑖=1
𝜙(𝑓, 𝑖)𝑁𝑖,

of a suitable spline space, where 𝑛 and 𝑁𝑖 represent, the spline space dimension and function basis respectively, while 𝜙(∙, 𝑖) are linear
functionals. They can be defined in different ways, according to the provided information about the function 𝑓 to be approximated.
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Namely, they are point [15,38], derivative [13] or integral linear functionals [14,37]. In this work, we consider the first case, in
which 𝜙(𝑓, 𝑖) is a finite linear combination of values of 𝑓 . These functionals are defined in a such way that the spline 𝑄𝑓 should
eproduce polynomials and preferably functions in the given spline space, which guaranties a best approximation properties.

Moreover, the basis functions 𝑁𝑖, should meet some useful properties, such as, local support and non-negative partition of unity.
xamples are Bernstein basis and any polynomial B-spline basis [31].

In this paper, we propose a family of quasi-interpolating splines in Bernstein–Bézier (BB-) form. The schemes are directly
etermined by fitting their Bernstein–Bézier (BB-) coefficients to an appropriate combination of the given data values. In particular,
he BB-coefficients are calculated taking into account the required smoothness and polynomial accuracy. To each BB-coefficient, we
ill associate a mask of real values, this technique makes the construction fast and also gives more freedom in the construction.

n general, we get masks with free parameters, which allows us to achieve more properties such as superconvergence and in many
imes to match the data values. This construction was first used to derive bivariate quasi-interpolation schemes defined on uniform
hree-direction triangulations (see [5,43]), Powell–Sabin triangulation [7], and a tensor product approximant [4]. A univariate study
as been also developed in [6] for low degree splines.

Applying quasi-interpolation splines to non-smooth data, may lead to the Gibbs phenomenon, which is a phenomenon of
scillations or over- and under-shoots that occurs near discontinuities or sharp features in the data [12]. To avoid this limitation,
ne can adapt Essentially Non-Oscillatory (ENO) and Weighted-ENO (WENO) principles to spline quasi-interpolation for non-smooth
ata [2,18].

ENO and WENO are numerical methods that are primarily used in the context of solving hyperbolic partial differential equations
nd capturing shock waves accurately. The idea behind these approaches is to decompose the set of data values (stencil) used
o define a functional 𝜙(𝑓,𝓁) into a number of subsets (sub-stencils), and then define 𝜙(𝑓,𝓁) only from the smooth subsets. The
moothness of a set of data values is measured by a smoothness indicator defined according to the type of data values [45].

The ENO technique uses only one sub-stencil from all available sub-stencils. In contrast, the WENO technique associates a real
eight value to each sub-stencil and then uses all the sub-stencils to define the corresponding functional. The weights must be
on-negative partition of unity [3,41].

We apply the WENO technique to the proposed quasi-interpolating spline schemes. And with the help of the free parameters in
he masks defining the BB-coefficients, we can freely define the WENO weights. This allows us to obtain the appropriate weights
r, more generally, to define the weights freely by imposing conditions on the free parameters.

The non-linear ENO and WENO techniques can directly interpolate data, offering a non-linear enhancement to traditional
nterpolation methods. For example, in [24], the authors introduced and evaluated fourth-order ENO and WENO schemes based
n Lagrange interpolating operators, which have found useful application in radiative transfer problems [42].

Despite the widespread use of interpolation techniques, they often suffer from drawbacks, prompting the exploration of quasi-
nterpolating schemes, which offer certain advantages. The construction technique presented in this paper for quasi-interpolating
chemes is explicit and does not require the construction of basis functions, making the schemes faster and more memory-efficient.
pplying WENO and ENO techniques to these new schemes could prove more beneficial than applying them directly to Lagrange

nterpolation, offering enhanced performance and versatility in handling large data sets.
The non-linear improvement of the proposed quasi-interpolating spline schemes will be used in order to fit pulsed measurements

erformed in memristors based on a hafnium oxide dielectric. Memristors are electron devices that are intensively under scrutiny
y the academia and industry [10,26,27]. These new and outstanding devices are promising in the electronic industry due to
pplications linked to non-volatile memories [23,27,28,32,44]. They have already been included in current industrial integrated
ircuits [26] and their market share with respect to the overall memory chip sales is expected to grow in the coming years. Among
he memristors, resistive memories are the most important type. Because of the potential of these latter devices, they have been
odelled and simulated from different perspectives. Modelling is important since the models (algebraic expressions that, in general,

llow the calculation of charge and current as a function of the applied voltage) are incorporated in circuit simulators, so that
esigners can employ resistive memories to build new circuits that, among other components, include resistive memories, also known
s RRAMs (Resistive Random Access Memories). There are different aspects of this discipline that have been tackled by our group,
uch as advanced statistical modelling [1,35] and compact modelling (for circuit simulation and design) [9,11,16,17,19,20,25,36].
n addition, in the parameter extraction facet, where a massive amount of experimental data is numerically analysed to extract
hysical constants that help in the modelling process, we have develop an important activity were advanced mathematical techniques
ere key to overcome the hurdles posed by noise and variability [8,21,22,30]. These numerical techniques lie upon state-of-the-art
evelopments in the approximation theory that lead to smooth numerical derivatives through different methodologies, detection of
traight lines and other issues making use of measurements that presents different types of noise. In what is related to parameter
xtraction, we have dealt so far with steady state measurements under ramped voltage stress, which is a usual operation regime in
RAMs. Nevertheless, operation in RRAMs is connected to input signals made of voltage pulses, as it is the case in memory devices,
n essential application for the industry. Because of this, we focus the analysis of this manuscript in this operation regime and, as a
onsequence, we enter a new landscape from the mathematical viewpoint, since we are faced to the analysis and reconstruction of
ignals that present discontinuities and have non-uniform 𝑋-axis partitions. This latter issue is due to the measurement conditions,
ince the limitations of the measurement equipment produce unequal voltage steps, even if it is programmed to do so. Mathematically
his measurement context leads us to a new paradigm from the numerical reconstruction perspective. In fact, the measured data
eatures led us to use quasi-interpolating spline schemes in BB-form, as highlighted above, to accurately fit the measurements for
159
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Fig. 1. Domain points.

The rest of paper is organized as follows: In Section 2, we introduce the notation used throughout the paper, as well as we
onstruct a family of spline quasi-interpolation schemes on non-uniform partition. Section 3, is devoted to a WENO-based non-linear
mprovement of the presented schemes. In Section 4, we propose the use of WENO-based quasi-interpolation schemes in modelling
xperimental data obtained from resistive memories under a pulsed input voltage signals.

. Non-uniform 𝑪𝟏-cubic quasi-interpolating splines

Throughout this paper, we consider a partition 𝑋𝑛 ∶=
{

𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛 = 𝑏
}

of a bounded interval 𝐼 ∶= [𝑎, 𝑏]. 𝑋𝑛 divides 𝐼
nto 𝑛 ∈ N sub-intervals 𝐼𝑖 ∶= [𝑥𝑖, 𝑥𝑖+1], 𝑖 = 0,… , 𝑛 − 1. The length of 𝐼𝑖 is denoted by ℎ𝑖 ∶= 𝑥𝑖+1 − 𝑥𝑖. In the following, we consider

the space of 𝐶1 continuous cubic splines on 𝑋𝑛, defined by

𝑆1
3
(

𝑋𝑛
)

=
{

𝑠 ∈ 𝐶1 (𝐼) ∶ 𝑠∣𝐼𝑖 ∈ P3, 𝑖 = 0,… , 𝑛 − 1
}

.

n general, P𝑑 will denote the linear space of polynomials of total degree less than or equal to 𝑑. Being the restriction 𝑠𝑖 ∶= 𝑠∣𝐼𝑖 of a
pline 𝑠 ∈ 𝑆1

3
(

𝑋𝑛
)

to the sub-interval 𝐼𝑖 a polynomial in P3, it can be represented in BB-form on 𝐼𝑖. Therefore, there are coefficients
𝑘,𝑖 such that

𝑠𝑖 (𝑥) =
3
∑

𝑘=0
𝑐𝑘,𝑖𝐵

𝑖
𝑘(𝑥), (1)

here 𝐵𝑖
𝑘(𝑥) ∶= 𝐵𝑘

(

𝑥−𝑥𝑖
ℎ𝑖

)

, with

𝐵𝑘(𝑥) ∶=
3!

𝑘!(3 − 𝑘)!
(1 − 𝑥)3−𝑘𝑥𝑘, 𝑥 ∈ [0, 1] ,

The Bernstein polynomials 𝐵𝑘, 𝑘 = 0, 1, 2, 3, give a basis for P3 and form a partition of unity. The expression in (1) is said to be
the BB-form of 𝑠𝑖, and the real coefficients 𝑐𝑘,𝑖 are called the Bézier (B-) ordinates or BB-coefficients of 𝑠𝑖, which are linked to the
domain points 𝑝𝑖,𝑘 = 3−𝑘

3 𝑥𝑖 +
𝑘
3 𝑥𝑖+1.

We consider the union without repetitions of the domain points associated with all sub-intervals 𝐼𝑖, which yields the set
=
⋃

𝑖∈Z 𝑖, where 𝑖 ∶=
{

𝑝𝑖−1,2, 𝑝𝑖,0, 𝑝𝑖,1
}

.
In order to simplify the notation, we use 𝑣𝑖, 𝑢𝑖 and 𝑤𝑖+1 to denote 𝑝𝑖,0, 𝑝𝑖,1, and 𝑝𝑖,2, respectively, then 𝑖 =

{

𝑤𝑖, 𝑣𝑖, 𝑢𝑖
}

. Fig. 1
shows schematic representation of the domain point sets 𝑖−1, 𝑖, and 𝑖+1.

Once the needed notations are introduced, we define a quasi-interpolating spline 𝑄𝑓 that maps a function 𝑓 ∈ 𝐶 (𝐼) into an
lement of 𝑆1

3
(

𝑋𝑛
)

. Let values 𝑓
(

𝑥𝑖
)

=∶ 𝑓𝑖, 𝑖 = 0,… , 𝑛, of a function 𝑓 be given. Then 𝑄𝑓 is defined by setting its B-ordinates on
ach sub-interval 𝐼𝑖 induced by the partition 𝑋𝑛. More precisely, on the sub-interval 𝐼𝑖, the 𝑄𝑓 is expressed as

𝑄𝑓∣𝐼𝑖 (𝑥) = 𝑉𝑖𝐵
𝑖
0(𝑥) + 𝑈𝑖𝐵

𝑖
1(𝑥) +𝑊𝑖+1𝐵

𝑖
2 + 𝑉𝑖+1𝐵

𝑖
3(𝑥), (2)

here 𝑉𝑖, 𝑈𝑖 and 𝑊𝑖 stand for the B-ordinates relative to the domain points 𝑣𝑖, 𝑢𝑖 and 𝑤𝑖, respectively.
For each set of domain points 𝑖 we associate a stencil, i.e, a set of discrete values of 𝑓 . Namely, for the B-ordinates 𝑊𝑖, 𝑉𝑖, and

𝑖 related to the domain points in 𝑖 are computed from the values of 𝑓 at the points in the stencil 𝑆𝑖 =
{

𝑥𝑖−2, 𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1, 𝑥𝑖+2
}

,
.e., as linear combinations of the values in 𝑓

(

𝑆𝑖
)

=
{

𝑓𝑖−2, 𝑓𝑖−1, 𝑓𝑖, 𝑓𝑖+1, 𝑓𝑖+2
}

.
These B-ordinates determine the so-called masks,

𝑊𝑖 ∶= 𝛾𝑖 ⋅ 𝑓
(

𝑆𝑖
)

, 𝑉𝑖 ∶= 𝛽𝑖 ⋅ 𝑓
(

𝑆𝑖
)

and 𝑈𝑖 ∶= 𝛼𝑖 ⋅ 𝑓
(

𝑆𝑖
)

, (3)

here 𝛾𝑖 ∶=
(

𝛾𝑖,−2, 𝛾𝑖,−1, 𝛾𝑖,0, 𝛾𝑖,1, 𝛾𝑖,2
)

, 𝛽𝑖 ∶=
(

𝛽𝑖,−2, 𝛽𝑖,−1, 𝛽𝑖,0, 𝛽𝑖,1, 𝛽𝑖,2
)

, 𝛼𝑖 ∶=
(

𝛼𝑖,−2, 𝛼𝑖,−1, 𝛼𝑖,0, 𝛼𝑖,1, 𝛼𝑖,2
)

are real vectors in R5, and
⋅ 𝐵 ∶=

∑𝑁
𝓁=1 𝐴𝓁 𝐵𝓁 for 𝐴 =

(

𝐴1,… , 𝐴𝑁
)

and 𝐵 =
(

𝐵1,… , 𝐵𝑁
)

.
The construction of 𝑄𝑓 is then reduced to find the masks 𝛼𝑖, 𝛽𝑖 and 𝛾𝑖.

roblem 1. Find masks 𝛼𝑖, 𝛽𝑖 and 𝛾𝑖 such that the quasi-interpolating spline 𝑄𝑓 defined by (2) is 𝐶1-continuous and 𝑄𝑝 = 𝑝 for
ll 𝑝 ∈ P3.

Before dealing with a solution of Problem 1, we need the following results concerning the relationship between 𝐶1 smoothness
t a knot 𝑥𝑖 and the B-ordinates around 𝑥𝑖.

roposition 1. The quasi-interpolant defined by (2) is 𝐶1-continuous at 𝑥𝑖 if and only if

𝛽𝑖,𝑘 = 1 (

ℎ𝑖𝛾𝑖,𝑘 + ℎ𝑖−1𝛼𝑖,𝑘
)

, 𝑘 = −2,−1, 0, 1, 2. (4)
160
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Fig. 2. 𝐶1-smoothness condition at 𝑣𝑖.

Proof. 𝑄𝑓 is 𝐶1-continuous at 𝑥𝑖 if and only if 𝑄𝑓 ′
∣𝐼𝑖−1

(

𝑥𝑖
)

= 𝑄𝑓 ′
∣𝐼𝑖

(

𝑥𝑖
)

, which is equivalent to control points 𝐖𝑖 ∶=
(

𝑤𝑖,𝑊𝑖
)

,
𝐕𝑖 ∶=

(

𝑣𝑖, 𝑉𝑖
)

and 𝐔𝑖 ∶=
(

𝑢𝑖, 𝑈𝑖
)

being collinear. This holds if and only if

𝑉𝑖 =
1

ℎ𝑖−1 + ℎ𝑖

(

ℎ𝑖𝑊𝑖 + ℎ𝑖−1𝑈𝑖
)

,

nd the claim follows. □

Fig. 2 illustrates an example of 𝐶1-smoothness condition at 𝑣𝑖 for a 𝐶1-continuous spline.
Once the 𝐶1-continuity has been characterized in terms of the masks, we must establish the conditions that ensures the exactness

n P3 of the quasi-interpolation operator 𝑄 ∶ 𝐶1 (𝐼) ⟶ 𝐶 (𝐼) defined as 𝑄 [𝑓 ] = 𝑄𝑓 . To this end, the B-ordinates of the monomials
𝑚𝑘 (𝑥) ∶=

(

𝑥−𝑣𝑖
ℎ

)𝑘
, 𝑘 = 0, 1, 2, 3, are needed.

emma 2. The B-ordinates of the restrictions to 𝐼𝑖 of the monomials 𝑚𝑘 are (1, 1, 1, 1),
(

0, 13 ,
2
3 , 1

)

,
(

0, 0, 13 , 1
)

and (0, 0, 0, 1), respectively.

We are now in a position to provide a solution of Problem 1.

roposition 3. Problem 1 has infinitely many solutions depending for each 𝑖 = 0,… , 𝑛 on the two free parameters 𝜅𝑖 = 𝛼𝑖,−2 and 𝜆𝑖 = 𝛽𝑖,−2.

Proof. The B-ordinates 𝑉𝑖, 𝑈𝑖, 𝑊𝑖+1 and 𝑉𝑖+1 of 𝑄𝑓 corresponding to the sub-interval 𝐼𝑖 are given by (3). They should computed
n such a way that they meet the 𝐶1 smoothness conditions (4), as well as the exactness on P3. More precisely, the B-ordinates of
𝑚𝑘 restricted to 𝐼𝑖 must be equal to those of 𝑚𝑘. They are given in Lemma 2 and those of 𝑄𝑚𝑘, 𝑘 = 0,… , 3, are

( 2
∑

𝑘=−2
𝛽𝑖,𝑘,

2
∑

𝑘=−2
𝛼𝑖,𝑘,

2
∑

𝑘=−2
𝛾𝑖,𝑘,

2
∑

𝑘=−2
𝛽𝑖,𝑘

)

,

(

2
(

𝛽𝑖,2 − 𝛽𝑖,−2
)

+ 𝛽𝑖,1 − 𝛽𝑖,−1, 2
(

𝛼𝑖,2 − 𝛼𝑖,−2
)

+ 𝛼𝑖,1 − 𝛼𝑖,−1,−𝛾𝑖,−2 + 𝛾𝑖,0 + 2𝛾𝑖,1 + 3𝛾𝑖,2,−𝛽𝑖,−2 + 𝛽𝑖,0 + 2𝛽𝑖,1
+3𝛽𝑖,2

)

,
(

4
(

𝛽𝑖,2 + 𝛽𝑖,−2
)

+ 𝛽𝑖,−1 + 𝛽𝑖,1, 4
(

𝛼𝑖,2 + 𝛼𝑖,−2
)

+ 𝛼𝑖,−1 + 𝛼𝑖,1, 𝛾𝑖,−2 + 𝛾𝑖,0 + 4𝛾𝑖,1 + 9𝛾𝑖,2, 𝛽𝑖,−2 + 𝛽𝑖,0 + 4𝛽𝑖,1 + 9𝛽𝑖,2
)

,
(

8
(

𝛽𝑖,2 − 𝛽𝑖,−2
)

+ 𝛽𝑖,1 − 𝛽𝑖,−1, 8
(

𝛼𝑖,2 − 𝛼𝑖,−2
)

+ 𝛼𝑖,1 − 𝛼𝑖,−1,−𝛾𝑖,−2 + 𝛾𝑖,0 + 8𝛾𝑖,1 + 27𝛾𝑖,2,−𝛽𝑖,−2 + 𝛽𝑖,0 + 8𝛽𝑖,1
+27𝛽𝑖,2

)

,

espectively. By equating the B-ordinates of 𝑚𝑘 and 𝑄𝑚𝑘 relative to 𝐼𝑖, we establish a linear system comprising 21 equations. Among
hese, five equations ensure 𝐶1 smoothness, while the remainder pertain to the exactness on P3. With a rank of 13, this system falls
hort of the 15 unknowns, indicating the presence of infinitely many solutions. The general solution in the statement is determined
sing a Computer Algebra System. □

The choice 𝜅𝑖 = 𝜅 and 𝜆𝑖 = 𝜆 for all 𝑖 leads to a 2-parametric family of quasi-interpolation operators 𝑄𝜆,𝜅 . The explicit expressions
f masks 𝛾𝑖, 𝛽𝑖, and 𝛼𝑖 are given next:

𝛾𝑖,−2 =
𝜆𝐻𝑖−1,1 − 𝜅ℎ𝑖 ,
161
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𝛾𝑖,−1 =
ℎ𝑖

(

3𝜅𝐻𝑖−2,1𝐻𝑖−2,2𝐻𝑖−2,3
)

− ℎ𝑖−1ℎ𝑖𝐻𝑖,1 − 3𝜆𝐻𝑖−2,1𝐻𝑖−1,1𝐻𝑖−2,2𝐻𝑖−2,3

3ℎ2𝑖−1𝐻𝑖−1,1𝐻𝑖−1,2
,

𝛾𝑖,1 =
ℎ𝑖

(

3𝜅ℎ𝑖−2𝐻𝑖−2,1𝐻𝑖−2,3 +𝐻𝑖,1ℎ2𝑖−1
)

− 3𝜆ℎ𝑖−2𝐻𝑖−2,1𝐻𝑖−1,1𝐻𝑖−2,3

3ℎ𝑖−1ℎ𝑖ℎ𝑖+1𝐻𝑖−1,1
,

𝛾𝑖,2 =
ℎ𝑖

(

−3𝜅ℎ𝑖−2𝐻𝑖−1,1𝐻𝑖−2,2 − ℎ2𝑖−1ℎ𝑖
)

+ 3𝜆ℎ𝑖−2𝐻𝑖−2,1𝐻𝑖−1,1𝐻𝑖−2,2

3ℎ𝑖−1ℎ𝑖+1𝐻𝑖,1𝐻𝑖−1,2
,

𝛾𝑖,0 = 1 − 𝛾𝑖,−2 − 𝛾𝑖,−1 − 𝛾𝑖,1 − 𝛾𝑖,2,

𝛽𝑖,−1 = −𝜆
𝐻𝑖−2,1𝐻𝑖−2,2𝐻𝑖−2,3

ℎ𝑖−1𝐻𝑖−1,1𝐻𝑖−1,2
,

𝛽𝑖,0 = 1 + 𝜆
ℎ𝑖−2𝐻𝑖−2,2𝐻𝑖−2,3

ℎ𝑖−1ℎ𝑖𝐻𝑖,1
,

𝛽𝑖,1 = −𝜆
ℎ𝑖−2𝐻𝑖−2,1𝐻𝑖−2,3

ℎ𝑖𝐻𝑖−1,2ℎ𝑖+1
,

𝛽𝑖,2 = 𝜆
ℎ𝑖−2𝐻𝑖−2,1𝐻𝑖−2,2

ℎ𝑖+1𝐻𝑖,1𝐻𝑖−1,2
,

𝛼𝑖,−1 =
ℎ𝑖−1ℎ𝑖𝐻𝑖,1 − 3𝜅𝐻𝑖−2,1𝐻𝑖−2,2𝐻𝑖−2,3

3ℎ𝑖−1𝐻𝑖−1,1𝐻𝑖−1,2
,

𝛼𝑖,0 =
3𝜅ℎ𝑖−2𝐻𝑖−2,2𝐻𝑖−2,3 + ℎ𝑖−1

(

2ℎ𝑖𝐻𝑖,1 + ℎ𝑖−1
(

ℎ𝑖 +𝐻𝑖,1
))

3ℎ𝑖−1ℎ𝑖𝐻𝑖,1
,

𝛼𝑖,1 = −
3𝜅ℎ𝑖−2𝐻𝑖−2,1𝐻𝑖−2,3 +𝐻𝑖,1ℎ2𝑖−1

3ℎ𝑖𝐻𝑖−1,1ℎ𝑖+1
,

𝛼𝑖,2 =
3𝜅ℎ𝑖−2𝐻𝑖−2,1𝐻𝑖−2,2 + ℎ𝑖ℎ2𝑖−1

3ℎ𝑖+1𝐻𝑖,1𝐻𝑖−1,2
,

here 𝐻𝑗,1 ∶= ℎ𝑗 + ℎ𝑗+1, 𝐻𝑗,2 ∶= ℎ𝑗 + ℎ𝑗+1 + ℎ𝑗+2, 𝐻𝑗,3 ∶= ℎ𝑗 + ℎ𝑗+1 + ℎ𝑗+2 + ℎ𝑗+3.

emark 1. For a uniform partition, i.e. ℎ𝑖 = ℎ, 𝑖 = 0,… , 𝑛 − 1, the masks are

𝛼 =
(

𝜅,−4𝜅 − 1
9
, 6𝜅 + 5

6
, 1
3
− 4𝜅, 𝜅 − 1

18

)

,

𝛽 = {𝜆,−4𝜆, 6𝜆 + 1,−4𝜆, 𝜆} ,

𝛾 =
(

2𝜆 − 𝜅,−8𝜆 + 4𝜅 + 1
9
, 12𝜆 − 6𝜅 + 7

6
,−8𝜆 + 4𝜅 − 1

3
, 2𝜆 − 𝜅 + 1

18

)

.

The following result holds.

Theorem 4. We have

1. 𝑄𝜅,𝜆𝑓 is 𝐶1.
2. 𝑄𝜅,𝜆𝑓 = 𝑓 for all 𝑓 ∈ P3.
3. ∥ 𝑄𝜅,𝜆𝑓 − 𝑓 ∥= (ℎ4) for all 𝑓 smooth, with ℎ ∶= max0≤𝑖≤𝑛−1

{

ℎ𝑖
}

.

Proof. The result follows as a consequence of Eq. (4), Lemma 2 and Proposition 3. □

The exactness on P3 makes 𝑄𝜅,𝜆 able to yield optimal approximation order for smooth functions. Fig. 3 shows examples of
approximating discrete data by 𝑄𝜅,𝜆 for smooth data (left) and data with a jump (right). We observe that 𝑄𝜅,𝜆 generates over- and
under-shots near the singularity point, i.e., Gibbs phenomena. In the next section, we propose a nonlinear modification of 𝑄𝜅,𝜆 based
on WENO to handle non-smooth functions and avoid Gibbs phenomena.

3. Non-linear improvement of 𝑸𝜿,𝝀 based on WENO technique

This section is divided into three subsections. We will start by writing 𝑄𝜅,𝜆𝑓 as a function of three quasi-interpolating splines of
order 3, then of order 2, in the first two subsections, respectively. In the last subsection, we will provide a nonlinear improvement
based on WENO technique.

3.1. Order 3

The B-ordinates corresponding to a set of domain points 𝑖 are calculated from the values in a stencil 𝑆𝑖. One of these stencils may
162
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Mathematics and Computers in Simulation 223 (2024) 158–170F. Aràndiga et al.

P

T
n

Fig. 3. Approximation by 𝑄0,0, smooth data (left), and non-smooth data (right).

the stencil 𝑆𝑖 is divided into three small stencils, namely 𝑆𝑖,1 ∶=
{

𝑓𝑖−2, 𝑓𝑖−1, 𝑓𝑖
}

, 𝑆𝑖,2 ∶=
{

𝑓𝑖−1, 𝑓𝑖, 𝑓𝑖+1
}

, and 𝑆𝑖,3 ∶=
{

𝑓𝑖, 𝑓𝑖+1, 𝑓𝑖+2
}

.
Then we try to use data values only in the smooth sub-stencils.

For each stencil 𝑆𝑖,𝑗 , 𝑗 = 1, 2, 3, we associate a smoothness indicator, marked by 𝐼𝑆𝑖,𝑗 and defined according to the characteristics
of the data to be approximated.

From each sub-stencil 𝑆𝑖,𝑗 , 𝑗 = 1, 2, 3, we define a quasi-interpolating spline 𝑄𝑗𝑓 .

Problem 2. Determine masks 𝛼2𝑖,𝑗 ∶=
(

𝛼2𝑖,𝑗,−1, 𝛼
2
𝑖,𝑗,0, 𝛼

2
𝑖,𝑗,1

)

, 𝛽2𝑖,𝑗 ∶=
(

𝛽2𝑖,𝑗,−1, 𝛽
2
𝑖,𝑗,0, 𝛽

2
𝑖,𝑗,1

)

and 𝛾2𝑖,𝑗 ∶=
(

𝛾2𝑖,𝑗,−1, 𝛾
2
𝑖,𝑗,0, 𝛾

2
𝑖,𝑗,1

)

, 𝑗 = 1, 2, 3, such
that the quasi-interpolating splines 𝑄2

𝑗𝑓 , 𝑗 = 1, 2, 3, defined on each sub-interval 𝐼𝑖 as

𝑄2
𝑗𝑓∣𝐼𝑖 = 𝑉 2

𝑖,𝑗𝐵
𝑖
0 +𝑊 2

𝑖,𝑗𝐵
𝑖
1 + 𝑈2

𝑖+1,𝑗𝐵
𝑖
2 + 𝑉 2

𝑖+1,𝑗𝐵
𝑖
3

with

𝑈2
𝑖,𝑗 = 𝛼2𝑖,𝑗 ⋅ 𝑓

(

𝑆𝑖,𝑗
)

, 𝑉 2
𝑖,𝑗 = 𝛽2𝑖,𝑗 ⋅ 𝑓

(

𝑆𝑖,𝑗
)

, 𝑊 2
𝑖,𝑗 = 𝛾2𝑖,𝑗 ⋅ 𝑓

(

𝑆𝑖,𝑗
)

,

are 𝐶1 continuous and 𝑄2
𝑗𝑝 = 𝑝 for all 𝑝 ∈ P2.

The following result shows that this problem has a unique solution.

Proposition 5. For 𝑗 = 1, Problem 2 has a unique solution, with masks 𝛼2𝑖,1, 𝛽
2
𝑖,1 and 𝛾2𝑖,1 given by

𝛼2𝑖,1 =

(

−
ℎ2𝑖−1

3ℎ𝑖−2𝐻𝑖−2,1
,
𝐻𝑖−2,1

3ℎ𝑖−2
,
ℎ𝑖−2 +𝐻𝑖−2.1

3𝐻𝑖−2,1

)

,

𝛽2𝑖,1 = (0, 0, 1) ,

𝛾2𝑖,1 =

(

ℎ𝑖−1ℎ𝑖
3ℎ𝑖−2𝐻𝑖−2,1

,−
𝐻𝑖−2,1ℎ𝑖
3ℎ𝑖−2ℎ𝑖−1

, 1 +
ℎ𝑖

(

ℎ𝑖−1 +𝐻𝑖−2,1
)

3ℎ𝑖−1𝐻𝑖−2,1

)

.

roof. The quasi-interpolating spline 𝑄2
1𝑓 is 𝐶1-continuous at 𝑥𝑖 if and only if

𝛽𝑖,1,𝓁 = 1
𝐻𝑖−1,1

(

𝛾𝑖,1,𝓁ℎ𝑖−1 + 𝛼𝑖,1,𝓁ℎ𝑖
)

, 𝓁 = −1, 0, 1.

The exactness of 𝑄2
1𝑓 on quadratic polynomials is equivalent to the following conditions:

𝛼𝑖,1,−1 + 𝛼𝑖,1,0 + 𝛼𝑖,1,1 − 1 = 0, 𝛽𝑖,1,−1 + 𝛽𝑖,1,0 + 𝛽𝑖,1,1 − 1 = 0, 𝛾𝑖,1,−1 + 𝛾𝑖,1,0 + 𝛾𝑖,1,1 − 1 = 0,
(

−𝛼𝑖,1,−1 − 𝛼𝑖,1,0 +
1
3

)

ℎ𝑖−1 − 𝛼𝑖,1,−1ℎ𝑖−2 = 0, 𝛽𝑖,1,−1
(

−ℎ𝑖−2
)

−
(

𝛽𝑖,1,−1 + 𝛽𝑖,1,0
)

ℎ𝑖−1 = 0,

− 𝛾𝑖,1,−1ℎ𝑖−2 −
(

𝛾𝑖,1,−1 + 𝛾𝑖,1,0
)

ℎ𝑖−1 −
ℎ𝑖
3

= 0, 𝛼𝑖,1,0ℎ2𝑖−1 + 𝛼𝑖,1,−1
(

ℎ𝑖−2 + ℎ𝑖−1
) 2 = 0,

𝛽𝑖,1,0ℎ
2
𝑖−1 + 𝛽𝑖,1,−1

(

ℎ𝑖−2 + ℎ𝑖−1
) 2 = 0, 𝛾𝑖,1,0ℎ2𝑖−1 + 𝛾𝑖,1,−1

(

ℎ𝑖−2 + ℎ𝑖−1
) 2 = 0.

his yields a linear system of twelve equations with nine unknowns. The system rank, equal to nine, indicates that there are only
ine independent equations, thereby resulting in a unique solution. □

Now, we provide the values of the masks corresponding to the quasi-interpolating splines 𝑄2
2𝑓 and 𝑄2

3𝑓 .

Proposition 6. The masks

𝛼2𝑖,2 =

(

ℎ𝑖 ,
𝐻𝑖−1,1 + ℎ𝑖 ,−

ℎ2𝑖−1
)

,

163

3𝐻𝑖−1,1 3ℎ𝑖 3ℎ𝑖𝐻𝑖−1,1



Mathematics and Computers in Simulation 223 (2024) 158–170F. Aràndiga et al.

p

P

T

T

P

𝛽2𝑖,2 = (0, 1, 0) ,

𝛾2𝑖,2 =

(

−
ℎ2𝑖

3ℎ𝑖−1𝐻𝑖−1,1
,
ℎ𝑖−1 +𝐻𝑖−1,1

3ℎ𝑖−1
,

ℎ𝑖−1
3𝐻𝑖−1,1

)

,

and

𝛼2𝑖,3 =

(

1 +

(

ℎ𝑖 +𝐻𝑖,1
)

ℎ𝑖−1
3𝐻𝑖,1ℎ𝑖

,−
ℎ𝑖−1𝐻𝑖,1

3ℎ𝑖ℎ𝑖+1
,

ℎ𝑖−1ℎ𝑖
3ℎ𝑖+1𝐻𝑖,1

)

,

𝛽2𝑖,3 = (1, 0, 0) ,

𝛾2𝑖,3 =

(

𝐻𝑖,1 + ℎ𝑖+1
3𝐻𝑖,1

,
𝐻𝑖,1

3ℎ𝑖+1
,−

ℎ2𝑖
3ℎ𝑖+1𝐻𝑖,1

)

,

roduce respectively the unique quasi-interpolating splines 𝑄2𝑓 and 𝑄3𝑓 , such that

𝑄2
𝑗𝑝 = 𝑝 for all 𝑝 ∈ P2 and 𝑄2

𝑗𝑓 ∈ 𝐶1 (𝐼) , 𝑗 = 2, 3.

roof. The proof runs as in Proposition 5. □

As a consequence of Propositions 5 and 6, the following result holds.

heorem 7. For 𝑗 = 1, 2, 3,

(1) 𝑄2
𝑗𝑓 is 𝐶1 (𝐼).

(2) 𝑄2
𝑗𝑝 = 𝑝 for all 𝑝 ∈ P2.

(3) ∥ 𝑄2
𝑗𝑓 − 𝑓 ∥= (ℎ3) for a smooth function 𝑓 .

In order to apply WENO technique, we need to write 𝑄𝜅,𝜆𝑓 as non-negative convex combination of 𝑄2
𝑗𝑓 , 𝑗 = 1, 2, 3. Namely,

𝑄𝜅,𝜆𝑓∣𝐼𝑖 = 𝜏𝑖,1𝑄
2
1𝑓∣𝐼𝑖 + 𝜏𝑖,2𝑄

2
2𝑓∣𝐼𝑖 +

(

1 − 𝜏𝑖,1 − 𝜏𝑖,2
)

𝑄2
3𝑓∣𝐼𝑖 , 𝜏𝑖,1, 𝜏𝑖,2 ≥ 0. (5)

his will not always be possible.

roposition 8. Eq. (5) has a solution if and only if 𝜆 = 0, and then

𝜏𝑖,1 = −
3𝜅𝑖ℎ𝑖−2𝐻𝑖−2,1

ℎ2𝑖−1
,

𝜏𝑖,2 =
ℎ2𝑖−1ℎ𝑖𝐻𝑖.1 − 3𝜅𝑖ℎ𝑖−2𝐻𝑖−2,1

(

ℎ𝑖−1𝐻𝑖−2,1 − ℎ𝑖𝐻𝑖,1
)

ℎ2𝑖−1ℎ𝑖𝐻𝑖−1,2
.

The value of 𝜅 should be chosen so that 0 ≤ 𝜏𝑖,1, 𝜏𝑖,2 ≤ 1. For instance, for uniform partition and 𝜅 = − 1
36 , it yields

𝑄−1∕36,0𝑓 = 1
6
(

𝑄2
1𝑓 + 4𝑄2

2𝑓 +𝑄2
3𝑓

)

.

In order to get more freedom in the choice of convex weights to write 𝑄𝜅,𝜆 as a function of low-order quasi-interpolating splines,
we reduce the order of convergence from three to two, imposing accuracy only on P1.

3.2. Order 2

In this subsection, we follow the same strategy used above. That is, we consider the same partition of 𝑆𝑖 into the three sub-stencils
𝑆𝑖,𝑗 , 𝑗 = 1, 2, 3, and then define local quasi-interpolating splines corresponding to each stencil. Accuracy will be imposed only on
linear polynomials, which will generate masks with free parameters.

Problem 3. Determine masks 𝛼1𝑖,𝑗 ∶=
(

𝛼1𝑖,𝑗,−1, 𝛼
1
𝑖,𝑗,0, 𝛼

1
𝑖,𝑗,1

)

, 𝛽1𝑖,𝑗 ∶=
(

𝛽1𝑖,𝑗,−1, 𝛽
1
𝑖,𝑗,0, 𝛽

1
𝑖,𝑗,1

)

and 𝛾1𝑖,𝑗 ∶=
(

𝛾1𝑖,𝑗,−1, 𝛾
1
𝑖,𝑗,0, 𝛾

1
𝑖,𝑗,1

)

, 𝑗 = 1, 2, 3, such
that the quasi-interpolating splines 𝑄1

𝑗𝑓 , 𝑗 = 1, 2, 3, defined on each sub-interval 𝐼𝑖 as

𝑄1
𝑗𝑓∣𝐼𝑖 = 𝑉 1

𝑖,𝑗𝐵
𝑖
0 +𝑊 1

𝑖,𝑗𝐵
𝑖
1 + 𝑈1

𝑖+1,𝑗𝐵
𝑖
2 + 𝑉 1

𝑖+1,𝑗𝐵
𝑖
3

with

𝑈1
𝑖,𝑗 = 𝛼1𝑖,𝑗 ⋅ 𝑓

(

𝑆𝑖,𝑗
)

, 𝑉 1
𝑖,𝑗 = 𝛽1𝑖,𝑗 ⋅ 𝑓

(

𝑆𝑖,𝑗
)

, 𝑊 1
𝑖,𝑗 = 𝛾2𝑖,𝑗 ⋅ 𝑓

(

𝑆𝑖,𝑗
)

,

are 𝐶1 continuous and 𝑄1
𝑗𝑝 = 𝑝 for all 𝑝 ∈ P1.

Problem 3 has infinitely many solutions. Keep in mind that the main target is to write

𝑄 𝑓 = 𝜏 𝑄1𝑓 + 𝜏 𝑄1𝑓 +
(

1 − 𝜏 − 𝜏
)

𝑄1𝑓 , 𝜏 , 𝜏 ≥ 0. (6)
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Proposition 9. For 𝑗 = 1, Problem 3 has an infinite number of solutions depending on two parameters 𝛼1𝑖,1,−1 = 𝜅𝑖,1 and 𝛽1𝑖,1,−1 = 𝜆𝑖,1. The
masks are given by

𝛼1𝑖,1 =
(

𝜅𝑖,1, 𝜅𝑖,1

(

−
ℎ𝑖−2
ℎ𝑖−1

− 1
)

+ 1
3
,
𝜅𝑖,1ℎ𝑖−2
ℎ𝑖−1

+ 2
3

)

,

𝛽1𝑖,1 =
(

𝜆𝑖,1,−
𝐻𝑖−2,1𝜆𝑖,1

ℎ𝑖−1
,
ℎ𝑖−2𝜆𝑖,1
ℎ𝑖−1

+ 1
)

,

𝛾1𝑖,1 =

(

ℎ𝑖
(

𝜆𝑖,1 − 𝜅𝑖,1
)

ℎ𝑖−1
+ 𝜆𝑖,1,−

−3𝐻𝑖−2,1ℎ𝑖𝜅𝑖,1 + 3𝐻𝑖−2,1𝐻𝑖−1,1𝜆𝑖,1 + ℎ𝑖−1ℎ𝑖
3ℎ2𝑖−1

,

ℎ𝑖
(

ℎ𝑖−1 − 3ℎ𝑖−2𝜅𝑖,1
)

+ 3ℎ𝑖−2𝐻𝑖−1,1𝜆𝑖,1
3ℎ2𝑖−1

+ 1

)

.

roof. The proof runs as in Proposition 5. The 𝐶1-smoothness conditions reduced to the following three equations:

𝛽𝑖,1,𝓁 = 1
𝐻𝑖−1,1

(

𝛾𝑖,1,𝓁ℎ𝑖−1 + 𝛼𝑖,1,𝓁ℎ𝑖
)

, 𝓁 = −1, 0, 1.

𝑄1
1𝑓 is exact on linear polynomials if and only if

𝛼𝑖,1,−1 + 𝛼𝑖,1,0 + 𝛼𝑖,1,1 − 1 = 0, 𝛽𝑖,1,−1 + 𝛽𝑖,1,0 + 𝛽𝑖,1,1 − 1 = 0, 𝛾𝑖,1,−1 + 𝛾𝑖,1,0 + 𝛾𝑖,1,1 − 1 = 0,
(

−𝛼𝑖,1,−1 − 𝛼𝑖,1,0 +
1
3

)

ℎ𝑖−1 − 𝛼𝑖,1,−1ℎ𝑖−2 = 0, 𝛽𝑖,1,−1
(

−ℎ𝑖−2
)

−
(

𝛽𝑖,1,−1 + 𝛽𝑖,1,0
)

ℎ𝑖−1 = 0,

− 𝛾𝑖,1,−1ℎ𝑖−2 −
(

𝛾𝑖,1,−1 + 𝛾𝑖,1,0
)

ℎ𝑖−1 −
ℎ𝑖
3

= 0.

This leads to a linear system of nine equations with nine unknowns. The rank of this system equals seven, indicating an infinite
number of solutions. This confirms the claim. □

By the same, we can compute the masks associated with the operators 𝑄1
2 and 𝑄1

3.

Proposition 10. The masks producing the quasi-interpolating splines 𝑄1
2𝑓 and 𝑄1

3𝑓 are as follows: for 𝑗 = 2

𝛼2𝑖,1 =

(

𝜅𝑖,2,
−3𝜅𝑖,2𝐻𝑖−1,1 + ℎ𝑖−1 + 3ℎ𝑖

3ℎ𝑖
,

(

3𝛼𝑖−1 − 1
)

ℎ𝑖−1
3ℎ𝑖

)

,

𝛽2𝑖,1 =
(

𝜆𝑖,2, 1 −
𝜆𝑖,2𝐻𝑖−1,1

ℎ𝑖
,
𝜆𝑖,2ℎ𝑖−1

ℎ𝑖

)

,

𝛾2𝑖,1 =

(

𝜆𝑖,2 +
ℎ𝑖

(

𝜆𝑖,2 − 𝜅𝑖,2
)

ℎ𝑖−1
, 𝜅𝑖,2

(

ℎ𝑖
ℎ𝑖−1

+ 1
)

−
𝜆𝑖,2𝐻2

𝑖−1,1

ℎ𝑖−1ℎ𝑖
+ 2

3
,−𝜅𝑖,2 + 𝜆𝑖,2

(

ℎ𝑖−1
ℎ𝑖

+ 1
)

+ 1
3

)

,

and, for 𝑗 = 3,

𝛼3𝑖,1 =
(3𝜅𝑖,3ℎ𝑖 + ℎ𝑖−1 + 3ℎ𝑖

3ℎ𝑖
,−

3𝜅𝑖,3𝐻𝑖,1 + ℎ𝑖−1
3ℎ𝑖

, 𝜅𝑖,3

)

,

𝛽3𝑖,1 =
(

1 −
𝜆𝑖,3ℎ𝑖
𝐻𝑖,1

, 𝜆𝑖,3,−
𝜆𝑖,3ℎ𝑖
𝐻𝑖,1

)

,

𝛾3𝑖,1 =

(

−
ℎ𝑖

(

𝜅𝑖,3𝐻𝑖,1 + 𝜆𝑖,3𝐻𝑖−1,1
)

ℎ𝑖−1𝐻𝑖,1
+ 2

3
,
3𝜅𝑖,3𝐻𝑖,1 + 3𝜆𝑖,3𝐻𝑖−1,1 + ℎ𝑖−1

3ℎ𝑖−1
,
ℎ𝑖

(

𝜅𝑖,3 −𝐻𝑖,1 − 𝜆𝑖,3𝐻𝑖−1,1
)

ℎ𝑖−1𝐻𝑖,1

)

,

where 𝜅𝑖,𝓁 and 𝜆𝑖,𝓁 , 𝓁 = 2, 3, are free parameters.

Again, and as a consequence of the previous results, it holds

heorem 11. For 𝑗 = 1, 2, 3,

(1) 𝑄1
𝑗𝑓 is 𝐶1 (𝐼).

(2) 𝑄1
𝑗𝑝 = 𝑝 for all 𝑝 ∈ P1.

(3) ∥ 𝑄1
𝑗𝑓 − 𝑓 ∥= (ℎ2) for a smooth function 𝑓 .

The free parameters should chosen carefully. In our case they should chosen such that the weights 𝜏𝑖,𝓁 , 𝓁 = 1, 2, involved in (6)
re non-negative and meet 𝜏𝑖,1 + 𝜏𝑖,2 < 1.

For instance, we have

• 𝜏𝑖,1 = 𝜏𝑖,2 = 1∕3, if and only if

𝜆𝑖,1 = 𝜆, 𝜅𝑖,1 = 3𝜅, 𝜆𝑖,2 = −
3ℎ𝑖−2𝐻𝑖−2,1

(

ℎ𝑖−2 + 2𝐻𝑖−1,1 + ℎ𝑖
)

𝜆
,
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p
t

3

w

𝑄

𝜅𝑖,2 = −
9ℎ𝑖−2𝐻𝑖−2,1

(

ℎ𝑖−2 + 2𝐻𝑖−1,1 + ℎ𝑖+1
)

𝜅 + ℎ𝑖−1
(

ℎ2𝑖−1 +
(

2ℎ𝑖 + ℎ𝑖+1
)

ℎ𝑖−1 − 2ℎ𝑖𝐻𝑖,1
)

3ℎ𝑖−1𝐻𝑖−1,1𝐻𝑖−1,2
,

𝜆𝑖,3 = −
3ℎ𝑖−2𝐻𝑖−2,1𝐻𝑖−2,2𝜆

ℎ𝑖ℎ𝑖+1𝐻𝑖−1,2
, 𝜅𝑖,3 =

3ℎ𝑖−2𝐻𝑖−2,1𝐻𝑖−2,2𝜅 + ℎ𝑖ℎ2𝑖−1
ℎ𝑖+1𝐻𝑖,1𝐻𝑖−1,2

.

• 𝜏𝑖,1 = 1∕4, 𝜏𝑖,2 = 1∕2, if and only if

𝜆𝑖,1 = 4𝜆, 𝜅𝑖,1 = 4𝜅, 𝜆𝑖,2 = −
2ℎ𝑖−2𝐻𝑖−2,1

(

ℎ𝑖−2 + 2𝐻𝑖−1,2
)

𝜆
ℎ𝑖−1𝐻𝑖−1,1𝐻𝑖−1,2

,

𝜅𝑖,2 = −
12ℎ𝑖−2𝐻𝑖−2,1

(

ℎ𝑖−2 + 2𝐻𝑖−1,2
)

𝜅 + ℎ𝑖−1
(

ℎ2𝑖−1 +
(

2ℎ𝑖 + ℎ𝑖+1
)

ℎ𝑖−1 − 3ℎ𝑖𝐻𝑖−1,1
)

6ℎ𝑖−1𝐻𝑖−1,1𝐻𝑖−1,2
,

𝜆𝑖,3 = −
4ℎ𝑖−2𝐻𝑖−2,1𝐻𝑖−2,2𝜆

ℎ𝑖ℎ𝑖+1𝐻𝑖−1,2
, 𝜅𝑖,3 =

12ℎ𝑖−2𝐻𝑖−2,1𝐻𝑖−2,2𝜅 + 4ℎ𝑖ℎ2𝑖−1
3ℎ𝑖+1𝐻𝑖,1𝐻𝑖−1,2

.

• 𝜏𝑖,1 = 1∕6, 𝜏𝑖,2 = 2∕3, if and only if

𝜆𝑖,1 = 6𝜆, 𝜅𝑖,1 = 6𝜅, 𝜆𝑖,2 = −
3ℎ𝑖−2𝐻𝑖−2,1

(

ℎ𝑖−2 + 2𝐻𝑖−1,1 + ℎ𝑖+1
)

𝜆
2ℎ𝑖−1𝐻𝑖−1,1𝐻𝑖−1,2

,

𝜅𝑖,2 = −
18ℎ𝑖−2𝐻𝑖−2,1

(

ℎ𝑖−2 + 2𝐻𝑖−1,1 + ℎ𝑖+1
)

𝜅 + ℎ𝑖−1
(

ℎ2𝑖−1 +
(

2ℎ𝑖 + ℎ𝑖+1
)

ℎ𝑖−1 − 5ℎ𝑖𝐻𝑖,1
)

12ℎ𝑖−1𝐻𝑖−1,1𝐻𝑖−1,2
,

𝜆𝑖,3 = −
6ℎ𝑖−2𝐻𝑖−2,1𝐻𝑖−2,2𝜆

ℎ𝑖ℎ𝑖+1𝐻𝑖−1,2
, 𝜅𝑖,3 =

6ℎ𝑖−2𝐻𝑖−2,1𝐻𝑖−2,2𝜅 + 2ℎ𝑖ℎ2𝑖−1
ℎ𝑖+1𝐻𝑖,1𝐻𝑖−1,2

.

In summary, 𝑄𝜅,𝜆 can be written as a non-negative convex combination of three quasi-interpolation operators reproducing
quadratic polynomials for 𝜆 = 0, and as a non-negative convex combination of three quasi-interpolation operators exact on linear
olynomials for any real coefficient 𝜆 and 𝜅. These two results will be used below to derive non-negative weights for the WENO
echnique.

.3. WENO technique

A WENO-based quasi-interpolating spline 𝑄𝜔,𝓁
𝜅,𝜆 𝑓 is defined as

𝑄𝜔,𝓁
𝜅,𝜆 𝑓∣𝐼𝑖 (𝑥) = 𝑉 𝜔,𝓁

𝑖 𝐵𝑖
0 (𝑥) +𝑊 𝜔,𝓁

𝑖 𝐵𝑖
1 (𝑥) + 𝑈𝜔,𝓁

𝑖+1 𝐵
𝑖
2 (𝑥) + 𝑉 𝜔,𝓁

𝑖+1 𝐵
𝑖
3 (𝑥) ,

ith

𝑈𝜔,𝓁
𝑖 ∶= 𝜔𝓁

𝑖,1𝑈
𝓁
𝑖,1 + 𝜔𝓁

𝑖,2𝑈
𝓁
𝑖,2 + 𝜔𝓁

𝑖,3𝑈
𝓁
𝑖,3,

𝑉 𝜔,𝓁
𝑖 ∶= 𝜔𝓁

𝑖,1𝑉
𝓁
𝑖,1 + 𝜔𝓁

𝑖,2𝑉
𝓁
𝑖,2 + 𝜔𝓁

𝑖,3𝑉
𝓁
𝑖,3,

𝑊 𝜔,𝓁
𝑖 ∶= 𝜔𝓁

𝑖,1𝑊
𝓁
𝑖,1 + 𝜔𝓁

𝑖,2𝑊
𝓁
𝑖,2 + 𝜔𝓁

𝑖,3𝑊
𝓁
𝑖,3.

For 𝓁 = 2, the parameter 𝜆 must be zero, as well as the weights 𝜔2
𝑖,𝑗 , 𝑗 = 1, 2, 3, must be chosen so that if 𝑓 is smooth, then 𝜔2

𝑖,1 ≈
1
6 ,

𝜔2
𝑖,2 ≈

4
6 , 𝜔2

𝑖,3 ≈
1
6 and 𝑄𝜔,2

𝜅,0𝑓∣𝐼𝑖 ≈ 𝑄𝜅,0𝑓∣𝐼𝑖 .
Similarly, we should have 𝜔1

𝑖,𝑗 ≈ 𝜏𝑖,𝑗 and 𝑄𝜔,1
𝜅,𝜆𝑓∣𝐼𝑖 ≈ 𝑄𝜅,𝜆𝑓∣𝐼𝑖 for a smooth function 𝑓 . On the other hand, if 𝑓 has a jump at a

point in
(

𝑥𝑖, 𝑥𝑖+1
]

(e.g. in the stencils 𝑆𝑖,2 and 𝑆𝑖,3), then 𝜔𝓁
𝑖,1 ≈ 1 and 𝜔𝓁

𝑖,2 ≈ 𝜔𝓁
𝑖,3 ≈ 0, so 𝑄𝜔,𝓁

𝜅,𝜆 𝑓∣𝐼𝑖 ≈ 𝑄𝓁
1𝑓∣𝐼𝑖 keeping the properties of

𝓁
1 . To this end, we define,

𝜉2𝑖,1 ∶=
1

6
(

𝜀 + 𝐼𝑆𝑖,1
)2

, 𝜉2𝑖,2 ∶=
4

6
(

𝜀 + 𝐼𝑆𝑖,2
)2

, 𝜉2𝑖,3 ∶=
1

6
(

𝜀 + 𝐼𝑆𝑖,3
)2

,

𝜉1𝑖,1 ∶=
𝜏𝑖,1

(

𝜀 + 𝐼𝑆𝑖,1
)2

, 𝜉1𝑖,2 ∶=
𝜏𝑖,2

(

𝜀 + 𝐼𝑆𝑖,2
)2

, 𝜉1𝑖,3 ∶=
𝜏𝑖,3

(

𝜀 + 𝐼𝑆𝑖,3
)2

,

where the smoothness indicators 𝐼𝑆𝑖,𝑘 are properly chosen according to the problem to be addressed, and the weights 𝜔𝓁
𝑖,𝑗 are defined

as

𝜔𝓁
𝑖,𝑗 ∶=

𝜉𝓁𝑖,𝑗
𝜉𝓁𝑖,1 + 𝜉𝓁𝑖,2 + 𝜉𝓁𝑖,3

.

The parameter 𝜀 is a non-negative real value used to avoid zero in the denominator.
This construction leads to the following result.

Theorem 12. For 𝓁 = 1, 2, we have, if 𝑓 is smooth
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Fig. 4. Reconstruction with 𝑄𝜔,1
0,0 (blue) and 𝑄0,0 (red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

• 𝑄𝜔,𝓁
𝜅,𝜆 𝑓 is 𝐶1.

• 𝑄𝜔,𝓁
𝜅,𝜆 𝑓 = 𝑓 for all 𝑓 ∈ P𝓁 .

• ∥ 𝑄𝜔,𝓁
𝜅,𝜆 𝑓 − 𝑓 ∥= (ℎ4).

and if 𝑓 has a discontinuity jump at (𝑥𝑖−1, 𝑥𝑖) then

• 𝑄𝜔,𝓁
𝜅,𝜆 𝑓 is 𝐶1

• ∥ 𝑄𝜔,𝓁
𝜅,𝜆 𝑓 − 𝑓 ∥[𝑥𝑖 ,+∞)= (ℎ𝓁+1).

Proof. In both cases, 𝑄𝜔,𝓁
𝜅,𝜆 𝑓 is 𝐶1-continuous, since is just a combination of three 𝐶1-smooth operators. Moreover,

∥ 𝑄𝜔,𝓁
𝜅,𝜆 𝑓 − 𝑓 ∥ =∥ 𝑄𝜔,𝓁

𝜅,𝜆 𝑓 −𝑄𝜅,𝜆𝑓 +𝑄𝜅,𝜆𝑓 − 𝑓 ∥

≤∥ 𝑄𝜔,𝓁
𝜅,𝜆 𝑓 −𝑄𝜅,𝜆𝑓 ∥ + ∥ 𝑄𝜅,𝜆𝑓 − 𝑓 ∥ .

By construction, if 𝑓 is smooth, then ∥ 𝑄𝜔,𝓁
𝜅,𝜆 𝑓 −𝑄𝜅,𝜆𝑓 ∥= (ℎ4), and by Theorem 4, we have ∥ 𝑄𝜅,𝜆𝑓 − 𝑓 ∥= (ℎ4), which proves

that ∥ 𝑄𝜔,𝓁
𝜅,𝜆 𝑓 − 𝑓 ∥= (ℎ4).

However, this not guaranties that 𝑄𝜔,𝓁
𝜅,𝜆 𝑝 = 𝑝, 𝑝 ∈ P𝓁 . Although, the operator 𝑄𝜔,𝓁

𝜅,𝜆 is a combination of three operator that are
exact on P𝓁 , which proves the statements in the case that 𝑓 is smooth.

If 𝑓 has a jump at �̄� ∈ [𝑥𝑖−1, 𝑥𝑖], then the BB-coefficients related to the intervals 𝐼𝑖+𝑗 , 𝑗 = −2,−1, 0, 1, will be affected. Namely, at
maximum two weights should be ≈ 0, and then

∥ 𝑄𝜔,𝓁
𝜅,𝜆 −𝑄𝜅,𝜆 ∥= max

{

∥ 𝑄𝓁
1 −𝑄𝜅,𝜆 ∥, ∥ 𝑄𝓁

2 −𝑄𝜅,𝜆 ∥, ∥ 𝑄𝓁
3 −𝑄𝜅,𝜆 ∥

}

.

Moreover, ∥ 𝑄𝓁
𝑗 −𝑄𝜅,𝜆 ∥= (ℎ𝓁+1), 𝑗 = 1, 2, 3, which concludes the proof. □

In Fig. 4 we illustrate the result obtained by applying the operator 𝑄𝜔,1
0,0 and 𝑄0,0 to non-smooth data values. It is clear that with

WENO technique, we obviously avoid the Gibbs phenomena, as well as we reach the optimal order in the smooth region.

4. Fitting pulsed measurements performed in memristors based on a hafnium oxide dielectric

The devices measured are based on the TiN/Ti/HfO2/W stack. A (200 nm TiN/10 nm Ti) bi-layer is used as top electrode, and
for the bottom electrode, a layer 50 nm-thick of W was employed [29,30]. The oxide was a 10 nm-thick HfO2 layer grown by atomic
layer deposition [34]. For the measurements, we used the Keysight B1500A semiconductor parameter analyser connected to a probe
station (Karl Suss PSM6). The measuring unit was the B1530 module. It consists of a waveform generator and fast measurement
unit (WGFMU) that works fine for pulsed signals. The bottom electrode was grounded and the input voltage was applied to the
top electrode. Different pulsed signals were employed with pulse widths variating from milliseconds to hundreds of nanoseconds.
The device current was measured; due to the pulsed and, obviously, non-continuous nature of the input, this current was also
discontinuous.

The usual representation for modelling in these devices is based on current versus voltage curves. Nevertheless, it is also used
the charge versus flux approach [8,33]. Given the current 𝑖 (𝑡), the charge can be calculated as

𝑄 (𝑡) =
𝑡
𝑖 (𝜏) 𝑑𝜏,
167
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Fig. 5. Current data (black) and WENO quasi-interpolant.

Fig. 6. Voltage data.

while, from the voltage 𝑣 (𝑡), the flux is obtained with

𝜙 (𝑡) = ∫

𝑡

0
𝑣 (𝜏) 𝑑𝜏.

For the charge calculation the current accurate approximation as a function of time is needed. The measurement features makes
the 𝑋 axis knot set a non-uniform distribution. The approximation methodology described in the previous sections allows a feasible
approximation of the current versus time data. Therefore, the charge calculation can be easily done.

Fig. 5 shows the current data for which the charge will be computed, as well as the corresponding WENO quasi-interpolant. The
voltage data are shown in Fig. 6.

The following indicators have been used:

𝐼𝑆𝑖,1 = 104
(

𝑓𝑖−2 − 2𝑓𝑖−1 + 𝑓𝑖
)6 ,

𝐼𝑆𝑖,2 = 104
(

𝑓𝑖−1 − 2𝑓𝑖 + 𝑓𝑖+1
)6 ,

𝐼𝑆𝑖,3 = 104
(

𝑓𝑖 − 2𝑓𝑖+1 + 𝑓𝑖+2
)6 .

The factor ‘‘104’’ is included to deal with the very small values resulting from the analysed device.
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Fig. 7. Charge versus time, calculated by integrating the current versus time data.

Finally, the computed charge is shown versus time in Fig. 7. It contains a small plot illustrating the smoothness of the charge
ersus time in a neighbourhood of a current discontinuity point. As can be observed, the smoothness of the charge data obtained
llows a fair use for modelling purposes.

. Conclusion

A new approximation technique has been developed to construct spline quasi-interpolants of discontinuous data. This has been
one by applying the WENO technique to quasi-interpolants defined on non-uniform partitions. The application to academic tests
ives excellent results.

Finally, an application of the proposed technique has been presented for real measured data related to memristors fabricated
ith hafnium oxide as a dielectric. The devices were measured using pulsed input voltage signals, and the current was obtained. The

epresentation of the current data with the quasi-interpolating splines introduced here allows the device charge calculation taking
nto consideration the non-continuous nature of the experimental data and the non-uniform distribution of the 𝑋 axis knot set.
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