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Abstract
Myocarditis is a serious cardiovascular ailment that can lead to severe consequences if not
promptly treated. It is triggered by viral infections and presents symptoms such as chest
pain and heart dysfunction. Early detection is crucial for successful treatment, and cardiac
magnetic resonance imaging (CMR) is a valuable tool for identifying this condition.
However, the detection of myocarditis using CMR images can be challenging due to low
contrast, variable noise, and the presence of multiple high CMR slices per patient. To
overcome these challenges, the approach proposed incorporates advanced techniques
such as convolutional neural networks (CNNs), an improved differential evolution (DE)
algorithm for pre‐training, and a reinforcement learning (RL)‐based model for training.
Developing this method presented a significant challenge due to the imbalanced classi-
fication of the Z‐Alizadeh Sani myocarditis dataset from Omid Hospital in Tehran. To
address this, the training process is framed as a sequential decision‐making process, where
the agent receives higher rewards/penalties for correctly/incorrectly classifying the mi-
nority/majority class. Additionally, the authors suggest an enhanced DE algorithm to
initiate the backpropagation (BP) process, overcoming the initialisation sensitivity issue of
gradient‐based methods like back‐propagation during the training phase. The effective-
ness of the proposed model in diagnosing myocarditis is demonstrated through experi-
mental results based on standard performance metrics. Overall, this method shows
promise in expediting the triage of CMR images for automatic screening, facilitating early
detection and successful treatment of myocarditis.
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1 | INTRODUCTION

Myocarditis is a cardiac condition caused by viral infection,
characterised by inflammation in the middle layer of the heart
wall [1]. It remains a significant disease in the field of cardi-
ology, presenting symptoms such as chest pain, fatigue, and
shortness of breath [2]. In complex cases, the validation of
diagnosis and guidance for treatment often require an invasive
procedure known as endomyocardial biopsy [3]. Myocarditis

contributes to a substantial number of sudden deaths and af-
fects nearly 20% of individuals under 40 years old [4]. Non‐
invasive diagnostic methods, such as cardiac magnetic reso-
nance imaging (MRI), are considered effective in identifying
suspected cases of myocarditis. MRI also plays a crucial role in
diagnosing other heart conditions [5, 6]. However, the effec-
tiveness of CMR can be hindered by the clinical manifestation
of the disease and the presence of non‐specific symptoms such
as chest discomfort, heart failure, and arrhythmia [7–9]. Several
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factors related to imaging criteria, including technical errors,
acquisition parameters, pulse sequences, contrast agent dosage,
artefacts, and subjective visual interpretation, can influence
disease identification and are susceptible to operator bias [10].
To address the challenges in classifying medical images, auto-
mated diagnostic systems that utilise various data mining and
machine learning methods have shown promise [11–13]. These
systems streamline the image screening process, saving time
for physicians, reducing errors, and improving diagnostic ac-
curacy [14]. By leveraging advanced techniques such as deep
learning, feature extraction, and pattern recognition algorithms,
these automated systems have the potential to enhance the
efficiency and reliability of myocarditis diagnosis. They can
analyse large volumes of CMR images, extract relevant features,
and classify them accurately, providing valuable assistance to
medical professionals.

Advanced models have shown remarkable achievements in
various applications [15, 16], including natural language pro-
cessing [17–19] and medical image analysis [20–26]. To mini-
mise the gap between predicted and actual outputs, deep
learning algorithms are employed with appropriate weight as-
signments. Gradient‐based backpropagation (BP) techniques
are commonly used for weight learning in deep models. How-
ever, these optimisation techniques are highly susceptible to the
initial values assigned to the weights and may become stuck in
local minima [27–29]. This vulnerability often arises during
classification tasks [30]. To address this issue, meta‐heuristic
algorithms [31, 32] have been shown by some researchers to
overcome the challenges [33]. Differential Evolution (DE) is a
powerful algorithm that has demonstrated effectiveness in
addressing various optimisation problems. One of its key ad-
vantages in weight initialisation is its ability to handle multi-
modal optimisation problems where multiple optimal solutions
exist. Additionally, the DE algorithm is efficient and has low
computational costs, making it suitable for optimising large‐
scale problems. When compared to other algorithms for
weight initialisation, such as random initialisation, genetic al-
gorithms, and particle swarm optimisation, the DE algorithm
has shown superior performance in terms of convergence speed
and accuracy, especially for complex optimisation problems.
Moreover, the DE algorithm has demonstrated successful ap-
plications across various domains, including machine learning,
image processing, and pattern recognition, highlighting its
versatility and efficacy. These advantages make the DE algo-
rithm a promising approach for weight initialisation in deep
learning models, where the quality of initial weights significantly
impacts model performance [33].

The DE algorithm comprises three main stages: mutation,
crossover, and selection. In the mutation stage, a new potential
solution is generated by adjusting the scale of differences be-
tween existing solutions. During the crossover phase, the
recently generated mutation vector is combined with the orig-
inal vector. The selection stage identifies the top solutions to be
carried forward to the next iteration. The mutation operator has
a vital role in optimising the DE algorithm's performance. Its
primary purpose is to enable the algorithm to explore and
discover new regions within the search space, thus avoiding the

risk of getting stuck in local optima. A well‐designed mutation
operator can significantly enhance the algorithm's performance
by facilitating a more diverse and extensive search. However,
developing an effective mutation operator can be a complex and
challenging task, as it requires a deep understanding of both the
optimisation algorithm and the problem domain [34]. There-
fore, careful consideration and analysis are crucial during the
design process to create a mutation operator that is optimised to
achieve the best possible results [35].

Class imbalance happens when one category significantly
outnumbered the others, negatively impacting the performance
of machine learning classification techniques [36–38]. Detecting
instances from the minority class can be challenging due to their
scarcity and unpredictability, leading to subpar performance.
While models may achieve acceptable detection rates for the
majority of examples, the detection of minority instances re-
mains a challenge [39, 40]. Additionally, the presence of
incompatible samples from the minority class can have
destructive consequences. To address this issue, two approaches
have been proposed: data‐level and algorithmic‐level methods
[41, 42]. In the data‐level approach, class imbalances can be
rectified by modifying the training data, such as over-
representing the underrepresented classes or underrepresenting
the overrepresented classes [43]. The synthetic minority over-
sampling technique (SMOTE) [44] generates new instances by
linear interpolation between adjacent minority examples, while
NearMiss [45] employs the nearest neighbour algorithm to
undersample majority examples. However, both oversampling
and undersampling techniques can lead to overfitting or the loss
of crucial data. On the algorithmic level, the significance of the
lesser represented class can be boosted using methods, such as
ensemble learning, decision threshold adjustment, and cost‐
sensitive learning [46]. Cost‐sensitive learning assigns distinct
costs to the loss function for each class, with a higher cost for
misclassifying the minority class. Ensemble learning utilises
multiple sub‐classifiers to train the model and improve perfor-
mance through techniques like combining or voting. Threshold
adjustment techniques leverage the class imbalance in the
training dataset to train the classifier and modify the decision
threshold during testing to enhance classification performance.
State‐of‐the‐art techniques based on deep learning have also
been recommended for imbalanced data classification [47]. The
research article [48] proposed a loss function for deep neural
networks that considers errors in classifying both underrepre-
sented and overrepresented classes. In ref. [49], an approach
aimed at preserving interclass and intercluster margins while
learning distinctive features of an imbalanced dataset was
proposed.

To the best of our knowledge, there is a limited number of
published studies that have explored the application of deep
learning techniques in diagnosing myocarditis. In a study con-
ducted by Sharifrazi et al. [50], a method combining convolu-
tional neural networks (CNNs) with the k‐means algorithm was
proposed for image classification. The approach involved
several steps: starting with data preprocessing, the CNN was
employed to classify the images and partition them into multiple
clusters, considering each cluster as a distinct class. This process
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was performed for each cluster separately, and the results were
subsequently merged to obtain a final diagnosis. However, an
important drawback of the method was its treatment of the
image matrix as a vector in the k‐means algorithm, which led to
the exclusion of certain surrounding pixels around a specific
pixel, potentially impacting the accuracy of the results. In
another relevant article by Moravvej et al. [51], the authors
adopted the ABC algorithm to initialise the weights of the
CNN. This alternative approach aimed to enhance the optimi-
sation process in training the CNN model for myocarditis
diagnosis. By utilising the ABC algorithm, the weights were
initialised more effectively, potentially improving the perfor-
mance and accuracy of the CNN model.

This article presents a novel model for myocarditis utilising
a combination of CNN, RL, and an enhanced DE algorithm.
The proposed model treats the classification problem as a
sequential decision‐making process. In each iteration, the agent
receives an environmental state defined by a training sample
and, guided by a policy, performs classification. Successful
completion of the classification task rewards the agent posi-
tively, while an unsuccessful classification results in a negative
reward. The class with a lower occurrence rate is rewarded more
significantly than the class with a higher occurrence rate.
Throughout the sequential decision‐making phase, the agent
aims to optimise reward accumulation to achieve accurate
sample classification. To improve weight initialisation in both
the CNN and feed‐forward network, a clustering‐based
enhancement is proposed for the DE algorithm. This
enhancement aims to identify a favourable region in the search
space, serving as the starting point for the BP algorithm. To
achieve this, the mutation operator selects the optimal initial
solution from the highest‐performing cluster and applies a fresh
updating approach to generate solutions. The effectiveness of
our model is evaluated on the widely recognised and extensively
studied Z‐Alizadeh Sani dataset [51] in medical research. This
dataset consists of 7135 samples, including 4686 sick samples
and 2449 healthy participants. It is meticulously curated and
annotated, making it a valuable resource for assessing the per-
formance of machine learning models in diagnosing and pre-
dicting medical conditions.

The present study makes four main contributions:

•We handle the classification of heart muscle images as a
step‐by‐step decision‐making procedure and suggest a
reinforcement learning (RL)‐based method to tackle the
unequal class distribution challenge.
•Instead of random weight initialisation, we utilise an
encoding approach based on the improved DE algorithm
to select optimal initial values.
•The Z‐Alizadeh Sani myocarditis dataset, obtained from
the recently acquired and comprehensively annotated MRI
dataset at Omid Hospital in Tehran, is used as the foun-
dation for this study and is publicly available for download.
•We carry out tests to assess the efficiency of the sug-
gested model, contrasting it with other methods that
employ arbitrary weight initialisation and grapple with the
challenges of uneven classification situations.

The rest of the paper is organised as follows: Section II
provides a high‐level overview of the DE algorithm and RL. In
Section III, we introduce our method for myocarditis detec-
tion. Experimental results are presented in Section IV, and
Section V concludes the paper.

2 | BACKGROUND

2.1 | Differential evolution

It has been widely proven that group‐oriented algorithms, like
DE, display effective results across a broad spectrum of opti-
misation issues [52]. DE starts with an initial population and
employs three fundamental operations: mutation, crossover,
and selection. In the mutation stage, individuals in the popu-
lation undergo random perturbations to explore the search
space. The crossover operation combines information from
different individuals to generate new offspring with potentially
improved characteristics. Finally, the selection process de-
termines which individuals from the current population will be
retained for the next generation based on their fitness values.
The selection step often involves choosing individuals from a
uniform distribution, allowing for diverse exploration of the
solution space. This approach enhances the algorithm's ability
to escape local optima and discover promising regions for
optimisation. By incorporating these key operations, DE har-
nesses the collective intelligence of the population to iteratively
improve the quality of solutions and converge towards optimal
or near‐optimal solutions.

A mutant vector is attained by the mutation operator as
follows:

v!i;g ¼ x!r1;g þ F
�

x!r2;g − x!r3;g

�

; ð1Þ

where F indicates a factor scaling and x!r1;g, x
!
r2;g and x

!
r3;g are

three different or candidate solutions chosen stochastically
from the current population.

The target and mutant vectors are integrated during the
crossover. Binomial crossover is a famous crossover operator
that does this as follows:

ui;j;g ¼

(
vi;j;g if randð0; 1Þ ≤ CR or j ¼ jrand
xi;j;g otherwise

; ð2Þ

where jrand is a random number generated from the range of
{1, 2, …, D}, with D representing the dimensionality of a
candidate solution and CR expressing the crossover rate.

The superior solution is ultimately chosen from the trial
and target vectors by the selection operator.

2.2 | Reinforcement learning

RL encompasses a range of techniques that enable effective
learning from noisy data, leading to meaningful classification
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outcomes. Wiering et al. [53] described classification as a
problem of sequential decision‐making, where various com-
ponents interact with the environment to establish an optimal
policy function. However, the complexity of the interactions
between the components and the environment resulted in
exceptionally long runtime. In the context of noisy text data,
Feng et al. [54] proposed a RL‐based classification method that
employs two classifiers: a sample selector and a relational
classifier. The sample selector guides the agent in choosing
appropriate phrases from the noisy data, while the relational
classifier learns from clean data to provide delayed rewards to
the selector for evaluation. This approach yields an exceptional
classifier and high‐quality dataset. In the domain of time series
data, Martinez et al. [55] utilised RL techniques to specify
reward criteria and the Markovian process precisely. RL has
been successfully applied to train effective features in various
applications. These models incentivise the agent to select more
valuable features for classification, leading to increased rewards
and guiding the agent towards selecting more commendable
features. While deep learning has garnered significant attention
for imbalanced data classification, there remains a need for
further progress in the field.

3 | THE PROPOSED APPROACH

The general architecture of our proposed approach is shown in
Figure 1. For the classification problem, we consider two
crucial prospects. Initially, we generate a vector that contains all

the learnable weights of our model and utilise the advanced
DE algorithm to set an initial value for the weights. Then, in
the subsequent phase, we employ a RL‐based approach for
training to address the challenge of imbalanced classification.
The next sections go over these approaches in further depth.

3.1 | Pre‐training phase

Proper weight initialisation is of paramount importance in
ensuring the successful operation of deep networks. Inaccurate
initial values can significantly hinder the convergence of the
model and impair its overall performance. This article specif-
ically addresses the weight initialisation for two key types of
neural networks: CNN and feed‐forward neural network. To
tackle the weight initialisation challenge, we propose an
enhanced DE technique that incorporates a clustering scheme
and a novel fitness function. By leveraging the power of
clustering, we aim to identify distinct regions within the search
space, allowing for a more targeted and effective weight initi-
alisation process. The clustering scheme partitions the popu-
lation into clusters, each representing a specific section of the
search space. This enables us to better explore and exploit
different regions, potentially leading to improved convergence
and better overall performance. Furthermore, we introduce a
novel fitness function that takes into account various factors
and metrics to evaluate the quality and suitability of weight
initialisation. This comprehensive fitness function aims to
guide the DE algorithm towards identifying optimal weight

F I GURE 1 General procedure of the suggested model: Initially, in Step 0, the model goes through pre‐training using the DE method to set its weights. In
Step 1, a CMR image (St) is selected from the dataset and given to the network (Step 2). In Step 3, the action at is returned to the environment to obtain the
subsequent image (Stþ1) and reward rt at Step 4. The transition {St, at, rt, Stþ1} is saved in the replay memory in Step 5. After multiple transitions are stored in
the replay memory, a random subset of these transitions is chosen in Step 6 to be used for updating the network's weights in Step 7. This procedure is repeated
until the network accurately classifies the input images. The algorithm finishes once all available episodes have been used up.

4 - YANG ET AL.

 24682322, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12289 by U

niversidad D
e G

ranada, W
iley O

nline L
ibrary on [26/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



configurations that align with the specific requirements and
characteristics of the CNN and feed‐forward neural network
architectures.

3.1.1 | Clustering‐based differential evolution

In our improved DE algorithm, we utilise a cluster‐based mu-
tation and update mechanism to enhance optimisation perfor-
mance. The suggested mutation operator, motivated by
Mousavirad et al.’s work [56], pinpoints a hopeful area within
the search space. The current population P is split into k groups
using the k‐means clustering method, with each group signi-
fying a separate part of the search space. A random number
from the range ½2;

ffiffiffiffi
N
p
� is chosen to establish the number of

clusters. Following the clustering process, the group with the
lowest average fitness among its members is deemed the su-
perior cluster.

Building on the existing mechanism of our enhanced DE
algorithm, we proceed by focussing on the superior cluster,
where the lowest average fitness score indicates the area with
the greatest potential for optimisation. This mechanism works
by iteratively assessing each cluster's fitness and pinpointing
the area in the search space that holds the most promise for
improvement. After identifying the superior cluster, the next
step is to mutate and update the individuals within this cluster.
The mutation operation aims to explore the promising area by
creating trial solutions that deviate slightly from the current
ones. It is this variation in the cluster that allows for the
introduction of potential solutions which might be superior to
the current population. The updating scheme is then used to
decide which of these trial solutions should be accepted into
the population. This decision is typically made based on their
fitness: the higher the fitness, the more likely the trial solution
will replace a current member of the population. In essence,
the clustering‐based mutation and update process leads to the
population gradually converging towards the most promising
region of the search space. This approach not only enhances
the optimisation performance but also speeds up the search
process as the focus is continually adjusted to the regions that
offer the highest potential for improvement.

The proposed clustering‐based mutation can be described
as follows:

vclu
�!

i ¼ wing
��!

þ F
�

x!r1 − x!r2

�

; ð3Þ

where wing
��!

signifies the most advantageous solution within the
hopeful region, while x!r1; g and x!r2; g represent two arbi-
trarily selected potential solutions from the existing population.
It is critical to point out that wing

��!
might not always be the

optimal solution in the population. The mutation operation
reliant on clustering is carried out M times.

Upon generating M new solutions through cluster‐based
mutation, the existing population is refreshed, employing a
standard population‐based algorithm (GPBA). This refresh

process plays a crucial role in integrating these new solutions
into the population and enhancing the overall solution di-
versity. The GPBA takes into account the quality of both the
existing and newly generated solutions when deciding which to
include in the updated population. It employs a selection
strategy that favours the most promising solutions based on
their fitness, thereby encouraging the population to converge
towards optimal or near‐optimal solutions. Moreover, the
GPBA helps maintain diversity within the population. Di-
versity is crucial in optimisation algorithms to prevent pre-
mature convergence on local optima and to ensure that a broad
area of the search space is explored. While the selection
strategy favours the fittest solutions, it also ensures that a va-
riety of solutions are retained in the population. This refreshing
of the population not only allows the integration of new po-
tential solutions but also promotes the search for even better
ones in subsequent iterations. The iterative nature of the
GPBA, paired with the clustering‐based mutation, ensures that
the population evolves over time, getting progressively closer
to the optimal solution with each iteration.

The steps are as follows:

•Selection: Generate k individuals randomly as initial
seeds of k‐means algorithm;
•Generation: Generate M solutions by employing muta-
tion based on clustering, resulting in a collection of so-
lutions denoted as vclu;
•Replacement: Choose M solutions at random and
determined as B;
•Update: The top M solutions among the set of vclu ∪ B
are selected as B0. Subsequently, the new population is
computed as the union of (P − B) and B0.

3.1.2 | Encoding strategy

The encoding approach employed in our research seeks to
organise the CNN and feed‐forward weights into a vector that
will be used to express the candidate solution in the improved
DE. It is challenging to devote precise weights; nonetheless, we
have devised an encoding approach that is as pertinent as
possible after a few trials. Figure 2 demonstrates a sample of
the encoding process using a three‐layer CNN network con-
sisting of three filters in each layer and a feed‐forward network
having three hidden layers. It should be highlighted that in the
vector, each weight matrix is preserved as a row.

3.1.3 | Fitness function

In the enhanced DE algorithm, the effectiveness of a solution is
evaluated using the fitness factor, which is calculated as follows:

Fitness¼
1

1þ
PN
i¼1
�
yi − ŷi

�2 ð4Þ

YANG ET AL. - 5

 24682322, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12289 by U

niversidad D
e G

ranada, W
iley O

nline L
ibrary on [26/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



For the ith sample, the target labels and projected labels are
denoted as yi and ŷi , respectively, while N represents the total
number of instances.

3.2 | Classification

We confront imbalanced classification challenges due to the
disparity in the number of data between our two classes. To
tackle this, we fabricate a sequential decision issue utilising RL.
In RL, an agent seeks to determine the optimal policy by
executing a sequence of actions in the environment with the
objective of maximising its performance. Our paper's inspira-
tion for this section arrived from ref. [51]. In our approach, the
agent is given an instance of the dataset in every iteration and is
demanded to classify it. Subsequently, the instantaneous score
is sent to the agent by the environment. An accurate rating
equates to a positive score, whilst an incorrect rating leads to a
negative score. The optimal policy can be achieved by the agent
through the maximisation of cumulative rewards. Let D = (x1,
y1), (x2, y2), (x3, y3), …, (xN, yN) denote an imbalanced
collection of images with N instances, where xi represents the
ith image and yi corresponds to its respective label. The pre-
designate parameters are as follows:

•Policy πθ: A function that maps a collection of states
and actions, denoted by S and A respectively, to π is
called a policy. To put it another way, each instance of
πθ(st) represents taking an action at while being in state
st. The model for classification with weights θ is referred
to as πθ.
•State st: The data point xt is mapped to a state st in the
dataset D, where the first state s1 corresponds to the initial
data point x1. The D is interfused in each iteration so the
model does not memorise the predetermined sequence.
•Action at: To anticipate the label xt, action at is
accomplished. Because the presented classification is bi-
nary, the numbers of at ∈ {0, 1} signify the minority and
majority classes, respectively.

•Reward rt: The performance of an action is taken into
account while deciding on a reward. The agent is rewarded
positively when it correctly classifies the input sample;
otherwise, a negative reward is given. The bonus amount
for both categories should not be the same. Because the
amount of reward and action has been configured prop-
erly, rewards can considerably increase model perfor-
mance. The reward of the action is specified in this
research using the equation below [57]:

rtðst; at; ltÞ ¼

8
>>><

>>>:

þ1; at ¼ yt and st ∈DH
−1; at ≠ yt and st ∈DH
λ; at ¼ yt and st ∈DS
−λ; at ≠ yt and st ∈DS

ð5Þ

In this context, DH and DS represent the minority and
majority classes, respectively, while λ is a value within the range
of [0,1]. Since the minority class is critical due to the scarcity of
data, the reward λ is assigned a value less than 1/−1. Indeed,
we can give the minority class more priority to approach the
majority class. We will see the significance of the value λ in the
results section.

•Terminal E: Multiple final states are reached during each
training session, signifying the completion of the training
process. The sequence of state‐action‐reward transitions
starting from an initial state and ending in a final state
within each session is represented as (s1, a1, y1), (s2, a2, y2),
(s3, a3, y3), …, (st, at, yt). Our approach terminates a
training session under two conditions: either all training
data is classified accurately or an instance from the mi-
nority class is classified incorrectly.
•Transition probability P: The transition of the agent
from state st to state stþ1 is determined by the order in
which the data is read, where the probability of this
transition is denoted by p(stþ1|st, at).

4 | EMPIRICAL EVALUATION

4.1 | Dataset

A study was carried out on myocarditis in Tehran using CMR
techniques, spanning a duration of one year from September
2016 to September 2017. Throughout the course of the
research project, patients who showed clinical indications of
myocarditis but were not conclusively diagnosed underwent
CMR scans. The medical practitioner determined that the
CMR results would have an impact on their clinical manage-
ment. The research protocol obtained ethical approval from
the local committee. A 1.5 T system was used for the CMR
investigation [58, 59].

To identify patients with positive evidence of myocarditis,
CMR scans of 586 patients were utilised, which might indicate
one or more disease regions. A total of 307 healthy people
were explored to establish balance. To analyse the data, a total

F I GURE 2 Placing weights in a vector.
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of eight CMR images were acquired from each control subject
or patient, consisting of one short‐axis image and one long‐
axis image obtained using four different CMR sequences: late
gadolnium enhancement, perfusion, T2‐weighted, and steady‐
state free precession. The finalised dataset consists of 4686
sick samples and 2449 healthy participants, respectively.
Figure 3 illustrates images that were generated employing this
dataset. It is noteworthy that image‐level analysis is accom-
plished in this approach, not patient‐level. To put it another
way, regardless of how many photos are available for each
patient, prediction is based on a single image. In essence, single
image prediction is utilised, not patient‐based.

4.2 | Details of model

Python and the Pytorch framework were utilised in this proj-
ect. In a Jupyter notebook, the codes are written. For CNN, we
utilised a total of five tiers of two‐dimensional convolution
incorporating 256, 128, 64, 32, and 16 filters, respectively. Each
layer's padding, stride, and kernel sizes are 3, 2, and 1,
sequentially, for both dimensions. A max‐pooling layer with a
size of 2 � 2 is contained in each convolution layer. Each of
the three fully connected layers has hidden layers of 256, 128,
and 64. To avoid overfitting, early stopping and dropout with a
probability of 0.5 are utilised. The batch size is incessantly 64 in
each epoch. Grayscale images with an image pixel light severity
of between [0,1] are employed in this dataset. The dataset
comprises images of various sizes that have been resized to a
resolution of 100 � 100 for the purpose of analysis.

4.3 | Experimental results

In the classification procedure to appraise the offered strategy,
six standard performance metrics, namely Accuracy, Recall,
Precision, F‐measure, Specificity, and G‐means are employed

[60]. These metrics act as numerical indicators for assessing the
efficiency and resilience of our classification model.

To evaluate the performance and robustness of our models,
we employed a k‐fold (k = 5) stratified cross‐validation
approach in all of our experiments. This technique ensures
that the dataset is divided into k equal‐sized and representative
categories or folds. During each iteration of the cross‐validation
process, one fold is held out for testing, while the remaining
k − 1 folds are used for training the model. This process is
repeated k times, with each fold serving as the test set once. By
following this rigorous and systematic evaluation procedure, we
ensure that all data samples are utilised both for training and
testing, and that the performance metrics are averaged over
multiple iterations, providing a reliable estimation of the model's
performance. The use of stratified cross‐validation is particu-
larly important in scenarios where the dataset exhibits class
imbalance or when it is crucial to maintain the distribution of
class labels across the folds. By stratifying the data, we ensure
that each fold contains a representative proportion of samples
from each class, minimising the potential bias that could arise
from an imbalanced distribution. This approach is especially
relevant in medical datasets, where the occurrence of rare
conditions or minority classes may be of critical importance. By
employing k‐fold stratified cross‐validation, we can obtain
robust performance estimates for our models, as the evaluation
is based onmultiple diverse subsets of the data. This allows us to
assess the generalisation capability of the models and identify
any potential overfitting or underfitting issues. Additionally, by
averaging the performance metrics across the k folds, we obtain
a more reliable estimation of the model's overall performance,
reducing the impact of random variations that may occur when
using a single train‐test split.

First, we contrasted the two published studies in this field,
discoursed as CNN‐KCL and RLMD‐PA, with our proposed
method. In order to assay the two separate components of
improved DE and RL in our model, a fundamental model per-
formance without improved DE and RL, that is, MDþ random
weight, is compared to the models MD þ IDE and MD þ RL,
which employ improved DE and RL for training. Table 1 ex-
hibits the assessment outcomes of our proposed approach
performance with the other model mentioned above on the Z‐
Alizadeh Sani myocarditis dataset. The presented model de-
creases the error by more than 32%. The presented approach
outperforms the CNN‐KCL method and MD þ random
weight, MD þ IDE, and MD þ RL combinations of its com-
ponents, from the point of view of the mean of all the perfor-
mance metrics. Across all measured performance criteria, the
improvedDE and RL both outperform the basic CNNnetwork,
which supports the employment of combined initial weight and
RL techniques. The best model was determined after 122 iter-
ations, which spent 0.5 h, whereas CNN‐KCL and RLMD‐PA
discovered the best model after 283, and 157 iterations, which
lasted 1.5, and 2 h, respectively.

For our project, we employed a powerful computing setup
consisting of a 64‐bit Windows operating system with 64 GB of
RAM and a GPU, enabling us to efficiently train and evaluate
our models. During the training phase, we observed that the

F I GURE 3 Some sample images from the Z‐Alizadeh Sani
myocarditis dataset.
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best performing model for CNN‐KCL, RLMD‐PA, and the
proposed model was achieved after 262, 230, and 185 epochs,
respectively. This indicates that the models underwent an iter-
ative learning process, gradually improving their performance
over multiple training iterations. In terms of computational
time, the training process for CNN‐KCL, RLMD‐PA, and the
proposed model took approximately 2, 3.5, and 2.5 h,
respectively.

Conventional machine learning methods have limitations
when it comes to recognising medical images due to their
approach of viewing images as one‐dimensional vectors and
separating neighbouring pixels. To address this challenge, we
conducted an evaluation of five different classification methods,
including support vector machine (SVM) [61], k‐nearest
neighbour [62], naive Bayes [63], logistic regression [64], and
random forests [65]. The purpose of this evaluation was to
determine the effectiveness of these methods in classifying the
CMR images and compare them against the performance of our
deep model. After careful analysis, we found that while SVM
outperformed the other approaches, the deep model still
exhibited superior performance in classifying the medical im-
ages. The deep model utilised advanced techniques in deep
learning, allowing it to capture complex patterns and de-
pendencies present in the CMR images. By leveraging its mul-
tiple layers of interconnected neurons, the deep model could
automatically learn hierarchical representations that capture
intricate features at different levels of abstraction. This ability to
extract and analyse intricate features played a crucial role in
achieving superior classification performance. In contrast, the
standard machine learning classifiers treated the images as one‐
dimensional vectors, disregarding the spatial relationships be-
tween neighbouring pixels. As a result, they were unable to
capture the intricate details and contextual information crucial
for accurate classification of medical images. Table 1 provides a
summary of our observations from the evaluation, highlighting
the performance of each method. Although SVM demonstrated
relatively better results compared to the other methods, it still
fell short when compared to the deep model's classification

accuracy. These findings underscore the significance of
leveraging deep learning approaches in medical image recogni-
tion tasks. The ability of deep models to learn complex repre-
sentations and capture spatial dependencies within images
makes them well‐suited for analysing and classifying medical
data. The continuous advancements in deep learning techniques
and the availability of large‐scale medical image datasets hold
great potential for further improving the accuracy and reliability
of medical image analysis and diagnosis.

4.4 | Explore other metaheuristic algorithms

The proposed model incorporates an enhanced DE approach
for weight initialisation, which has a significant impact on the
subsequent BP process. To evaluate the effectiveness of this
enhanced DE approach, we compared it against five conven-
tional algorithms, namely momentum BP (GDM) [66], gradient
descent with adaptive learning rate BP (GDA) [67], gradient
descent with momentum and adaptive learning rate BP
(GDMA) [68], one‐step secant BP (OSS) [69], and Bayesian
regularisation BP (BR) [70]. Additionally, we included four
meta‐heuristic algorithms in the comparison, specifically Grey
Wolf Optimisation (GWO) [71], the bat algorithm (BA) [72],
Cuckoo Optimisation Algorithm (COA) [73], and the original
DE [74]. To provide a comprehensive evaluation, we estab-
lished additional parameter settings as presented in Table 2.
The performance measures used for comparing the algorithms
are outlined in Table 3. It was observed that the meta‐heuristic
algorithms consistently outperformed the conventional algo-
rithms in terms of accuracy, recall, and F‐measure scores.
Notably, the enhanced DE algorithm exhibited superior per-
formance compared to both the traditional and meta‐heuristic
algorithms, achieving a remarkable reduction in recall and F‐
measure errors of over 30% and 27%, respectively. These re-
sults highlight the effectiveness of the proposed enhanced DE
approach in improving the classification performance for the
given task.

TABLE 1 Results of deep learning and traditional algorithms on the Z‐Alizadeh Sani myocarditis dataset.

Accuracy Recall Precision F‐measure Specificity G‐means

CNN‐KCL 0.804 � 0.015 0.744 � 0.033 0.735 � 0.036 0.740 � 0.030 0.838 � 0.027 0.792 � 0.028

RLMD‐PA 0.878 � 0.019 0.845 � 0.016 0.829 � 0.035 0.837 � 0.017 0.896 � 0.026 0.869 � 0.015

SVM 0.727 � 0.023 0.786 � 0.029 0.606 � 0.024 0.684 � 0.026 0.692 � 0.02 0.737 � 0.023

KNN 0.718 � 0.100 0.706 � 0.020 0.631 � 0.151 0.660 � 0.090 0.724 � 0.150 0.713 � 0.082

Naïve Bayes 0.699 � 0.017 0.782 � 0.039 0.572 � 0.016 0.661 � 0.023 0.649 � 0.013 0.712 � 0.020

Logistic Regression 0.666 � 0.016 0.679 � 0.015 0.545 � 0.018 0.605 � 0.017 0.659 � 0.018 0.669 � 0.016

Random forests 0.582 � 0.022 0.665 � 0.033 0.461 � 0.020 0.544 � 0.024 0.531 � 0.022 0.594 � 0.022

MD þ random weight 0.762 � 0.035 0.697 � 0.045 0.679 � 0.047 0.687 � 0.046 0.801 � 0.031 0.747 � 0.038

MD þ IDE 0.871 � 0.032 0.864 � 0.044 0.832 � 0.040 0.838 � 0.031 0.885 � 0.016 0.876 � 0.030

MD þ RL 0.893 � 0.025 0.870 � 0.042 0.851 � 0.049 0.860 � 0.032 0.910 � 0.019 0.896 � 0.034

Proposed (IDE þ RL) 0.910 � 0.019 0.889 � 0.038 0.875 � 0.043 0.883 � 0.029 0.926 � 0.021 0.919 � 0.027
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4.5 | Explore the reward function

Rewards for correct and incorrect classifications are allocated
to the majority and minority classes as �1 and �λ, respectively.
The choice of λ is intrinsically tied to the proportion of ma-
jority to minority samples. As this ratio augments, it is expected
that the optimal λ value will inversely decline. To delve into the
impact of λ, we subjected the proposed model to various λ
values, spanning from 0 to 1 in increments of 0.1, all the while
preserving a steady reward for the majority class. These results
are vividly captured in Figure 3. When λ is fixed at 0, the
importance of the majority class is virtually nullified, whereas at
λ = 1, the consequences on both majority and minority classes
become balanced. As delineated in Figure 4, the performance
of the model reaches its zenith at a λ value of 0.4 across all the
evaluated metrics, intimating that the most advantageous λ
value resides neither at the absolute values of 0 or 1, but rather
in an intermediary position. It is vital to note that, although it is
essential to mitigate the influence of the majority class by
adjusting λ, opting for a value that is excessively low may
impinge on the overall efficacy of the model. The gathered data
emphasises that the choice of λ markedly influences the per-
formance of the model. The optimal λ value is dependent on
the relative proportions of majority to minority samples,
necessitating its careful selection for achieving the most
favourable outcomes.

4.6 | Impact of loss function

In addressing the issue of skewed data distribution within SA,
the utilisation of various conventional methodologies, such as
the adaptation of data augmentation techniques and loss func-
tions, is essential. Of these methodologies, the selection of an
apt loss function is particularly significant as it can effectively
accentuate the importance of the minority class. In this study, we
conducted a rigorous evaluation of five distinct loss functions,
namely Weighted Cross‐Entropy (WCE) [75], Balanced Cross-
Entropy (BCE) [76], Focal Loss (FL) [77], Dice Loss (DL) [78],
Tversky Loss (TL) [79]. These were assessed in relation to our
proposed model. Notably, the BCE and WCE loss functions
ensure unbiased consideration by assigning equivalent weight-
age to both positive and negative samples. In this assortment of
functions, the FL function has proven to be an efficient tool for
applications wrestling with imbalanced data. This is achieved by
its judicious weight distribution; wherein lesser weight is
attributed to simpler examples and higher weight to complex
ones. This strategic allocation emphasises the challenging, often
underrepresented cases without downplaying the simpler ones.
As evidenced in Table 4, the FL function, when compared to
TL, generates a lower error rate, with the reduction ranging
between 15% and 29% across accuracy and F‐measure metrics.
This remarkable reduction exhibits the FL's competence in
managing imbalanced data more effectively. However,
notwithstanding these promising outcomes, it is vital to
recognise that the performance of the FL function pales in
comparison to RL, trailing behind by a significant 35% margin.
This implies that while the FL function can be a feasible option
for handling imbalanced data, more sophisticated techniques
like RL may offer more precise results.

4.7 | Discussion

The article focused on developing an approach for myocarditis
detection using CMR images with the help of CNN, an
improvedDE algorithm for pre‐training, and a RL‐based model
for training. One of the significant challenges encountered in

TABLE 3 Results of various optimisation methods on the Z‐Alizadeh Sani myocarditis dataset.

Accuracy Recall Precision F‐measure Specificity G‐means

GDM 0.829 � 0.021 0.804 � 0.019 0.793 � 0.039 0.804 � 0.036 0.878 � 0.029 0.841 � 0.024

GDA 0.841 � 0.019 0.811 � 0.024 0.781 � 0.043 0.794 � 0.021 0.864 � 0.031 0.839 � 0.017

GDMA 0.857 � 0.014 0.810 � 0.032 0.804 � 0.030 0.809 � 0.035 0.879 � 0.028 0.849 � 0.028

OSS 0.845 � 0.011 0.800 � 0.023 0.794 � 0.021 0.797 � 0.026 0.876 � 0.013 0.839 � 0.024

BR 0.833 � 0.010 0.783 � 0.010 0.780 � 0.042 0.786 � 0.017 0.869 � 0.036 0.827 � 0.003

GWO 0.856 � 0.019 0.802 � 0.023 0.799 � 0.024 0.801 � 0.024 0.879 � 0.016 0.842 � 0.019

BAT 0.855 � 0.021 0.798 � 0.029 0.810 � 0.019 0.801 � 0.018 0.885 � 0.012 0.833 � 0.018

COA 0.849 � 0.010 0.806 � 0.006 0.789 � 0.032 0.790 � 0.045 0.862 � 0.039 0.837 � 0.031

DE 0.893 � 0.014 0.871 � 0.020 0.852 � 0.031 0.870 � 0.019 0.903 � 0.026 0.901 � 0.017

TABLE 2 Parameter setting for research.

Algorithm Parameter Value

GWO Without parameters

BAT Constant for loudness update 0.50

A constant for updating the emission rate 0.50

Initial pulse emission rate 0.001

COA Alien solutions' rate of discovery 0.25

DE Scaling factor 0.5

Crossover probability 0.8
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this study was the imbalanced classification of the Z‐Alizadeh
Sani myocarditis dataset. To address this issue, the training
process was designed as a sequential decision‐making process,
where the agent received rewards or penalties based on accu-
rately or inaccurately classifying the minority or majority class.
This approach aimed to enhance the model's ability to handle
imbalanced data and achieve higher accuracy. Additionally, the
article proposed an enhanced DE algorithm to initiate the BP
process, effectively resolving the initialisation sensitivity prob-
lem commonly faced in gradient‐based methods during training.
Experimental results based on standard performance metrics
demonstrated the effectiveness of the proposed model in
diagnosing myocarditis.

To address the potential limitations of the suggested
model, further investigations and improvements can be made
in several key areas. Firstly, the model's reliance on a single
dataset, the Z‐Alizadeh Sani myocarditis CMR dataset, may
limit its generalisability to other datasets with distinct features.
To ensure the broader applicability of the model, it is crucial to
evaluate its performance on independent datasets representing
different populations, imaging protocols, and myocarditis
characteristics. This comprehensive evaluation will provide
insights into the model's robustness and its ability to adapt to
diverse scenarios, enhancing our confidence in its effectiveness
across various settings. Moreover, it is important to acknowl-
edge that the model was developed using a retrospective study

F I GURE 4 A visual representation of the performance metrics changing as a result of alteration in λ.

TABLE 4 Performance metrics of various loss functions for myocarditis diagnosis on the Z‐Alizadeh Sani myocarditis dataset.

Accuracy Recall Precision F‐measure Specificity G‐means

WCE 0.845 � 0.003 0.778 � 0.013 0.803 � 0.021 0.790 � 0.005 0.885 � 0.021 0.830 � 0.015

BCE 0.822 � 0.001 0.824 � 0.024 0.745 � 0.000 0.783 � 0.031 0.821 � 0.035 0.822 � 0.006

FL 0.868 � 0.026 0.833 � 0.027 0.819 � 0.006 0.826 � 0.027 0.889 � 0.036 0.861 � 0.026

DE 0.811 � 0.024 0.837 � 0.026 0.711 � 0.009 0.769 � 0.031 0.795 � 0.001 0.816 � 0.033

TL 0.827 � 0.013 0.816 � 0.020 0.747 � 0.007 0.780 � 0.010 0.834 � 0.026 0.825 � 0.024

10 - YANG ET AL.
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design, which has inherent limitations and potential biases.
Conducting prospective studies, where data is collected pro-
spectively and a clear protocol is established, would be more
suitable to validate the model's effectiveness in myocarditis
diagnosis. Prospective studies offer a stronger basis for
establishing cause‐effect relationships and minimise the po-
tential biases associated with retrospective data analysis. On the
technical side, the quality of input CMR images can influence
the model's performance. Factors such as imaging techniques,
scanner parameters, and patient‐specific characteristics can
introduce variability in image quality. It is necessary to account
for these variations and develop techniques to standardise or
enhance image quality during the training and testing phases of
the model. By addressing image quality issues, the model can
better detect and classify myocarditis accurately, regardless of
the variations in image acquisition. Additionally, the quantity
and characteristics of myocarditis lesions can vary across
different patients, posing a challenge for the model in handling
lesions of different sizes, shapes, and locations. To improve the
model's performance, it would be beneficial to train it on a
diverse range of myocarditis cases, encompassing variations in
lesion characteristics. Augmentation techniques, such as data
augmentation or incorporating additional annotated datasets,
can be employed to expand the diversity of training samples
and improve the model's ability to handle lesion variability. In
addition to the aforementioned considerations, future research
efforts can explore several other crucial areas to overcome the
limitations and further enhance the proposed model. Firstly, it
would be beneficial to investigate the generalisability and
transferability of the model by evaluating its effectiveness on a
wider array of datasets, particularly those with a lower inci-
dence of myocarditis. This expanded evaluation would enable a
comprehensive assessment of the model's performance under
more challenging conditions, where distinguishing myocarditis
cases from other cardiac abnormalities or healthy cases may
prove to be more difficult. By subjecting the model to diverse
datasets, its robustness, versatility, and potential limitations can
be thoroughly examined, enhancing our understanding of its
real‐world applicability and performance across varying prev-
alence rates of myocarditis. Secondly, future research endeav-
ours can prioritise the development of advanced deep learning
segmentation techniques that not only detect the presence of
myocarditis but also precisely delineate the specific location
and intensity of the condition on CMR images. By delving into
the realm of segmentation, the model can provide detailed
insights into the spatial extent and severity of myocarditis,
empowering medical professionals with invaluable information
for more precise diagnosis and treatment planning. This ne-
cessitates the creation of sophisticated segmentation algo-
rithms that effectively exploit the rich information embedded
within CMR images, enabling accurate localisation and quan-
tification of myocarditis lesions. Such advancements would
significantly contribute to the realisation of more precise and
comprehensive cardiac healthcare practices, improving patient
outcomes and guiding targeted therapeutic interventions.

5 | CONCLUSION AND FUTURE
DIRECTIONS

Myocarditis is a serious cardiovascular condition that can have
significant consequences if not detected early and treated
promptly. The proposed method in this article leverages
advanced techniques, including CNN, an improved DE algo-
rithm, and an RL‐based algorithm, to address the challenges
associated with identifying myocarditis using CMR images.
CNNs are a type of neural network specifically designed to
extract important features from images, making them well‐
suited for image recognition tasks. The improved DE algo-
rithm is utilised to pre‐train the CNNs, enhancing their per-
formance prior to the application of the deep RL‐based
algorithm. One of the main challenges encountered in devel-
oping this approach is the imbalanced classification of the Z‐
Alizadeh Sani myocarditis dataset, where the majority of cases
are normal and only a small fraction are abnormal. To tackle this
issue, the proposed method adopts a sequential decision‐
making process where the agent receives rewards or penalties
based on the accurate or inaccurate classification of the minority
or majority class. This approach helps overcome the inherent
imbalances commonly found in medical image analysis datasets.
Additionally, a novel DE algorithm is introduced, incorporating
a clustering‐based mutation operator to initiate the back‐
propagation process and address the sensitivity of initialisation
in gradient‐based methods. The effectiveness of the proposed
model in detecting myocarditis is demonstrated through
experimental results using standard performance measures. The
findings indicate that the proposed method outperforms other
techniques in accurately categorising myocarditis images.

To further enhance the efficacy of the proposed method in
detecting myocarditis, several potential future directions can be
explored. One avenue is to investigate the use of other types of
neural networks, such as recurrent neural networks (RNNs) or
CNNs with attention mechanisms, to improve the accuracy of
the model. Another area of research could involve exploring
transfer learning techniques to adapt the pre‐trained CNNs to
new datasets with different characteristics. This would be
particularly valuable in scenarios where obtaining large labelled
datasets is challenging, such as in rare or specialised medical
conditions. Furthermore, other optimisation methods could be
explored to enhance the pre‐training of the CNNs, potentially
leading to improved feature extraction and higher classification
accuracy. Additionally, alternative reward functions, such as
entropy‐based rewards, could be investigated for the RL‐based
algorithm to better address the challenges posed by imbalanced
datasets. Lastly, the utilisation of multimodal imaging data,
such as combining CMR images with other modalities like
computed tomography (CT) or ultrasound, could be explored
to enable a more comprehensive and accurate diagnosis of
myocarditis.
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