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This practice illustrates an example of classification with a linear discriminant model and another example
with a quadratic classifier.

To carry out this practice you must download the following files available on the PRADO platform of the
course:

• DA_4_en.Rmd

This brief guide is intended to familiarize the reader with the following:

• R packages required.
• Graphical exploration of data.
• Assumptions: normality and homogeneity of variance.
• Discriminant functions.
• Model validation.
• Visualization of the classifications.

Loading/installation of R packages necessary for this practice.

The following source code module is responsible for loading, if they are already installed, all the packages
that will be used in this R session. While an R package can be loaded at any time when it is to be used, it is
advisable to optimize its calls with this code chunk at the beginning.

Loading a package into an R session requires it to be already installed. If it is not, the first step is to
run the sentence:

install.packages(“name_of_the_library”)
#########################################
# Loading necessary packages and reason #
#########################################

# This is an example of the first installation of a package
# Only runs once if the package is not installed
# Once it is installed this sentence has to be commented (not to run again)
# install.packages("ggplot2")

# Package required to call 'ggplot' function
library(ggplot2)

# Package required to call 'ggarrange' function
library(ggpubr)
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# Package required to call 'scatterplot3d' function
library(scatterplot3d)

# Package required to call 'melt' function
library(reshape2)

# Package required to call 'mvn' function
library(MVN)

# Package required to call 'boxM' function
library(biotools)

# Package required to call 'partimat' function
library(klaR)

# Package required to call 'summarise' function
library(dplyr)

# Package required to call 'createDataPartition' function
library(caret)

Linear discriminant analysis
A team of biologists wants to generate a statistical model that allows classifying which species, a or b, a
certain insect belongs to based on the length of its legs, the diameter of its abdomen and that of its sexual
organ.

As training data these three variables (length of the legs, diameter of the abdomen and diameter
of the sexual organ in millimeters) have been measured in 10 individuals of each of the two species.
# Response variable
species<-c("a","a","a","a","a","a","a","a","a","a","b","b","b","b","b","b","b","b","b","b")

# Explanatory variables
leg_length<-c(191,185,200,173,171,160,188,186,174,163,186,211,201,242,184,211,

217,223,208,199)
abdomen_diameter<-c(131,134,137,127,128,118,134,129,131,115,107,122,144,131,108,

118,122,127,125,124)
sexual_organ_diameter<-c(53,50,52,50,49,47,54,51,52,47,49,49,47,54,43,51,49,51,

50,46)

# The whole dataset
datos<-data.frame(species,leg_length,abdomen_diameter,sexual_organ_diameter)

# The response variable has to be an object of the class 'factor' of R language
datos$species<-as.factor(datos$species)

Graphical exploration of data
First, we explore how well (or poorly) each of the explanatory variables considered independently
classifies the species. To do this, we draw the superimposed histograms. If the histograms are
separated, the variable considered would be a good individual classifier for the species.
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p1 <- ggplot(data = datos, aes(x = leg_length, fill = species)) +
geom_histogram(position = "identity", alpha = 0.5)

p2 <- ggplot(data = datos, aes(x = abdomen_diameter, fill = species)) +
geom_histogram(position = "identity", alpha = 0.5)

p3 <- ggplot(data = datos, aes(x = sexual_organ_diameter, fill = species)) +
geom_histogram(position = "identity", alpha = 0.5)

ggarrange(p1, p2, p3, nrow = 3, common.legend = TRUE)
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In this sense, it seems that the variable leg_length is the one that best differentiates between species (least
overlapping).

Next, we explore which pairs of variables best separate between species. We draw the bivariate scatterplots.
If the scatterplots separate the colors assigned to each species well, it means that the pair of variables would
provide a good classifier model based on them.
pairs(x = datos[, c("leg_length","abdomen_diameter","sexual_organ_diameter")],

col = c("blue", "orange")[datos$species], pch = 19)
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The combination of variables abdomen_diameter - leg_length and leg_length - sex-
ual_organ_diameter seem to adequately separate between species.

Finally, we explore whether the three variables together adequately differentiate between the two species.
We draw the three-dimensional scatterplot trying to identify if the graphical representation separates the
species according to the colors assigned to each of them.
scatterplot3d(datos$leg_length, datos$abdomen_diameter, datos$sexual_organ_diameter,

color = c("blue", "orange")[datos$species], pch = 19,
grid = TRUE, xlab = "leg_length", ylab = "abdomen_diameter",
zlab = "sexual_organ_diameter", angle = 65, cex.axis = 0.6)

legend("topleft",
bty = "n", cex = 0.8,
title = "Species",
c("a", "b"), fill = c("blue", "orange"))
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Indeed, the three variables simultaneously perfectly separate the two species in the three-dimensional space
generated. It makes sense to consider building a discriminant model for classification, for example.

Univariate and multivariate normality
Univariate normality

Next we make a graphical exploration of the normality of the univariate distributions of our predictors
by representing the histograms and the qqplots.

Univariate histograms
# Histogram representation of each variable for each species
par(mfcol = c(2, 3))
for (k in 2:4) {

j0 <- names(datos)[k]
x0 <- seq(min(datos[, k]), max(datos[, k]), le = 50)
for (i in 1:2) {

i0 <- levels(datos$species)[i]
x <- datos[datos$species == i0, j0]
hist(x, proba = T, col = grey(0.8), main = paste("species", i0), xlab = j0)
lines(x0, dnorm(x0, mean(x), sd(x)), col = "blue", lwd = 2)

}
}
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Qqplot graphics
# Representation of normal quantiles of each variable for each species
par(mfrow=c(2,3))
for (k in 2:4) {

j0 <- names(datos)[k]
x0 <- seq(min(datos[, k]), max(datos[, k]), le = 50)
for (i in 1:2) {

i0 <- levels(datos$species)[i]
x <- datos[datos$species == i0, j0]
qqnorm(x, main = paste("species", i0, j0), pch = 19, col = i + 1)
qqline(x)

}
}
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This exploratory analysis can give us an idea of the possible normal distribution of the univariate variables,
but it is always better to do the respective normality tests.

Univariate normality test (Shapiro-Wilk)

The null hypothesis that the data follow a univariate normal distribution is tested. This hypothesis
is rejected if the p-value given by the Shapiro-Wilk test is less than 0.05. Otherwise the assumption of
normality of the data is not rejected.
datos_tidy <- melt(datos, value.name = "value")
aggregate(formula = value ~ species + variable, data = datos_tidy,

FUN = function(x){shapiro.test(x)$p.value})

## species variable value
## 1 a leg_length 0.7763034
## 2 b leg_length 0.7985711
## 3 a abdomen_diameter 0.1845349
## 4 b abdomen_diameter 0.5538213
## 5 a sexual_organ_diameter 0.6430844
## 6 b sexual_organ_diameter 0.8217855

No evidence of lack of univariate normality is found (p-value > 0.05).

Multivariate normality

Multivariate normality test (Mardia, Henze-Zirkler and Royston)

The MVN package contains functions that allow you to perform the three tests that are commonly used to
test multivariate normality.
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This multivariate normality can be affected by the presence of multivariate outliers. In this package we also
find functions for the analysis of multivariate outliers.
outliers <- mvn(data = datos[,-1], mvnTest = "hz", multivariateOutlierMethod = "quan")
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Six outliers are detected in observations 2, 3, 11, 13, 16 and 20. However, none of the two tests carried out
below find evidence of a lack of multivariate normality at the 5% level.
# Royston multivariate normality test
royston_test <- mvn(data = datos[,-1], mvnTest = "royston", multivariatePlot = "qq")
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royston_test$multivariateNormality

## Test H p value MVN
## 1 Royston 0.4636176 0.9299447 YES
# Henze-Zirkler multivariate normality test
hz_test <- mvn(data = datos[,-1], mvnTest = "hz")
hz_test$multivariateNormality

## Test HZ p value MVN
## 1 Henze-Zirkler 0.7870498 0.07666139 YES

Homogeneity of variance
For the analysis of homogeneity of variance:

• When there is a single predictor the most recommended test is the Barttlet test, already used in
previous practices.

• When multiple predictors are used, it must be verified that the covariance matrix is constant in all
groups. In this case it is also advisable to check the homogeneity of the variance for each predictor
at the individual level. The most recommended test is the Box M test, which is an extension of the
Barttlet test for multivariate scenarios. It must be taken into account that it is very sensitive to
whether the data are actually distributed according to a multivariate normal. For this
reason, it is recommended to use a significance (p-value) <0.001 to reject the null hypothesis.

The null hypothesis to be tested is that of equality of covariance matrices in all groups.
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boxM(data = datos[, 2:4], grouping = datos[, 1])

##
## Box's M-test for Homogeneity of Covariance Matrices
##
## data: datos[, 2:4]
## Chi-Sq (approx.) = 9.831, df = 6, p-value = 0.132

In this case we do not reject the null hypothesis since p-value = 0.132 > 0.001 and therefore we assume
homogeneity of variances.

It is important to remember that for this conclusion to be reliable the assumption of multivariate
normality must be met, which, in this case, was the case.

Discriminant function
Given that the assumptions of multivariate normality and homogeneity of variance are satisfied,
it makes sense to fit a linear discriminant classification model.

The lda function of the MASS package adjusts this model.
modelo_lda <- lda(formula = species ~ leg_length + abdomen_diameter + sexual_organ_diameter,data = datos)
modelo_lda

## Call:
## lda(species ~ leg_length + abdomen_diameter + sexual_organ_diameter,
## data = datos)
##
## Prior probabilities of groups:
## a b
## 0.5 0.5
##
## Group means:
## leg_length abdomen_diameter sexual_organ_diameter
## a 179.1 128.4 50.5
## b 208.2 122.8 48.9
##
## Coefficients of linear discriminants:
## LD1
## leg_length 0.13225339
## abdomen_diameter -0.07941509
## sexual_organ_diameter -0.52655608

The output of this object shows us the prior probabilities of each group, in this case 0.5 for each species
(10/20), the means of each regressor per group and the coefficients of the linear discriminant
classification model, which in this case would have the form:

odds = 0.13225339leg_length - 0.07941509abdomen_diameter - 0.52655608sexual_organ_diameter

Once the classifier is built, we can classify new data based on its measurements by simply calling the
predict function. For example, let’s consider a new specimen whose measurements are: leg_length = 194,
abdomen_diameter = 124, sexual_organ_diameter = 49.
nuevas_observaciones <- data.frame(leg_length = 194, abdomen_diameter = 124,sexual_organ_diameter = 49)
predict(object = modelo_lda, newdata = nuevas_observaciones)

## $class
## [1] b
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## Levels: a b
##
## $posterior
## a b
## 1 0.05823333 0.9417667
##
## $x
## LD1
## 1 0.5419421

According to the discriminant function, the posterior probability that the specimen is of species b is 94.2%
while that of it is of species a is only 5.8%. Therefore this specimen would be classified in species b. Similarly,
taking p = 0.5 as cut-point, given that the discriminant function takes the value 0.5419421, it would also
invite classification into the species b.

Model validation
A first basic form of model validation consists of trying to see how well it classifies in a test set from which
we know the species to which each record belongs. The usual way to proceed is to divide the original dataset
into two subsets: the first, known as training set, with approximately 80% of the records, which will be
used to fit the model; and the second, known as test set, with 20% of the remaining records, which will be
used for cross-validation.

For this illustration, however, we take the entire dataset as the training and test set, given that we have only
20 records.

The confusionmatrix function of the biotools package performs cross-validation of the classification model.
pred <- predict(modelo_lda, dimen = 1)
confusionmatrix(datos$species, pred$class)

## new a new b
## a 10 0
## b 0 10
# Classification error percentage
trainig_error <- mean(datos$species != pred$class) * 100
paste("trainig_error=", trainig_error, "%")

## [1] "trainig_error= 0 %"

In this case the correct classifications rate is 100% (this is not usual).

Displaying rankings
From a geometric point of view, linear discriminant analysis separates space using a straight line. In this
sense, the partimat function of the klaR package allows us to represent the classification limits of a
linear or quadratic discriminant model for each pair of predictors. Each color represents a classification region
according to the model, the centroid of each region and the real value of the observations are shown.
partimat(species ~ leg_length + abdomen_diameter + sexual_organ_diameter,

data = datos, method = "lda", prec = 200,
image.colors = c("green", "orange"),
col.mean = "yellow",nplots.vert =1, nplots.hor=3)
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Partition Plot

Unlike the classification with the three explanatory variables, which has an error of 0%, when considering
the classification according to each pair of variables, larger errors are made, although as was intuited
from the beginning the pairs abdomen_diameter - leg_length and sexual_organ_diameter -
leg_length make little error in the classification (5%) while the error with the pair abdomen_diameter
- sexual_organ_diameter shoots up to 30%.

Quadratic discriminant analysis
An example of quadratic discriminant analysis using a set of simulated training data is illustrated below.
200 records of two explanatory variables, variable_z and variable_w, are simulated, which are classified into
two groups, group A and group B.

In this example, we will work with a partition of the dataset, as a training set, on which we will
perform the quadratic discriminant analysis, and another partition, as a test set, with which we perform
the validation of the model.
set.seed(3)
grupoA_x <- seq(from = -3, to = 4, length.out = 100)
grupoA_y <- 6 + 0.15 * grupoA_x - 0.3 * grupoA_xˆ2 + rnorm(100, sd = 1)
grupoA <- data.frame(variable_z = grupoA_x, variable_w = grupoA_y, grupo = "A")

grupoB_x <- rnorm(n = 100, mean = 0.5, sd = 0.8)
grupoB_y <- rnorm(n = 100, mean = 2, sd = 0.8)
grupoB <- data.frame(variable_z = grupoB_x, variable_w = grupoB_y, grupo = "B")

datos <- rbind(grupoA, grupoB)
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datos$grupo <- as.factor(datos$grupo)

# Partitioning the dataset: training (80%) + test (20%)
trainIndex<-createDataPartition(datos$grupo,p=0.80)$Resample1
datos_train<-datos[trainIndex,]
datos_test<-datos[-trainIndex,]

plot(datos_train[, 1:2], col = datos$grupo, pch = 19, main="Training dataset")
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plot(datos_test[, 1:2], col = datos$grupo, pch = 19, main="Test dataset")
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Graphical exploration of data
First, we explore how well (or poorly) each of the two explanatory variables considered independently
classifies for the groups.
p1 <- ggplot(data = datos_train, aes(x = variable_z, fill = grupo)) +

geom_histogram(position = "identity", alpha = 0.5)
p2 <- ggplot(data = datos_train, aes(x = variable_w, fill = grupo)) +

geom_histogram(position = "identity", alpha = 0.5)
ggarrange(p1, p2, nrow = 2, common.legend = TRUE, legend = "bottom")

14



0

3

6

9

−2 0 2 4
variable_z

co
un

t

0

5

10

0 2 4 6 8
variable_w

co
un

t

grupo A B

In this sense, it seems that the variable_w is the one that best differentiates between groups (least
overlapping).

Univariate and multivariate normality
Univariate normality

Next we make a graphical exploration of the normality of the univariate distributions of our predictors
by representing the histograms and the qqplots.

Univariate histograms
# Histogram representation of each variable for each group
par(mfcol = c(2, 2))
for (k in 1:2) {

j0 <- names(datos_train)[k]
x0 <- seq(min(datos_train[, k]), max(datos_train[, k]), le = 50)
for (i in 1:2) {

i0 <- levels(datos_train$grupo)[i]
x <- datos_train[datos_train$grupo == i0, j0]
hist(x, proba = T, col = grey(0.8), main = paste("grupo", i0),
xlab = j0)
lines(x0, dnorm(x0, mean(x), sd(x)), col = "blue", lwd = 2)

}
}
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Qqplots graphics
# Representation of normal quantiles of each variable for each group
par(mfcol = c(2, 2))
for (k in 1:2) {

j0 <- names(datos_train)[k]
x0 <- seq(min(datos_train[, k]), max(datos_train[, k]), le = 50)
for (i in 1:2) {

i0 <- levels(datos_train$grupo)[i]
x <- datos_train[datos_train$grupo == i0, j0]
qqnorm(x, main = paste(i0, j0), pch = 19, col = i + 1)
qqline(x)

}
}
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This exploratory analysis can give us an idea of the possible normal distribution of the univariate variables,
but it is always better to do the respective normality tests.

Univariate normality test (Shapiro-Wilk)
# Shapiro-Wilk normality test for each variable in each group
datos_tidy <- melt(datos_train, value.name = "valor")
datos_tidy %>%

group_by(grupo, variable) %>%
summarise(p_value_Shapiro.test = round(shapiro.test(valor)$p.value,5))

## # A tibble: 4 x 3
## # Groups: grupo [2]
## grupo variable p_value_Shapiro.test
## <fct> <fct> <dbl>
## 1 A variable_z 0.0091
## 2 A variable_w 0.0447
## 3 B variable_z 0.206
## 4 B variable_w 0.872

The variables z and w are not distributed according to a normal law for group A (p-value <0.05).

Multivariate normality test (Mardia, Henze-Zirkler and Royston)

The MVN package contains functions that allow you to perform the three tests that are commonly used to
test multivariate normality.

This multivariate normality can be affected by the presence of outliers. In this package we also find functions
for outlier analysis
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outliers <- mvn(data = datos_train[,-3], mvnTest = "hz", multivariateOutlierMethod = "quan")
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In this case no outliers are detected. The two tests performed below find evidence, at 5% significance level, of
lack of multivariate normality.

Although it is true that, as can be deduced from the following outputs, the assumption of multivariate
normality is not met, the quadratic discriminant analysis has a certain robustness in this case,
although it should be taken into account in the conclusions of the analysis.
# Royston multivariate normality test
royston_test <- mvn(data = datos_train[,-3], mvnTest = "royston", multivariatePlot = "qq")
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royston_test$multivariateNormality

## Test H p value MVN
## 1 Royston 23.06759 9.792823e-06 NO
# Henze-Zirkler multivariate normality test
hz_test <- mvn(data = datos_train[,-3], mvnTest = "hz")
hz_test$multivariateNormality

## Test HZ p value MVN
## 1 Henze-Zirkler 4.951702 6.526013e-11 NO

Homogeneity of variance
We proceed as in Section 1.3 above.

The null hypothesis to be tested is that of equality of covariance matrices in all groups.
boxM(data = datos_train[, -3], grouping = datos_train[, 3])

##
## Box's M-test for Homogeneity of Covariance Matrices
##
## data: datos_train[, -3]
## Chi-Sq (approx.) = 81.024, df = 3, p-value < 2.2e-16

In this case we reject the null hypothesis since p-value < 0.001 and therefore we assume NO homogeneity
of variances.

It is important to remember that for this conclusion to be reliable the assumption of multivariate
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normality must be met, which in this case is not the case. In fact, when there is no multivariate normal
distribution, this test always comes out significant and therefore is not reliable.

Discriminant function
Although the assumption of multivariate normality is not verified, taking into account that the variances are
not homogeneous, a quadratic discriminant model is adjusted because it is robust against the lack of
this assumption, although it must be kept in mind given the possibility of obtaining unexpected results.

The qda function of the MASS package performs the sorting.
modelo_qda <- qda(grupo ~ variable_z + variable_w, data = datos_train)
modelo_qda

## Call:
## qda(grupo ~ variable_z + variable_w, data = datos_train)
##
## Prior probabilities of groups:
## A B
## 0.5 0.5
##
## Group means:
## variable_z variable_w
## A 0.5000000 4.862263
## B 0.5170937 2.030475

The output of this object shows us the prior probabilities of each group, in this case 0.5 and the means of
each regressor per group.

Once the classifier is built, we can classify new data based on its measurements by simply calling the predict
function. For example, we are going to classify all the observations in the test dataset.
nuevas_observaciones <- datos_test
predict(object = modelo_qda, newdata = nuevas_observaciones)

## $class
## [1] A A A A A A A A A A A A A A A A A A A A B B A B B B B B B B A A B B B B B B
## [39] B A
## Levels: A B
##
## $posterior
## A B
## 3 0.99572804 4.271960e-03
## 4 0.88076443 1.192356e-01
## 9 0.87488971 1.251103e-01
## 12 0.91643185 8.356815e-02
## 15 0.99961804 3.819638e-04
## 16 0.99753642 2.463576e-03
## 20 0.99992181 7.819121e-05
## 41 0.99999997 3.024630e-08
## 52 0.99911537 8.846308e-04
## 60 0.99808348 1.916519e-03
## 64 0.99999270 7.302331e-06
## 66 0.99880428 1.195717e-03
## 68 0.99999951 4.908639e-07
## 69 0.93604603 6.395397e-02
## 73 0.99999816 1.842343e-06
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## 75 0.99968839 3.116069e-04
## 78 0.99963898 3.610191e-04
## 89 0.99441459 5.585415e-03
## 96 0.96333973 3.666027e-02
## 100 0.97329074 2.670926e-02
## 105 0.03509319 9.649068e-01
## 107 0.01724841 9.827516e-01
## 108 0.57241519 4.275848e-01
## 115 0.08518801 9.148120e-01
## 118 0.45297454 5.470255e-01
## 136 0.11209239 8.879076e-01
## 137 0.04346586 9.565341e-01
## 138 0.01808141 9.819186e-01
## 143 0.05273681 9.472632e-01
## 144 0.18804503 8.119550e-01
## 150 0.86695494 1.330451e-01
## 155 0.60687367 3.931263e-01
## 161 0.44664763 5.533524e-01
## 166 0.02205248 9.779475e-01
## 167 0.04044205 9.595580e-01
## 169 0.04370428 9.562957e-01
## 173 0.02323925 9.767607e-01
## 187 0.48079614 5.192039e-01
## 192 0.01986393 9.801361e-01
## 195 0.79768574 2.023143e-01

For example, according to the discriminant function, the posterior probability that the first record of the test
set is in group A is 99.6% while the probability that it is in group B is lower at 0.1%. Therefore this data
would be classified in group A. The same reasoning is followed with the rest of the elements of the test set.

Model validation
The confusionmatrix function of the biotools package performs cross-validation of the classification model.
pred <- predict(object = modelo_qda, newdata = datos_test)
confusionmatrix(datos_test$grupo, pred$class)

## new A new B
## A 20 0
## B 4 16
# Classification error percentage
trainig_error <- mean(datos_test$grupo != pred$class) * 100
paste("trainig_error=", trainig_error, "%")

## [1] "trainig_error= 10 %"

In this case the correct classifications rate is 90.0%.

Displaying rankings
The partimat function of the klaR package allows us to represent the classification limits of a linear
or quadratic discriminant model for each pair of predictors. Each color represents a classification region
according to the model, the centroid of each region and the real value of the observations are shown.
partimat(formula = grupo ~ variable_z + variable_w, data = datos_test,

method = "qda", prec = 400,
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image.colors = c("darkgoldenrod1", "skyblue2"),
col.mean = "firebrick")
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Partition Plot

LDA vs. QDA
The most appropriate classifier depends on the implications of assuming that all groups share a common
covariance matrix since this assumption can produce a bias in the classifications or produce high variances.

• LDA produces linear decision limits, which translates into less flexibility and therefore less variance
problem.

• QDA produces quadratic limits and therefore curves, which provides greater flexibility allowing a
better fit to the data, less bias but greater risk of variance.

• In general terms, LDA tends to achieve better rankings than QDA when there are few
observations with which to train the model, a scenario in which avoiding variance is crucial.

• If a large number of training observations are available or if it is not assumed that a common
covariance matrix exists between classes, QDA is more appropriate.

• If p predictors are available, calculating a common covariance matrix requires estimating
p(p+1)/2 parameters, while calculating a different matrix for each group requires Kp(p
+1)/2 (K is the number of groups of the response variable). For very high p values, the choice of
method may be limited by computational power.
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