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Estimation of LULC Classes With MODIS

Multispectral Time-Series and Geo-Topographic
and Climatic Data
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Abstract—Remotely sensed data are dominated by mixed land
use and land cover (LULC) types. Spectral unmixing (SU) is a key
technique that disentangles mixed pixels into constituent LULC
types and their abundance fractions. While existing studies on deep
learning (DL) for SU typically focus on single time-step hyperspec-
tral or multispectral data, our work pioneers SU using MODIS MS
time series, addressing missing data with end-to-end DL models.
Our approach enhances a long-short-term-memory-based model
by incorporating geographic, topographic (geo-topographic), and
climatic ancillary information. Notably, our method eliminates the
need for explicit endmember extraction, instead learning the input–
output relationship between mixed spectra and LULC abundances
through supervised learning. Experimental results demonstrate
that integrating spectral-temporal input data with geo-topographic
and climatic information significantly improves the estimation of
LULC abundances in mixed pixels. To facilitate this study, we
curated a novel labeled dataset for Andalusia (Spain) with monthly
MODIS MS time series at 460-m resolution for 2013. Named
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Andalusia MultiSpectral MultiTemporal Unmixing, this dataset
provides pixel-level annotations of LULC abundances along with
ancillary information.

Index Terms—Abundance estimation, bidirectional long-short
term memory (LSTM), climatic data, deep learning (DL), geo-
topographic data, land use and land cover (LULC), missing values,
spectral unmixing (SU).

I. INTRODUCTION

LAND use and land cover (LULC) mapping is normally
addressed by classifying each pixel in a satellite image

into a LULC class, also known as semantic segmentation (SS)
in RS images. Frequently, the spatial resolution of an image and
the thematic resolution of its LULC legend do not match, which
leads to the mixed pixel problem, where pixels are not pure but
contain several LULC classes. Accordingly, many methods have
tried to estimate the relative abundances of each LULC class in a
pixel from the combined spectral signature [1]. Such estimation
of the spectrum and the abundance of the LULC classes present
within each pixel is known as spectral unmixing (SU) and is
one of the most challenging areas of research in remote sensing
(RS) [2]. Various unmixing approaches, including linear and
nonlinear methods, have been developed [3], [4]. Many of these
approaches require the use of the pure spectral signature (the
endmember) of each LULC class. However, the acquisition
of endmembers might be hard in areas dominated by mixed
pixels [5]. To overcome this limitation, several methods have
been introduced to avoid the need of endmembers extraction [2],
[5], [6], [7], as depicted in Fig. 1.

In the last few years, modern deep learning (DL) models
have been increasingly employed for addressing SU by directly
learning the input–output mapping from the spectra of mixed
pixels to their corresponding class abundances. Several studies
explored the potential of DL methods for SU in LULC mapping
using either single time-step hyperspectral (HS) data [2], [8],
[9] or single time-step multispectral (MS) data [10]. Including
temporal information could be a great opportunity to improve SU
methods [4] and a few works (see Table I) have started exploring
approaches with MS time-series data. However, to the best of
our knowledge, none have explored an end-to-end DL solution,
where recurrent neural networks (RNNs) and LSTM networks
are a perfect fit.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0009-0000-6369-7229
https://orcid.org/0000-0001-6224-2206
https://orcid.org/0000-0001-8988-4540
https://orcid.org/0000-0003-4093-5356
mailto:e.jrodriguez98@go.ugr.es
mailto:rohaifa@go.ugr.es
mailto:dalcaraz@ugr.es
mailto:siham@ugr.es
https://zenodo.org/records/7752348
https://github.com/jrodriguezortega/MSMTU


RODRÍGUEZ-ORTEGA et al.: BIDIRECTIONAL RECURRENT IMPUTATION AND ABUNDANCE ESTIMATION OF LULC CLASSES 4627

Fig. 1. Toy example illustrating (a) SU without endmember extraction versus (b) SU with endmember extraction in a 460-m mixed pixel. (a) SU without
endmember extraction. (b) SU with endmember extraction.

TABLE I
LIST OF SU WORKS USING MS AND MULTITEMPORAL DATA

In contrast to traditional methods, the application of DL in
SU facilitates the exploitation of ancillary information such as
geographic location, topography, and climate. For example, in
the field of computer vision, ancillary data have been success-
fully used by DL models to improve the performance during
image classification [11], [12], [13]. However, the introduction
of ancillary information remains unexplored in SU methods. We
hypothesize that injecting such ancillary information could boost
the performance of the predictive model in SU. This information
may help the model understand the spatial distribution and
variations in climate of the different LULC types.

The primary problem addressed in this study is the SU of
LULC classes using MS time-series data and ancillary informa-
tion, and it faces several challenges.

1) Public labeled datasets with MS multitemporal data for
SU of LULC classes are not available.

2) Creating a new dataset of MS time-series plus ancillary
information together with LULC abundances annotations
is complex, costly, and time consuming.

3) RS data usually contain missing values due to atmospheric
conditions or sensors’ errors, which requires applying
robust processing techniques.

4) Feeding ancillary information to SU models is a promising
direction but can be complex. Ensuring that these data
improve the model robustness is a challenge and it is not
explored yet.

Given the aforementioned challenges, the main objective of
this study is twofold.
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Fig. 2. Flowchart of our proposed method. First, Andalusia-MSMTU dataset is built using MODIS MS multitemporal data plus geo-topographic and climatic
data together with the corresponding LULC abundances annotations extracted from SIPNA. Subsequently, the deep-learning-based model is designed to use both,
MS times-series and geo-topographic and climatic data to estimate the LULC abundances.

1) To create a regional-scale dataset of more than 500 000
MODIS 460-m resolution pixels from Andalusia, Spain.

2) To develop a DL-based approach for SU, without the
need of endmember extraction, which estimates the LULC
abundances per pixel using MS time-series and ancillary
data. This dataset provides for each individual pixel:

a) an MS time series of monthly observations during the year
2013 of the seven spectral bands of the MODIS sensor;

b) ancillary information containing geographic, topographic,
and climatic variables;

c) their corresponding LULC class abundances at two differ-
ent levels of the classes hierarchy, extracted Andalusia’s
official LULC map (SIPNA [14]).

Furthermore, the DL-based method consists of a two-branch
neural network (NN) where the first branch process the MS time
series using an LSTM-based model capable of handling missing
values, and the second branch process the ancillary information.
A graphical illustration of the followed workflow in this study
is shown in Fig. 2.

The following two assumptions are made in this study:
1) LULC changes within a one-year timeframe are limited

at a 460-m pixel resolution, so our LULC abundance
annotations are assumed to be static;

2) the selected MODIS time-series data, ancillary informa-
tion, and LULC annotations adequately represent the land
dynamics of Andalusia, since more than 500 000 pixels
from Andalusia are collected, representing almost the
whole region.

The constraint includes the challenge of dealing with missing
values in RS data, which we solve by proposing a DL method
capable of handling missing values.

The motivation behind this research is rooted in the need for
improved methods to perform SU in complex, heterogeneous
landscapes with MS time-series data. The absence of accessible
labeled datasets, combined with the complexity of creating new

datasets, underscores the significance of developing innovative
approaches to advance the field.

The primary contributions of this research can be summarized
as follows.

1) We built Andalusia-MSMTU dataset: a novel MS multi-
temporal labeled dataset with mixed pixels from Andalu-
sia, a highly heterogeneous region in Spain. Each pixel
is annotated with LULC abundances. In addition to the
MS multitemporal information, each mixed pixel has its
corresponding geo-topographic and climatic information.
Such dataset will open the possibility for new explorations.

2) We designed and analyzed a DL-based approach that
estimates the LULC abundances per pixel of LULC classes
from MS time-series data with and without ancillary in-
formation.

The rest of this article is organized as follows. Section II
presents the related work. Section III provides preliminaries and
background. Section IV introduces the study area and the data
construction process. Section V describes the used DL method-
ology. Section VI assesses the results obtained. Section VII
provides a comprehensive discussion of the obtained results,
comparing them with previous works. Finally, Section VIII
concludes this article.

II. RELATED WORK

First, general DL in RS methods is reviewed. Subsequently,
related works on SU overall, with a specific focus on employing
DL methodologies, are introduced. Finally, works that build
labeled datasets designed for the unmixing approaches are re-
viewed and comprehensively summarized in Table I.

A. Deep Learning (DL) in Remote Sensing (RS)

Thanks to the recent success of DL methods in many learning
tasks, tons of efforts have been made to bring DL to RS field [15].



RODRÍGUEZ-ORTEGA et al.: BIDIRECTIONAL RECURRENT IMPUTATION AND ABUNDANCE ESTIMATION OF LULC CLASSES 4629

Concretely, the LULC classification task is of paramount im-
portance since many environmental applications rely on LULC
maps, such as urban planning, forest monitoring, change detec-
tion, etc.

Traditionally, only one source of input data was used to
perform the classification task, that is, only using HS [16],
MS [17], LiDAR [18], or synthetic aperture radar (SAR) [19].
Recently, multimodal models have emerged with the promise
to improve the LULC classification by combining the different
input data types. Hong et al. [20] addressed challenges in the
LULC classification using a multimodal DL (MDL) framework.
They tackle limitations of traditional DL in complex scenes,
introducing five fusion architectures and emphasizing appli-
cability beyond pixel-wise classification to spatial information
modeling. Also, Han et al. [21] introduced MUNet, a multimodal
unmixing network for HS images, leveraging LiDAR data to
enhance discrimination in complex scenes. MUNet uses an SE-
driven attention mechanism, incorporating height differences
from LiDAR for improved performance. Uezato et al. [22]
presented IISU, an illumination invariant SU model addressing
spectral variability caused by variable incident illuminations.
Utilizing radiance HS data and a LiDAR-derived digital surface
model, IISU provides explicit explanations for endmember vari-
ability, outperforming existing models, particularly in shaded
pixels. The proposed model yields more accurate abundances
and shadow-compensated reflectance. Hong et al. [23] built the
C2Seg dataset for cross-city LULC classification, addressing
limitations of DL models across diverse urban environments.
Their proposed HighDAN network, employing high-resolution
domain adaptation and adversarial learning, demonstrates supe-
rior segmentation performance and generalization abilities com-
pared to existing methods. Following the modern self-supervised
learning (SSL) paradigm, SpectralGPT [24] is proposed as a
novel universal foundation model tailored for spectral RS data,
utilizing a 3-D generative pretrained transformer. Trained on
one million spectral RS images, it accommodates varied inputs,
leverages 3-D token generation for spatial-spectral coupling, and
achieves substantial performance gains across geoscience tasks
like scene classification and semantic segmentation. Finally,
Hong et al. [25] introduce a subpixel-level HS super-resolution
framework, DC-Net, addressing the distribution gap between
HS and high spatial resolution MS images. The novel decoupled-
and-coupled network progressively fuses information from pixel
to subpixel-level, mitigating spatial and spectral resolution dif-
ferences. Employing an SSL module ensures material consis-
tency for enhanced HS restoration.

B. Spectral Unmixing (SU)

The existing SU methods can be broadly categorized as
linear mixture models (LMMs) and nonlinear mixture models
(NLMM) according to the formulation describing the underlying
mixing process of endmembers [26].

LMM consider that the spectral signature of a mixed pixel
is a weighted sum of the endmember spectra and that the
weights associated with the endmembers are given by their
corresponding relative area abundance in the pixel. LMM-based

methods have been widely developed in last decades including
linear, geometrical, nonnegative matrix factorization, bayesian,
and fuzzy models among others [3], [27], [28], [29], [30], [31].
LMM typically assumes that the spectrum of each LULC class is
characterized by a single fixed endmember. However, pure pixels
from the same LULC class may have different spectra, which
is called intraclass variability [32]. To overcome this limitation,
several multiple endmember spectral mixture analysis models
have been developed [33], [34], [35], [36].

Since the extraction of a large number of pure endmembers
is still a great challenge in areas dominated by mixed pixels,
several works without assuming any prior knowledge about the
mixing process were introduced. These methods, also known as
blind spectral unmixing (BSU) methods, include independent
component analysis [37], [38], [39], nonnegative matrix factor-
ization [40], [41], [42], [43], sparse component analysis [44], or
wavelet-based [45] methods.

Given the nonlinear mixing effects of endmembers, NLMM
have been proposed through the years to overcome LMM limi-
tations and enhance the SU performance. These include bilinear
models [46], radial basis function networks [47], kernel-based
models [48], NNs, and low-rank tensor [49] methods among
others.

1) DL in SU: SU has also met DL models, which fall under
the category of NLMM. One of the first DL approaches for
SU was proposed by Foody [50], where three spectral bands
values were introduced, and the NN predicts the abundances
of three LULC classes. Atkinson et al. [51] compared NN,
LMMs, and fuzzy c-means for SU of LULC classes, with NN
being the best model given sufficient training samples. Then,
Licciardi and Del Frate [6] proposed a two-stage NN architecture
that first reduces the dimension of the input vector using an
autoassociative NN, and then performs abundance estimation
out of the reduced input using an MLP . Recently, Palsson
et al. [8] evaluated autoencoders with different hyperparameters.
Yu et al. [52] introduced MSNet, a multistage convolutional
autoencoder network designed for linear HU, achieving this by
capturing contextual relationships between pixels. Gao et al. [53]
introduced CyCU-Net for HU, enhancing the performance by
incorporating cycle consistency and self-perception loss. The
network, leveraging cascaded autoencoders, preserves detailed
material information and achieves high-level semantic preserva-
tion during unmixing. Yao et al. [54] introduced SeCoDe, a novel
blind HS unmixing model designed for airborne and spaceborne
HS imagery. Leveraging sparsity-enhanced convolutional de-
composition, SeCoDe effectively addresses spectral variabilities
and maintains continuous spectral components. Going beyond
autoencoder-like architectures, Han et al. [55] introduced Deep
HSNet, a novel siamese network for HU that considers diverse
endmember properties from different extraction algorithms.
Deep HSNet incorporates a subnetwork to effectively learn end-
member information, enhancing the accuracy of the unmixing
process. Following the success of transformers architecture [56],
the authors in [9] and [57] introduced NN architectures with the
attention mechanism for abundance estimation. Regarding SSL
for SU works, Vijayashekhar et al. [58] proposed a two-stage
fully connected SSL network for BSU, addressing challenges of
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limited supervision and data requirements . The network jointly
estimates endmembers and abundances in the first stage, and
learns HS image acquisition physics in the second stage. Also,
AutoNAS [59] explored neural architecture search (NAS) for
determining the optimal network architecture in HU. Utilizing
SSL and an affine parameter sharing strategy, it achieves optimal
channel configuration. Furthermore, an evolutionary algorithm
enables flexible convolution kernel search.

Regarding RNN-based works, the only work on SU using
an LSTM-based network was introduced by Zhao et al. [60].
They proposed a nonsymmetric autoencoder network with an
LSTM component to capture spectral correlation together with
an attention mechanism to further enhance the unmixing perfor-
mance. For a more detailed review of DL methods in SU, see [4]
and [26].

In parallel, there exist few works that incorporate ancillary
data to improve the performance of DL models. Most of these
studies occur in the field of computer vision, such as high in-
terclass similarity classification problems [11], plankton image
classification [12], or crop type mapping [13].

C. Labeled Datasets Based on LULC Products

Supervised learning requires high amounts of ground-truth
data to achieve better generalization. One of the biggest limi-
tations in SU is the limited availability of ground-truth LULC
maps [4], [66]. Some areas or regions, especially in western
countries, have LULC ground-truth based on visual interpre-
tation for specific fields of study. For example, SIPNA [14]
was intended for territorial planing in Spain. Its annotation was
carried out by experts during several years. This dataset can be
used to annotate RS data.

In parallel, there exist several annotated MS multitemporal
datasets prepared for supervised SU (see Table I). However, all
of them are private.

Our work is the first to provide a public, good-quality MS
multitemporal mixed-pixel labeled dataset, named Andalusia-
MSMTU that includes not only spectro-temporal information
but also geo-topographic and climatic ancillary data. Andalucía-
MSMTU is organized into two hierarchical levels of classes with
four and ten LULC types, and it is especially suitable for building
umimixing DL-based models for LULC abundance estimation.
The proposed methodology constitutes the state-of-the-art in
Andalusia-MSMTU.

III. PRELIMINARIES AND BACKGROUND

We define a multivariate time series as a sequence of
observations X = (x1,x2, . . .,xT ), where T is the number
of observations or time steps. Each observation xt ∈ RC ,
where t ∈ {1, . . ., T} consists of C variables, such that xt =
{x1

t , x
2
t , . . ., x

C
t }.

A. Recurrent Neural Network (RNN)

RNN [67] is an NN architecture specifically designed for han-
dling sequential data. RNN considers the sequential relationship
of inputs by using a shared function f to process each input.

RNN processes the time series using a recurrence approach at
every time step t, computing a hidden state ht by considering
the previous hidden state ht−1 and the current input xt as

ht = f(ht−1,xt) (1)

where h0 is normally, at the beginning, the zero vector, i.e.,
h0 = 0.

There are several choices on how to process sequential infor-
mation. In this work, we focus on the LSTM network, which is
an improvement of the normal RNN solving some of its biggest
limitations [68].

B. Bidirectional Recurrent Imputation for Time Series (BRITS)

In time-series data and specifically in RS data, it is common
to find missing values due to sensor errors, cloud cover, and
more [69]. To handle this situation, there exists a type of RNN
architecture that can learn to solve two tasks simultaneously:
imputing missing values and classifying the input sequence
data. This model is called recurrent imputation for time series
(RITS) [70]. The RITS model perform the imputation algorithm
to assist the classification task and obtain the final classification
as

ŷ = fout(hT ) (2)

where ŷ is the final classification, fout is the classification
function, and hT is the last hidden state.

In practice, considering only unidirectional forward dynamic
is problematic due to slow convergence, inefficiency in training
and bias exploding problem [70]. To overcome these issues,
a bidirectional version named BRITS model is proposed also
in [69] to learn forward and backward patterns by accessing
information from past and future at any given time step. The
final scheme of BRITS can be seen in Fig. 3.

IV. STUDY AREA AND DATA CONSTRUCTION

This section describes the study area and provides full details
on how the used dataset was built and processed.

A. Study Area

Andalusia is the second-largest, most populous, and southern-
most autonomous community in Peninsular Spain (see Fig. 4).
Andalusia is one of the most biodiverse and heterogeneous
regions of Europe. It contains steep altitudinal gradients, and
it has a wide variety of landscapes and climatic conditions,
which results in a vast variety of vegetation types that hold the
greatest diversity of plant and animal species in Europe. The
long and dynamic history of human activities has also led to a
complex landscape configuration with frequent mosaics of small
patches of different types of natural, seminatural land covers
and human land uses. Hence, Andalusia offers an ideal field
laboratory to test the creation of detailed and fine-scaled LULC
maps containing the abundance of each LULC class per pixel
to monitor the socioeconomic and environmental dynamics in
complex landscapes using DL and MS time series of satellite
imagery.
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Fig. 3. BRITS architecture.

Fig. 4. Study area: Andalusia, Spain.

B. Andalusia-MSMTU Dataset Construction

To build Andalusia MultiSpectral, MultiTemporal Unmixing
dataset, named Andalusia-MSMTU, several sources were uti-
lized: MODIS, SRTM digital elevation data [71], REDIAM’s
environmental information [72], and SIPNA [14]. Herein, three
different processes were used to create the dataset:) MODIS
MS time-series extraction, ancillary data extraction, and LULC
abundances annotations.

1) MODIS Pixel Time-Series Extraction: The time-series
data were extracted from two satellites Terra and Aqua using
MODIS sensor at 460-m spatial resolution and at monthly
temporal resolution. As LULC changes during one year are very
limited in a 460-m pixel, we assume that the LULC abundances
are representative of the full year.

Spatio-temporal filtering was applied using MODIS ‘quality
assessment’ (QA) flags and the “State QA” flags. Moreover,
as the process of Terra and Aqua data filtering generates many
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Fig. 5. Hierarchical structure of the SIPNA-based LULC classes. The blue boxes represent the Level 1 (L1) classes. The green boxes represents the Level 2 (L2)
classes.

Fig. 6. Used scheme for extracting class abundances in every MODIS pixel of Andalusia. 1) Original SIPNA polygons were converted to a 10-m raster, then 2)
LULC abundances were computed for each 460-m pixel.

missing values, to further reduce the amount of noise in the data,
the following two solutions were employed:

1) the eight-days time-series data were transformed into
monthly composites by computing the monthly mean from
the individual observations;

2) the monthly data from the Terra and Aqua satellites were
combined to generate a merged Terra+Aqua monthly
dataset.

All this process was performed in Google Earth Engine
(GEE) [73] and inspired by [74].

2) Ancillary Data Extraction for Each MODIS Pixel: In
addition to the MODIS data, for every pixel, we included
geographic, topographic, and climatic ancillary information.
Pixel longitude and latitude were directly extracted from
MODIS metadata. Pixel altitude was obtained using the SRTM
30 m/pixel digital elevation model [71]. MODIS pixel slopes
were calculated using GEE slope calculation algorithm on the
same 30-m elevation model. Finally, climatic data were down-
loaded from REDIAM’s environmental information [72], in-
cluding potential evapotranspiration, precipitation, mean annual
temperature, mean of the maximum temperatures, and mean of
the minimum temperatures. All types of ancillary data came
in different resolutions or scale, so to match the resolution of
our MODIS pixels we computed the average across all finer
resolution pixels inside each MODIS pixels to obtain the value
at 460-m resolution.

3) Pixels’ LULC Abundances Annotation From SIPNA: To
annotate each 460-m MODIS pixel with the abundance of each
LULC class, the official LULC map of Andalusia for the year
2013 (SIPNA) [14] was used. Given the coarse resolution of
MODIS pixels, we only considered Level 1 (four classes) and
an adapted version of Level 2 (ten classes) of the classification
hierarchy of SIPNA (see Fig. 5).

Given that SIPNA provides information at subpixel level, we
calculated the exact abundances of all the LULC classes existing
in each MODIS 460-m resolution pixel, as illustrated in Fig. 6,
using QGIS software [75] as follows: the SIPNA polygons were
first converted to raster format providing a LULC map at 10-m
resolution. The rasterized map was then converted to match the
spatial resolution of MODIS by counting the number of 10-m
resolution pixels of each LULC class and dividing them by the
total number of 10-m resolution pixels inside each 460-m reso-
lution, resulting in the class proportions for each 460-m pixel of
Andalusia. Finally, the MODIS pixels abundances annotations
were coupled with their corresponding time-series and ancillary
data to obtain the Andalusia-MSMTU dataset. With the help of
several RS expert, we visually assess that the 10-m resolution
was suitable for the rasterization. The proposed values were
100, 50, 10, and 5 m. The 100- and 50-m resolution pixels
were too coarse to maintain the quality of the different polygon
annotations. The 10- and 5-m resolution pixels were great to
maintain the information and we finally decided to rasterize the
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Fig. 7. Example of how class abundances are obtained for each MODIS pixel. (a) Satellite image of the Google Satellite corresponding to one MODIS pixel.
(b) Annotated SIPNA polygons. (c) Rasterized LULC map at 10-m resolution. (d) Obtained abundance of Level-1 classes for that MODIS pixel. (a) Google satellite
image of one MODIS pixel. (b) SIPNA LULC map (polygon format). (c) SIPNA LULC map (10-m raster format). (d) Level 1 LULC class abundances.

polygons to 10-m resolution because of computational and time
convenience, since the 5-m raster was four times more expensive
than the 10-m raster.

In Fig. 7, an example of the calculation of class abundances for
a given pixel is shown. An illustrative example of the distribution
of abundances of LULC classes in Level 1 of the classification hi-
erarchy over the Andalusia territory is displayed in Fig. 8, being
“agricultural lands” and “terrestrial lands,” the classes that dom-
inate the Andalusian territory. Andalusia-MSMTU dataset [76]

is available in a public data repository hosted by Zenodo at:
https://zenodo.org/records/7752348

V. METHODOLOGY

Given the success of DL methods in learning tasks, we pro-
pose an RNN-based model to learn the input–output relationship
between the remotely sensed MS time-series and the correspond-
ing LULC abundances in a pixel. We do this by building a

https://zenodo.org/records/7752348
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Fig. 8. Gradient map of abundances from Andalusia 460-m pixels for each LULC class in Level 1 of SIPNA. (a) Artificial, (b) Agricultural lands, (c) Terrestrial
lands, and (d) Wetlands. Blue pixels represent low abundance and red pixels represent high abundance.

high-quality annotated dataset as described in Section IV-B and
splitting it in training and test sets. We use the training dataset
to train the DL model in a supervised manner. The test set is
composed of unseen samples during the training and is used to
evaluate the true performance of the model.

Formally, we have a set of n MS time-series pixels
{X1, X2, . . ., Xn} with their corresponding class abundances
{y1, y2, . . ., yn} where yi ∈ SC , i ∈ [1, n]. SC is the sample
space of class abundances commonly referred to as the sim-
plex [77]. In our case, C is equal to 4 and 10 for levels 1 and 2
of the hierarchy, respectively.

To enhance class abundance estimation further, in addition
to using the MS multitemporal data, we also include ancillary
information from the following two types.

1) Geo-topographic data: Geographical coordinates (lon-
gitude and latitude), altitude and slope. Incorporating
geographic coordinates can help the model understand
the spatial distribution of land cover types, which can
be valuable in guiding the SU process and making it
more contextually accurate. Similarly, adding topographic
data (altitude and slope) provides useful information that
complements the spectral characteristics of a pixel. In fact,
terrain slope is known to influence surface reflectance, so
incorporating it into the model can allow slope-related
changes in reflectance to be taken into account, making
its predictions more robust.

2) Climatic data: Precipitation, potential evapotranspiration,
mean temperature, maximum temperature, and minimum
temperature. Some land cover classes, such as agricultural
lands, forests, and wetlands, respond differently to varia-
tions in climate. By using climatic variables, the DL model
can distinguish between these climate-dependent classes
more effectively.

In the following, we describe the architecture of the used
model and the evaluation metrics.

A. Model Architecture

Our BRITS-based approach to estimate the class abundances
using MS multitemporal data and ancillary information for
each mixed pixel is depicted in Fig. 9. The proposed approach
includes the following three components.

1) Spectro-temporal feature extraction: We use BRITS
model [70] to extract the spectro-temporal patterns in the
presence of missing values from our dataset.

2) Ancillary data feature extraction: To incorporate ancillary
information, we process the external information using a
linear layer with ReLU nonlinearity.

3) Concatenation and features combination: The output fea-
tures of part (1) and (2) are concatenated and processed by
a final dense layer that outputs C (the number of classes)
scores.
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Fig. 9. Our proposed NN. The green box denotes the input data for a given pixel, i.e., MS time-series data + ancillary data. The yellow box denotes the BRITS
model for MS time-series feature extraction, the red box denotes the ancillary data feature extraction layer and the blue boxes denote the final layers for features
combination and softmax transformation of NN’s output.

The final dense layer generates an unbounded outputsowhere
o ∈ RC withC being the number of classes. Following the work
of [78], we applied the softmax transformation to obtain the final
abundances predictions a ∈ SC as

aj =
eoj∑C
c=1 e

oc
(3)

where aj denotes the abundance prediction for the jth class, oj
denotes the final layer’s output associated with the jth class, and
e denotes the exponential function.

Finally, the NN is optimized by minimizing the mean-square
error (MSE) between the abundances predictions and the refer-
ence abundances:

MSE =

∑N
i=1

∑C
c=1(ric − aic)

2

N
(4)

where ric and aic are the reference abundance and the predicted
abundance, respectively, for the cth class in the ith sample, and
N is the number of training samples.

B. Evaluation Criteria

To assess the effectiveness of the proposed unmixing model,
the following four regression metrics are examined.

1) Pearson’s correlation coefficient (CC):

CC =

∑N
i=1(ri − r)(ai − a)√∑N

i=1(ri − r)2
∑N

i=1(ai − a)2
. (5)

2) Root mean squared error (RMSE):

RMSE =

√
1

n

∑N

i=1
(ri − ai)2. (6)

3) Relative root mean squared error (RRMSE):

RRMSE =

√∑N
i=1(ri − ai)2∑N

i=1(ri)
2

(7)

4) Mean absolute error (MAE):

MAE =
1

n

N∑
i=1

|ri − ai| (8)

where ri is the reference abundance, ai the predicted abundance,
and r and a are the mean of both variables. Finally, we also
considered F1-score to evaluate how good is the model in
predicting the majoritarian class in each mixed pixel as follows:

F1 =
2 ∗ TP

2 ∗ TP + FP + FN
. (9)

C. Experimental Design

To analyze the effect of introducing ancillary data and using
different levels of the LULC legend on the performance of our
DL approach for spectro-temporal unmixing, we considered
different input data combinations, that is, using the following:

1) only the MS time-series data;
2) time-series plus geo-topographic ancillary data;
3) time-series plus climatic ancillary data;
4) time-series plus geo-topographic and climatic ancillary

data.
In order to avoid spatial autocorrelation of neighboring pixels,

we used a block train test splitting [79], [80]. First, we divided the
entire Andalusian territory in areas of equal size using blocks of
18×15 km, which means that each block contains 1250 of 460 m
pixels approximately. Subsequently, 80% of the pixel blocks
were assigned randomly to the training set, with the remaining
20% allocated to the test set. Fig. 10 illustrates the areas of
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TABLE II
PERFORMANCE COMPARISON OF OUR MODEL TRAINED FROM SCRATCH (FIRST ROW) AND FINETUNED FROM TIMESPEC4LULC (SECOND ROW) USING ONLY MS
MULTITEMPORAL INPUT DATA, BY ADDING GEO-TOPOGRAPHIC DATA ONLY (THIRD ROW), BY ADDING CLIMATIC DATA ONLY (FOURTH ROW), AND BY ADDING

BOTH GEO-TOPOGRAPHIC AND CLIMATIC (FIFTH ROW)

Fig. 10. Train (blue) and test (red) areas.

pixels designated for the training and testing sets. The source
code to run these experiments will be available after acceptance
at https://github.com/jrodriguezortega/MSMTU.

1) Implementation Details: Our models undergo training us-
ing the Adam optimizer [81] for a total of 200 epochs with
a batch size of 2048. We initialize the learning rate at 0.003
and progressively reduce it via the cosine learning rate decay
scheduler. All experiments were conducted utilizing the PyTorch
DL framework [82].

2) TimeSpec4LULC [74] Pretraining: TimeSpec4LULC is
an open-source dataset comprising MS time-series data for 29
LULC classes, designed for training machine learning models.
This dataset is constructed using the seven spectral bands from
MODIS sensors, providing data at a 460-m resolution, spanning
the time period from 2000 to 2021. We found that pretraining
the BRITS model on TimeSpec4LULC dataset and fine tuning
it on Andalusia-MSMTU provides better results that training
it from scratch, mainly because of the similarity between both
datasets.

VI. EXPERIMENTAL RESULTS

This section provides the experimental results of the proposed
model at SIPNA Level 1 and Level 2.

A. SIPNA Level 1

We evaluated the proposed model in Section V on different
combinations of spectro-temporal data and ancillary data. In
particular, we considered these combinations: (spectro-temporal
data), (spectro-temporal data + geo-topographic data), (spectro-
temporal data + climatic data), and (spectro-temporal data +
geo-topographic and climatic data). Besides, we also include
the results of a baseline model trained from scratch on spectro-
temporal data only to show how the pretraining on Time-
Spec4LULC dataset is highly beneficial. The results of these
five models in terms of the average MAE, RMSE, RRMSE, CC,
F1-score, RRMSE gain, and CC gain across the four classes of
Level 1 are provided in Table II. In addition, the computational
complexity of each model is expressed in terms of MFLOPs in
the last column. First, we can see in the first two rows that by
just pretraining our model in TimeSpec4LULC dataset improves
the results in every metric, proving the value of pretraining DL
models in similar tasks to achieve better performance. Second, it
can be seen that including ancillary information always improves
the SU performance with respect to the baseline model (using
MS time series only and trained from scratch). The highest
performance is achieved when including both, geo-topographic
and climatic data together with the MS time series showing
the lowest MAE, RMSE, and RRMSE, with 1.10%, 1.17%,
and 3.39% of improvement, respectively, and highest CC and
F1-score with 0.0276 and 0.0216 of improvement, respectively,
with respect to the baseline model.

A further analysis of the five metrics for each class is de-
picted in Fig. 11. In general, including the geo-topographic and
climatic information improves the abundance predictions of all
the classes of Level 1. The “terrestrial lands” and “agricultural
lands” achieve better performance in terms of CC, F1-score,
and RRMSE. However, the classes that benefit the most from
adding the ancillary data are “artificial” and “wetlands” since
the relative improvement is greater in these classes.

It is worth noting that the RMSE and MAE metrics are not
fair for comparisons between classes as they do not take into
account the range of abundance values within each class. The
most appropriate metric for these comparisons in this case is the
RRMSE.

To better illustrate the reasons behind these differences in per-
formance between observed and predicted abundances in each

https://github.com/jrodriguezortega/MSMTU
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Fig. 11. Test results for the four SIPNA Level 1 classes obtained by including all ancillary information (green) and without ancillary information (blue): CC
values (top left), F1-score values (top right), RMSE values (middle left), RRMSE values (middle right), and MAE values (bottom).

of the four LULC classes, Fig. 12 shows a density scatter plot for
each class. The scatter plots of “artificial” and “wetlands” pixels
showed a less aligned distribution along the 1:1 straight line than
terrestrial and agricultural lands. In artificial and wetlands plots,
most points are concentrated in the lowest abundances, while
in terrestrial and agricultural lands, points tend to concentrate
in both the extremes of the abundance gradient but also along
the 1:1 line. This proofs that the model works reasonably good
for both abundant (terrestrial and agricultural lands) and scarce
(artificial and wetlands) classes.

Finally, Fig. 13 shows the results achieved by the best model
on three test areas (top row) with their corresponding RMSE
(middle row) and RRMSE (bottom row) per pixel maps. As we
can observe, most of the pixels are in blue tones, which indicates

a low RMSE and RRMSE and a great LULC abundances predic-
tions. A reduced number of pixels with red tones in the RRMSE
maps indicates an important prediction error relative to the scale
of the reference abundance. These pixels mainly correspond
to small heterogeneous rural areas with a large diversity of
urban, crop and even forest areas, which makes the task of
correctly predicting each and every LULC class abundances very
difficult.

B. SIPNA Level 2

Similarly, we evaluated the proposed model on these input
combinations: (spectro-temporal data), (spectro-temporal data +
geo-topographic data), (spectro-temporal data + climatic data),
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Fig. 12. Density scatter plots of every Level 1 class abundances (predicted versus reference) for the best model (including all ancillary data). (a) Artificial.
(b) Agricultural lands. (c) Terrestrial lands. (d) Wetlands.

TABLE III
PERFORMANCE COMPARISON OF OUR MODEL TRAINED FROM SCRATCH (FIRST ROW) AND FINETUNED FROM TIMESPEC4LULC (SECOND ROW) USING ONLY MS
MULTITEMPORAL INPUT DATA, BY ADDING GEO-TOPOGRAPHIC DATA ONLY (THIRD ROW), BY ADDING CLIMATIC DATA ONLY (FOURTH ROW), AND BY ADDING

BOTH GEO-TOPOGRAPHIC AND CLIMATIC (FIFTH ROW)

and (spectro-temporal data + geo-topographic and climatic data)
considering SIPNA Level 2. We also include the results of a
baseline model trained from scratch on spectro-temporal data
only to show how the pretraining on TimeSpec4LULC dataset
is beneficial for Level 2 as well. The results of these five models
in terms of the average MAE, RMSE, RRMSE, CC, F1-score,

RRMSE gain, and CC gain across the ten classes of Level 2 are
provided in Table III. In addition, the computational complexity
of each model is expressed in terms of MFLOPs in the last
column. Again, we can see in the first two rows that by just
pretraining our model in TimeSpec4LULC dataset improves
the results in every metric, proving the value of pretraining DL
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Fig. 13. Three test areas (top row) with their corresponding RMSE (middle row) and RRMSE (bottom row) per pixel maps in Level 1. (a) Granada, Granada.
(b) La Carlota, Córdoba. (c) El Coronil, Sevilla.

models in similar tasks to achieve better performance. Similarly,
including ancillary information improves the SU task even in
a much more difficult SU setting (see Table III). Compared
to the baseline, the best performing model (including all the
ancillary data) decreases the MAE, RMSE, and RRMSE by
0.56%, 0.65%, and 2.80%, respectively, and increases CC and
F1-score by 0.0320 and 0.0332, respectively.

In the same way as in Level 1, Fig. 14 shows a comparison
between the baseline model and the model including

geo-topographic and climatic data for every class in each
of the five metrics used for evaluation. In general, adding
ancillary information improves the abundances predictions of
all the classes. The best performance is achieved in “woody
crops” and “annual crops” classes in terms of CC, F1-score,
and RRMSE. Besides, adding the ancillary information to the
model achieves a greater improvement for the classes with the
worst results like “combinations of croplands and vegetation,”
“barelands,” and “artificial.”
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Fig. 14. Test results for the ten SIPNA Level 2 classes obtained by including all ancillary information (green) and without ancillary information (blue). CC values
(top left), F1-score values (top right), RMSE values (middle left), RRMSE values (middle right), and MAE values (bottom).

Looking at the density scatter plot for each Level 2 class
in Fig. 15, we see that the correlation between the reference
and the predicted abundances is generally good, except for
“combinations of croplands and vegetation” and “barelands”
classes since they show a large dispersion. It is worth empha-
sizing the strong performance of the model for the class “green-
houses.” Despite having so few representations of middle-range
values of abundance in the pixels of Andalusia, the correlation
in this class between the reference and predicted abundances
is similar to the classes with a good representation. We argue
that the reason for that could be due to their very high albedo,
i.e., high reflectance in all bands. Finally, the worst performance
metrics were obtained for “combinations of croplands and veg-
etation” class, which may be due to the mixed nature of this
class definition itself. By combining crop and vegetation, this

class is a mixture of some of the other classes, and hence, it is
complicated for the model to predict the correct abundances.

Finally, Fig. 16 shows the results achieved by the best model
on three test areas (top row) with their corresponding RMSE
(middle row) and RRMSE (bottom row) per pixel maps. In
general, most pixels are in dark blue tones (low error) in
the RMSE maps, which at first glance may seem better than
the results achieved for Level 1. However, when looking at
the RRMSE maps, we can notice a slightly higher number of
pixels with red tones than in the Level 1 RRMSE maps, located
mainly in heterogeneous rural areas. Given that in Level 2, we
have 12 LULC classes, there are more heterogeneous pixels,
and consequently, the unmixing task is harder. It is important to
note that although the error at Level 1 is lower in absolute terms,
when it is relativized by the scale of the reference abundances it
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Fig. 15. Density scatter plots of every Level 2 class abundance (predicted versus reference) for the best model (including all ancillary data). (a) Artificial.
(b) Annual croplands. (c) Greenhouses. (d) Woody croplands. (e) Combinations of croplands and vegetation. (f) Grasslands and grasslands with trees. (g) Shrublands
and shrublands with trees. (h) Forest. (i) Barelands. (j) Wetlands.

becomes higher than in Level 1, indicating only moderate results
compared to the good results obtained at Level 1. For this reason,
it is recommended to evaluate not only the RMSE but also the
RRMSE to get better conclusions.

VII. DISCUSSIONS

SU of LULC classes is a challenging problem commonly
addressed by physical models with the need for endmember

extraction [3], [4]. Moreover, the variability naturally present
in the spectral signature for a given LULC class (spectral vari-
ability) makes this problem even more difficult [83], [84]. DL
methods represent a great solution to eliminate the need for
endmember extraction and they are known for their robustness
against noise given sufficient amounts of training data. Most
previous works focus on HS or MS data and do not exploit
temporal information to estimate the abundance of mixed pixels.
Obtaining MS time series of large territories can be prohibitive
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Fig. 16. Three test areas (top row) with their corresponding RMSE (middle row) and RRMSE (bottom row) per pixel maps in Level 2. (a) Granada, Granada. (b)
La Carlota, Córdoba. (c) El Coronil, Sevilla.

due to the cost and time required to acquire them [85], [86].
In addition, no previous work has explored the possibility of
adding ancillary data to enhance the SU results, which are used
successfully in other computer vision tasks [11], [12], [13].

In this article, we tried to solve the mentioned constraints of
previous works by the following.

1) Developing Andalusia-MSMTU, a high-quality MS time-
series dataset of mixed pixels labeled with LULC class
abundances at two classification levels and making it

publicly available so other researchers can develop new
approaches in the field of SU. This dataset followed several
data preprocessing steps as explained in Section IV-B1 in
order to smooth spectral variabilities associated with the
imaging process.

2) Proposing and analyzing DL-based approaches for SU
without the need of endmembers extraction. Moreover,
we intentionally included pixels well distributed around
our study area in models’ training, which implies a high
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number of diverse pixels with different spectral variations.
This way, the DL models will be robust against the spectral
variations of pixels in the test areas.

Our results showed that our DL-based method achieved good
results for SU of LULC classes by using MS data and it can be
used in areas with similar features such as the rest of Spain
and mediterranean countries. Besides, by including ancillary
information, the model improved in terms of every metric used
for evaluation, showing that adding external data is an interesting
avenue to explore in the SU problems.

Finally, one significant limitation still exists in our work.
Although DL models have shown great performance in map-
ping complex input–output relationships and have demonstrated
promising results for SU of LULC classes, they lack physical
interpretability. This means that it is difficult to understand how
the model arrived at its decision, and it may not be clear why
certain input features were given more weight than others [87]. In
the context of SU, physical interpretation may be desirable [88]
because it allows us to understand the underlying physical pro-
cesses that govern the interaction of electromagnetic radiation
with land surface materials.

VIII. CONCLUSION

In this article, we introduced and made publicly available
Andalusia-MSMTU dataset, a new DL-ready dataset to explore
SU approaches on MS time-series data. Furthermore, we in-
troduced ancillary information to improve the SU performance
consisting on two geographic, two topographic, and five climatic
variables. Our experiments show that the use of MS time-series
data for LULC abundance estimation achieves good results,
which are further improved by including ancillary information.

For future work, we would like to explore taking advantage
of spatial autocorrelation between neighboring pixels, which
provides useful information for the SU task [89], by arranging
the MODIS pixels in images and using a convolutional-LTSM
network with a BRITS-like approach to deal with missing val-
ues. Moreover, given the recent availability of higher spatial
resolution sensors like Sentinel-2, data fusion between MODIS
long-term data and Sentinel-2 higher resolution data is another
avenue to improve SU performance. Finally, since common DL-
based models lack physical interpretation and it is sometimes
important in the context of SU, an effort to make DL-based
methods physically aware is worthwhile.
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