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Abstract
Heating, ventilation, and air conditioning (HVAC) systems are a major driver of energy 
consumption in commercial and residential buildings. Recent studies have shown that Deep 
Reinforcement Learning (DRL) algorithms can outperform traditional reactive controllers. 
However, DRL-based solutions are generally designed for ad hoc setups and lack stand-
ardization for comparison. To fill this gap, this paper provides a critical and reproducible 
evaluation, in terms of comfort and energy consumption, of several state-of-the-art DRL 
algorithms for HVAC control. The study examines the controllers’ robustness, adaptability, 
and trade-off between optimization goals by using the Sinergym framework. The results 
obtained confirm the potential of DRL algorithms, such as SAC and TD3, in complex sce-
narios and reveal several challenges related to generalization and incremental learning.

Keywords  Reinforcement learning · HVAC · Building energy optimization · Sinergym

1  Introduction

In recent decades, both global warming and climate change have been significantly spurred 
by the growth in energy demand from residential and non-residential buildings. The Global 
Alliance for Buildings and Construction reported that, in 2021, the building and construc-
tion sector was responsible for more than one third of the global energy consumption (IEA 
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2021; GlobalABC 2021)—despite the reduction in commercial and industrial activities 
caused by the COVID-19 pandemic. According to the International Energy Agency (IEA 
2021), buildings are responsible for 17% and 10% of global direct and indirect CO2 emis-
sions, respectively.

Heating, ventilation, and air conditioning (HVAC) systems are one of the main sources 
of energy consumption in buildings, representing more than 50% of their associated energy 
demand in developed countries (Pérez-Lombard et al. 2008). This consumption is poten-
tially affected by a lack of precise control over these systems, whose proper and efficient 
operation is vital to ensure energy savings (Wang et al. 2020; Mawson and Hughes 2021; 
Gholamzadehmir et al. 2020).

Many strategies have been implemented to improve HVAC control efficiency. In fact, 
most common control solutions are based on Rule-Based Controllers (RBC) combined 
with Proportional-Integrative-Derivative (PID) control (Geng and Geary 1993), which 
stand out for their simplicity and efficiency (Borase et al. 2021). By using heuristic rules, 
these controllers can guarantee proper comfort temperature ranges while reducing energy 
consumption (ASHRAE 2021). However, this type of controllers are far from offering opti-
mal behavior, as they are mostly reactive, hardly cover the complexity of environments 
influenced by many variables—and therefore, many rules, and are guided by fixed and 
predetermined control sequences that heavily rely on expert knowledge (Wang and Hong 
2020; Salsbury 2005). Generally, RBCs lack scalability, as they do not address building 
energy optimization on a global level, but on a local one. This is because a control where 
so many variables are considered would result in an overly complex RBC, being practically 
impossible to generalize their rules at a building level (Privara et  al. 2013; Serale et  al. 
2018).

Model-based solutions, such as Model Predictive Control (MPC) (Yao and Shekhar 
2021; Salakij et al. 2016; Morari and Lee 1999), are an alternative to reactive controllers. 
These controllers use physical models of buildings to simulate their thermal dynamics and 
analytically derive optimal HVAC control. Usually, MPC consider not only the character-
istics of the environment but also other constraints and contextual data such as occupancy 
or weather. This ability to characterize and predict environmental conditions makes MPC 
outperform reactive controllers (Yao and Shekhar 2021; Kümpel et al. 2021; Efheij et al. 
2019). Nevertheless, MPC also suffers from certain limitations. In addition to the high 
computational power it demands, precise system calibration is necessary to achieve the 
expected performance, which is not easily scalable since each building is unique in its lay-
out and thermodynamic properties (Gomez-Romero et al. 2019). This poses a challenge in 
terms of cost-effectiveness, as many factors must be considered: materials, occupancy, end-
use, location, orientation, etc. Consequently, this has resulted in a relatively small number 
of buildings currently implementing MPC strategies compared to ‘if-then-else’, ‘on/off’ or 
‘bang-bang’ RBC controllers, as well as PID where digital control and variable frequency 
drives are available (Serale et al. 2018).

Given the shortcomings of these methods, Reinforcement Learning (RL) has been 
recently proposed as a viable alternative for complex control problems. RL is a computa-
tional learning method focused on the interaction of an agent with its environment, either 
real or simulated. This is an iterative learning method, based on trial and error, where a 
reward function makes the agent lean towards preferable actions or states. Therefore, the 
agent’s goal will be to discover which actions lead to the maximization of the expected 
reward (Sutton and Barto 2018). The combination of RL with deep neural networks has 
led to a growing application of Deep Reinforcement Learning (DRL) in numerous domains 
(Mnih et al. 2015; Gibney 2016; Gupta et al. 2021), including HVAC control (Barrett and 
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Linder 2015; Azuatalam et al. 2020; Perera and Kamalaruban 2021; Yang et al. 2021; Fu 
et al. 2022). Accordingly, DRL can learn sophisticated control strategies from data (Bie-
mann et al. 2021), generally obtained from building simulations, while using more compu-
tationally efficient building models than MPCs (Deng et al. 2022).

Nevertheless, as highlighted in Vázquez-Canteli and Nagy (2019), Findeis et al. (2022), 
most of the DRL proposals for HVAC control in the literature pick one or few algorithms 
without substantial motivation, lack a comprehensive analysis of them under controlled 
and assorted conditions, and cannot be easily reproduced. Motivated by this gap, this 
paper performs a comprehensive experimental evaluation of state-of-the-art DRL algo-
rithms applied to HVAC control. The main contribution of this work is offering insights 
on which algorithms are most promising in different building energy control scenarios, and 
what possibilities arise for their further improvement. To this aim, we focus on algorithms 
performance (evaluation metrics, comfort-consumption trade-off, convergence, etc.), but 
also in their robustness against changing conditions and capabilities for transference to dif-
ferent scenarios. The study relies on Sinergym,1 an open-source building simulation and 
control framework for training DRL agents (Jiménez-Raboso et al. 2021). Sinergym offers 
a standardized and flexible design that facilitates the comparison of algorithms under dif-
ferent environments, reward functions, states and actions spaces, as well as experiments 
replication.

The remainder of this paper is structured as follows. Section 2 details the theoretical 
background in which our research is framed. Section 3 introduces the main fundamentals 
of DRL and its application in HVAC control. Sections 4 and 5 will describe the environ-
ment and the experiments conducted, with the subsequent discussion on the results in 
Sect. 6. Finally, Sect. 7 will detail the main conclusions derived from this research.

2 � Related work and novelty

The application of DRL in HVAC control is a developing field that has generated sig-
nificant interest and growth within a broad community of researchers. Although the first 
approach to applying RL in building control dates back to 1998 by Mozer (1998), the 
development of this field really began to be remarkable in the last few years, together with 
the rise of DRL.

Extensive research about the application of DRL in building energy control and HVAC 
can be found in recent literature reviews, such as Vázquez-Canteli and Nagy (2019), Yu 
et al. (2021), Wang and Hong (2020), Han et al. (2019), Leitao et al. (2020), Mason and 
Grijalva (2019), Rajasekhar et al. (2020), Zhang et al. (2018), Yang et al. (2020), Mocanu 
et al. (2018), where several applications, perspectives, and objectives within this field are 
summarized and studied in detail.

Focused on the DRL methods being used, we find many applications of well-established 
algorithms, such as Deep Q-Networks (DQN) (Lissa et al. 2021; Yoon et al. 2019; Gupta 
et al. 2021; Sakuma et al. 2020), Deep Deterministic Policy Gradient (DDPG) (Gao et al. 
2020; Zou et al. 2020), or actor-critic methods (Morinibu et al. 2019; Wang et al. 2017). 
However, we share the opinion of Biemann et  al. (2021) on the current situation in this 
field: (1) the widespread use of DQN—instead of more modern algorithms such as Twin 

1  https://​github.​com/​ugr-​sail/​siner​gym.

https://github.com/ugr-sail/sinergym
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Delayed DDPG (TD3), Soft Actor-Critic (SAC) or Proximal Policy Optimization (PPO)—
in this continuous control problem could be hindering significant progress; and (2) these 
are generally isolated implementations that compare the performance of the chosen algo-
rithm against a simplistic baseline and solve specific problems in well-delimited domains. 
In fact, there is little work benchmarking multiple DRL algorithms under standard condi-
tions, as is common in other fields of machine learning (Vázquez-Canteli and Nagy 2019; 
Wölfle et al. 2020; Islam et al. 2017).

One of the few exceptions is the aforementioned work by Biemann et al. (2021), which 
develops a comparison between different DRL algorithms in a two-zone data center2 envi-
ronment. This is a well-known and commonly used test scenario in DRL-based HVAC 
control (Moriyama et al. 2018; Zhang et al. 2019b), in which the objective is the manage-
ment of temperature setpoints and fan mass flow rates of a data center. Specifically, the 
algorithms they compared were SAC, TD3, PPO, and Trust Region Policy Optimization 
(TRPO), evaluating energy savings, thermal stability, robustness, and data efficiency. Their 
results revealed the predominance of off-policy algorithms and, specifically, SAC, achiev-
ing consumption reductions of approximately 15% while guaranteeing comfort and data 
efficiency. Finally, the robustness was remarkable when the DRL algorithms were trained 
using different weather models, which increased their generalization and adaptability.

Another remarkable and recent study is that of Brandi et al. (2022), where the control 
of an HVAC system based on the charging and discharging of a refrigerated storage facility 
is presented. In this case, two RBCs and an MPC controller were compared with two SAC 
implementations: one trained offline—in simulation, and the other one online—on the real 
building. The authors obtained the best results for MPC and offline DRL, as well as an inter-
esting approximation of the online trained SAC to the performance of its offline variant over 
time. A Long Short-Term Memory (LSTM) neural network architecture was used to predict 
the value of the variables composing the agents’ observations over a given prediction hori-
zon. The authors conclude that DRL-based solutions are more unstable than MPC solutions, 
although they exhibit adaptation to recurrent patterns without explicit supervision.

Regarding generalization capacity and robustness, few papers address this issue. In Xu 
et al. (2020), transfer learning (Torrey and Shavlik 2010; Taylor and Stone 2009) is pro-
posed to train and evaluate a DQN-based agent in a building layout, and then transfer it 
to a slightly different one. In this work, the controller uses two sub-networks: a front-end 
network, which captures building-agnostic behavior, and a back-end network, specifically 
trained for each building. This way, transfer learning avoids cold-starts and tuning in the 
second building, allowing for rapid deployment and greater efficiency. Different experi-
ments are carried out, such as (1) transfer from n-zone to n-zone buildings with different 
materials and layouts; (2) transfer from n-zone to m-zone; and (3) transfer from n-zone 
to n-zone with different HVAC equipment. A second related work is Lissa et al. (2021), 
which focuses on spatial and geographical variations in HVAC control systems. Among 
their main achievements, we can find a significant reduction in the time required to reach 
comfort temperatures, although the authors do not delve into energy efficiency.

At this point, we can identify certain limitations and research gaps in the relevant but 
scarce literature addressing the experimental evaluation of DRL algorithms in HVAC control:

•	 Studies such as Biemann et al. (2021) and Brandi et al. (2022) only provide results in 
a single environment. In contrast, benchmarking is desirable to be performed using a 
representative enough set of scenarios and test configurations.

2  https://​github.​com/​NREL/​Energ​yPlus/​blob/​devel​op/​testf​iles/​2Zone​DataC​enter​HVAC_​wEcon​omizer.​idf.

https://github.com/NREL/EnergyPlus/blob/develop/testfiles/2ZoneDataCenterHVAC_wEconomizer.idf
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•	 Something similar happens when it comes to the application of transfer learning: the 
existing case studies are limited and use different environments, so they do not ena-
ble comparisons to be made. We believe that further deepening of its application is 
necessary, concretely by promoting, as far as possible, the generalization capacity and 
robustness of different agents in a broader set of testing environments.

•	 There are additional opportunities close to transfer learning that have not yet been 
addressed, such as the application of sequential learning. The objective pursued is to 
compare if a controller that learns progressively to manage an HVAC system under 
different weather conditions can be more efficient than one directly trained on a fixed 
setting.

•	 Finally, we consider it relevant to study how the manipulation of the reward function 
used by DRL agents affects their performance, and what consequences these changes 
may have in terms of consumption and comfort violation.

3 � Theoretical background

3.1 � Deep reinforcement learning

A reinforcement learning problem is defined as a Markov Decision Process (MDP) consist-
ing of the following elements:

•	 An agent, which learns from the interaction with its environment over a discrete 
sequence of time steps T = {0, 1, 2, ...} and that pursues a certain objective.

•	 An environment, defined as any element external to the agent. It is a dynamic process 
that produces relevant data for the agent. A state st ∈ S represents the current situation 
of the environment at time step t.

•	 A set of actions A , which determine the dynamics of the environment. Every action 
at ∈ A allows the agent to transit between different states.

•	 A reward function that evaluates the goodness of an action or state for the agent. The 
reward signal rt ∈ ℝ drives the agent’s training.

•	 A policy function � ∶ S → A , which determines the actions to be taken by the agent in 
the face of different states.

The goal of an RL agent is to achieve optimal behavior towards accomplishing a task, 
which involves learning an optimal policy that maximizes cumulative reward (Zhang and 
Yu 2020; Sutton and Barto 2018). Learning this optimal policy can be solved through 
dynamic programming in problems with not-particularly-large action and/or state spaces. 
For more complex cases, there are a variety of algorithms based on iterative improve-
ment of the agent’s policy or successive approximation of the expected reward of states 
and actions, e.g. Monte Carlo, SARSA, or the widely used Q-learning (Watkins and Dayan 
1992).

However, these methods generally become infeasible as the complexity of the environ-
ment increases. This may be due to considerable growth in the number of actions or states 
that compose the environment, which can be mitigated by ad hoc methods that are dif-
ficult to generalize. Here is where deep learning comes into play, as neural networks can 
be applied to learn abstract representations of states and actions, as well as to approximate 
the expected rewards based on historical data. The combination of RL with deep neural 
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networks has given rise to Deep Reinforcement Learning (DRL), which has lead to numer-
ous applications of reinforcement learning in real environments. Thus, DRL algorithms 
combine the best of both worlds, endowing reinforcement learning with the representa-
tional power, efficiency, and flexibility of deep learning (Zai and Brown 2020).

In recent years, we have observed several advances in the development of DRL 
algorithms that represent the state of the art, such as Deep Q-Networks (DQN) (Mnih 
et al. 2013), Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al. 2015), Asyn-
chronous Advantage Actor-Critic (A3C) and Advantage Actor-Critic (A2C) (Mnih 
et al. 2016), Trust Region Policy Optimization (TRPO) (Schulman et al. 2017b), Proxi-
mal Policy Optimization (PPO) (Schulman et al. 2017a), Twin Delayed DDPG (TD3) 
(Fujimoto et  al. 2018), and Soft Actor-Critic (SAC) (Haarnoja et  al. 2018). Table  1 
summarises the main features and limitations of these algorithms.

As we will see in the following subsection, some of these algorithms are powerful 
tools for solving continuous control problems with an indefinite number of states and 
actions (Duan et al. 2016), as is the case of HVAC control.

3.2 � HVAC control problem formulation

The feasibility of HVAC control through DRL was firstly demonstrated by using 
reduced action spaces and simplified building models (Zhang et  al. 2019a; Moriyama 

Table 1   Some of the most widely used DRL algorithms, including their main features and limitations

Algorithm Main features and limitations

DQN + Simple value-based off-policy algorithm
+ Implements a replay buffer and a target network
– Limited to discrete action spaces and prone to overestimating action values
– Improved by variants like DDPG

DDPG + Off-policy algorithm
+ Improves DQN by allowing continuous action spaces
– Highly sensitive to hyperparameterisation

A2C/A3C + On-policy gradient-based algorithms focused on parallelisation
+ Based on the joint learning of multiple agents implementing local policies
+ A2C includes a coordinator to synchronise all agents
– Underperforms more complex policy-gradient methods

TRPO + On-policy gradient-based algorithm
+ Employs a trust region defined by a KL-divergence constraint to limit policy updates
– More complex and less stable than PPO

PPO + On-policy algorithm based on policy gradient
+ Improves TRPO by adding a clipped objective to prevent large policy updates
+ Reduced computational costs
– Data-inefficient

TD3 + Off-policy actor-critic algorithm
+ Extends DDPG with improved stability and convergence guarantees
+ Clipped double-Q learning, delayed policy updates and target policy smoothing
– May experience action saturation

SAC + Off-policy actor-critic algorithm
+ Employs entropy regularization to promote stability and exploration
+ Less sensible to hyperparameterisation
– Slow training
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et al. 2018). The objective of this problem is to find an optimal control policy that max-
imises the comfort of occupants while minimising energy consumption. The problem is 
formulated as a Partially Observable MDP (POMDP), and the goal is to find a policy 
that includes as many desirable states as possible while avoiding energetically-costly 
actions. Additional parameters, such as energy price and the use of renewable energy 
sources, can also be considered in the optimization process. However, for the sake of 
simplicity, we will focus on comfort and consumption as the primary targets.

Based on a set of observed variables that define the ambient conditions of the envi-
ronment—i.e., outdoor/indoor temperature, CO2 concentration, humidity, occupancy, 
the following objectives are considered:

•	 Regarding power demand P, we seek a policy that leads to its minimization: 

•	 In the case of comfort, we try to minimize the distance C between the current state 
of the building, St , and a target state, Starget : 

A state will be desirable if the variables that compose it are within certain pre-estab-
lished preferences. Therefore, we say that a comfort violation occurs if the value of 
these variables differs from the established limits.

In this problem, P corresponds to the consumption of the building’s thermal equip-
ment—e.g., heat pump, boiler—while C(St, Starget) refers to the difference between the 
actual and desired temperatures in the controlled zones of the building.

Therefore, we can combine the minimization of power demand and the maximization 
of comfort in a single expression:

with � and (1 − �) being the weights assigned to comfort and power demand, respectively. 
We can now define our reward function such that:

where Pt is the power demand of the HVAC system at time step t; C(St, Starget) represents 
the distance from the current zone temperature to the desired comfort limits; � represent 
the weighting assigned to each part of the reward, and �P and �C , two constant factors used 
for scaling the magnitudes of power demand and temperature.

It is common to express this reward in negative terms, since its maximization is 
sought, which leads us to rewrite it as:

(1)�∗ = argmin
��

T
∑

t=1

Pt

(2)�∗ = argmin
��

T
∑

t=1

C(St, Starget)

(3)�∗ = argmin
��

T
∑

t=1

� C(St, Starget) + (1 − �) Pt

(4)r(St,At) = (1 − �) �P Pt + � �C C(St, Starget)

(5)r(St,At) = −(1 − �) �P Pt − � �C C(St, Starget)
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Note how the reward function employed will vary depending on the variables to be con-
sidered in the problem. As discussed later, the details of this function is one of the main 
design decisions in DRL.

Finally, the actions to be performed by the agent will depend on the problem we are facing 
with. For example, in problems where the actions consist of adjusting the heating and cooling 
setpoints of the HVAC system, the action space may be discrete—there is a finite number of 
actions where each action is a tuple with fixed setpoint values, or continuous—each setpoint 
is a real number to be adjusted. Other similar problems can be addressed with a similar setup, 
such as air flow regulation (Raman et al. 2020) or lighting control (Chen et al. 2018).

3.3 � Simulation models

Most of the DRL solutions proposed in the literature are not directly trained on a real 
building, but they make use of different simulation tools. In the HVAC context, https://​
energ​yplus.​net/ and https://​model​ica.​org/ are the most widely used frameworks. The use of 
this type of simulators is motivated by the fact that training a DRL agent in a real scenario 
would be too inefficient, as there is a need to establish a complete mapping between states, 
actions, and rewards, also considering extreme cases (Brandi et  al. 2020). In fact, it has 
been observed that it takes 20–50 days of training to converge on an acceptable control 
policy (Fazenda et al. 2014; Costanzo et al. 2016; Vázquez-Canteli et al. 2019), thus mak-
ing impractical to directly train DRL agents while they are deployed.

Typically, simulators are combined with deep learning (e.g., TensorFlow, Keras, 
PyTorch) or DRL libraries (e.g., Stable Baselines, RLlib, TensorFlow Agents) to pre-train 
and test algorithms in simulated environments prior to deployment (Valladares et al. 2019; 
Vázquez-Canteli et al. 2019). However, communication between DRL agents and simula-
tion engines is rarely straightforward, which leads us to tools such as Boptest (Blum et al. 
2021), Energym (Scharnhorst et al. 2021), RL-testbed (Moriyama et al. 2018) or Siner-
gym. These tools enable the communication between DRL agents and energy simulators, 
providing the necessary tools to perform the training and evaluation of the algorithms in 
different settings.

In the case of Sinergym, this software acts as a wrapper for EnergyPlus, offering several 
tools that enable DRL agents execution, data logging, the configuration of simulation envi-
ronments, as well as the customization of states, actions and rewards. Its similarities and 
distinctive features with respect to other alternatives are detailed in Table 2.

4 � Data and environments

All the experiments were formulated and executed using the Sinergym framework (Jimé-
nez-Raboso et al. 2021). In the following subsections we present the configuration details, 
including state and action spaces, reward functions and weather data.

4.1 � Building models

The following building models included in Sinergym, were chosen as test scenarios:

•	 5ZoneAutoDXVAV (Wei et al. 2017; Ding et al. 2020). This is a single-story rectangu-
lar office building with dimensions of 30.48 m × 15.24 m (see Fig. 1a). The building is 

https://energyplus.net/
https://energyplus.net/
https://modelica.org/
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divided into five zones: four exterior zones and one interior zone. The average height 
of the building is 3.048 m and the total surface area is 463.6 m 2 . it is equipped with a 
packaged Variable Air Volume (VAV), Direct Expansion (DX) cooling coil and gas 
heating coils, with fully auto-sized input as the HVAC system to be controlled.

Table 2   Frameworks for DRL-based building energy optimization

Custom spaces observation and actions spaces customization, Actions support for continuous and discrete 
action spaces, Weather config. weather customization capabilities, Custom rewards support for customized 
reward functions, Simulator building simulation engine, Envs. number of environments available. Adapted 
and updated from Jiménez-Raboso et al. (2021)

Framework Custom
spaces

Actions Weather
config.

Custom
rewards

Simulator Envs.

RL TestBed for
EnergyPlus (Moriyama et al. 

2018)

✗ Continuous ✗ ✗ EnergyPlus 9.5.0 3

Energym (Scharnhorst et al. 
2021)

✗ Continuous ✓ ✓ EnergyPlus 9.5.0
Modelica 2.14

14

BOPTEST (Blum et al. 2021) ✓ Discrete,
continuous

✗ ✓ Modelica 4.0.0 7

Sinergym (Jiménez-Raboso et al. 
2021)

✓ Discrete,
continuous

✓ ✓ EnergyPlus 23.1.0 87

Fig. 1   Building models used as benchmark environments
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•	 2ZoneDataCenterHVAC (Moriyama et  al. 2018; Zhang et  al. 2019b; Li et  al. 2019; 
Biemann et al. 2021). A 1-story data center with a surface of 491.3 m 2 (see Fig. 1b). 
The building is divided into two asymmetrical zones (east and west). Each data center 
zone has an HVAC system consisting on an air economizer, direct and indirect evapora-
tive coolers, a single speed DX cooling coil, chilled water coil, and VAV with no reheat 
air terminal unit.

In both cases, we aim to regulate indoor temperatures by balancing comfort and power 
demand while also considering the influence of one on the other.

4.2 � Weather

Given the importance of weather conditions in building control strategies (Ghahramani 
et al. 2016), the experimentation was conducted considering three types of weathers inte-
grated in Sinergym, based on Typical Meteorological Year (TMY3) data obtained from 
U.S. Department of Energy: Prototype Building Models | Building Energy Codes Program 
(2021). Note how these climates vary in their average temperatures and humidity levels, 
thus providing a diverse and representative test set. These are:

•	 Hot dry Climate corresponding to Arizona (USA), with an average annual temperature 
of 21.7 ◦C and an average annual relative humidity of 34.9%.

•	 Mixed humid Climate in New York (USA), with an average annual temperature of 
12.6 °C and an average annual relative humidity of 68.5%.

•	 Cool marine Corresponds to Washington (USA). The average annual temperature is 
9.3 °C, while the average annual relative humidity is 81.1%.

Sinergym offers the possibility of adding random variations to the weather data between 
episodes by using Ornstein–Uhlenbeck (OU) processes (Benth and Šaltytė-Benth 2005; 
Jiménez-Raboso et  al. 2021). This enables a more varied training aimed at preventing 
overfitting and improving generalization. Thus, in this work, stochasticity was achieved by 
applying OU with the following parameters: � = 1.0 , � = 0 and � = 0.001.

4.3 � Observation and action spaces

At each simulation step, the agent receives information from the environment in the 
form of an observation ot ∈ O ⊂ S . The information received consists of a subset of 
variables that provide information about the current state of the building, including 
comfort and consumption metrics, occupancy, time information, indoor and outdoor 
temperatures, humidity, wind, or solar radiation. These variables may vary in number 
or zone depending on the building we are trying to control. However, EnergyPlus uses 
common identifiers shared by different buildings, which facilitates the management of 
this information.
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Therefore, Table  3 contain the variables that make up an observation for 5ZoneAu-
toDXVAV and 2ZoneDataCenterHVAC, as well as their ranges.3 Both the observed 
and controlled variables are extracted from the simulation of each building, with 20 for 
5ZoneAutoDXVAV and 29 for 2ZoneDataCenterHVAC. Depending on the building 
and simulation conditions, each variable can take values in a wide range that we are una-
ble to determine a priori. Therefore, most of the variables are assumed to take values in 
[−5e6, 5e6] , as these are the minimum and maximum limits of the simulator outputs. How-
ever, all the observation values were normalized in [0, 1] using the normalization wrapper 
provided by Sinergym.

Note that a comprehensive analysis of the variables required for training will depend on 
the problem’s context and the scope of the controller’s application. In this case, to train all 
agents with the most information available, we did not explicitly conduct a detailed study 
of these observations.

Regarding the action space, each action consists of a set of values representing the 
HVAC heating and cooling setpoints. In the case of 5ZoneAutoDXVAV, an action 
at ∈ ℝ

2 involves the selection of two values representing the heating and cooling set-
points for the whole building. Conversely, for 2ZoneDataCenterHVAC, an action 

Table 3   Observation variables 
in 5ZoneAutoDXVAV and 
2ZoneDataCenterHVAC

In 2ZoneDataCenterHVAC, variables marked with an asterisk are 
recorded for both east and west zones

Variable name Min. Max.

Site outdoor air drybulb temperature − 5e6 5e6
Site outdoor air relative humidity − 5e6 5e6
Site wind speed − 5e6 5e6
Site wind direction − 5e6 5e6
Site diffuse solar radiation rate per area − 5e6 5e6
Site direct solar radiation rate per area − 5e6 5e6
Zone thermostat heating setpoint temperature* − 5e6 5e6
Zone thermostat cooling setpoint temperature* − 5e6 5e6
Zone air temperature* − 5e6 5e6
Zone thermal comfort mean radiant temperature* − 5e6 5e6
Zone air relative humidity* − 5e6 5e6
Zone thermal comfort clothing value* − 5e6 5e6
Zone thermal comfort Fanger model PPD* − 5e6 5e6
Zone people occupant count* − 5e6 5e6
People air temperature* − 5e6 5e6
Facility total HVAC electricity demand rate − 5e6 5e6
Current year 1 2050
Current month 1 31
Current day 1 12
Current hour 0 23

3  For an in-depth study of these variables, please refer to EnergyPlus official documentation: https://​energ​
yplus.​net/​docum​entat​ion.

https://energyplus.net/documentation
https://energyplus.net/documentation
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at ∈ ℝ
4 consists of four values corresponding to the selected setpoints for the east 

and west zones of the facility. Their identifier, definition, and ranges are displayed in 
Table 4.

Finally, based on several tests, we consider a continuous action space, as opposed to a 
discrete one. This is because a discrete action space can overly constrain the agent’s behav-
iour if the number of allowed actions is limited. In addition, the use of fixed setpoints can 
worsen the agent’s flexibility by explicitly imposing expert knowledge. In our case, while 
expert knowledge is present in the range of values that these variables can take, there are 
no restrictions within this range, allowing each setpoint to take arbitrary continuous val-
ues—as long as the heating setpoint remains below the cooling setpoint. Finally, we must 
consider that a continuous action space covers the action range of a discrete one. This 
means that the possibility of choosing similar actions is not lost, while offering a wide mar-
gin for improvement.

4.4 � Reward

For the reward calculation, we chose the linear reward function included by default in 
Sinergym:

This is a similar formula to the one shown in Eq.  5, where � is the weight assigned to 
power consumption and consequently, 1 − � the weight assigned to comfort; �P and �C are 
both scaling constants; Pt is the facility total HVAC power demand rate (measured in W); 
Tt is the current inner temperature (in °C), and Tup and Tlow are the limits of the target com-
fort range. Thus, the greater the consumption, or distance from the interior of the comfort 
range, the worse the reward, and the more the agent is penalized.

The linear reward allows us to maintain a real trade-off between comfort and consump-
tion. Thus, assuming precise scaling factors, the preference for each reward term is deter-
mined solely by the value of � , and no term is more important than the other by default.

Recent studies such as (Kadamala et  al. 2024) address the issue of reward selection 
without reaching a clear consensus on which option is more effective in practice, so we 
opt for the most equitable reward definition. Other alternatives may lead to a bias towards 
a particular reward term. For example, this is the case with Sinergym’s exponential reward, 
where deviations from target temperatures have a greater impact than increases in power 
consumption.

(6)rt = −� �P Pt − (1 − �) �C (∣ Tt − Tup ∣+ + ∣ Tt − Tlow ∣+)

Table 4   Action variables for 5ZoneAutoDXVAV and 2ZoneDataCenterHVAC

Building Variable name Min. Max.

5ZoneAutoDXVAV Zone heating setpoint temperature 15 22.5
Zone cooling setpoint temperature 22.5 30

2ZoneDataCenterHVAC East zone heating setpoint temperature 15 22.5
East zone cooling setpoint temperature 22.5 30
West zone heating setpoint temperature 15 22.5
West zone cooling setpoint temperature 22.5 30
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For the majority of the experiments in Sect.  5, we use the default value of � = 0.5 , 
which involves seeking a complete balance between comfort and power requirements. We 
also analyse the effect of using different weightings in Sect. 5.6.

4.5 � Algorithms

We briefly summarize the DRL algorithms and rule-based controllers used throughout the 
experimentation. The proposed control problem is addressed from a single-agent perspec-
tive, since multi-agent HVAC control is mostly applied in building communities (Pinto 
et al. 2021; Vazquez-Canteli et al. 2020) or problems where the action space is too large 
for a single agent (Fu et al. 2022). For the environments considered in this work—with a 
maximum of two controlled zones in 2ZoneDataCenterHVAC, such control is not strictly 
required.

The DRL algorithms selected were PPO, TD3, and SAC. As it is beyond the scope of 
this paper to go into their theoretical details, we refer the reader to the original publications 
where these are presented in detail: Schulman et al. (2017a) (PPO), Fujimoto et al. (2018) 
(TD3), and Haarnoja et al. (2018) (SAC).

PPO is an improvement over the on-policy algorithm TRPO. On-policy algorithms have 
a single policy that improves progressively according to the exploration of states and/or 
actions. This algorithms are generally sample-inefficient due to the data loss that occurs 
when updating their policy. This may hinder their performance in domains such as HVAC 
control, where data collection is slow, as detailed in Biemann et  al. (2021). This is an 
assumption that we will empirically test in our experiments.

On the other hand, we have off-policy algorithms such as TD3 and SAC, which are more 
sample-efficient and can therefore be expected to produce better results in the HVAC con-
trol problem. Off-policy algorithms are based on two policies: a behaviour policy, which is 
exploratory, and a target policy, which is the one actually used by the agent and is based on 
the knowledge gathered by the exploratory one. Thus, while TD3 is an improved version 
of DDPG commonly used in HVAC control (Li et al. 2019; Gao et al. 2020; Biemann et al. 
2021; Fu and Zhang 2021), SAC offers a promising alternative in this domain, as shown by 
recent studies such as (Brandi et al. 2022; Yu et al. 2020; Biemann et al. 2021; Coraci et al. 
2021).

Regarding the rule-based controllers used as baselines, the following approaches pro-
duced the best results for each building:

•	 For 5ZoneAutoDXVAV, a control based on static setpoints depending on the season 
of the year, based on the ASHRAE standard (ASHRAE 2004) for thermal comfort in 
dwellings. In this way, the static setpoints [26, 29] °C are set for the period from June to 
September, while setpoints [20, 23.5] °C are maintained for the rest of the year.

•	 In the case of 2ZoneDataCenterHVAC, an integral control based on degree-by-degree 
correction of the current setpoints, depending on whether the temperature of each zone 
is within the specified range. This range corresponds to ASHRAE standard (ASHRAE 
2016) for recommended temperature ranges in data centers, which establishes [18, 27] 
°C as reference setpoint values in these facilities.

Although these RBCs are able to guarantee proper control in the proposed scenarios, it 
should be noted that (1) they are not easily scalable, as they have to be defined manu-
ally; (2) they are not able to consider wide optimization horizons, as the rules used are 
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essentially reactive; and (3) in more complex scenarios (e.g. larger number of variables to 
be controlled), their performance could be significantly compromised.

For an in-depth study on how these RBCs are implemented, we refer the reader to the 
corresponding Sinergym https://​github.​com/​ugr-​sail/​siner​gym/​blob/​main/​siner​gym/​utils/​
contr​ollers.​py module, where their source code can be consulted.

5 � Experiments

The following subsections detail the different experiments conducted. The objective pur-
sued was to thoroughly study (1) which algorithms are able to guarantee better thermal 
control; (2) which DRL algorithms offer higher robustness to weather conditions for which 
they have not been trained; (3) the application of sequential learning and its effectiveness to 
obtain better controllers, and (4) the comfort-consumption trade-off and its influence on the 
performance of the controllers.

Although the most significant results will be illustrated graphically, space limitations 
have led us to transfer part of the complementary graphic material to an external reposi-
tory: https://​github.​com/​ugr-​sail/​paper-​drl_​build​ing, available for detailed analysis of simu-
lation data, code, and additional charts.

5.1 � Methodology

Figure 2 summarizes the experimentation phases followed in this work. First, the perfor-
mance between RBCs and DRL algorithms were compared in the 5ZoneAutoDXVAV and 
2ZoneDataCenterHVAC buildings with three different types of weather conditions, that 
is, 6 different environments.

Following this comparison, further experiments were carried out under more complex 
settings. On the one hand, the best DRL agent obtained in the previous step was used to 
test how it adapted to different weather conditions than those used during its training. We 
refer to this experiment as the “robustness test”, which allowed us to evaluate the agent’s 
ability to generalise to situations not experienced during training.

Fig. 2   Proposed experiments

https://github.com/ugr-sail/sinergym/blob/main/sinergym/utils/controllers.py
https://github.com/ugr-sail/sinergym/blob/main/sinergym/utils/controllers.py
https://github.com/ugr-sail/paper-drl_building
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Subsequently, we explored the application of sequential learning by progressively train-
ing an agent over multiple weather conditions, comparing its performance with that of an 
agent specialised in a single environment

Finally, we compared the performance of the best DRL controllers of each building 
under different definitions of the reward function, mainly by varying the weights of the 
comfort and consumption terms and observing the results obtained.

5.2 � Experimental settings

Both the training and evaluation of the DRL algorithms were executed using Google 
Cloud computing platform and Sinergym version https://​pypi.​org/​proje​ct/​siner​gym/1.​8.2/. 
Regarding the handling of simulation time, each episode corresponds to 1 year of build-
ing simulation. Each episode consists of 35,040 time steps (i.e., 365 days × 24  h/day × 
4 timesteps/hour), resulting in an observation sample and subsequent setpoint adjustment 
every 15 min. This is an appropriate value for the problem addressed, although it can be 
configured as desired within Sinergym settings.

In addition, the evaluation metrics common to all experiments and used to compare the 
agents are the following:

•	 Mean episode reward: calculated as the arithmetic mean of the rewards obtained in 
each time step of an episode.

•	 Mean power demand: mean HVAC electricity demand rate of the building’s HVAC 
system (in W), provided by EnergyPlus.

•	 Comfort violation: percentage of time during which the ambient temperature is outside 
a desired comfort range, and mean value (in °C) of temperature deviations from com-
fort limits. In the case of 5ZoneAutoDXVAV, the comfort ranges used were: [23, 26] 
°C for June to September, and [20,  23.5] °C for the rest of the year. Meanwhile, for 
2ZoneDataCenterHVAC, a single comfort range was used: [18,  27] °C, as recom-
mended by ASHRAE’s standard (ASHRAE 2016), in order to ensure the safety of the 
building’s equipment.

Other metrics, such as the evolution of indoor and outdoor temperatures, will also give an 
insight into how the control adjusts between setpoints and how performance evolves, as 
detailed below.

5.3 � Comparison between control algorithms

The first experiment conducted was a comparison between DRL algorithms and RBCs. 
This involve the training and subsequent evaluation of the DRL algorithms in differ-
ent environments, in order to identify which algorithms perform better for each environ-
ment. The environments used for training and evaluation consisted in all the combinations 
between buildings (5ZoneAutoDXVAV, 2ZoneDataCenterHVAC) and weathers (hot dry, 
mixed humid, and cool marine), resulting in 6 different scenarios.

The configuration settings for this experiment were as follows:

•	 Machine used for training: Google Cloud’s https://​cloud.​google.​com/​compu​te/​docs/​
machi​ne-​types machine, equipped with a 2.2 GHz Intel Cascade Lake processor, 8 
vCPU, and 8192 MiB of RAM.

https://pypi.org/project/sinergym/1.8.2/
https://cloud.google.com/compute/docs/machine-types
https://cloud.google.com/compute/docs/machine-types
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•	 Number of training episodes: 20. This was found to be a sufficient number of episodes 
for all algorithms to achieve convergence.

•	 Frequency of evaluation: 4. Specifies the number of training episodes after which an 
evaluation and selection of the best model is performed.

•	 Evaluation length: 3. Refers to the number of episodes used to perform the evaluations.
•	 Random seed: 42. This seed was used in all experiments to facilitate the replication of 

the results.
•	 Normalization of the observations in [0, 1], using the Sinergym normalization wrapper.
•	 Multiple combinations of hyperparameters were tested until finding the ones that 

offered the best results for each DRL algorithm and environment combination, as 
detailed in Appendix 1. Endorsing the idea of (Brandi et al. 2020; Agarwal et al. 2021), 
the choice of hyperparameters in DRL is a complex task that greatly affects the training 
process of the agents. Therefore, it is necessary to follow a testing process during sev-
eral episodes to compare the performance of different configurations. This philosophy 
was followed until acceptable sets of hyperparameters were found.

Regarding the training process, Fig.  3 shows how SAC offers the best results in all 
5ZoneAutoDXVAV scenarios, with early convergence at its optimal values. Moreover, 
TD3 shows fast convergence, although without surpassing SAC, and offering similar 
results—or even slightly lower—than those of PPO, whose convergence requires a greater 
number of training episodes.

Regarding 2ZoneDataCenterHVAC, in Fig. 4 we can see a higher instability of TD3 
in the first episodes, and a later better performance against SAC and PPO. In this environ-
ment, SAC again demonstrates early convergence, outperforming PPO in cool and hot cli-
mates, and equaling it in the mixed case.

Once the algorithms were trained and reached convergence, they were evaluated during 
20 episodes using the best model obtained during training. Figures 5 and 6 show the results 
obtained for each environment, considering the metrics already presented in Sect.  5.2: 
mean rewards per episode, power consumption and comfort violation. We will analyze 
the results obtained taking as baseline the performance of both RBCs and random agents 
(RAND). The values represented in the boxplots are summarized in Appendix 2.

Fig. 3   Mean episode rewards during 20 training episodes in 5ZoneAutoDXVAV
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In the case of 5ZoneAutoDXVAV, as shown in Fig. 5, the best comfort-consumption 
balance is guaranteed by the RBC. Being this an ad hoc solution implemented for each 
building, we are interested in knowing which DRL algorithm comes closest to its perfor-
mance. In this case, as we could see during training, SAC is the closest agent to RBC con-
trol in all climates, followed by PPO and TD3, with similar mean rewards in all scenarios. 
Thus, none of the agents manages to outperform RBC regarding this metric.

Considering the comfort and consumption values, we observe that RBC’s main com-
petitor, SAC, manages to reduce power demand without major penalties in comfort 

Fig. 4   Mean episode rewards during 20 training episodes in 2ZoneDataCenterHVAC

Fig. 5   Results for 20 evaluation episodes in 5ZoneAutoDXVAV
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violation, especially in hot weather. On the other hand, TD3 is the most energetically 
costly agent, while PPO maintains a significant balance between both metrics without 
demonstrating outstanding performance.

Looking at Fig. 6, corresponding to 2ZoneDataCenterHVAC, we find a higher com-
petitiveness with respect to RBC, which is outperformed in all scenarios by TD3 in 
terms of reward. We see, in turn, significant power savings with respect to the other 
agents, albeit at the cost of a greater comfort violation. This could potentially be less 
interesting if we are dealing with a building where the temperature must always be kept 
in a specific range for safety reasons, so more conservative options such as SAC, PPO or 
RBC itself could be more suitable.

When we refer to conservative solutions, we mean those that offer indoor tempera-
tures further away from the limits of comfort ranges. This makes it possible to deal with 
temperature inertia at the cost of investing more power in ensuring stable temperatures. 
For example, if we compare the indoor temperatures throughout the simulation for TD3 
(Fig.  7) and RBC (Fig.  8), we observe that the former temperatures are closer to the 
upper comfort limit than those of the RBC. This behavior may be interpreted as the 
DRL agent trying to optimize consumption by taking a higher risk in ensuring comfort, 
thus leading to indoor temperatures closer to the limit allowed by the reward function.

A more feasible alternative in ensuring compliance with comfort limits might involve 
modifying the reward function used, giving greater importance to comfort versus con-
sumption. This approach will be specifically addressed in Sect. 5.6.

Finally, it is worth noting the difficulties of the DRL algorithms in adapting to com-
fort ranges that vary at specific periods of the episode. This is the case of 5ZoneAu-
toDXVAV and the variations in the comfort ranges defined for the warm and cold 
months, as explained in Sect.  5.2. For instance, Fig.  9 shows how the sudden change 

Fig. 6   Results for 20 evaluation episodes in 2ZoneDataCenterHVAC
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Fig. 7   Evolution of temperatures during a year of simulation using TD3 in 2ZoneDataCenterHVAC-hot. 
Comfort thresholds are marked with the horizontal dotted red and blue lines. (Color figure online)

Fig. 8   Evolution of temperatures during a year of simulation using RBC in 2ZoneDataCenterHVAC-hot. 
Comfort thresholds are marked with the horizontal dotted red and blue lines. (Color figure online)
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in the desired temperature range poses difficulties for SAC, which does not adapt well 
enough to the new comfort requirements.

Having provided a first insight into the performance of the different algorithms, in the fol-
lowing subsections we will address issues related to performance improvement and generali-
zation capabilities of DRL agents.

5.4 � Robustness test

We will test the performance of agents executed in environments that differ from those in 
which they have been trained. This will enable to know how far an agent is able to generalize 
and extrapolate the knowledge acquired in a given climate to be applied in a different one.

According to Fig. 10, we observe that the agents that perform best in each climate are those 
that have been trained in that same climate, as would be expected. After applying Mann–Whit-
ney U tests, we obtain significant differences between the rewards obtained in each test envi-
ronment ( p < 0.05 in all cases).

In all cases, the following order of performance holds true: cool is the climate for which the 
greatest rewards are obtained, followed by mixed and hot. Even agents trained in mixed and 
hot get a higher reward in cool than in their respective training climates. The same happens for 
the agent trained in hot climate, whose reward is worst in its own climate than in the rest.

As a summary, Table 5 gathers the results obtained for each SAC training and evaluation 
combination in 5ZoneAutoDXVAV, which we will further discuss in Sect. 6.2.

5.5 � Sequential learning

Another objective proposed in this work is to address the application of sequential 
learning: an approach that involves the progressive training of an agent under different 
weather conditions. On this basis, our goal in applying this incremental learning is to 

Fig. 9   Evolution of temperatures during a year of simulation using SAC in 5ZoneAutoDXVAV-mixed. 
Comfort thresholds are marked with the horizontal dotted red and blue lines. (Color figure online)
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verify whether an agent trained progressively through different environments is capa-
ble of achieving better, or at least similar, performance to an agent trained in a single 
problem.

Thus, based on the results obtained in Sect. 5.3, we will test to compare the perfor-
mance of an agent directly trained on a single climate with one trained on every avail-
able climate. We will use SAC under the same configurations described in the previous 
experiments. The sequence of training considered is: (1) cool, (2) mixed, and (3) hot.

Therefore, in Fig.  11 we observe that the performance of SAC trained under 
sequential learning is mostly inferior to that of standard SAC according to the metrics 
proposed.

It is noteworthy that the best performance obtained by SAC with sequential learning 
occurs in hot weather, which is actually the last weather used to train the agent. This could 
lead us to believe that the phenomenon of “catastrophic forgetting” (French 1999) might 
occur, as we will discuss in Sect. 6.3.

Fig. 10   Evaluation rewards for SAC agents trained in different weathers. Compared with RBC mean 
rewards in 5ZoneAutoDXVAV

Table 5   Rewards for every 
training and evaluation 
combination using SAC in 
5ZoneAutoDXVAV

Train

Cool Mixed Hot

Test
 Cool Mean = −0.226

SD = 0.00129
Mean= −0.251
SD = 0.00129

Mean = −0.258
SD = 0.00135

 Mixed Mean = −0.361
SD = 0.00217

Mean = −0.344
SD = 0.00191

Mean = −0.366
SD = 0.00198

 Hot Mean = −0.482
SD = 0.0012

Mean = −0.46
SD = 0.00117

Mean = −0.454
SD = 0.00111
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5.6 � Comfort‑consumption trade‑off

As we already anticipated in the experimentation of Sect. 5.3, the reward function cho-
sen, as well as the weights given to comfort and consumption in the training of the 
agents should influence their performance.

In this section, we will compare how different weights for comfort and consumption 
influence the performance of the agents under the same rest conditions. Specifically, 
building on the results described in Sect. 5.3, we will use the best performing agents on 
each building—SAC in 5ZoneAutoDXVAV, and TD3 in 2ZoneDataCenterHVAC—to 
compare the performance of the following agents:

•	 An agent trained only on the basis of the comfort requirements ( � = 1 in Eq.  6), 
regardless of consumption.

•	 Another trained with a weight of 75% for consumption and 25% for comfort 
( � = 0.25).

•	 An agent trained with the same weight for consumption and comfort ( � = 0.5).
•	 And, finally, an agent trained with a weight of 75% for comfort and 25% for con-

sumption ( � = 0.75).

Thus, the results obtained are shown in Figs. 12 and 13. From the figures we observe 
that a greater emphasis on comfort in the reward function reduces comfort violations, 
as would be expected. Improvements are especially significant from 25 to 50% comfort 
weight, and decrease as the comfort weight increases (although always improving).

Fig. 11   Results for SAC and sequential learning SAC in 5ZoneAutoDXVAV
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However, there are two exceptions where assigning 100% weight to comfort means 
some worsening from 75%. This is the case for SAC in hot climate and TD3 in cool cli-
mate. In Sect. 6.4 we will discuss possible causes for these exceptions.

Finally, improving comfort means—apart from the exceptions mentioned above—an 
increase in power demand. In this multi-objective problem, the trade-off is disrupted as 
soon as one objective is given greater importance than the other.

6 � Discussion

In this section, we will discuss the results obtained after experimentation, not only 
describing them but also identifying gaps to be addressed in future work.

Fig. 12   Results for SAC with different comfort weights in 5ZoneAutoDXVAV

Fig. 13   Results for TD3 with different comfort weights in 2ZoneDataCenterHVAC
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6.1 � Rewards and comparison between algorithms

We begin by analyzing the results obtained by the different control algorithms in the 
set of proposed environments. Overall, the results obtained are consistently stable with 
minimal variation over the 20 evaluation episodes. Stable results from multiple evalua-
tion episodes allows us to confirm that there are no random factors significantly affect-
ing the agents’ results (see Appendix 2).

As shown in Sect.  5.2, in the case of 5ZoneAutoDXVAV, no DRL algorithm was 
able to outperform RBC considering a reward which gives equal importance to com-
fort and consumption (50–50%). It should also be noted that the buildings used in this 
experiment have a relatively simple control, which can be easily translated into a limited 
set of rules. However, as we discussed in the Sect. 5, the results are particularly promis-
ing when we consider that there has been neither an exhaustive selection of observed 
variables nor an in-depth choice of hyperparameters.

In Fig. 9 we also observe how DRL algorithms have problems in adapting to chang-
ing setpoints in certain periods of the simulation, such as the warm months. If we also 
consider that the higher the temperature, the more difficult it is to guarantee the com-
fort-consumption balance (see rewards for hot weather environments in Fig. 5), the loss 
of performance is self-evident. This loss of performance can be caused by external fac-
tors that affect the agent’s ability to act, such building characteristics or an increased 
power demand from the HVAC system for cooling.

On the contrary, looking at the results in 2ZoneDataCenterHVAC, TD3 manages 
to outperform RBC in terms of average reward. The fact that a DRL agent is able to 
outperform an RBC in 2ZoneDataCenterHVAC, but not in 5ZoneAutoDXVAV could 
be justified by the greater complexity of the control problem, as the latter may require a 
more sophisticated strategy, involving a larger number of control variables.

As we anticipated earlier, the main reason why TD3 gets a better reward is because of 
the large reduction in consumption compared to RBC. However, this seems to imply a 
higher comfort violation, which is ultimately profitable for the agent.

An important aspect to question at this point is under what conditions we consider 
a comfort violation to occur. If we look at Fig. 7, we can see that although many com-
fort violations occur for TD3 throughout the year, their value is quite low, mainly due 
to temperature inertia combined with the fact that power savings imply approaching 
comfort limits. Therefore, if we only look at Fig. 6, agnosticism towards real tempera-
tures and deviations could lead us to believe that TD3 significantly sacrifices comfort 
in exchange for reducing consumption, thus reaching critical temperatures, which is not 
the case. As a proof, Fig. 14a shows the temperature violations achieved by TD3 with 
respect to the comfort ranges in 2ZoneDataCenterHVAC, proving that the temperature 
deviations exceed the upper comfort limit by less than 0.7 °C, and never the lower limit.

Something similar occurs in the case of the SAC in 5ZoneAutoDXVAV. Looking at 
Fig. 14b, we observe that the comfort violations above the upper limit reach a maximum 
of about 1.6 °C, while the comfort violations below the lower limit reach about 2.4 °C. 
In the latter case, the comfort violations are higher because the agent adapts with dif-
ficulty to the change of the comfort range during summer months, usually staying below 
the desired minimum temperature.

Finally, we should not overlook a common factor related to the reward function 
used for both buildings: the value of the scaling factors �P and �T (see Eq.  5), which 
were chosen empirically. This may lead to slight inaccuracies in the reward calculation. 
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Nevertheless, assuming the same values for all algorithms allows comparing the results 
under similar conditions.

6.2 � Robustness and generalization

The results of the robustness and generalisation experiments yield some interesting 
insights. On the one hand, we confirm that the agents that performed best in a given envi-
ronment were those that had been trained in the same environment. That is to say, an agent 
executed in an environment different from the one in which it was trained reported a loss of 
performance in terms of average reward.

Fig. 14   Comfort violations 
by TD3 and SAC in different 
scenarios
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On the other hand, the rewards obtained in each test environment (see Fig. 10) show 
that the climate associated with the highest reward was cool, followed by mixed and 
hot. However, these values should be interpreted with caution: the fact that the rewards 
obtained in the hot climate were lower for each agent than in the cool climate does not 
necessarily mean that the agents are unable to perform properly in hot environments, 
but may be due to external factors. For example, a reward of around −0.4 in hot weather 
could be comparable to one of around −0.2 in cool weather simply because the HVAC 
system consumes less when heating than when cooling, which is beyond the agents’ 
ability to act. This leads us to suggest that a column-by-column study of Fig. 10 may not 
be as informative as a row-by-row comparison of the rewards.

These results also lead us to question whether a specific and fixed climate is the 
best approach when training DRL algorithms in this domain. Future work should try to 
clarify whether the differences in the control exerted by agents trained in different cli-
mates are really significant—we are currently dealing with centesimal variations in the 
value of the mean rewards, as well as to address alternatives to training based on single 
climates. For example, an alternative may involve using a dataset which pools records 
from several different climates, and from which one climate observation is randomly 
sampled at each time step. This is an idea already addressed in other works, such as Du 
et al. (2021), where a DRL agent was trained by sampling observations of heating and 
cooling scenarios, thus leading to more adaptive action strategies. Consequently, this 
solution may greatly enhance agents’ generalization during training.

6.3 � Effectiveness of sequential learning

The search for an improvement in training by applying sequential learning also raises 
important issues in its application and results. As shown in Fig.  11, this approach 
resulted in a performance degradation with respect to standard SAC in each of the 
climates. Thus, the proposed method did not lead to improvements in expected 
performance.

A noticeable finding is that the results obtained report a lower loss of performance 
by the agent trained with sequential learning in the hot climate. This leads us to ques-
tion whether this is caused by the fact that it was the last climate used for training. If 
so, we would be facing the already mentioned problem of catastrophic forgetting, which 
implies a bias in the agent’s learning towards the most recent training data, discarding 
the learning of previous climates.

In fact, if we compare SAC trained with sequential learning with the rest of SAC agents 
trained in single climates (Fig. 15), we notice that the rewards are always worse, with the 
exception of hot, where results are close to those of SAC trained in mixed, and superior to 
those trained in cool. Again, this improved control in hot climate could be a direct conse-
quence of catastrophic forgetting, as it concerns the last climate used in the agent’s train-
ing, thus partially forgetting what the agent learned for cool and mixed environments.

To evaluate whether this phenomenon occurs, we tested the performance of an agent 
trained with sequential learning by following the reverse process. To do so, a SAC agent 
was firstly trained in hot weather, then in mixed, and finally in cool. Its performance is 
shown and compared with the rest of the SAC agents in Fig. 16, where we can observe 
a significant improvement in the reward for cool weather, at the expense of worsening 
performance for the rest of climates.
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Looking at the results reinforces the idea that there is a bias towards the latter training 
climate—in this case, cool. This leads us to believe that catastrophic forgetting does indeed 
occur, preventing diversified training.

It is also noteworthy how the new agent trained in all three climates manages to out-
perform a SAC agent trained only in cold, so the application of sequential learning may 

Fig. 15   Evaluation rewards for SAC trained with sequential learning in all climates, and SAC trained in sin-
gle climates. Compared with RBC mean rewards in 5ZoneAutoDXVAV

Fig. 16   Comparison between standard SAC rewards, and SAC agents trained under sequential learning in 
different orders
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not be worthwhile in these circumstances. However, as a consequence of the existence of 
catastrophic forgetting, future work should address the influence of the architecture of the 
neural networks used by the agents, as well as the way in which the training data is han-
dled. Again, we reiterate the idea that sampling from a set of observations from different 
climates may be a suitable option for this type of problems.

6.4 � Comfort‑consumption trade‑off

From the results shown in Figs. 12 and 13, we can see how the weight assigned to com-
fort and, therefore, to consumption—directly influences the importance of this value in the 
training and final performance of the algorithms.

As we already anticipated, a higher comfort assurance implies, in most cases, a con-
sequent increase in power demand. However, there are interesting cases such as SAC in 
5ZoneAutoDXVAV and cold weather, where it is possible to reduce the comfort violation 
by increasing its importance in the reward function without significant drawbacks in terms 
of consumption.

Furthermore, the choice of weighting for comfort and consumption depends entirely on 
the problem and the environment we are dealing with. However, there are cases, such as 
the one mentioned above, where we can achieve significant improvements in comfort with 
hardly any penalty in consumption. It is therefore a problem that needs to be approached 
cautiously and, if possible, several options should be evaluated in a simulated way.

If we look at the rewards obtained by the different SAC agents in 5ZoneAutoDXVAV, 
we observe that a greater emphasis on comfort generally leads to better overall perfor-
mance. As we have observed, this is because improvements in comfort do not have a large 
impact on power consumption, which offsets the results.

Nevertheless, in the case of TD3 in 2ZoneDataCenterHVAC, the comfort and con-
sumption weighting changes do pose more of a challenge in terms of trade-off, with 
50–50% being the best weighting choice in all climates.

Let us now study what happens with the two exceptions mentioned in Sect.  5.6: 
SAC in 5ZoneAutoDXVAV and hot weather, and TD3 in 2ZoneDataCenterHVAC 
with cool weather, where a 75% weight for comfort in the reward function gives better 

Fig. 17   Mean episode comfort violations for SAC with additional comfort weights in 5ZoneAutoDXVAV
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results in terms of comfort violations than assigning a 100% percent weight to this 
value.

Taking the SAC case as an example, if we look at Fig. 17, we observe that adding inter-
mediate weights (95%, 97% and 99%) to comfort between those previously considered 
(75% and 100%), leads to a range of similar results with centesimal variations. Therefore, 
the average comfort violations per episode reveal that there is some convergence in agents’ 
performance, and that, despite increasing the importance of comfort in the reward function, 
their capacity is limited and it is not possible for them to improve comfort assurance. This 
is also the case for TD3 in 2ZoneDataCenterHVAC with cool weather, for which similar 
experiments were conducted.

Finally, we conclude that these two exceptions are indeed attainable cases which do not 
denote a noticeable loss of performance, but rather an oscillation around a limit that the 
agent is physically unable to overcome.

6.5 � Summary and implications

We conclude with an overview of the results obtained and their potential implications for 
researchers and practitioners.

The results presented in Sects. 5.3 and 6.1 show how DRL-based agents match the 
performance of RBCs in simple scenarios, such as 5ZoneAutoDXVAV—where there is 
little room for improvement and how they perform better in environments of increasing 
complexity, such as 2ZoneDataCenterHVAC. We therefore recognise that the margin for 
improvement of a DRL over a reactive controller should be examined in the light of the 
complexity of the building being controlled. This complexity can be given by the system 
to be controlled, including its number of zones, as well as the observed and control vari-
ables. Other aspects may include climate variability or external factors such as occupancy 
or scheduling, which greatly affect the scalability and complexity of RBCs.

DRL agents were able to level reactive controllers in simple environments and surpass them in complex 
environments. Therefore, we consider that the complexity of the building being controlled is a major 
factor to be taken into account in the selection of controllers.

The robustness of agents deployed in environments with a climate different from that in 
which they were trained is another relevant issue (see Sects. 5.4 and 6.2). Although there 
were yield losses, we believe that it will depend on the case to consider whether or not 
these losses are negligible.

On the other hand, we observed in Sects. 5.5 and 6.3 that a sequential learning approach 
did not show improvements, but biases towards the last environment used to train the agent. 
While it may be due to overfitting, the usefulness of this type of training needs to be further 
studied.

Deploying a controller in an environment other than the one used in its training resulted in performance 
losses that might be acceptable depending on the case study. These losses were higher, and possibly 
impractical, in agents trained progressively through different climates, showing biases towards the last 
training environment employed.
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One of the main advantages that DRL controllers offer compared to reactive control tech-
niques is their flexibility in customizing the comfort-consumption trade-off by simply alter-
ing their reward function. In Sects. 5.6 and 6.4, we observed where are the limits of the 
comfort/consumption strategy that an agent can learn.

Moreover, while only these two factors have been considered in this paper, there are 
interesting studies, such as (Brandi et al. 2022), where the estimation of power consump-
tion and prices are taken into account, considering a DRL agent adapted to sporadic peak 
consumption and stationary events. This reveals the customization capabilities of DRL 
agents in building environments without a complex model of each controller or an exten-
sive rule base.

DRL agents are flexible to balance comfort and consumption preferences, and can incorporate other crite-
ria by just adding extra terms in their reward.

Facing the use of DRL controllers in real environments, we must consider that the vari-
ables available in the simulation are also available in the deployment environment. Most of 
the variables used in this study could be easily monitored in a real environment, or replaced 
by proxies if not available (e.g. comfort metrics).

Purely online deployment and training of these DRL agents in real environments is not 
recommended since it requires long periods of time to achieve a minimally efficient behav-
ior policy. On the contrary, the approach usually followed is to train the agents in simulated 
environments, avoiding cold starts, and then deploy these agents in real environments and 
continue to receive feedback from the information collected online.

In order to enable the deployment of a DRL agent trained in a simulated environment, it is necessary for 
the agent to have access, either directly or indirectly, to similar variables to those used in its training. 
The DRL setup facilitates continuous learning and adaptation after deployment.

7 � Conclusions and future work

In this paper, we have addressed the performance comparison of multiple DRL algorithms 
in building HVAC control. Using the Sinergym framework, these algorithms were tested in 
various buildings and climates, considering both the search for comfort-consumption bal-
ance and scenarios in which one objective prevailed over the other. The robustness of the 
agents in different climates was also evaluated, as well as the potential benefits of progres-
sive training to improve agents’ performance.

In the search for proper comfort-consumption balance, SAC and TD3 were able to perform 
similar control to reactive controllers in most scenarios, even improving power savings at the cost 
of low comfort penalties. Since the agents were trained with completely raw observations—nei-
ther exhaustive variable selection nor preprocessing beyond normalization—and without exten-
sive hyperparametrization, an immediate future work may involve the detailed study of which 
variables should compose agents’ observations, as well as a deeper analysis to define which 
hyperparameters best fit each building-climate-algorithm combination. In any case, a relevant 
highlight derived from these results is the fact that positive results can be obtained for arbitrary 
environments without the need to significantly fine-tune observations and hyperparameters.
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Regarding the robustness and generalisability of DRL agents, it was found that modify-
ing the evaluation climate of an agent with respect to the one used in its training negatively 
influences its performance. Interestingly enough, these are minor losses that may be gener-
ally acceptable, avoiding the need to use a wide variety of climates in the training of the 
agents. Thus, a proposal for future work will involve training by sampling a pool of obser-
vations from a wide variety of climates, thus increasing the generalization capabilities of 
the agents and reducing training time and efforts.

Moreover, the use of sequential learning for training was not successful in most cases, 
mainly due to the bias of the agents to specialize in the control of the most recently learned 
environments. This phenomenon of catastrophic forgetting motivates future research from dif-
ferent perspectives, such as exploring the influence of the network architecture of DRL agents 
on the occurrence of this phenomenon, or studying possible improvements along this progres-
sive learning process (i.e. experience replay and regularization).

Finally, the study of the comfort-consumption trade-off, and its translation into the agents’ 
reward function, offered some significant highlights. On the one hand, it was observed that 
there are cases where improvements in comfort have hardly any penalties in power consump-
tion, which leads us to suggest that it cannot be assumed that increasing the importance of 
comfort in the reward function will always lead to a detriment in power demand. This is where 
reward engineering comes into play, so future research should be conducted to compare dif-
ferent rewards and their influence on the comfort-consumption trade-off. On the other hand, 
it was observed that there are comfort weights beyond which agents are physically incapable 
of improving temperature assurance in the desired ranges. Generally, as the comfort weight 
tended towards 100% in the reward function, we began to find some convergence in the com-
fort penalties without considerable detriments or improvements.

As a conclusion of this work, and in view of the state of the art, we encourage future contri-
butions in the area to be tested under multiple environments and configurations. Frameworks 
like Sinergym can be very useful in this regard.

Addressing the problem of building energy optimization from the perspective of multi-agent 
systems is another interesting approach for which standardized comparisons are also necessary. 
These solutions offer several advantages in large buildings where coordination between multi-
ple independent HVAC controllers is required (Nagarathinam et al. 2020; Yu et al. 2020).

From a wider perspective, it would also be interesting to extend these studies with configu-
rations where the use of green energies is considered as a variable to be optimized, given the 
rise of smart grids and renewable energies. For this purpose, the continued use of common 
evaluation frameworks and methodologies will enable the comparison of results, the stand-
ardization of the field, and the joint progress towards the improvement of building energy 
optimization.

Appendix 1: hyperparameters

Tables 6, 7 and 8 show the hyperparameter combinations tested for each DRL algorithm. 
While for PPO and TD3 those marked in bold are the ones that provided the best per-
formance, in the case of SAC all the combinations presented similar performance, so the 
default values of Stable Baselines3 were selected. We are aware of the complexity underly-
ing the search and selection of hyperparameters in DRL, as there are many possible heuris-
tics in the search for optimal values. However, this task is beyond the scope of this paper, 
and we will intend to address it in future research.
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All of the combinations were run under the same random seed for a total of 20 training 
episodes, followed by 20 evaluation episodes, whose results were used to compare.

Regarding the architecture of the agents’ networks, the default architectures provided 
by StableBaselines3 were used. These networks consist of two fully connected layers with:

•	 64 units per layer for PPO.
•	 256 units for SAC.
•	 400 (first layer) and 300 (second layer) units for TD3.

Table 6   Hyperparameters tested for PPO. The combination in bold was the one used in the experiments

Learning_rate n_steps Batch_size n_epochs Gamma Gae_lambda

1 0.0003 2048 64 10 0.99 0.95
2 0.0003 2048 128 10 0.99 0.95
3 0.0003 4096 128 10 0.99 0.95
4 0.001 2048 64 10 0.99 0.95
5 0.01 2048 64 10 0.99 0.95
6 0.001 4096 128 15 0.9 0.9
7 0.0003 4096 64 15 0.99 0.95

Table 7   Hyperparameters tested 
for SAC. The combination in 
bold was the one used in the 
experiments

Learning_rate Buffer_size Batch_size Tau Gamma

1 0.0003 1,000,000 256 0.005 0.99
2 0.003 1,000,000 256 0.005 0.99
3 0.0003 10,000 256 0.005 0.99
4 0.0003 1,000,000 128 0.005 0.99
5 0.0003 1,000,000 256 0.005 0.9
6 0.0003 1,000,000 256 0.05 0.99
7 0.0001 100,000 256 0.003 0.9

Table 8   Hyperparameters tested 
for TD3. The combination in 
bold was the one used in the 
experiments

Combination 11 performed best for all environments, with the excep-
tion of datacenter-mixed, where combination 1 provided better 
results

Learning_rate Buffer_size Batch_size Tau Gamma

1 0.003 1,000,000 100 0.005 0.9
2 0.003 1,000,000 128 0.005 0.9
3 0.003 100,000,000 100 0.005 0.99
4 0.001 1,000,000 100 0.004 0.9
5 0.003 10,000,000 100 0.005 0.8
6 0.001 100,000 128 0.005 0.8
7 0.003 100,000 100 0.005 0.8
8 0.003 1,000,000 256 0.005 0.8
9 0.003 1,000,000 512 0.005 0.99
10 0.003 1,000,000 128 0.005 0.7
11 0.003 1,000,000 64 0.005 0.9
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•	 Rew.: mean episode reward.
•	 Pow.: mean episode power consumption (W).
•	 Comf.: mean episode comfort violation time (%).
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