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Abstract

This thesis is mainly focused on the study of quantum phase transitions of multi-
quDit systems (D-level many-body systems, extending standard 2-level qubit
systems) and topological phase transitions in 2D materials. For this purpose,
we have extended the concept of spin coherent states and its adaptation to parity
symmetry from 2-level to D-level systems, using the representation theory of the
unitary group U(D). Entanglement measures and phase space methods are also
defined for the specific case of symmetric multi-quDits (bosons). The extension of
quantum phase transitions from 2-level (qubits) to D-level (quDits) systems entails
an enlarged variety of phases, which could be potentially exploited for quantum
technological prospects. Parallelly, we have devoted our efforts to implement the
topological phase transitions formalism in new 2D anisotropic materials such as
phosphorene, which are a hot topic in material sciences and constitute the building
blocks for future photonic and optoelectronic devices.

This thesis is a compilation work of 7 publications [1–7] in scientific journals,
which are indexed in the Journal Citation Report of the Science Citation Index, and
are ranked in relevant positions, mostly in the first quartile (Q1) of the corresponding
category. I have also published 4 international conference proceedings [8–11] derived
from the main articles. The organization of this work begins with Chapter 1, an
introduction to the state-of-the-art of quantum and topological phase transitions in
the new quantum technological world, followed by the objectives and methodology.
We find Chapter 5 at the end, a collection of the main results and conclusions
derived from the publications, which compose the body of this thesis in Chapters
2, 3 and 4. A summary of these central chapters is as follows:

In Chapter 2, we include 5 articles [1–5] arranged in 3 sections. In general,
we study quantum phase transitions (QPT) in multi-quDit systems, using the
3-level Lipkin-Meshkov-Glick (LMG) model as paradigmatic example. The QPTs
are characterized by the control parameter λ, measuring the interaction strength
of the LMG model. The D-level or multi-quDit systems of N particles, will be
modeled by collective spin operators generating a U(D) symmetry. Therefore, we
have made a review of the construction of U(D) unitary irreducible representations
and how to define coherent states (CS) with this symmetry, which will work as
variational states modeling the lowest-energy eigenstates of our Hamiltonian in
the thermodynamic limit N → ∞.

In Section 2.1, the article [1] is presented. We extend the concept of quantum
phase transitions, from totally symmetric to different U(3) permutation symmetry
sectors of a system of identical particles, defining the so called mixed symmetry



quantum phase transitions (MSQPT). In them, the representation parameter plays
the role of a new control parameter, so that the phase space will have 4 phases and
a "quadruple" point where all 4 phases coexist. In Section 2.2, the articles [2, 3] are
presented. We compute entanglement and information measures for "symmetric"
indistinguishable particles (bosons) in multi-quDit systems, restricting ourselves to
the fully symmetric representations of U(D). In Section 2.3, the articles [4, 5] are
presented. We define a generalized parity adaptation of U(D)-spin CS and make
a phase space analysis of them and the LMG model eigenstates.

In Chapter 3, the article [6] is presented. The Lieb-Mattis theorem is applied
to U(N) quantum Hall ferromagnets at filling factor M for L Landau/lattice sites.
The Hilbert space of the low energy sector in this model is identified with the
carrier space of irreducible representations of U(N), described by rectangular Young
tableaux of M rows and L columns, and associated with Grassmannian phase
spaces GNM = U(N)/[U(M) × U(N − M)]. This chapter shed light on the many-
body problems with mixed symmetry sectors, ranging from the LMG model in the
previous chapter to the 2D materials in the next one.

In Chapter 4, the article [7] is presented. We study how the transmittance and the
Faraday angle are universal markers of topological phase transitions in a collection
of 2D materials, including graphene and other Dirac materials, and HgTe quantum
wells. We also show how these magnitudes become critical even for non-topological
anisotropic materials such as phosphorene. For this purpose, we show how external
electromagnetic fields affect these materials, and derive the current operators and
the magneto-optical conductivities from the Kubo-Greenwood formula.



Resumen en español

Esta tesis se centra principalmente en el estudio de transiciones de fase cuánticas
en sistemas multi-quDit (sistemas de muchas partículas de D niveles, generalizando
los sistemas de dos niveles) y de las transiciones de fase topológicas en materiales
bidimensionales (2D). Para ello, hemos extendido el concepto de estados coherentes
de espín y su adaptación a la simetría de paridad de sistemas de 2 niveles a sistemas
de D niveles, utilizando la teoría de representaciones del grupo unitario U(D).
También se definen medidas de entrelazamiento y métodos de espacio de fases
para el caso específico de multi-quDits simétricos (bosones). La extensión de las
transiciones de fase cuánticas a multi-quDits conlleva una mayor variedad de fases,
que podrían explotarse potencialmente con perspectivas en las tecnológicas cuánticas.
Paralelamente, hemos dedicado nuestros esfuerzos a implementar el formalismo de
las transiciones de fase topológicas en nuevos materiales 2D anisótropos como el
fosforeno, que son un tema candente en las ciencias de los materiales y constituyen
los bloques fundamentales para la construcción de futuros dispositivos fotónicos
y optoelectrónicos.

La tesis se presenta por compendio de 7 publicaciones [1–7] en revistas científicas,
que están indexadas en el Journal Citation Report del Science Citation Index, y
están clasificadas en posiciones relevantes, mayormente en el primer cuartil Q1 del
JIF en la categoría correspondiente. También he publicado 4 actas de congresos
internacionales [8–11] derivados de los artículos principales. La organización de
este trabajo comienza con el Capítulo 1, una introducción al estado del arte de
las transiciones de fase cuánticas y topológicas en el contexto de las tecnologías
cuánticas, seguido de los objetivos y la metodología. Encontramos al final el Capítulo
5, una recopilación de los principales resultados y conclusiones derivados de las
publicaciones, que componen el cuerpo de esta tesis en los Capítulos 2, 3 y 4. A
continuación se presenta un resumen de estos capítulos centrales:

En el capítulo 2, incluimos 5 artículos [1–5] ordenados en 3 secciones. En
general, estudiamos las transiciones de fase cuánticas (QPT) en sistemas multi-
quDit, utilizando el modelo de Lipkin-Meshkov-Glick (LMG) con 3 niveles como
ejemplo paradigmático. Las QPT se caracterizan por el parámetro de control λ,
que mide la fuerza de interacción del modelo LMG. Los sistemas de D niveles ó
multi-quDits de N partículas, serán modelados por operadores colectivos de espín
generando una simetría U(D). Por ello, hemos hecho una revisión de la construcción
de representaciones irreducibles unitarias de U(D) y de cómo definir estados
coherentes (CS) con esta simetría, que funcionarán como estados variacionales
modelando los autoestados de más baja energía de nuestro Hamiltoniano en el



límite termodinámico N → ∞.
En la sección 2.1, se presenta el artículo [1]. Extendemos el concepto de

transiciones de fase cuánticas, de sectores de simetría totalmente simétricos a
diferentes sectores de simetría de permutación de U(3) en un sistema de partículas
idénticas, definiendo las llamadas transiciones cuánticas de fase de simetría mixta
(MSQPT). En ellas el parámetro de la representación juega el papel de un nuevo
parámetro de control, dando lugar a un espacio de fases con 4 fases y un punto
"cuádruple" donde coexisten las 4 fases. En la sección 2.2, se presentan los artículos
[2, 3]. Calculamos medidas de entrelazamiento e información para partículas
"simétricas" indistinguibles (bosones) en sistemas multi-quDit, restringiéndonos
a las representaciones completamente simétricas de U(D). En la sección 2.3, se
presentan los artículos [4, 5]. Definimos una adaptación de paridad generalizada
de U(D)-spin CS y hacemos un análisis de espacio de fases de ellos y de los
autoestados del modelo LMG.

En el capítulo 3, se presenta el artículo [6]. Se aplica el teorema de Lieb-Mattis
a los llamados U(N) quantum Hall ferromagnets con factor de llenado M para L
sitios Landau. El espacio de Hilbert del sector de baja energía en este modelo se
identifica con el espacio soporte de representaciones irreducibles de U(N), descrito
por tableros de Young rectangulares de M filas y L columnas, y asociado con los
espacios de fase Grassmannianos GNM = U(N)/[U(M) × U(N −M)]. Este capítulo
arroja luz sobre los problemas de muchos cuerpos con sectores de simetría mixta, que
van desde el modelo LMG del capítulo anterior hasta los materiales 2D del siguiente.

En el capítulo 4, se presenta el artículo [7]. Estudiamos cómo la transmitancia y
el ángulo de Faraday son marcadores universales de transiciones de fase topológicas
en una colección de materiales 2D, incluyendo grafeno y otros materiales de Dirac,
y pozos cuánticos de HgTe. También mostramos cómo estas magnitudes se vuelven
críticas incluso para materiales anisótropos y no topológicos como el fosforeno.
Para ello, mostramos cómo afectan los campos electromagnéticos externos a estos
materiales, y derivamos los operadores de corriente y las conductividades magneto-
ópticas a partir de la fórmula de Kubo-Greenwood.
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Nothing in life is to be feared,
it is only to be understood.
Now is the time to understand more,
so that we may fear less.

— Marie Curie

1
Introduction

It is common to define quantum phase transitions (QPTs) as singularities in the
ground state (GS) of some quantum systems at zero temperature, when some
parameter of its Hamiltonian is varied [12, 13]. More explicitly, we shall work
with a many-body system Hamiltonian in the form H = H0 + λH1, where H0 and
H1 are the free and interaction terms respectively, and λ is a control parameter
measuring the interaction strength, so that the QPT will occur when λ is modified
until reaching certain critical value λ = λc. At this point, the GS energy becomes
a non-analytic function of λ, and the energy difference between the GS and the
first excited state vanishes [14]. Actually, these singularities only take place when
the number of particles of the many-body system tends to infinity N → ∞, which
is also known as thermodynamic or classical limit. Nevertheless, we can observe
precursors of the QPT for a finite number of particles by defining some scaling
behavior of relevant quantities, such as the fidelity Fψ(λ, δλ) = |⟨ψ(λ)|ψ(λ+ δλ)⟩|2
and the level population density [15–17].

In the last fifty years, QPTs have been studied in different fields of physics,
ranging from the Lipkin and interacting boson models in nuclear physics [18–24],
to the Dicke model (radiation-matter) in quantum optics [25–31], and the Bose-
Einstein condensate and quantum Hall effects in condensed matter [32–35]. Despite
QPTs occur at the unfeasible zero temperature, they have become essential in the
experimental and theoretical treatment of quantum systems such as rare-earth
magnetic insulators [36], superconductors [37–39], 2D electron gases [40], and heavy-
fermion compounds [41]. Among all these examples, we have chosen the Lipkin-
Meshkov-Glick model (LMG) as a paradigmatic case to study, aiming to extend the
study of QPTs from 2-level systems (qubits) to D-level (multi-quDit) systems.

It is well-known how to describe two-level systems via the symmetry group SU(2)
(special unitary Lie group in two dimensions) and the spin in many-body physics [13,
26, 42, 43]. However, when we have N particles distributed among D energy levels
(multi-quDits), we are forced to study the SU(D) group and its representations

1



2 1. Introduction

[44–46], in order to transform the second quantized Hamiltonian of the quantum
many-body problem into a simpler version in terms of collective U(D)-spin operators
Sij [47–50]. This is possible when the interactions are of long range, i.e. when the
coupling parameters do not depend on the particle indexes. They are elements of
the Lie algebra of SU(D), and can be represented in many different ways depending
on our preferences, including matrix forms [51, 52] and diagrammatic patterns such
as Young diagrams and GT patterns [49, 53, 54]. These tools allow us, among many
other applications, to decompose the DN dimensional (tensor product) Hilbert space
of the N multi-quDit system into a direct sum of unitary irreducible representations
(unirreps) [44, 52, 53]. The representation theory will also be fundamental in
the Lieb–Mattis ordering theorem of electronic energy levels, which identifies the
symmetry sector (representation) containing the ground state [55]. In addition,
along this thesis we will frequently use the generalization of spin coherent states
to the different SU(D) representations [56–58]. They are good variational states
that model the ground state in multi-quDit problems, so they make it possible to
study QPT from an analytical approach, using energy surface methods [59].

In the QPT framework, it is crucial to perform measurements that detect
and quantify quantum correlations. We shall focus on interparticle and interlevel
entanglement [60, 61], so we will use the reduced density matrix (RDM) formalism
[62–64], and the linear L and von Neumann S entropies as entanglement measures
[65, 66]. Both entropies are also regarded as information measures of a given RDM
ρ, and can be related via information diagrams of the form (L(ρ),S(ρ)), which
provide qualitative information about the rank of the RDM [65, 67, 68].

Parallelly, phase space methods have proved to be effective in the description and
characterization of QPT [69–71], connecting quantum mechanics with the classical
statistical mechanics formalism [72, 73]. The concept of probability distributions
in statistical mechanics is transformed into quasiprobability distribution functions
in quantum mechanics. For the multi-quDit problem, they are defined using
the coherent states of SU(D), whose specific form depends on the phase space
associated with the chosen representation. For instance, for the totally symmetric
representation (bosons, identical and indistinguishable particles) the phase space is
the complex projective space CPD−1 = U(D)/[U(1) × U(D − 1)]; for rectangular
Young diagram representation (fermions) is the Grassmann phase space GDM =
U(D)/[U(M) × U(D − M)]; and for other particle mixtures is the flag manifold
U(D)/U(1)D [56, 74]. The most popular quasiprobability functions are Wigner W ,
Husimi Q, and Glauber-Sudarshan P functions, related to the symmetric, antinormal
and normal ordering of the creation and annihilation operator respectively in the
quantum harmonic oscillator phase space (Heisenberg-Weyl group) [75–77]. They
admit a generalization to other symmetry groups and phase spaces [75, 78].

Complex many-body quantum systems also require algebraic and topological
mathematical tools for their study, such as Chern and Pontryagin numbers. Specif-
ically, new and exotic topological quantum phases of matter are emerging and
being exploited for technological application in the last years [79–81]. This includes
high-temperature semiconductors [82, 83] and two-dimensional (2D) materials [84].
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Topological phase transitions are usually defined in two-dimensional graphene at
low temperature, where the spin-orbit interactions alter the low energy electronic
structure, converting the 2D semimetallic graphene into a quantum spin Hall
insulator [79, 85–87]. They have been also studied in the theory and experiment
in other 2D materials such as in mercury cadmium telluride (HgTe/CdTe) semi-
conductor quantum wells [88, 89]. It is interesting to adapt this knowledge to
other promising 2D materials like phosphorene [90–93], in order to give an insight
into new and exotic phases of matter. In general, 2D materials have remarkable
electronic and magneto-optical properties [94–100], making them candidates for
next generation optoelectronic devices. Therefore, we give special attention to
the magneto-optical conductivity, obtained from the Kubo-Greenwood formula
when applying a perpendicular magnetic field and an oscillating electric field
to the material [101–103].

1.1 Objectives
We focus on the understanding and exploitation of the quantum properties and crit-
ical phenomena (phase transitions) occurring in quantum systems, including atomic
and molecular models, and nanomaterials, with real and potential applications in the
emerging and rapidly developing field of Quantum Technologies. For example, in the
design and fabrication of innovative nanodevices with exotic physical properties, in
the development of next generation electronics and spintronics, as well as applications
in quantum computing, quantum information theory and quantum sensors.

The development of Quantum Technologies requires a deep understanding of
quantum systems in order to properly model them, which is our main goal. The
rapid experimental progress in this field requires a good theoretical understanding
to efficiently analyze and deal with the enormous amount of information available.
The specific objectives of this thesis are:

• Extending Lipkin- Meshkov-Glick model (used in nuclear physics, quantum
optics, condensed matter, etc) from two-level systems (described by SU(2)
symmetry) to D levels (described by SU(D) symmetry). In particular, we will
often deal with the D = 3 case for simplicity. The consideration of more levels
for the atom introduces much more richness in the model and in its phase
diagram, and the LMG model works perfectly as initial toy model before
dealing with more complex quantum systems.

• Extending the concept of parity adaptation, entanglement measures, phase
space and Schmidt decomposition to symmetric multi-quDit states. This will
build a mathematical framework that could be applied to any Hamiltonian
model with SU(D) symmetry, not only to the LMG model.

• Study how can we apply the Lieb-Mattis theorem to any quantum system
invariant under SU(D), in order to classify the energy levels according to the
different permutation symmetry sectors of the Hamiltonian. This could provide
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a powerful algebraic method for the Hamiltonian spectrum classification,
saving computational resources for the simulation of large systems. We
propose the U(N) quantum Hall ferromagnets as paradigmatic example.

• Characterize the topological phase transitions in emergent two-dimensional
materials such as HgTe quantum wells, phosphorene, and other Dirac materials.
Study how thickness, the presence of electric, magnetic and external laser
fields affect their spectrum and conductivity.

1.2 Methodology
The project of the thesis is theoretical and computational, where all the calculations
have been performed in personal computers and in servers located at the University
of Granada (Departamento de Matemática Aplicada) and the University of Jaén
(Departamento de Matemáticas). The methodology includes the following activities:

• Study books and research articles related with the different topic of the thesis.

• Periodic meetings in Granada and Jaén with the thesis supervisors to perform
brainstorms, present results and new ideas, and create software together.

• Periodic video calls with the research collaborators contributing in the different
articles.

• Attending courses, seminars and conferences of the Doctoral Program (Pro-
grama de Doctorado en Física y Matemáticas) and of the Escuela Internacional
de Posgrado.

• Attending international conferences to share ideas and do networking.

• Complete a predoctoral stay in another country to encourage the internation-
alization of the student formation (University of Ulm, Germany).



Alles Gescheite ist schon gedacht worden.
Man muss nur versuchen, es noch einmal zu denken.

All intelligent thoughts have already been thought;
what is necessary is only to try to think them again.

— Johann Wolfgang von Goethe [104]
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Quantum phase transitions in multi-quDit

systems

2.1 Mixed symmetry quantum phase transitions
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Role of mixed permutation symmetry sectors in the thermodynamic limit of critical
three-level Lipkin-Meshkov-Glick atom models

Manuel Calixto∗ and Alberto Mayorgas†
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University of Granada, Fuentenueva s/n, 18071 Granada, Spain

Julio Guerrero‡
Department of Mathematics, University of Jaen, Campus Las Lagunillas s/n, 23071 Jaen, Spain

We introduce the notion of Mixed Symmetry Quantum Phase Transition (MSQPT) as singularities
in the transformation of the lowest-energy state properties of a system of identical particles inside
each permutation symmetry sector µ, when some Hamiltonian control parameters λ are varied. We
use a three-level Lipkin-Meshkov-Glick (LMG) model, with U(3) dynamical symmetry, to exemplify
our construction. After reviewing the construction of U(3) unirreps using Young tableaux and
Gelfand basis, we firstly study the case of a finite number N of three-level atoms, showing that
some precursors (fidelity-susceptibility, level population, etc.) of MSQPTs appear in all permutation
symmetry sectors. Using coherent (quasi-classical) states of U(3) as variational states, we compute
the lowest-energy density for each sector µ in the thermodynamic N → ∞ limit. Extending the
control parameter space by µ, the phase diagram exhibits four distinct quantum phases in the λ-µ
plane that coexist at a quadruple point. The ground state of the whole system belongs to the fully
symmetric sector µ = 1 and shows a four-fold degeneracy, due to the spontaneous breakdown of
the parity symmetry of the Hamiltonian. The restoration of this discrete symmetry leads to the
formation of four-component Schrödinger cat states.

Keywords: Quantum phase transitions, many-body systems, tensor-products and direct-sum Clebsch-Gordan
decompositions, mixed permutation symmetries, coherent states.

I. INTRODUCTION

The role of permutation symmetry is crucial in the
study of the evolution of quantum systems of identical
particles (the simplest example is the classification of in-
distinguishable particles as bosons or fermions attend-
ing to their permutation properties) and should be taken
into consideration, not only to simplify the problem and
classify their solutions, but also at a deeper level. A
non-trivial example, which is in the realm of many im-
portant physical models, is that of a number of identical
particles distributed in a set of levels and a second quan-
tized Hamiltonian describing pair correlations. In this
case, the tensor product Hilbert space corresponding to
N particles/atoms distributed among L N -fold degener-
ate levels is LN dimensional (the number of ways to put
N particles in L levels). Particular interesting cases are
systems of qubits (L = 2) and qutrits (L = 3), to use the
quantum information jargon. When atoms are identi-
cal, permutation symmetry SN allows to decompose this
tensor product into a “Clebsh-Gordan” direct sum of uni-
tary irreducible representations (unirreps) of the unitary
group U(L), whose generators define the dynamical alge-
bra of the Hamiltonian in terms of collective operators.
Young tableaux turn out to be a useful graphical method
to represent these kind of decompositions into different

∗ calixto@ugr.es
† albmayrey97@gmail.com
‡ jguerrer@ujaen.es

symmetry sectors and we shall make use of them in the
next Sections.

When dealing with critical and chaotic quantum sys-
tems in the thermodynamic (classical) limit N → ∞, like
in quantum phase transitions (QPTs), only the totally
symmetric sector is considered in the literature (see e.g.
[1–5]), which reduces the size of the original Hilbert space
from LN to N +1 for L = 2 (symmetric spins, qubits) or
to (N + 1)(N + 2)/2 for L = 3 (symmetric qutrits) and
so on, that is, the number of ways of exciting N atoms
with L levels when order does not matter. This means
to make the atoms/particles indistinguishable. This is
a common procedure in the literature which is mostly
assumed without a clear physical justification (usually
for computational convenience). It is true that there are
particular situations where restricting to the totally sym-
metric sector can be physically justified. Namely, for the
Dicke model of superradiance, the assumption that the N
two-level atoms are indistinguishable is admissible when
the emitters are confined to a cavity volume V ≪ ℓ3 much
smaller than the scale of the wavelength ℓ of the optical
transition. Also, in the analysis of the phase diagram
and critical points of a QPT, the restriction to the fully
symmetric sector is justified under the assumption that
the ground state always belongs to this sector. However,
as far as we know, there is not a general proof of this
fact. One can find arguments in the literature (see e.g.
[3] for the study of quantum chaos in a three-level LMG
shell model) precluding the consideration of other per-
mutation symmetry sectors than the totally symmetric
under the argument that mixed symmetry sectors corre-
spond to systems with more degrees of freedom that do
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not approach the classical N → ∞ limit as “rapidly” as
the totally symmetric sector does. However, no notion
of “speed/order” of convergence to N → ∞ appears in
these studies.

In this work, we want to explore the role of mixed
permutation symmetry sectors usually disregarded in the
study of the thermodynamic limit of many-body critical
quantum systems. For this purpose, we shall consider the
paradigmatic and ubiquitous LMG Hamiltonian used in
several fields (nuclear, quantum optics, condensed mat-
ter, etc.) of physics to model many-body L-level (usu-
ally L = 2) systems (see e.g. [6] and references therein).
We shall consider L = 3, since for L = 2 all sectors
can be reduced to the symmetric one (standard Clebsch-
Gordan decomposition), although we shall give a brief of
the L = 2 case for pedagogical reasons. We shall classify
the Hamiltonian spectrum according to different permu-
tation symmetry sectors and we shall analyze the lowest-
energy state inside each of this sectors, leading to the
new notion of Mixed Symmetry Quantum Phase Transi-
tion (MSQPT) in the N → ∞ limit. Mixed symmetry
sectors correspond in general with larger phase spaces
than the fully symmetric sector (except for its conju-
gated representation), which contains the ground state
of the system, defining the standard QPT. This notion
of MSQPT is consistent since temporal evolution does
not mix different symmetry sectors. If the initial state
lays in one of these sectors, it remains trapped there.
Phase diagrams and critical points depend on the par-
ticular symmetry sector and we give the explicit depen-
dence for the three-level LMG model. Firstly we make a
numerical treatment for large (but finite) N , computing
some “precursors” of the MSQPT (level populations and
information-theoretic measures). Then we analyze the
thermodynamic N → ∞ limit by using mixed-symmetry
coherent states as variational states for the lowest-energy
state inside each sector. The variational approach pro-
vides the phase diagram for each MSQPT.

This notion of MSQPT overlaps with the existing no-
tion of Excited State Quantum Phase Transition (ES-
QPT) already present in the literature [7, 8]. ESQPT
is a continuation of the concept of QPT for singularities
of the ground state to singularities of the excites states
and singular level densities. From this point of view, our
lowest-energy states inside each mixed symmetry sector
are in fact excited energy states of the whole system, al-
though ESQPT generally make reference to excited states
inside the fully symmetric representation (other mixed
symmetry sectors are disregarded). Therefore, our con-
cept of MSQPT differs from the ESQPT notion, although
there are some formal similarities.

The organization of the article is as follows. In Sec. II
the general LMG model with L levels is introduced, giv-
ing its main properties and particular expressions for the
case L = 2 and L = 3. In Sec. III the unirreps of U(L)
are discussed using the diagrammatic approach of Young
tableaux, Weyl patterns, and Gelfand-Tsetlin (GT) basis
to classify and label the states in each unirrep. In Sec. IV

the case of a finite number N of three-level atoms is thor-
oughly discussed for the LMG Hamiltonian, and the fi-
delity susceptibility and level population are used to de-
tect precursors of phase transitions (that, properly speak-
ing, take place in the thermodynamic limit N → ∞) as
the interaction/control parameter λ is varied. Sec. V
is devoted to the definition of coherent (quasi-classical)
states for each unirrep of U(3) and the computation of
expectation values of U(3) generators on coherent states
(the so called “symbols”). In Sec. VI, the thermodynamic
limit is performed in the expectation value of the LMG
Hamiltonian on coherent states, thus defining a energy
surface which is minimized to obtain the minimum en-
ergy inside each symmetry sector µ as a function of the
control parameter λ. This defines a phase diagram in the
extended λ-µ plane with four distinct phases that coex-
ist at a quadruple point. We pay special attention to the
totally symmetric sector µ = 1, where the (degenerated)
ground state lives, calculating level population densities
and studying the spontaneous breakdown of parity sym-
metry. After a conclusion section, Appendix A contains
the details of the derivation of the differential realization
of the generators of U(3) and their symbols, and in Ap-
pendix B we explicitly calculate the exponential action
of U(3) Cartan generators, that leads to parity transfor-
mations when acting on coherent states.

II. THE L-LEVEL LMG MODEL

Many models describing pairing correlations in con-
densed matter and nuclear physics are defined by a sec-
ond quantized Hamiltonian of the form

HL =
L∑

i=1

N∑

µ=1

εic
†
iµciµ−

L∑

i,j,k,l=1

N∑

µ,ν=1

λklij c
†
iµcjµc

†
kνclν (1)

where c†iµ (ciµ) creates (destroys) a fermion in the µ state
of a L-level, i = 1, . . . , L, system (namely, L energy lev-
els) with level energies εi. That is, the model has N iden-
tical particles distributed among L energy levels, each of
which is N -fold degenerate. The two-body residual in-
teractions (with strength λ) scatter pairs of particles be-
tween the L levels without changing the total number of
particles. For hermitian HL we have λ̄klij = λjilk. Defining
the U(L) “quasispin” collective operators

Sij =
N∑

µ=1

c†iµcjµ (2)

the Hamiltonian (1) can be written as

HL =
L∑

i=1

εiSii −
L∑

i,j,k,l=1

λklijSijSkl . (3)

In this article we shall adopt a L-level atom picture and
denote by Eij = |i⟩⟨j| the (Hubbard) operator describ-
ing a transition from the single-atom level |j⟩ to the level
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|i⟩, with i, j = 1, . . . , L. The expectation values of Eij
account for complex polarizations or coherences for i ̸= j
and occupation probability of the level i for i = j. The
Eij represent the L2 generators (step operators) of U(L)
(or GL(L;C) to be more precise) in the fundamental
L×L representation, whose (Cartan-Weyl) matrices are
⟨l|Eij |k⟩ = δilδjk (entry 1 in row i, column j and zero
elsewhere) with commutation relations

[Eij , Ekl] = δjkEil − δilEkj . (4)

Denoting by Eµij , µ = 1, . . . , N the embedding of the
single µ-th atom Eij operator into the N -atom Hilbert
space (namely, E3

ij = 1L⊗1L⊗Eij ⊗1L for N = 4, with
1L the L×L identity), the collective quasispin operators
are

Sij =
N∑

µ=1

Eµij . (5)

They constitute the U(L) dynamical algebra of our sys-
tem, with the same commutation relations as those of
Eij in (4).

We shall eventually particularize to L = 3-level atoms
(qutrits) for concrete calculations. The best known case
is the original L = 2 levels LMG schematic shell model
[9–11] to describe the quantum phase transition from
spherical to deformed shapes in nuclei. This model as-
sumes that the nucleus is a system of fermions which can
occupy two levels i = 1, 2 with the same degeneracy N ,
separated by an energy ε = 2ε2 = −2ε1. It can also de-
scribe a system of N interacting two-level identical atoms
(“qubits”), or an anisotropic XY Ising model

HXY = ε

N∑

µ=1

σzµ +
∑

µ<ν

λxσ
x
µσ

x
ν +

∑

µ<ν

λyσ
y
µσ

y
ν , (6)

in an external transverse magnetic field ε with infinite-
range constant interactions. In terms of the U(2) angular
momentum J⃗ collective operators J+ = S21, J− = S12

and Jz = 1
2 (S22 − S11), the two-level LMG schematic

shell model Hamiltonian reads [9, 10]:

H2 = εJz +
λ1
2
(J2

+ + J2
−) +

λ2
2
(J+J− + J−J+) . (7)

The λ1 interaction term annihilates pairs of particles in
one level and creates pairs in the other level, and the λ2
term scatters one particle up while another is scattered
down. The total number of particles N and the squared
angular momentum J⃗2 = j(j + 1) are conserved. Since
the Hamiltonian is symmetric under permutation of par-
ticle labels, it does not couple different angular momen-
tum sectors j = N/2, N/2 − 1, . . . , 1/2 or 0 (for odd or
even N , respectively), with dimensions 2j+1. Therefore,
permutation symmetry reduces the size of the largest ma-
trix to be diagonalized from 2N to N + 1. As already
said, quantum calculations are usually restricted to this

(N + 1)-dimensional totally symmetric subspace under
the assumption that the N two-level particles are indis-
tinguishable. Therefore, the Hilbert space is spanned by
Dicke states |j,m⟩,m = −j, . . . , j, where the eigenvalue
m of Jz gives the number n = m+ j of excited particle-
hole pairs or atoms. The Hamiltonian H2 also commutes
with the parity operator Π = eiπ(Jz+j), so that temporal
evolution does not connect states with different parity.
This parity symmetry Z2 is spontaneously broken in the
thermodynamic N → ∞ limit, giving rise to a degenerate
ground state.

In this article we shall tackle the less familiar case of
L = 3 level LMG model, of which there are some studies
in the literature (see e.g. [1–5]). As in Ref. [3], we shall
choose for simplicity vanishing interactions for particles
in the same level and equal interactions for particles in
different levels [similar to setting λ2 = 0 in (7)]. More
explicitly, we take

λklij =
λ

N(N − 1)
δikδjl(1− δij) (8)

in (3), where we are dividing two-body interactions by the
number of particle pairs N(N − 1) to make the Hamilto-
nian an intensive quantity (energy density) since we are
interested in the thermodynamical limit N → ∞. We
shall also place the levels symmetrically about the level
i = 2 and write the intensive energy splitting per particle
ε3 = −ε1 = ϵ/N and ε2 = 0. Therefore, our Hamiltonian
density will be:

H = H3 =
ϵ

N
(S33 − S11)−

λ

N(N − 1)

3∑

i ̸=j=1

S2
ij . (9)

This Hamiltonian density is invariant under the combined
interchange of levels 1 ↔ 3 and ϵ → −ϵ. We shall take
ϵ > 0, for simplicity, measure energy in ϵ units, and
discuss the energy spectrum and the phase diagram in
terms of the control parameter λ. The existence of an
interesting parity symmetry (like in the two-level case)
also deserves attention. Indeed, this symmetry of the
Hamiltonian has to do with the fact that the interac-
tion only scatters pairs of particles, thus conserving the
parity Πi = exp(iπSii), even (+) or odd (−), of the popu-
lation Sii in each level i = 1, . . . , L. For concreteness, we
shall restrict to the case L = 3 (see also [3]). Therefore,
there are four different Hamiltonian matrices identified
by (Π1,Π2,Π3)

(+,+,+), (+,−,−), (−,−,+), (−,+,−)

for even N and

(−,−,−), (−,+,+), (+,+,−), (+,−,+)

for odd N . This discrete symmetry corresponds to the
finite group Z2 ×Z2 ×Z2 with the constraint Π1Π2Π3 =
eiπN . It is spontaneously broken in the thermodynamic
limit and gives rise to a highly degenerated ground state,
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as compared to the L = 2 case (see Section VI and Ap-
pendix B for more details).

As for the two-level case of H2, with regard the rota-
tion group U(2) and Dicke states, the Hamiltonian ma-
trix of H3 is block diagonal when the basis vectors are
adapted to irreducible representations of the Lie group
U(3). Let us make a brief summary the general decom-
position of the Hilbert space ofN L-level atoms into U(L)
irreducibles. We shall restrict ourselves to L = 2 (qubits)
and L = 3 (qutrits) for the sake of simplicity, although
the procedure can be easily extrapolated to general L.
Those readers acquainted with this language can skip to
the next section.

III. U(L) UNIRREPS: YOUNG TABLEAUX,
GELFAND BASIS AND MATRIX ELEMENTS

Le us symbolize the fundamental L×L representation
of U(L) by the Young box . The single atom states are
represented by Weyl patterns/tableaux by filling in the
boxes with integers i = 1, . . . , L (the number of levels).
For example, for L = 2

1 = |1⟩, 2 = |2⟩,

symbolize the (spin) doublet, and for L = 3

1 = |1⟩, 2 = |2⟩, 3 = |3⟩,

symbolize the triplet. The unitary group U(L) is repre-
sented in this space by the fundamental (L-dimensional)
representation. For L = 2, unitary matrices V ∈ U(2)
can be obtained by applying Gram-Schmidt orthonormal-
ization procedure to the columns of the triangular matrix
T as

T =


 1 0

α 1


 G-S−−→ V =




1√
ℓ

−ᾱ√
ℓ

α√
ℓ

1√
ℓ


 (10)

where α is a complex number and ℓ = |T †T |1 = 1 + αᾱ
is the leading principal minor of T †T . The addition of
two phases (complex numbers u1 and u2 of modulus 1),
as U = V ·diag(u1, u2), completes the parametrization of
U(2) by the coordinates: α, u1 and u2. For L = 3 levels,
unitary matrices U = V · diag(u1, u2, u3) ∈ U(3) can be
constructed following a similar procedure, with

T =




1 0 0

α 1 0

β γ 1




G-S−−→ V =




1√
ℓ1

−ᾱ−γβ̄√
ℓ1ℓ2

−β̄+ᾱγ̄√
ℓ2

α√
ℓ1

1+ββ̄−αγβ̄√
ℓ1ℓ2

−γ̄√
ℓ2

β√
ℓ1

γ−βᾱ+γαᾱ√
ℓ1ℓ2

1√
ℓ2




(11)
where α, β, γ are complex numbers and

ℓ1 = |T †T |1 = 1 + αᾱ+ ββ̄, (12)
ℓ2 = |T †T |2 = 1 + γγ̄ + (β − αγ)

(
β̄ − ᾱγ̄

)
,

are the leading principal minors of order 1 and 2 of T †T
(or the squared inverse leading principal minors of order 1
and 2 of V ), which play an important role in computing
coherent state expectation values (see later on Section
V).

For N identical L-level atoms, the LN -dimensional
Hilbert space is the N -fold tensor product

⊗ N times. . . ⊗ .

The tensor product representation of U(L) is now re-
ducible and the invariant subspaces are graphically rep-
resented by Young frames of N boxes

h1︷ ︸︸ ︷
· · ·· · ·· · ·· · ·· · ·
...

...
...

· · · (13)

of shape h = [h1, . . . , hL], with h1 ≥ · · · ≥ hL, hi the
number of boxes in row i = 1, . . . , L and h1 + · · ·+ hL =
N . For example, let us consider the case of N = 3
two-level identical atoms (three qubits in the quantum
information jargon). The Hilbert space is the 23 = 8-
dimensional 3-fold tensor product of the 2-dimensional
Hilbert space of a single atom. In Young diagram no-
tation, the Clebsch-Gordan direct sum decomposition of
this 3-fold tensor product gives (dimensions are displayed
on the top)

2

⊗
2

⊗
2

=
4

⊕ 2

2

which is the analogous of the usual coupling of three spin-
1/2 yielding a spin 3/2 and two spins 1/2. Note that the

representations and are equivalent from the

point of view of SU(2). This procedure can be iterated
combining N doublets (spin-1/2) to obtain the Clebsch-
Gordan decomposition series (Catalan’s triangle)

2⊗N =

⌊N/2⌋⊕

k=0

Mk(N+1−2k), Mk =
N + 1− 2k

N + 1

(
N+1
k

)
,

(14)
where ⌊N/2⌋ is the integer floor function. That is, the
angular momentum jk = N

2 − k appears with multiplic-
ity Mk. Note that the fully symmetric representation
k = 0 always appears with multiplicity M0 = 1. For the
case of N = 4 qutrits, the direct-sum decomposition of
the 34 = 81-dimensional 4-fold tensor product into U(3)
irreducibles gives

3

⊗
3

⊗
3

⊗
3

= (15)

15

⊕ 3

15

⊕ 2

6

⊕ 3

3

.
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The last Young frame in the previous decomposition is
equivalent to from the point of view of SU(3). In
general, h = [h1, h2, h3] is equivalent to h′ = [h1−h3, h2−
h3, 0] from the point of view of SU(3).

A Weyl pattern (a Young frame filled up with level
labels i = 1, . . . , L) is said to be in the semistandard
form (or column strict) if the sequence of labels is non-
decreasing from the left to the right, and strictly increas-
ing from the top to the bottom. For example, for a Young
frame of shape h = [3, 2, 1] (N = 6 atoms), the following
Weyl pattern

1 1 2
2 3
3 (16)

is in the semistandard form. The dimension of the rep-
resentation h coincides with the number of Weyl pat-
terns in the semistandard form that one can construct.
The weight or content of a Weyl pattern is a vector
w = (w1, . . . , wL) whose components wk are the popula-
tion of level k [the eigenvalues of the quasispin operators
Skk in (5)], with w1 + · · · + wL = N . For example, the
weight of (16) is w = (2, 2, 2).

Gelfand-Tsetlin (GT) patterns (see e.g [12]) are a con-
venient way to label Weyl patterns in semistandard form
(i.e., quantum states of an irreducible representation of
U(L) with label h). For example, for L = 2, each ir-
reducible subspace of U(2) is spanned by the GT basis
vectors

|m⟩ =

∣∣∣∣∣∣
m12 = h1 m22 = h2

m11

〉
, h2 ≤ m11 ≤ h1.

(17)
The equivalence with more standard SU(2) angular mo-
mentum j or Dicke states {|j,m⟩,−j ≤ m ≤ j} is

|j = h1 − h2
2

,m = m11 −
h1 + h2

2
⟩, (18)

with h1 + h2 = N the linear Casimir eigenvalue of U(2).
Note that two U(2) irreps, h = [h1, h2] and h′ = [h′1, h

′
2],

with the same angular momentum j = h1−h2

2 =
h′
1−h′

2

2
are equivalent under the point of view of SU(2). In par-
ticular h = [h1, h2] is equivalent to h′ = [h1−h2, 0] under
SU(2) (same angular momentum). The totally symmet-
ric irrep h = [N, 0] (depicted by a Young frame with a
single row of N boxes) has the higher angular momen-
tum j = N/2 in the Clebsch-Gordan sum decomposi-
tion of the N -fold tensor product (14). For L = 3-level
atoms, unirreps of U(3) of shape/label h = [h1, h2, h3]
are spanned by GT basis vectors

|m⟩ =

∣∣∣∣∣∣

m13 = h1 m23 = h2 m33 = h3
m12 m22

m11

〉
,

(19)

which are subject to the betweenness conditions:

h1 ≥ m12 ≥ h2, h2 ≥ m22 ≥ h3,

m12 ≥ m11 ≥ m22. (20)

The dimension of the carrier Hilbert space Hh of an irrep
of U(3) of shape h is then

dim(Hh) =

h1∑

m12=h2

h2∑

m22=h3

m12∑

m11=m22

1 (21)

=
1

2
(1 + h1 − h2)(2 + h1 − h3)(1 + h2 − h3).

The connection between Weyl and GT patterns is
the following. Denoting by nki the number of times
that the level i appears in the row k (counting down-
wards) of a Weyl pattern (that is, the population of
level i in the row k), the corresponding GT labels are
mkj =

∑j
i=1 nki. If we denote the GT pattern (19) by

its rows: m = {m3,m2,m1} with m3 = [m13,m23,m33],
m2 = [m12,m22] and m1 = [m11], then m3 is directly
read off the shape of the Weyl pattern, m2 is read off
the shape that remains after all boxes containing label 3
are removed and, finally, m1 is read off the shape that
remains after all remaining boxes containing label 2 are
removed. In the example (16) we have the correspon-
dence

1 1 2
2 3
3

=

∣∣∣∣∣∣

3 2 1
3 1

2

〉
. (22)

The population of level k (the weight component wk) is
then directly computed from a GT pattern |m⟩ as wk =

m̄k − m̄k−1, where we denote by m̄k =
∑k
i=1mik, the

average of row k of the pattern m (one sets m̄0 ≡ 0 by
convention). Therefore, the action of diagonal operators
Skk on an arbitrary GT vector |m⟩ is

Skk|m⟩ = wk|m⟩ = (m̄k − m̄k−1)|m⟩. (23)

For example, the weight of the GT vector (17) is
(w1, w2) = (m11, N −m11) or (N2 +m, N2 −m) in terms
of the angular momentum third component m in (18).

A state |m′⟩ is said to be of lower weight w′ than |m⟩
if the first non-vanishing coefficient of w−w′ is positive.
This is called the lexicographical rule. In more physical
but less precise terms, populating lower levels k increases
the weight w. It is clear that the highest weight (HW)
vector |mhw⟩ has weight w = (h1, h2, h3). In GT notation,
the HW vector of an irrep h of U(3) corresponds to

|mhw⟩ =

∣∣∣∣∣∣

h1 h2 h3
h1 h2

h1

〉
=

1 · · ·· · ·· · ·· · ·· · · 1
2 · · ·· · ·· · · 2
3 · · · 3

(24)

Analogously, the lowest weight (LW) vector has weight
w = (h3, h2, h1) and is given by

|mlw⟩ =

∣∣∣∣∣∣

h1 h2 h3
h2 h3

h3

〉
=

1 · · · 1 2 · · · 2 3 · · · 3
2 · · · 2 3 · · · 3
3 · · · 3

(25)
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In general, all states of the representation h =
[h1, . . . , hL] of U(L) can be obtained from a HW vector
|mhw⟩ by applying lowering operators Sjk, j > k, or from
a LW vector |mlw⟩ by applying rising operators Sjk, j < k.
Indeed, let us denote by ejk the pattern with 1 at place
(j, k) and zeros elsewhere. The action of step 1 lowering
S−k ≡ Sk,k−1 and rising operators S+k ≡ Sk−1,k is given

by (see e.g. [12])

S±k|m⟩ =
k−1∑

j=1

c±j,k−1(m)|m ± ej,k−1⟩, (26)

with coefficients

c±j,k−1(m) =

(
−
∏N
i=1(m

′
ik −m′

j,k−1 +
1∓1
2 )

∏k−2
i=1 (m

′
i,k−2 −m′

j,k−1 − 1±1
2 )∏

i̸=j(m
′
i,k−1 −m′

j,k−1)(m
′
i,k−1 −m′

j,k−1 ∓ 1)

)1/2

, (27)

where m′
ik = mik − i and c±j,k−1(m) ≡ 0 whenever any

indeterminacy arises. In fact, from the commutation re-
lations

[Sii, Sjk] = δijSik − δikSji

⇒ SiiSjk|mhw⟩ = (miN + δij − δik)Sjk|mhw⟩, (28)

the weight w′ of S−k|m⟩ is given by

SiiS−k|m⟩ = (wi + δi,k − δi,k−1)S−k|m⟩ = w′
iS−k|m⟩,

(29)
and therefore, S−k|m⟩ becomes of lower weight than |m⟩
since the first non-vanishing coefficient of w − w′ is
(w − w′)k−1 = 1 > 0. Applying recursion formulas

Si,i−l = [Si,i−1, Si−1,i−l],

Si−l,i = [Si−l,i−1, Si−1,i] l > 0, (30)

one can obtain any non diagonal operator Sij matrix el-
ement from (26). In particular, the HW vector verifies

Sij |mhw⟩ = hiδij |mhw⟩ ∀i ≤ j, (31)

whereas the action of lowering operators Sij , i > j, is
given by (26,27,30). From the definition (27) one can
prove that

c±j,k−1(m) = c∓j,k−1(m ± ej,k−1), (32)

which means that S†
+k = S−k. Also, applying induction

and the recurrence formulas (30), one obtains S†
k,k−h =

Sk−h,k. As a particular case, using the equivalence (18)
between GT and Dicke vectors for U(2), one can recover
the usual angular momentum, Jz = (S22 − S11)/2, J+ =
S21 and J− = S12, matrix elements

⟨j,m′|Jz|j,m⟩ = mδm′,m, (33)

⟨j,m′|J±|j,m⟩ =
√

(j ∓m)(j ±m+ 1)δm′,m±1.

from the general expressions (23,26,27).
With all this whole mathematical arsenal, we are now

ready to tackle the analysis of the Hamiltonian (9) spec-
trum according to permutation symmetry, and the struc-
ture of the low-energy states inside each symmetry sector.

IV. SYMMETRY CLASSIFICATION OF
HAMILTONIAN EIGENSTATES FOR A FINITE

NUMBER OF 3-LEVEL ATOMS AND QPT
PRECURSORS

Let us firstly analyze the spectrum of the noninteract-
ing free Hamiltonian part H(0) = ϵ

N (S33 − S11) of the
LMG Hamiltonian (9). For level splitting ϵ > 0, the
lowest-energy (ground) state coincides with the highest-
weight state

|ψ0⟩ = |mhw⟩ =

∣∣∣∣∣∣

N 0 0
N 0

N

〉
=

N︷ ︸︸ ︷
1 · · · 1 (34)

of the fully symmetric representation h = [N, 0, 0]. That
is, all N atoms are placed at the level i = 1. The energy
density is then E0 = −ϵ. The excited states correspond
to energy densities En = (n − N)ϵ/N, n = 1, . . . , 2N .
The highest-energy E2N state corresponds to the lowest-
weight vector

|ψ2N ⟩ = |mlw⟩ =

∣∣∣∣∣∣

N 0 0
0 0

0

〉
=

N︷ ︸︸ ︷
3 · · · 3 (35)

of the fully symmetric representation h = [N, 0, 0]. That
is, all N atoms are placed at the level i = 3. These
free Hamiltonian eigenvalues En are highly degenerated,
except for E0 and E2N . For example, the states

1 · · · 1 2 and 1 · · · 1
2

,

which belong to different symmetry sectors, have the
same energy E1 (first excited energy level). The eigenvec-
tor composition and degeneracy of higher excited states
is a bit more involved. Note that all GT vectors |m⟩ in
(19) are eigenvectors of the free Hamiltonian densityH(0)

and their eigenvalues can be easily calculated as

Em =
ϵ

N
(w3 − w1) =

ϵ

N
(N −m11 −m12 −m22). (36)

Therefore, the degeneracy of each energy level coincides
with the total number of GT patterns m with a common
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value of m11 +m12 +m22. The highest- and the lowest-
energy levels correspond to m11 + m12 + m22 = 0 and
m11 +m12 +m22 = 2N , respectively, and they have de-
generacy 1, coinciding with the lowest- and the highest-
weight vectors in (35) and (34), respectively.

This degeneracy is partially lifted when the two-body
interaction [with coupling constant λ, like in (9)] is in-
troduced. This interaction affects each permutation sym-
metry sector in a different manner, so that energy bands
emerge in the interacting Hamiltonian spectrum, as we
can perceive in Figure 1 forN = 4 identical 3-level atoms.
Excited states belong not only to the fully symmetric rep-
resentation but all symmetry sectors are involved. There-
fore, if we are in a physical situation where our identi-
cal atoms are not necessarily indistinguishable, we should
not disregard symmetry sectors other than the fully sym-
metric, since they play an important role in the analysis
of excited states.
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h=[2,1,1]

FIG. 1. LMG Hamiltonian energy density spectrum, for
N = 4 identical L = 3 level atoms, as a function of the inter-
acting control parameter λ (both in ϵ units). Energy curves
associated to the four different symmetry sectors h, depicted
in (15), are plotted with different color. The free Hamiltonian
(λ = 0) eigenvalues are highly degenerated, the corresponding
eigenspaces containing vectors belonging to different symme-
try sectors h. This degeneracy is partially lifted when the
two-body interaction (λ ̸= 0) is introduced, giving rise to the
appearance of energy bands.

Since Hamiltonian evolution does not mix different
symmetry sectors h, we are interested in the analysis
of critical phenomena occurring inside each Hilbert sub-
space Hh corresponding to the carrier space of an irrep h
of U(3). Therefore, we shall select the lowest-energy vec-
tor |ψh0 ⟩ inside each Hh and look for drastic changes in its
structure when varying λ for N → ∞ (thermodynamic
limit). With this analysis we will introduce the concept
of MSQPT in the next sections. Before, for finite N ,
there still are some QPT precursors which can anticipate

the approximate location of critical points. The drastic
change of the structure of a state |ψ(λ)⟩ in the vicinity
of a critical point λ(0) can be quantified with information
theoretic measures like the so called fidelity [13–15]

Fψ(λ, δλ) = |⟨ψ(λ)|ψ(λ+ δλ)⟩|2,

which measures the overlap between two states in the
vicinity (δλ≪ 1) of λ. The fidelity is nearly 1 far from a
critical point λ(0) and drastically falls down in the vicin-
ity of λ(0), the more the higher isN . Instead of Fψ(λ, δλ),
which is quite sensitive to the step δλ, we shall use the
so called susceptibility

χψ(λ, δλ) = 2
1− Fψ(λ, δλ)

(δλ)2
. (37)

See e.g. References [16–18] for the use of information-
theoretic concepts like susceptibility and Rényi-Wehrl
entropies in the 2-level LMG case and other paradig-
matic QPT models. In Figure 2 we represent the sus-
ceptibility of the ground (fully symmetric) state of the
3-level LMG Hamiltonian (9) for increasing values of N .
We see that the susceptibility is sharper and sharper
as N increases, divining the existence of a QPT at a
critical point around λ(0) ≃ 0.6ϵ. Actually, the varia-
tional/semiclassical N → ∞ study, using coherent states
à la Gilmore [19], in sections V and VI will reveal the
existence of a second order QPT at exactly λ(0) = 0.5ϵ
(see [6] for the variational study of the 2-level LMG case
and its phase diagram).
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N=40

N=35

N=30
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FIG. 2. Susceptibility χψ of the ground (fully symmetric)
state ψ of the LMG Hamiltonian (9) as a function of λ for
increasing values of the number of atoms N . A step δλ = 0.01
has been used. The analysis divines the existence of a QPT
at a critical point around λ(0) ≃ 0.6. We use ϵ units for λ.

The same critical phenomenon occurs for the lowest-
energy state belonging to other mixed symmetry sectors
h. In Figure 3 we represent the susceptibility χψh

0
of

the lowest-energy vector ψh0 inside some mixed symme-
try sectors h for N = 36 atoms. The analysis of the
first maxima of the susceptibility in Figure 3 indicates
that the would-be critical points λ(0)(h) are shifted to
the right from h = [36, 0, 0] to h = [24, 12, 0] and then to
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the left from h = [24, 12, 0] to h = [18, 18, 0]. In fact, the
semiclassical N → ∞ analysis that we shall make in Sec-
tion VI, Figures 5 and 6, indicates that the “hand-gun”
sector h = [2N/3, N/3, 0] (we shall use this terminol-
ogy for this special case, which coincides with the ad-
joint “octet” representation in quantum chromodynamics
N = 3) corresponds to a quadruple point. Therefore, the
susceptibility is able to capture this special point. The
susceptibility second maxima in Figure 3 correspond to
a new QPT that eventually takes place at λ(0) = 1.5ϵ.
We shall not discuss this last QPT until Section VI since
it occurs at a different scale and requires much higher
values of N , and more computational requirements, to
be properly captured.
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[22,14,0]

[20,16,0]
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FIG. 3. Susceptibility χψh
0

of the lowest-energy vector ψh0 in-
side some mixed symmetry sectors h for N = 36 atoms. Log-
arithmic scale. The dashed line interpolates between maxima
of the susceptibility that are precursors of prospective critical
points separating phase I from phase II (green squares) and
phase I from phase IV (red diamonds); see later on Figures 5
and 6. The “recoil point” corresponds to the “hand-gun” unir-
rep h = [24, 12, 0], where four phases will coexist (see later on
Sec. VI). We use ϵ units for λ.

Level i = 1, 2, 3 population densities ⟨ψh0 |Sii|ψh0 ⟩/N ,
of the ground state ψh0 inside each sector h, also behave
as precursors of order parameters. In fact, Figure 4 rep-
resents level population densities for N = 48 three-level
atoms and different symmetry sectors h, which include
the symmetric sector h = [48, 0, 0], the “hand-gun” sec-
tor h = [2N/3, N/3, 0] = [32, 16, 0] already commented
in the previous paragraph, and the rectangular Young
tableau h = [24, 24, 0]. We perceive a population change
for the fully symmetric case around λ(0) = 0.5ϵ, as al-
ready pointed out, a displacement of this critical point
to the right for h = [32, 16, 0] (the would-be quadruple
point), and a displacement to the left for h = [24, 24, 0].
Level i population densities depend both on λ and h, and
suffer changes when approaching a critical point (see Fig-
ure 9 later on).
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FIG. 4. Level i = 1, 2, 3 population densities ⟨ψh0 |Sii|ψh0 ⟩/N
of the lowest-energy state ψh0 inside each sector h for N = 48
three-level atoms and three different representative values of
h (the fully symmetric, the “hand-gun” and the rectangular
Young tableau), as a function of λ, in ϵ units. Appreciable
changes in the population densities can be observed at some
values of λ depending on the particular sector h (see main
text), anticipating the existence of a MSQPT in the thermo-
dynamic limit.

V. U(L) COHERENT QUASI-CLASSICAL
STATES AND THEIR OPERATOR

EXPECTATION VALUES

U(L) Coherent states |h, U⟩ turn out to be excellent
variational states that reproduce the structure and mean
energy of lowest-energy states inside each symmetry sec-
tor h (see e.g [6] for for the case of the L = 2 level LMG
model and [20, 21] for a system of N indistinguishable
atoms of L levels interacting dipolarly with ℓ modes of an
electromagnetic field). They can be constructed by rotat-
ing each single particle state in, namely, the HW vector
state |mhw⟩ by the same unitary matrix U . For example,
for L = 3 level atoms, an using the parametrization (11)
of a unitary matrix U ∈ U(3), the |h, U⟩ can be factorized
as

|h, U⟩ = Kh(U)|h;α, β, γ}, (38)

where

|h;α, β, γ} = eβS31eαS21eγS32 |mhw⟩. (39)

is the exponential action of lowering operators Sij , i > j
on the HW state |mhw⟩ and

Kh(U) = |U |h1−h2
1 |U |h2−h3

2 |U |h3
3 =

uh1
1 uh2

2 uh3
3

ℓ
(h1−h2)/2
1 ℓ

(h2−h3)/2
2

(40)
is a normalizing factor for |h;α, β, γ} which depends
on the lengths (12) which appear in the products of
first, second and third upper minors |U |i of U = V ·
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diag(u1, u2, u3) in (11). The overlap

Bh(ᾱ
′, β̄′, γ̄′;α, β, γ) ≡ {h;α′, β′, γ′|h;α, β, γ}
=
(
1 + αᾱ′ + ββ̄′)h1−h2

·
(
1 + γγ̄′ + (β − αγ)(β̄′ − ᾱ′γ̄′)

)h2−h3 (41)

defines the so called reproducing Bergman kernel Bh.
Note that

Bh(ᾱ, β̄, γ̄;α, β, γ) = |Kh(U)|−2
. (42)

Coherent state expectation values sij of the basic symme-
try operators Sij can be easily computed through deriva-
tives of the Bergman kernel as

sij = ⟨h, U |Sij |h, U⟩ = SijBh(ᾱ, β̄, γ̄;α, β, γ)
Bh(ᾱ, β̄, γ̄;α, β, γ)

. (43)

where Sij is the differential representation (A3) of Sij
on anti-holomorphic functions ψ(ᾱ, β̄, γ̄) = {h;α, β, γ|ψ⟩
(see Appendices A and B for a more detailed explana-
tion). The explicit expression of the coherent state ex-
pectation values sij can be seen in the equation (A4) of
Appendix A. They will be very useful to compute the
energy surface for each symmetry sector of the system
in the next section. In Appendix B we study the inter-
esting transformation properties of U(3) coherent states
under parity symmetry operations. These properties are
strongly related to the degenerate structure of the ground
state in the thermodynamic limit, as we shall see in the
next section.

VI. ENERGY SURFACE, PHASE DIAGRAM
AND SPONTANEOUSLY BROKEN PARITY

SYMMETRY

Let us consider a general U(3) unirrep of shape h =
[h1, h2, h3] given by the following proportions µ, ν

h3 = νN, h2 = (1− µ)(1− ν)N, h1 = µ(1− ν)N,

∀ ν ∈ [0, 13 ], µ ∈ [ 12 ,
1−2ν
1−ν ]. (44)

Note that the set of U(3) unirreps labeled by (µ, ν) is
dense in the corresponding intervals as N → ∞. The en-
ergy surface associated to a Hamiltonian densityH inside
the Hilbert space sector (µ, ν) is defined as the coherent
state expectation value of the Hamiltonian density in the
thermodynamic limit

EUµ,ν(ϵ, λ) = lim
N→∞

⟨h, U |H|h, U⟩. (45)

For the Hamiltonian density (9), the energy surface be-
comes

EUµ,ν(ϵ, λ) = lim
N→∞

(
ϵ(s33 − s11)

N
−
λ
∑3
i̸=j=1 s

2
ij

N(N − 1)

)
,

(46)

with sij defined in (43) and calculated in (A4). Note that
we have used the result (A6) which states that there are
no fluctuations in the classical limit. This energy surface
depends on the kind of unirrep (µ, ν) (which become con-
tinuous parameters in the thermodynamic limit), on the
complex (phase space) coordinates of U (namely, α, β
and γ) and on the control parameters ϵ and λ related to
the strength of interactions. Note that

EUµ,ν(ϵ, λ) = ϵEUµ,ν(1, λ/ϵ), (47)

which allows us to discuss the phase diagram in terms of
the renormalized two-body interaction strength λ̃ = λ/ϵ
for ϵ ̸= 0. That is, we shall fix ϵ and measure energy and
λ in ϵ units.

Moreover, the fact that the unirreps h = [h1, h2, h3]
and h′ = [h1 − h3, h2 − h3, 0] are equivalent, under the
point of view of SU(3), introduces the following relation
between energy surfaces

EUµ,ν(ϵ, λ) = (1−3ν)EUµ̃,0(ϵ, (1−3ν)λ), µ̃ =
µ(1− ν)− ν

1− 3ν
,

(48)
and therefore we can restrict ourselves to the analysis of
the parent case ν = 0, µ ∈ [ 12 , 1]. The right end point
µ = 1 corresponds to totally symmetric representations,
associated to Young tableaux of a single row and four-
dimensional phase spaces whose points are labeled by
α, β ∈ C. Inserting the coherent state expectation val-
ues sij of Eq. (A4) into (46) for the fully symmetric
representation [h1, h2, h3] = [N, 0, 0], the corresponding
energy surface turns out to be

E
(α,β)
1,0 (ϵ, λ) = ϵ

ββ̄ − 1

αᾱ+ ββ̄ + 1
(49)

−λα
2
(
β̄2 + 1

)
+
(
β2 + 1

)
ᾱ2 + β̄2 + β2

(
αᾱ+ ββ̄ + 1

)2 .

Note that this energy surface is invariant under α →
−α, β → −β, a symmetry which is inherited from the
discrete parity symmetry of the Hamiltonian (9) already
discussed at the end of Section II and in Appendix B.

All representations with h1 > h2 = h3 (that is,
µ = 1−2ν

1−ν ) can be reduced to this totally symmetric case

E
(α,β)
1,0 ; more precisely

EU1−2ν
1−ν ,ν

(ϵ, λ) = (1−3ν)EU1,0(ϵ, (1−3ν)λ), 0 ≤ ν < 1/3,

(50)
according to (48). The left end point µ = 1/2 corre-
sponds to the representations associated to rectangular
Young tableaux of two equal rows of h1 = N/2 = h2
boxes each and four-dimensional phase spaces whose
points are labeled by two complex numbers γ and β′ =
β−αγ [see the expression of ℓ2 in (12)]. The energy sur-
face for this case is related to the totally symmetric case
(49) through

EU1
2 ,0

(ϵ, λ) =
1

2
E

(γ,β′)
1,0 (ϵ,

λ

2
), β′ = β − αγ. (51)
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For intermediate values µ ∈ ( 12 , 1) the associated phase
space is six-dimensional (a “flag manifold”) and its
points are labeled by three independent complex num-
bers α, β, γ. The explicit expression of the energy surface
for this case is more bulky and we will not write it down.

Now we have to find the minimum energy

E(0)
µ (ϵ, λ) = minU∈U(3)E

U
µ,0(ϵ, λ) (52)

for a parent representation (µ, 0) with µ ∈ [ 12 , 1]. Eventu-
ally, we will find that the ground (minimal energy) state
is always inside the totally symmetric sector µ = 1.

The lowest-energy density E(0)
µ (ϵ, λ) inside each sector

µ turns out to be

E(0)
µ (ϵ, λ) =









−ϵµ 0 ≤ λ ≤ ϵ
2(1−µ)

− 1
2

(
λ(1− µ)2 + ϵ2

4λ + (3µ− 1)ϵ
)

ϵ
2(1−µ) ≤ λ ≤ 3ϵ

6µ−2

− 2
3λ(1− 3(1− µ)µ)− ϵ2

2λ λ ≥ 3ϵ
6µ−2




, 1

2 ≤ µ ≤ 2
3 ,





−ϵµ 0 ≤ λ ≤ ϵ
4µ−2

2λµ(1− µ)− (2λ+ϵ)2

8λ
ϵ

4µ−2 ≤ λ ≤ 3ϵ
2

− 2
3λ(1− 3(1− µ)µ)− ϵ2

2λ λ ≥ 3ϵ
2




, 2

3 ≤ µ ≤ 1.

(53)
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FIG. 5. Lowest-energy density E(0)
µ (ϵ, λ) as a function of the

control parameter λ (both in ϵ units) for ten different values
of µ = n/18 + 8/18, n = 1, . . . , 10, from µ = 1/2 (thinnest
black curve) to µ = 1 (thickest black curve). Extending the
control parameter space by µ, the phase diagram exhibits
four distinct quantum phases in the λ-µ plane that coexist
at a quadruple point (λ, µ)q = (3/2, 2/3). Curves of critical
points separating two phases are depicted in color red, blue,
magenta and green, according to formulas (54)

See Figure 5 for a graphical representation of this en-
ergy as a function of λ for several symmetry sectors µ.
Note that, in this new context of MSQPT, the sector pa-
rameter µ behaves as an additional control parameter.
In fact, we can chose our initial quantum state inside
a sector µ and Hamiltonian evolution will not take it
out of this sector. We can also study quantum proper-
ties of arbitrarily close symmetry sectors µ and µ + δµ.
Therefore, in this context, we extend the control param-

eter space (ϵ, λ) by µ. Disregarding ϵ, which only sets
the scale (units), the phase diagram exhibits four dis-
tinct quantum phases (I, II, III and IV) in the λ-µ plane.
These four quantum phases coexist at a quadruple point
(λ, µ)q = (3ϵ/2, 2/3), as it can be appreciated in Fig-
ures 5 and 6. We also represent curves of critical points
separating two phases

λ
(0)
I↔II(µ) = ϵ

4µ−2 ,
2
3 ≤ µ ≤ 1, (red)

λ
(0)
II↔III(µ) = 3ϵ

2 ,
2
3 ≤ µ ≤ 1, (magenta)

λ
(0)
I↔IV(µ) = ϵ

2(1−µ) ,
1
2 ≤ µ ≤ 2

3 , (blue)

λ
(0)
III↔IV(µ) = 3ϵ

6µ−2 ,
1
2 ≤ µ ≤ 2

3 , (green)

(54)

at which a second order QPT takes place in general.
To fully appreciate the nature of the phase-transitions,

we show in Figure 6 contour plots of the minimun energy
E

(0)
µ (ϵ, λ) and its first and second derivatives in the ex-

tended (λ, µ) phase diagram (i.e, considering both λ and
µ as control parameters). It is clear from the graphics
that, while the first derivatives are continuous (see also
Figure 7), the second derivatives are discontinuous at the
critical curves (54) (at the curve λ(0)II↔III only ∂λλE

(0)
µ is

discontinuous). An interesting feature is the anomalous
behavior at phase IV where ∂µλE

(0)
µ > 0, while it is non-

positive in the rest of phases, this sign playing the role
of an “order parameter” for the MSQPTs I ↔ IV and
IV ↔ III. This behavior can also be appreciated in Fig-
ure 5, where one can see that energy curves of constant
µ are parallel at region I, move away from each other as
λ increases at regions II and III, and get closer at region
IV. To better perceive it, we also represent in Figure 7
3D plots of ∂λE

(0)
µ (ϵ, λ) and ∂µE

(0)
µ (ϵ, λ) in the extended

phase diagram (λ, µ). As already said, we see that both
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FIG. 6. Contour plots of E(0)
µ (ϵ, λ) and its first and second

derivatives in the phase diagram (λ, µ) (We use ϵ units for
E and λ). Critical curves (54) are shown, where the second
derivatives are discontinuos.

first derivatives of the energy are continuous. Moreover,
taking into account that the derivative ∂µE

(0)
µ measures

the density of µ-levels with energy E
(0)
µ , Figure 7 (bot-

tom panel) shows that the level density grows with λ in
phase IV, whereas it is non-increasing in the other phases,
attaining its maximum value in phase IV. One can also
perceive it in the fact that ∂µλE

(0)
µ > 0 in phase IV, as

commented before. This discussion somehow connects
with the traditional classification of ESQPTs character-
ized by a divergence in the density of excited states. We
do not find any divergence of this kind (although we iden-
tify higher density level phases), but we must remind that
our “excited energy levels” E(0)

µ actually are the lower-
energy levels inside each permutation symmetry sector
µ, the ground state corresponding to the symmetric sec-
tor µ = 1. This fact allows a variational analysis, both
for QPTs and MSQPTs, in terms of coherent states |h, U⟩
of U(3).

Returning to our discussion on the minimization (52),
the lowest-energy state for general µ turns out to be
highly degenerated. There are many phase space criti-
cal points α0, β0, γ0 with the same energy E

(0)
µ and the

expressions are quite bulky. Therefore, we shall restrict

FIG. 7. 3D plots of ∂λE
(0)
µ (ϵ, λ) and ∂µE

(0)
µ (ϵ, λ) in the ex-

tended phase diagram (λ, µ) (We use ϵ units for E and λ).
Critical curves (54) are shown, where a second order MSQPT
occurs. 3D plots show that both, ∂λE

(0)
µ and ∂µE

(0)
µ , are

continuous. The bottom plot shows that ∂µE(0)
µ attains its

maximum at phase IV, where the density of µ-levels with en-
ergy E(0)

µ increases with λ.

ourselves from now on to the particular totally symmetric
case µ = 1, which has a lower-dimensional phase space
parameterized by α and β. The µ-dependent lowest-
energy (53) simplifies for µ = 1 to

E
(0)
1 (ϵ, λ) =





−ϵ, 0 ≤ λ ≤ ϵ
2 , (I)

− (2λ+ϵ)2

8λ , ϵ
2 ≤ λ ≤ 3ϵ

2 , (II)

− 4λ2+3ϵ2

6λ , λ ≥ 3ϵ
2 . (III)

(55)

Here we clearly distinguish the three different phases: I,
II and III, and two second-order QPTs at λ(0)I↔II = ϵ/2

and λ(0)II↔III = 3ϵ/2, respectively. The critical values of α
and β which make (49) minimum turn out to be real and
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their explicit expression is given by:

α±
0 (ϵ, λ) = ±





0, 0 ≤ λ ≤ ϵ
2 ,√

2λ−ϵ
2λ+ϵ ,

ϵ
2 ≤ λ ≤ 3ϵ

2 ,√
2λ

2λ+3ϵ , λ ≥ 3ϵ
2 ,

β±
0 (ϵ, λ) = ±





0, 0 ≤ λ ≤ 3ϵ
2 ,√

2λ−3ϵ
2λ+3ϵ , λ ≥ 3ϵ

2 .
(56)

Indeed, inserting (56) into (49) gives (55). The location
of these minima for the energy surface (49) can also be
perceived by looking at the equipotential curves of Figure
8. Indeed, the real and imaginary parts of the complex
phase-space variables α = xα+ ipα and β = xβ + ipβ can
be seen as “position” x and momenta p (in dimensionless
units). Minimum (potential) energy is attained for zero
kinetic energy (p=0), i.e., real α and β. Looking at Fig-
ure 8, we perceive a single potential energy minimum in
phase I, 0 ≤ λ/ϵ ≤ 1/2, located at α = β = 0. In phase
II, 1/2 ≤ λ/ϵ ≤ 3/2, this single minimum degenerates
into a double well potential. In phase III, λ/ϵ ≥ 3/2,
we have a more degenerated case with a quadruple well
potential, according to the critical values of α and β in
(56).

As already commented, this structure of degenerated
minima is directly related with the spontaneous break-
down of the discrete parity symmetry of the Hamiltonian
(9) discussed at the end of Section II and in Appendix
B. Indeed, in the limit N → ∞, the four coherent states
|α±

0 , β
±
0 ⟩ attain the same minimum energy (55). Accord-

ing to formula (B3), the parity operations Π̂i = Πie
−iπhi

map between these four degenerate ground states; for ex-
ample Π̂1|α±

0 , β
±
0 ⟩ = |α∓

0 , β
∓
0 ⟩. Parity symmetry can still

be restored by projecting any of the four |α±
0 , β

±
0 ⟩ degen-

erated ground states onto the symmetric (unnormalized)
superposition

|ψ0} ≡ (1 + Π̂1 + Π̂2 + Π̂3)|α±
0 , β

±
0 ⟩, (57)

which remains invariant (even) under parity operations.
These kind of “parity-adapted coherent states” have been
extensively used in the literature and they are some-
times called “Schrödinger cat states”, since they are a
superposition of almost orthogonal semiclassical (coher-
ent) states. The restoration of parity is convenient when
one wants to compare between variational and (finite N)
numerical calculations. For example, see [22, 23] for their
use in the Dicke model of superradiance (two and three
level atoms, respectively, interacting with one-mode ra-
diation), [17, 24] for the 2-level LMG model and [25, 26]
for vibron models of molecules. We shall exploit this
parity-symmetry restoration in future works.

To finish, let us discuss other interesting order parame-
ters of the QPT like the population density of each level.
In Figure 9 we show the level population density of the
fully symmetric ground state (h = [N, 0, 0]) in the ther-

FIG. 8. Contour plot of the energy surface (49) of the fully
symmetric case for real α and β, in the vicinity of the critical
points λ = ϵ/2 and λ = 3ϵ/2 (in ϵ units). Degenerate minima
are perceived in light gray color.

modynamic limit

p
(0)
ii (ϵ, λ) = lim

N→∞
⟨h, U0|Sii|h, U0⟩

N
. (58)

It can be explicitly calculated by using the expressions
of the average values sii of the operators Sii given in
formulas (43) and (A4), and then evaluating them at the
critical points (56) as

p
(0)
11 (ϵ, λ) =

1

ℓ1(α
±
0 , β

±
0 )

=





1, 0 ≤ λ ≤ ϵ
2 ,

1
2 + ϵ

4λ ,
ϵ
2 ≤ λ ≤ 3ϵ

2 ,

1
3 + ϵ

2λ , λ ≥ 3ϵ
2 ,

p
(0)
22 (ϵ, λ) =

|α±
0 |2

ℓ1(α
±
0 , β

±
0 )

=





0, 0 ≤ λ ≤ ϵ
2 ,

1
2 − ϵ

4λ ,
ϵ
2 ≤ λ ≤ 3ϵ

2 ,

1
3 , λ ≥ 3ϵ

2 ,

p
(0)
33 (ϵ, λ) =

|β±
0 |2

ℓ1(α
±
0 , β

±
0 )

=





0, 0 ≤ λ ≤ 3ϵ
2 ,

1
3 − ϵ

2λ , λ ≥ 3ϵ
2 .

(59)

Note that both energy-degenerate values ± also give the
same population density, since sii depend on squared
modulus. We also compare in Figure 9 with the pop-
ulation densities obtained for finite N = 50, which al-
ready capture the critical behavior. We perceive a dif-
ferent population structure in each phase. In Phase I,
0 ≤ λ/ϵ ≤ 1/2, all atoms are in level 1. In phase II,
1/2 ≤ λ/ϵ ≤ 3/2, level 2 starts populating at the ex-
pense of level 1. Finally, level 3 begins to populate in
phase III, λ/ϵ ≥ 3/2.
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FIG. 9. Level population densities p(0)ii , i = 1, 2, 3, in eq. (59),
corresponding to the fully-symmetric ground state in the ther-
modynamic limit as a function of the control parameter λ (in
ϵ units). Critical points indicate a change of behavior and
are marked with vertical grid lines. We also compare with
the finite case N = 50, which already captures the critical
behavior.

VII. CONCLUSIONS AND OUTLOOK

Quantum Phase Transitions in many-body systems
usually presuppose the indistinguishability of the parti-
cles that compose the system, thus restricting the study
to the fully symmetric representation (µ = 1 in our
parametrization), but this should not be the more gen-
eral situation. In this article we have analyzed the role
played by other mixed symmetry sectors (µ ̸= 1) in the
thermodynamic limit N → ∞ for a 3-level LMG model
with U(3) dynamical symmetry. We have seen that every
lowest-energy state belonging to a given symmetry sec-
tor µ undergoes a QPT and the critical point λ depends
on µ. This fact motivates the notion of Mixed Symme-
try Quantum Phase Transition (MSQPT), leading to an
extended phase diagram in an enlarged control parame-
ter space including µ. Therefore, the system undergoes
abrupt changes, not only for some critical values of the
control parameters λ, but also for some critical values
of the symmetry sector µ. We also find that µ = 2/3
(the “octet” for N = 3 particles/“quarks”) represents a
quadruple point where four distinct phases coexist. A
numerical treatment for large (but finite) size N gives
some QPT precursors, like information-theoretic mea-
sures (fidelity-susceptibility) and level population densi-
ties, which anticipate some mean-field calculations using
coherent (quasi-classical) states in the limit N → ∞.

It would be interesting to further investigate the pos-
sible overlap between the proposed notion of MSQPT
and the existing notion of Excited State Quantum Phase
Transition (ESQPT) already present in the literature
[7, 8], as we also find variability in the energy µ-level
density ∂µE

(0)
µ .

Regarding the possibility to exploit permutation sym-
metry for quantum technological prospects, we could
mention for example some recent proposals commenting
on thermodynamic advantages of bosonic over fermionic

symmetry [27], or the role of mixed symmetries in the
quantum Gibbs paradox [28, 29]. The role of mixed sym-
metry in quantum computation and information theory
also deserves our attention and will be investigated in
future work.

Intermediate, fractionary, parastatistics also play a
fundamental role in the quasiparticle zoo [30], that pro-
vides a deep understanding of complex phenomena in
many-body and condensed matter physics. Recently, a
proposal to describe composite fermions (in multicom-
ponent fractional quantum Hall systems) in terms rect-
angular Young tableaux has been put forward [31, 32]
and showed to describe the quantum phases of bilayer
quantum Hall systems with U(4) dynamical symmetry
[33, 34]. This is also an excellent area to explore the role
of permutation symmetry.
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Appendix A: Differential realization of Sij and
coherent state expectation values

Let us justify the useful formula (43) and provide an
explicit expression for the differential realization Sij of
the operators Sij on functions ψ(ᾱ, β̄, γ̄). An alternative
construction is also given in Appendix B.

A group element U ′ ∈ U(3) can be written as the expo-
nential U ′ = exp

(
g′ijSij

)
, with g′ij canonical coordinates

at the identity. Using this, the coherent state expectation
value (43) can also be written as

⟨h, U |Sij |h, U⟩ = ∂⟨h, U |U ′|h, U⟩
∂g′ij

∣∣∣∣
U ′=1

. (A1)

Since U ′|h, U⟩ = |h, U ′U⟩ and

⟨h, U |h, U ′U⟩ = Kh(U)Kh(U
′U)Bh(U

†;U ′U),

[with Kh and Bh in (40,41)], applying the chain rule of
differentiation, the relation (42) and the identification

(gij) =




u1 −ᾱ −β̄
α u2 −γ̄
β γ u3


 , (A2)

one finally arrives to the formula (43). In order to apply
the chain rule, one has to previously work out the group



14

law U ′′ = U ′U , which means to write g′′ij as a function
of g′ij and gij . The corresponding group law is quite
cumbersome and we shall only write the final expression
of the differential operators:

S21 = ᾱ(h1 − h2)− (β̄ − ᾱγ̄)∂γ̄ − ᾱ
(
β̄∂β̄ + ᾱ∂ᾱ

)
,

S12 = ∂ᾱ,

S31 = (h1 − h3)β̄ + (h3 − h2)ᾱγ̄ − γ̄(β̄ − ᾱγ̄)∂γ̄

−β̄
(
β̄∂β̄ + ᾱ∂ᾱ

)
,

S13 = ∂β̄ ,

S32 = (h2 − h3)γ̄ − γ̄2∂γ̄ + β̄∂ᾱ,

S23 = ∂γ̄ + ᾱ∂β̄ ,

S11 = h1 − β̄∂β̄ − ᾱ∂ᾱ,

S22 = h2 + ᾱ∂ᾱ − γ̄∂γ̄ ,

S33 = h3 + γ̄∂γ̄ + β̄∂β̄ . (A3)

With this, the corresponding expectation values (43) can
be calculated and they are

s11 =
h1
ℓ1

+
h2|α+ βγ̄|2

ℓ1ℓ2
+
h3|β − αγ|2

ℓ2
,

s22 =
h1|α|2
ℓ1

+
h2|1− αβ̄γ + ββ̄|2

ℓ1ℓ2
+
h3|γ|2
ℓ2

,

s33 =
h1|β|2 + h2(1 + |α|2)

ℓ1
+
h3 − h2
ℓ2

,

s12 =
(h1 − h2)α

ℓ1
+

(h2 − h3)γ̄(β − αγ)

ℓ2
,

s13 =
(h1 − h2)β

ℓ1
+

(h2 − h3)(β − αγ)

ℓ2
,

s23 =
(h1 − h2)ᾱβ

ℓ1
+

(h2 − h3)γ

ℓ2
(A4)

and sij = s̄ji for the reminder.

In the same way, the coherent state expectation value
of operator higher powers can also be easily computed
by repeated differentiation of the Bergman kernel. For
example, for quadratic powers we have

⟨h, U |SijSkl|h, U⟩ = Sij
(
SklBh(ᾱ, β̄, γ̄;α, β, γ)

)

Bh(ᾱ, β̄, γ̄;α, β, γ)
. (A5)

However, to compute the energy surface (46) we can re-
strict ourselves to expectation values (A4) since, in the
thermodynamic/classical limit N → ∞, quantum fluctu-
ations disappear and we have

lim
N→∞

⟨h, U |SijSkl|h, U⟩
⟨h, U |Sij |h, U⟩⟨h, U |Skl|h, U⟩ = 1. (A6)

Appendix B: Parity symmetry operations on
coherent states

At the end of Section II, we have seen that the parity
operators Πi = exp(iπSii), i = 1, 2, 3, are a symmetry of
the Hamiltonian (9). This discrete symmetry is sponta-
neously broken in the thermodynamic limit, and degener-
ate ground states (“vacua”) arise in this limit. Coherent
states (38) are excellent variational states reproducing
the ground state energy in the limit N → ∞. Ground
state degeneracy is perceived, for example, in the struc-
ture of multiple minima of the energy surface (46,49)
depicted in Figure 8 and calculated in (56). Note that
critical values of the coherent state parameters (α, β, γ)
appear in degenerate opposite pairs. Let us show that
this is intimately related to the intrinsic parity symme-
try of the Hamiltonian and discuss its consequences. We
want to know the effect of a parity symmetry operation
Πi on a (non normalized) coherent state (39), that is

Πi|h;α, β, γ} = eiπSiieβS31eαS21eγS32 |mhw⟩. (B1)

All commutators [Sii, Sjk], with j > k, are either zero
or of the kind [A,B] = ±B, for which we know that
[A,Bn] = ±nBn and [A, eαB ] = ±αBeαB , which can be
formally written as [A, eαB ] = ±α∂αeαB . In the same
way, for the repeated commutator (adjoint action), we
have

adkA(e
αB) ≡ [A, [A, k. . ., [A, eαB ] . . . ]] = (±α∂α)k eαB ,

and therefore

eiθAeαBe−iθA =

∞∑

k=0

(iθ)k

k!
adkA(e

αB) = e±iθα∂αeαB

= ee
±iθαB . (B2)

Taking into account the particular commutators
[Sii, Sjk], j > k, setting θ = π and noting that e±iπ = −1
and Sii|mhw⟩ = hi|mhw⟩, we finally arrive to

Π1|h;α, β, γ} = eiπh1 |h;−α,−β, γ},
Π2|h;α, β, γ} = eiπh2 |h;−α, β,−γ},
Π3|h;α, β, γ} = eiπh3 |h;α,−β,−γ}. (B3)

From here we recover the fact that Π1Π2Π3 = eiπN . We
prefer to define the normalized parity operators Π̂i =
Πie

−iπhi , which verify Π̂1Π̂2Π̂3 = 1 and Π̂−1
i = Π̂i.

Therefore, Π̂3 = Π̂1Π̂2.
To finish, let us provide an alternative procedure to ob-

tain the differential realization Sij of Sij in (A3). Indeed,
the property [A, eαB ] = ±α∂αeαB implies that

S11|h;α, β, γ} = (h1 − β∂β − α∂α)|h;α, β, γ},
S22|h;α, β, γ} = (h2 + α∂α − γ∂γ)|h;α, β, γ},
S33|h;α, β, γ} = (h3 + γ∂γ + β∂β)|h;α, β, γ}, (B4)

which recovers the differential representation (A3) of Sii,
for holomorphic functions this time. The deduction of
non-diagonal Sij , i ̸= j follows a similar procedure, but
it is a bit more involved and we shall not derive it here.
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Collective spin operators for symmetric multi-quDit (namely, identical D-level atom) systems gen-
erate a U(D) symmetry. We explore generalizations to arbitrary D of SU(2)-spin coherent states and
their adaptation to parity (multicomponent Schrödinger cats), together with multi-mode extensions
of NOON states. We write level, one- and two-quDit reduced density matrices of symmetric N -
quDit states, expressed in the last two cases in terms of collective U(D)-spin operator expectation
values. Then we evaluate level and particle entanglement for symmetric multi-quDit states with
linear and von Neumann entropies of the corresponding reduced density matrices. In particular,
we analyze the numerical and variational ground state of Lipkin-Meshkov-Glick models of 3-level
identical atoms. We also propose an extension of the concept of SU(2) spin squeezing to SU(D) and
relate it to pairwise D-level atom entanglement. Squeezing parameters and entanglement entropies
are good markers that characterize the different quantum phases, and their corresponding critical
points, that take place in these interacting D-level atom models.

I. INTRODUCTION

The development of quantum technologies partially relies on the efficient preparation of nonclassical atomic states
and the exploitation of many-body entanglement [1–3] and spin squeezing [4], specially to enhance the sensitivity of
precision measurements like in quantum metrology. Such is the case of many-body entangled (and spin-squeezed)
states of cold atoms generated for instance in atom-atom collisions in Bose-Einstein condensates (BECs) [2].

Indistinguishable particles are naturally correlated due to exchange symmetry and there has been a long-standing
debate on whether identical particle entanglement is physical or merely a mathematical artifact (see e.g [5] and
references therein). Recent work like [6] shows indeed entanglement between identical particles as a consistent quantum
resource in some typical optical and cold atomic systems with immediate practical impact. It can also be extracted
and used as a resource for standard quantum information tasks [7]. Moreover, multipartite entanglement of symmetric
multi-qubit systems can add robustness and stability against the loss of a small number of particles [5].

Understanding the role of the indistinguishableness of identical bosons and quantum entanglement has been the
subject of many recent work (see e.g. [8, 9] and references therein). We know that, for N = 2 particles, any
quantum state is either separable or entangled. However, for N > 2, one needs further classifications for multipartite
entanglement [10]. Many different measurements have been proposed to detect and quantify quantum correlations
[3]. We shall restrict ourselves to bipartite entanglement of pure states, where necessary conditions for separability in
arbitrary dimensions exist.

In order to quantify entanglement between identical particles we shall follow Wang and Mølmer’s [11] procedure, who
wrote the reduced density matrix (RDM) of one- and two- qubits, extracted at random from a symmetric multi-qubit
state ψ, in terms of expectation values ⟨S⃗⟩ψ of collective spin operators S⃗. For pairwise entanglement, the concurrence
C (an entanglement measure introduced by Wootters [12]) was calculated for spin coherent states (SCSs) [13, 14],
Dicke and Kitagawa-Ueda [15] spin squeezed states, together with mixed states of Heisenberg models. Kitagawa-Ueda
[15] spin squeezed states are the spin version of traditional parity adapted CSs, sometimes called “Schrödinger cat
states” since they are a quantum superposition of weakly-overlapping (macroscopically distinguishable) quasi-classical
coherent wave packets. They where first introduced by Dodonov, Malkin and Man’ko [16] and later adapted to more
general finite groups than the parity group Z2 = {1,−1} [17]. In this article we shall introduce U(D) SCSs (denoted

∗ calixto@ugr.es: corresponding author
† albmayrey97@gmail.com
‡ jguerrer@ujaen.es



2

DSCSs for brevity) adapted to the parity symmetry Z2× D−1. . . ×Z2, which are a D-dimensional generalization of U(2)
Schrödinger cats, and we shall refer to them as DCATs for short. In general, parity adapted CSs are a special set of
“nonclassical” states with interesting statistical properties (see [18–20] for several seminal papers). Parity adapted
DSCSs arise as variational states reproducing the energy and structure of ground states in Lipkin-Meshkov-Glick
(LMG) D-level atom models (see [21] and later in Sec. V).

In Ref. [22], the concurrence C was related to the spin squeezing parameter ξ2 = 4(∆Sn⃗⊥)
2/N introduced by

[15], which measures spin fluctuations in an orthogonal direction to the mean value n⃗ ∝ ⟨S⃗⟩ with minimal variance.
Spin squeezing means that ξ2 < 1, that is, when the variance (∆Sn⃗⊥)

2 is smaller than the standard quantum limit
S/2 = N/4 (with S the spin) attained by (quasiclassical) SCSs. This study shows that spin squeezing is related to
pairwise correlation for even and odd parity multi-qubit states. Squeezing is in general a redistribution of quantum
fluctuations between two noncommuting observables A and B while preserving the minimum uncertainty product
∆ψA∆ψB ≥ 1

2 |⟨[A,B]⟩ψ|. Roughly speaking, it means to partly cancel out fluctuations in one direction at the
expense of those enhanced in the “conjugated” direction. For the standard radiation field, it implies the variance
relation (∆q)2 < 1/4 for quadrature (position q and momentum p) operators. For general U(D) spin systems of
identical D-level atoms or “quDits”, the situation is more complicated and we shall extend the D = 2 definition of
spin squeezing to general D.

Spin squeezing can be created in atom systems by making them to interact with each other for a relatively short time
in Kerr-like medium with “twisting” nonlinear Hamiltonians like H = λS2

x [15], generating entanglement between them
[23, 24]. This effective Hamiltonian can be realized in ion traps [25] and has produced four-particle entangled states
[26]. There are also some proposals for two-component BECs [23]. Likewise, the ground state at zero temperature
of Hamiltonian critical many-body systems possessing discrete (parity) symmetries also exhibits a cat-like structure.
The parity symmetry is spontaneously broken in the thermodynamic limit N → ∞ and degenerated ground states
arise. Parity adapted coherent states are then good variational states, reproducing the energy of the ground state of
these quantum critical models in the thermodynamic limit N → ∞, namely in matter-field interactions (Dicke model)
of two-level [27, 28] and three-level [29, 30] atoms, BEC [31], U(3) vibron models of molecules [32, 33], bilayer quantum
Hall systems [34] and (LMG) models for two-level atoms [35–37]. Quantum information (fidelity, entropy, fluctuation,
entanglement, etc) measures have proved to be useful in the analysis of the highly correlated ground state structure
of these many-body systems and the identification of critical points across the phase diagram. Special attention must
be paid to the deep connection between entanglement, squeezing and quantum phase transitions (QPTs); see [1, 4]
and references therein.

In this article we want to explore squeezing and interparticle and interlevel quantum correlations in symmetric
multi-quDit systems like the ones described by critical LMG models of identical D-level atoms (se e.g. [21, 38–42]
for D = 3 level atom models). The literature mainly concentrates on two-level atoms, displaying a U(2) symmetry,
which is justified when we make atoms to interact with an external monochromatic electromagnetic field. However,
the possibility of polychromatic radiation requires the activation of more atom levels and increases the complexity
and richness of the system (see e.g. [29]). In any case, this also applies to general interacting boson models [43]
and multi-mode BECs with two or more boson species. Collective operators generate a U(D) spin symmetry for the
case of D-level identical atoms or D boson species (quDits). Recently [21] we have calculated the phase diagram of
a three-level LMG atom model. Here we want to explore the connection between entanglement and squeezing with
QPTs for this symmetric multi-qutrit system. For this purpose, we extend to D levels the usual definition of Dicke,
parity-adapted SCSs and NOON states, and propose linear and von Neumann entropies of certain reduced density
matrices as a measure of interlevel and interparticle entanglement. We also introduce a generalization of SU(2) spin
squeezing to SU(D).

The organization of the paper is as follows. In Sec. II we introduce collective U(D) spin operators Sij , their boson
realization, their matrix elements in Fock subspaces of N symmetric quDits, DSCSs and their adaptation to parity
(“DCATs”), and a generalization of NOON states to D-level systems (“NODONs”). In Sec. III we give a brief overview on
the concepts and measures of interlevel and interparticle entanglement, considering different bipartitions of the whole
system, that we put in practice later in Sec. VI. As entanglement measures, we concentrate on linear (unpurity) and
von Neumann entropies. We compute entanglement between levels and atoms for DSCSs, DCAT and NODON states.
In Sec. IV we extend Kitagawa-Ueda’s definition of SU(2) spin squeezing to SU(D) and we also connect it with
two-quDit entanglement introduced in the previous Section. In Sec. V we introduce D-level Lipkin-Meshkov-Glick
(LMG) atom models (we particularize to D = 3 for simplicity) and study their phase diagram and critical points. In
Sec. VI we analyze the ground state structure of the three-level LMG atom model across the phase diagram with
the quantum information measures of Sec. III and the SU(3)-spin squeezing parameters of Sec. IV, thus revealing
the role of entanglement and squeezing as signatures of quantum phase transitions and detectors of critical points.
We only compute linear entropy in Sec. VI, since it is easier to compute than von Neuman entropy and eventually
provides similar qualitative information for our purposes; the interested reader can consult Refs. [44, 45] for a more
general study on the relation between both entropies. Finally, Sec. VII is devoted to conclusions.
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II. STATE SPACE, SYMMETRIES AND COLLECTIVE OPERATOR MATRIX ELEMENTS

Those readers acquainted with the boson realization of U(D) spin operators and coherent states can skim read
all the way to equation (16), just to introduce essential notation and necessary formulas. We consider a system of
N identical atoms of D levels (N quDits in the quantum information jargon). Let us denote by Eij = |i⟩⟨j| the
Hubbard operator describing a transition from the single-atom level |j⟩ to the level |i⟩, with i, j = 1, . . . , D. These are
a generalization of Pauli matrices for qubits (D = 2), namely E12 = σ+, E21 = σ−, E11−E22 = σ3 and E11+E22 = σ0
(the 2 × 2 identity matrix). The expectation values of Eij account for complex polarizations or coherences between
levels for i ̸= j and occupation probability of the level i for i = j. The Eij represent the D2 step operators of U(D),
whose (Cartan-Weyl) matrices ⟨l|Eij |k⟩ = δilδjk fulfill the commutation relations

[Eij , Ekl] = δjkEil − δilEkj . (1)

Let us denote by Eµij , µ = 1, . . . , N the embedding of the single µ-th atom Eij operator into the N -atom Hilbert
space; namely, E3

ij = 1D ⊗ 1D ⊗ Eij ⊗ 1D for N = 4, with 1D the D ×D identity matrix. The collective U(D)-spin
(D-spin for short) operators are

Sij =

N∑

µ=1

Eµij , i, j = 1, . . . , D. (2)

They are the generators of the underlying U(D) dynamical symmetry with the same commutation relations as those
of Eij in (1). When focusing on two levels i > j, we might prefer to use

J⃗ (ij) = (J (ij)
x , J (ij)

y , J (ij)
z ), J (ij)

x =
Sij + Sji

2
, J (ij)

y = i
Sij − Sji

2
, J (ij)

z =
Sjj − Sii

2
, (3)

(roman i denotes the imaginary unit throughout the article) with commutation relations [J
(ij)
x , J

(ij)
y ] = iJ

(ij)
z (and

cyclic permutations of x, y, z), which is an embedding of D(D − 1)/2 SU(2) subalgebras into U(D). Although the
form (3) for D-spin operators could be more convenient to extrapolate all the D = 2 level machinery to arbitrary D,
we shall still prefer the form (2) (at least in this paper), which allows for more compact formulas.

The DN -dimensional Hilbert space is the N -fold tensor product [CD]⊗N . The tensor product representation of
U(D) is reducible and decomposes into a Clebsch-Gordan direct sum of mixed symmetry invariant subspaces. Here
we shall restrict ourselves to the

(
N+D−1

N

)
-dimensional fully symmetric sector (see [21] for the role of other mixed

symmetry sectors), which means that our N atoms are indistinguishable (bosons). Denoting by a†i (resp. ai) the
creation (resp. annihilation) operator of an atom in the i-th level, the collective D-spin operators (2) can be expressed
(in this fully symmetric case) as bilinear products of creation and annihilation operators as (Schwinger representation)

Sij = a†iaj , i, j = 1, . . . , D. (4)

Sii is the operator number of atoms at level i, whereas Sij , i ̸= j are raising and lowering operators. The fully
symmetric representation space of U(D) is embedded into Fock space, with Bose-Einstein-Fock basis (|⃗0⟩ denotes the
Fock vacuum)

|n⃗⟩ = |n1, . . . , nD⟩ =
(a†1)

n1 . . . (a†D)
nD

√
n1! . . . nD!

|⃗0⟩, (5)

when fixing n1 + · · · + nD = N (the linear Casimir C1 = S11 + · · · + SDD) to the total number N of atoms. There
are other realizations of D-spin operators in terms of more than D bosonic modes (e.g. when each level j contains M
degenerate orbitals), which describe mixed symmetries [46–48], but we shall not consider them here.

Collective D-spin operators (4) matrix elements are given by

⟨m⃗|Sij |n⃗⟩ =
√

(ni + 1)njδmi,ni+1δmj ,nj−1

∏

k ̸=i,j
δmk,nk

, ∀i ̸= j, ⟨m⃗|Sii|n⃗⟩ = niδm⃗,n⃗. (6)

The expansion of a general symmetric N -particle state ψ in the Fock basis will be written as

|ψ⟩ =
∑

n⃗

′ cn⃗|n⃗⟩ =
∑

n1+···+nD=N

cn1,...,nD
|n1, . . . , nD⟩, (7)



4

where
∑′ is a shorthand for the restricted sum. D-spin operator expectation values (EVs) can then be easily computed

as

⟨Sij⟩ψ = ⟨ψ|Sij |ψ⟩ =
∑

n⃗

′c̄n⃗ij
cn⃗

√
(ni + 1)nj , i ̸= j, ⟨Sii⟩ψ =

∑

n⃗

′ni|cn⃗|2, (8)

where we have used (6) and where by n⃗ij we mean to replace ni → ni + 1 and nj → nj − 1 in n⃗.
Among all symmetric multi-quDit states, we shall pay special attention to U(D) SCSs (DSCSs for short)

|z⟩ = |(z1, z2, . . . , zD)⟩ =
1√
N !

(
z1a

†
1 + z2a

†
2 + · · ·+ zDa

†
D√

|z1|2 + |z2|2 + · · ·+ |zD|2

)N
|⃗0⟩, (9)

which are labeled by complex points z = (z1, . . . , zD) ∈ CD. To be more precise, there is an equivalence relation:
|z′⟩ ∼ |z⟩ if z′ = qz for any complex number q ̸= 0, which means that |z⟩ is actually labeled by class representatives
of complex lines in CD, that is, by points of the complex projective phase space

CPD−1 = [CD/ ∼] = U(D)/[U(1)×U(D − 1)].

A class/coset representative can be chosen as z̃ = z/zi when zi ̸= 0, which corresponds to a certain patch of the
manifold CPD−1. This is equivalent to chose i as a reference level and set zi = 1. For the moment, we shall allow
redundancy in z to write general expressions, although we shall eventually take i = 1 as a reference (lower energy)
level and set z1 = 1 in Section V.

DSCSs (multinomial) can be seen as BECs of D modes, generalizing the spin U(2) (binomial) coherent states of
two modes introduced by [13] and [14] long ago. For z = ei (the standard/canonical basis vectors of CD), the DSCS
|ei⟩ = (a†i )

N |⃗0⟩/
√
N ! corresponds to a BEC of N atoms placed at level i.1 If we order levels i = 1, . . . , D from lower

to higher energies, the state |e1⟩ would be the ground state, whereas general |z⟩ could be seen as coherent excitations.
Coherent states are sometimes called “quasi-classical” states and we shall see in Section V that |z⟩ turns out to be
a good variational state that reproduces the energy and wave function of the ground state of multilevel LMG atom
models in the thermodynamic (classical) limit N → ∞.

Expanding the multinomial (9), we identify the coefficients cn⃗ of the expansion (7) of the DSCS |z⟩ in the Fock
basis as

cn⃗(z) =

√
N !

∏D
i=1 ni!

∏D
i=1 z

ni
i

|z|N , (10)

where we have written |z| = (z · z)1/2 = (
∑D
i=1 |zi|2)1/2 for the length of z. Note that DSCS are not orthogonal (in

general) since

⟨z′|z⟩ = (z′ · z)N
(z′ · z′)N/2(z · z)N/2 , z′ · z = z̄′1z1 + · · ·+ z̄′DzD. (11)

However, contrary to the standard CSs, they can be orthogonal when z′ · z = 0. EVs of D-spin operators Sij
(coherences for i ̸= j and mean level populations for i = j) in a DSCS are simply written as

⟨Sij⟩z = ⟨z|Sij |z⟩ = Nz̄izj/|z|2. (12)

DSCS non-diagonal matrix elements of D-spin operators can also be compactly written as

⟨z′|Sij |z⟩ = Nz̄′izj
(z′ · z)N−1

|z′|N |z|N . (13)

Similarly, EVs of quadratic powers of D-spin operators in a DSCS state can be concisely written as

⟨z|SijSkl|z⟩ =
z̄izl
|z|4

(
Nδjk|z|2 +N(N − 1)z̄kzj

)
, (14)

1 Note the difference between Fock states |n1, . . . , nD⟩ and DSCSs |(z1, . . . , zD)⟩, which are placed inside parentheses to avoid confusion.
For instance, |ei⟩ = |(0, . . . , 1, . . . , 0)⟩ = (a†i )

N |⃗0⟩/
√
N ! = |0, . . . , N, . . . , 0⟩.
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and their DSCS matrix elements as

⟨z′|SijSkl|z⟩ =
z̄′izl

|z′|N |z|N
(
Nδjk(z

′ · z)N−1 +N(N − 1)z̄′kzj(z
′ · z)N−2

)
. (15)

Note that, for large N , quantum fluctuations are negligible and we have ⟨z|SijSkl|z⟩ ≃ ⟨z|Sij |z⟩⟨z|Skl|z⟩. Otherwise
stated, in the thermodynamical (classical) limit we have

lim
N→∞

⟨z|SijSkl|z⟩
⟨z|Sij |z⟩⟨z|Skl|z⟩

= 1. (16)

We shall use these ingredients when computing one- and two-quDit RDMs in the next Section.
We shall see that DSCSs are separable and exhibit no atom entanglement (although they do exhibit level entangle-

ment). The situation changes when we deal with parity adapted DSCSs, sometimes called “Schrödinger cat states”
(commented at the introduction), since they are a quantum superposition of weakly-overlapping (macroscopically
distinguishable) quasi-classical coherent wave packets, as we shall explicitly see below. These kind of cat states arise
in several interesting physical situations. As we have already mentioned, they can be generated via amplitude disper-
sion by evolving CSs in Kerr media, with a strong nonlinear interaction, like the already commented spin-squeezed
states of [15]. They exhibit statistical properties similar to squeezed states, with deviations from Poissonian (CS)
distributions. Squeezing and multiparticle entanglement are important quantum resources that make Schrödinger
cats useful for quantum enhanced metrology [2]. They are also good variational states [14], reproducing the energy
of the ground state of quantum critical models in the thermodynamic limit N → ∞. To construct them, we require
parity operators defined as

Πj = exp(iπSjj), j = 1, . . . , D. (17)

They are conserved when the Hamiltonian scatters pairs of particles conserving the parity of the population nj in
each level j = 1, . . . , D. It is easy to see that Πj(a

†
j)
nj |⃗0⟩ = (−a†j)nj |⃗0⟩, so that the effect of parity operations on

number states (5) is Πj |n⃗⟩ = (−1)nj |n⃗⟩. Likewise, using the multinomial expansion (9), it is easy to see that the effect
of parity operators on symmetric DSCSs |z⟩ is then

Πi|z⟩ = Πi|(z1, . . . , zi, . . . , zD)⟩ = |(z1, . . . ,−zi, . . . , zD)⟩ (18)

Note that Π−1
i = Πi and Π1 . . .ΠD = (−1)N , a constraint that says that the parity group for symmetric quDits is

not Z2× D. . . ×Z2 but Z2× D−1. . . ×Z2 instead. In order to define a projector on definite parity (even or odd), we have
to chose a reference level, namely i = 1. Doing so, the projector on even parity becomes

Πeven = 21−D
∑

b∈{0,1}D−1

Πb22 Πb33 . . .ΠbDD , (19)

where we denote the binary string b = (b2, . . . , bD) ∈ {0, 1}D−1. Likewise, the projection operator on odd parity is
Πodd = 1 − Πeven. Choosing level i = 1 as a reference level is equivalent to choose a patch on the manifold CPD−1

where z1 ̸= 0; in this way, any coherent state |z⟩ is equivalent to the class representative |z/z1⟩, due to equivalence
relation |z′⟩ ∼ |z⟩ if z′ = qz with q ̸= 0. Let us simply denote by z = (1, z2, . . . , zD) the class representative in this
case. It will be useful, for later use as variational ground states, to define the (unnormalized) generalized Schrödinger
even cat state

|DCAT} = Πeven|z⟩ = 21−D
∑

b

|zb⟩, (20)

where zb = (1, (−1)b2z2, . . . , (−1)bDzD) and we are using
∑

b as a shorthand for
∑

b∈{0,1}D−1 . It is just the projection
of a DSCS on the even parity subspace. The state (20) is a generalization of the even cat state for D = 2 in the
literature [16], given by

|2CAT} =
1

2

(
|(1, α)⟩+ |(1,−α)⟩

)
(21)

for the class representative z = (z1, z2) = (1, α). The shorthand |α⟩ = |(1, α)⟩ is used in the literature when a class
representative (related to highest |e1⟩ or lowest |e2⟩ weight fiducial vectors) is implicitly chosen. The squared norm
of |2CAT} is simply

N (2CAT)2 = {2CAT|2CAT} =
1

2

[
1 +

(
1− |α|2
1 + |α|2

)N]
. (22)
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Note that the overlap ⟨1, α|1,−α⟩ = ((1− |α|2)/(1 + |α|2))N N→∞−→ 0, which means that |(1, α)⟩ and |(1,−α)⟩ are
macroscopically distinguishable wave packets for any α (they are orthogonal for |α| = 1). Likewise, the unnormalized
3CAT is explicitly given by

|3CAT} =
1

4

(
|(1, α, β)⟩+ |(1,−α, β)⟩+ |(1, α,−β)⟩+ |(1,−α,−β)⟩

)
(23)

when setting z = (z1, z2, z3) = (1, α, β) as a class representative. The squared norm is now

N (3CAT)2 =
1

4

[
1 +

(1− |α|2 + |β|2)N + (1 + |α|2 − |β|2)N + (1− |α|2 − |β|2)N
(1 + |α|2 + |β|2)N

]
. (24)

These expressions can be generalized to arbitrary D as

N (DCAT)2 = 21−D
∑

b(z
b · z)N

|z|2N . (25)

We shall use (23) and (24) in Sections V and VI, when discussing a LMG model of atoms withD = 3 levels. These 3CAT

states have also been used in U(3) vibron models of molecules [32, 33] and Dicke models of 3-level atoms interacting
with a polychromatic radiation field [29, 30].

The D-spin EVs on a DCAT state (20) can be now computed and the general expression is

⟨DCAT|Sij |DCAT⟩ = Nδij

∑
b(−1)bi |zi|2(zb · z)N−1

∑
b(z

b · z)N , (26)

where we set (−1)bi = 1 = |zi| for i = 1 (reference level). Similarly, EVs of quadratic powers of D-spin operators in a
DCAT state can be concisely written as

⟨DCAT|SijSkl|DCAT⟩ = N(δijδkl + δikδjl + δilδjk − 2δijδjkδklδli)

×
∑

b(−1)bi z̄izl
[
δjk(z

b · z)N−1 + (N − 1)(−1)bk z̄kzj(z
b · z)N−2

]
∑

b(z
b · z)N . (27)

To finish this Section, let us comment on a generalization to arbitrary D of another prominent example of quantum
states that are useful for quantum-enhanced metrology and provide phase sensitivities beyond the standard quantum
limit. We refer to Greenberger-Horne-Zeilinger (GHZ) or “NOON” (when considering bosonic particles) states. For
D = 2 level systems, NOON states can be written in the Fock state notation (5) as (see e.g. [2])

|NOON⟩ = 1√
2

(
|N, 0⟩+ eiϕ|0, N⟩

)
=

1√
2

(
(a†1)

N

√
N !

|⃗0⟩+ eiϕ
(a†2)

N

√
N !

|⃗0⟩
)
. (28)

Using the canonical basis vectors {e1, e2} of C2, we can write the NOON state as a linear superposition of U(2) SCSs

|NOON⟩ = 1√
2

(
eiϕ1 |e1⟩+ eiϕ2 |e2⟩

)
, (29)

with phases eiϕ1,2 , which coincides with (28) (up to an irrelevant global phase eiϕ1) for the relative phase ϕ = ϕ2−ϕ1.
Multi-mode (or multi-level, in our context) generalizations of NOON states have been proposed in the literature (see
e.g. [49, 50]). In our scheme, this generalization of NOON states (29) to D level systems adopts the following form

|NODON⟩ = 1√
D




D∑

j=1

eiϕj |ej⟩


 =

1√
D

(
eiϕ1 |N, 0, . . .⟩+ eiϕ2 |0, N, 0, . . .⟩+ · · ·+ eiϕD |0, 0, . . . , N⟩

)
. (30)

EVs of linear and quadratic powers of D-spin operators in NODON states can be easily calculated as

⟨NODON|Sij |NODON⟩ = N

D
δij , ⟨NODON|SijSkl|NODON⟩ = N

D
δil (δjk + (N − 1)δikδij) . (31)

The computations in this section will be necessary to discuss entanglement and squeezing properties of all these
states in the Sections III and IV.
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III. ENTANGLEMENT MEASURES IN MULTI-QUDIT SYSTEMS

In this Section we define several types of bipartition of the whole system, computing the corresponding RDMs and
entanglement measures for different kinds of symmetric multi-quDit states ψ in terms of linear L and von Neumann
S entropies. We start computing interlevel entanglement in Section IIIA and then (one- and two-quDit) interparticle
entanglement in Section III B.

A. Entanglement among levels

For a general symmetric N -particle state ψ like (7), the RDM on the level i is

ϱi(ψ) = trj ̸=i

(∑

n⃗,n⃗′

′ cn⃗′ c̄n⃗|n′1, . . . , n′
D⟩⟨n1, . . . , nD|

)
=
∑

n⃗

′ |cn⃗|2|ni⟩⟨ni|. (32)

Thus ϱi(ψ) lies in a single boson Hilbert space of dimension N + 1. Its purity is then

Pℓi (ψ) = tr(ϱ2i (ψ)) =
∑

n⃗,m⃗

′ |cn⃗|2|cm⃗|2δni,mi
. (33)

Here the superscript ℓ makes reference to “level”, to distinguish it from “atom” purity Pa in the next section. It
can also make reference to entanglement between different boson species ℓ, like rotational-vibrational entanglement
[32, 33] in algebraic molecular models [51, 52] such as the vibron model based on a bosonic U(3) spectrum-generating
algebra [53, 54]. For the case of the DSCS |z⟩ in (9), taking the coefficients cn⃗ in (10), and after a lengthy calculation,
the RDM on level i turns out to be diagonal

ϱi(z) =

N∑

n=0

λn(xi, yi)|N − n⟩⟨N − n|, λn(xi, yi) =

(
N

n

)
xN−n
i yni

(xi + yi)N
, xi = |zi|2, yi = |z|2 − |zi|2. (34)

Note that the eigenvalues λn can be expressed in terms of only two positive real coordinates (xi, yi), except for the
reference level zi = 1, for which xi = 1 and therefore there is only one independent variable yi = |z|2−1. For example,
for U(3) SCSs, choosing i = 1 as the reference level and using the parametrization z = (1, α, β) for the phase space
CP 2 in (23), we have x1 = 1, x2 = |α|2, x3 = |β|2 and y1 = |α|2 + |β|2, y2 = 1+ |β|2, y3 = 1+ |α|2. The purity of ϱi(z)
is simply Pℓi (xi, yi) =

∑N
n=0 λ

2
n(xi, yi). In Figure 1 we represent the Linear and von Neumann

Lℓi =
N + 1

N
(1− Pℓi ), Sℓi = −

N∑

n=0

λn logN+1 λn (35)

entanglement entropies for a general level i as a function of (x, y) [for the reference level i = 1, we have to restrict
ourselves to the cross section x = 1]. We normalize linear and von Neumann entropies so that their interval range
is [0, 1], the extremal values corresponding to pure and completely mixed RDMs, respectively. We shall see that
both entropies, L and S, provide similar qualitative behavior for the bipartitions studied in this paper. Interlevel
isentropic contours correspond to the straight lines y = mx (see Figure 1), and the maximum is attained for y = x.
The large N behavior of the interlevel linear entanglement entropy Lℓi(z) around the maximum y = x is Lℓi =

1 − 1/
√
πN + O(N−3/2). In Figure 2 we represent contour plots of Lℓ1,2 and Sℓ1,2 for the RDM of a 3CAT of N = 20

qutrits on levels i = 1 and i = 2. Note that linear and von Neumann entropies display a similar structure. We
omit Lℓ3 and Sℓ3 since they are just the reflection in a diagonal mirror line of Lℓ2 and Sℓ2, respectively. Lℓ1 attains
its maximum at the isentropic circle |α|2 + |β|2 = 1, whereas Lℓ2 attains its maximum at the isentropic hyperbola
|α|2 − |β|2 = 1. The large N behavior of the interlevel linear entanglement entropy for a DCAT around the maximum
is Lℓi = 1− 2/

√
πN +O(N−3/2). Figure 2 also shows (in magenta color) the parametric curve (α(λ), β(λ)) obtained

later in Section V and related to the stationary points (59) of the energy surface (57) in the quantum phase diagram
of a LMG 3-level atom model, where λ is the atom-atom interaction coupling constant. For high interactions we have
(α(λ), β(λ))

λ→∞−→ (1, 1), which does not lie inside the maximum isentropic curve, although the difference between
both entropies tends to zero in the limit N → ∞ (see later in Sections V and VI for more information).

For NODON states (30), the RDM on level i and its purity are

ϱi(NODON) =
D − 1

D
|0⟩i⟨0|+

1

D
|N⟩i⟨N |, tr(ϱ2i (NODON)) = 1− 2

(
D − 1

D2

)
, (36)
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FIG. 1. Contour plots of the linear Lℓi and von Neumann Sℓi entanglement entropies, associated to the RDM of a U(D)-spin
coherent state |z⟩ of N = 10 quDits on level i (34), as a function of the phase-space coordinates (x, y).

which is independent of the level i. Therefore, the linear entropy is given by Lℓi(NODON) = 2N+1
N

D−1
D2 , which reduces

to Lℓi(NOON) = N+1
2N for D = 2.

B. Entanglement among atoms

We compute the one- and two-particle RDMs for a single and a pair of particles extracted at random from a
symmetric N -quDit state. The corresponding entanglement entropies are expressed in terms of EVs of collective
D-spin operators Sij .

1. One-quDit reduced density matrices

Any density matrix of a single quDit can be written as a combination of Hubbard matrices Eij with commutation
relations (1) as

ρ1 =

D∑

i,j=1

rijEij , rij = tr(ρ1Eji) = ⟨Eji⟩ (37)

with rij complex numbers (the generalized Bloch vector) fulfilling r̄ij = rji and (the generalized Bloch sphere)

tr[ρ1] =
D∑

i=1

rii = 1, 0 < tr[(ρ1)
2] =

D∑

i,j=1

|rij |2 ≤ 1. (38)

We want to construct the one-quDit RDM for one quDit extracted at random from a symmetric N -quDit state
ψ. The procedure consists of writing the one-quDit RDM entries in terms of expectation values (EVs) of collective
D-spin operators (2). Remember the definition of Eµij , µ = 1, . . . , N after (1) as the embedding of the single µ-th
atom Eij operator into the N -atom Hilbert space. Atom indistinguishableness implies that ⟨Eµij⟩ = 1

N ⟨Sij⟩, for
any µ = 1, . . . , N , and therefore the one-quDit RDM of any normalized symmetric N -quDit state ψ like (7) can be
expressed as

ρ1(ψ) =
1

N

D∑

i,j=1

⟨Sji⟩Eij . (39)
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FIG. 2. Contour plots of the linear Lℓi and von Neumann Sℓi entanglement entropies, associated to the RDM of a 3CAT of
N = 20 qutrits on levels i = 1 and i = 2 (the case i = 3 is just the reflection in a diagonal mirror line of i = 2), as a function of
the phase-space coordinates (α, β) (they just depend on moduli). Dashed contours represent maximum entanglement entropy.
The meaning of the magenta curve is explained in the main text.

with D-spin EVs (8). Note that tr[ρ1(ψ)] = 1 since
∑D
i=1⟨Sii⟩ = N (total population of the D levels), which is related

to the linear Casimir operator C1 =
∑D
i=1 Sii of U(D). From the condition tr(ρ1(ψ)

2) ≤ 1 we obtain the general
relation

D∑

i,j=1

|⟨Sij⟩|2 ≤ N2, (40)

which could be seen as a measure of the fluctuations or departure from the linear C1 and quadratic C2 Casimir
operators given by C1 = N1 and

C2 =
D∑

i,j=1

SijSji = N(N +D − 1)1. (41)

The quantum limit N2 in (40) is attained for DSCSs. Indeed, for |ψ⟩ = |z⟩ in (9), the DSCS operator EVs were
calculated in (12). Therefore, the purity of the corresponding one-quDit/atom RDM is simply [we denote interatom
purity by Pa to distinguish from the interlevel purity Pℓ discussed in the previous section]

Pa
1 (z) = tr(ρ1(z)

2) =
1

N2

D∑

i,j=1

|⟨z|Sij |z⟩|2 =
D∑

i,j=1

|zi|2|zj |2
|z|4 = 1, (42)

which means that there is not entanglement between atoms in a DSCS . This is because a DSCS is eventually obtained
by rotating each atom individually. The situation changes when we deal with parity adapted DSCSs or “Schrödinger
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cat states” (20). Indeed, the one-quDit RDM ρ1(DCAT) does not correspond now to a pure state since, using the
D-spin EVs on a DCAT state (26), the purity gives

Pa
1 (DCAT) = tr(ρ1(DCAT)2) =

(∑
b(z

b · z)N−1
)2

+
∑D
i=2 |zi|4

(∑
b(−1)bi(zb · z)N−1

)2

(
∑

b(z
b · z)N )

2 ≤ 1. (43)

That is, unlike |z⟩, the Schrödinger cat |DCAT⟩ is not separable in the tensor product Hilbert space [CD]⊗N . In Figure
3, we represent contour plots of linear and von Neumann

La
1 =

D

D − 1
(1− Pa

1 ), Sa
1 = −tr(ρ1 logD ρ1) (44)

entanglement entropies of the one-qutrit RDM ρ1(3CAT) of a U(3) Schrödinger cat (23) as a function of the phase-space
CP 2 coordinates α, β [actually, they just depend on the moduli]. Both entropies are again normalized to 1. They
attain their maximum value of 1 at the phase-space point (α, β) = (1, 1) corresponding to a maximally mixed RDM.
Figure 3 also shows (in magenta color) the stationary curve (α(λ), β(λ)) previously mentioned at the end of Sec. IIIA
in relation to the Figure 2. For high interactions we have (α(λ), β(λ))

λ→∞−→ (1, 1), which means that highly coupled
atoms are maximally entangled in a cat-like ground state (see later in Sections V and VI for more information).

FIG. 3. 3D plots of linear La
1 and von Neumann Sa

1 entanglement entropies of the one-qutrit RDM ρ1(3CAT) of a U(3)
Schrödinger cat (23) for N = 10 atoms, as a function of the phase-space coordinates α, β (they just depend on moduli). The
meaning of the magenta curve is the same as in the Figure 2.

To finish this Section, let us comment on one-quDit entanglement for NODON states (30). Taking into account the
D-spin EV (31), the one-quDit RDM of a NODON is simply ρ1(NODON) = 1

D1D and its linear entropy La
1 = 1, implying

maximally mixed RDM.

2. Two-quDit reduced density matrices

Likewise, any density matrix of two quDits can be written as

ρ2 =
D∑

i,j,k,l=1

rijklEij ⊗ Ekl, rijkl = tr(ρ2Eji ⊗ Elk) = ⟨Eji ⊗ Elk⟩. (45)

with r̄ijkl = rjilk complex parameters subject to tr[ρ2] = 1 and 0 < tr[(ρ2)
2] ≤ 1. Now we need to express the RDM

on a pair of particles, extracted at random from a symmetric state of N D-level atoms, in terms of EVs of bilinear
products of collective D-spin operators S. In particular, we have

⟨SijSkl⟩ =
N∑

µ,ν=1

⟨EµijEνkl⟩ =
N∑

µ=1

δjk⟨Eµil⟩+
N∑

µ̸=ν=1

⟨EµijEνkl⟩

= δjk⟨Sil⟩+N(N − 1)⟨E1
ijE

2
kl⟩, (46)
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due to indistinguishableness. Therefore, the two-particle RDM of a symmetric state ψ of N > 2 quDits is written as

ρ2(ψ) =
1

N(N − 1)

D∑

i,j,k,l=1

(⟨SjiSlk⟩ − δil⟨Sjk⟩)Eij ⊗ Ekl. (47)

Using the Casimir values (41), one can directly prove that tr[ρ2(ψ)] = 1 for any normalized symmetric state ψ. The
case D = 2 was considered by Wang and Mølmer in [11]. The procedure is straightforwardly extended to ρM for an
arbitrary number M ≤ N/2 of quDits. The purity of ρ2(ψ) can be compactly written as

Pa
2 (ψ) = tr

(
ρ2(ψ)

2
)
=

1

N2(N − 1)2




D∑

i,j,k,l=1

⟨SjiSlk⟩ ⟨SijSkl⟩ − 2
D∑

i,j,k=1

⟨SjiSkj⟩ ⟨Sik⟩+
D∑

i,j=1

⟨Sii⟩ ⟨Sjj⟩


 . (48)

In order to construct the two-particle RDM of a DSCS (9), we need the EVs of quadratic powers (14). With
these ingredients, we can easily compute the two-particle RDM of a DSCS (9) which, for large N has the following
asymptotic expression

ρ2(z) =
D∑

i,j,k,l=1

(z̄jziz̄lzk +O(1/N))Eij ⊗ Ekl. (49)

The purity of ρ2(z) is 1 since z is separable in the tensor product Hilbert space [CD]⊗N , as we have already commented.
Moreover, one can see that ρ2(z) = ρ1(z) ⊗ ρ1(z). However, the Schrödinger cat (20) is non-separable and has an
intrinsic pairwise entanglement. Taking into account the particular estructure of linear (26) and quadratic (27) D-spin
operator EVs, The general formula (48) becomes

Pa
2 (DCAT) =

1

N2(N − 1)2




D∑

i,j,k,l=1
j ̸=k

⟨SjiSlk⟩ ⟨SijSkl⟩+
D∑

i,j=1

⟨SjiSij⟩
(
⟨SijSji⟩ − 2 ⟨Sii⟩

)
+

D∑

i,j=1

⟨Sii⟩ ⟨Sjj⟩


 . (50)

FIG. 4. Contour plots of linear La
2 and von Neumann Sa

2 entanglement entropies of the two-qutrit RDM ρ2(3CAT) of a U(3)
Schrödinger cat (23) for N = 10 atoms, as a function of the phase-space coordinates α, β (they just depend on moduli). The
meaning of the magenta curve is the same as in the Figure 2.

In Figure 4, we represent contour plots of normalized linear and von Neumann

La
2 =

D2

D2 − 1
(1− Pa

2 ), Sa
2 = −tr(ρ2 logD2 ρ2) (51)
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entanglement entropies for the two-qutrit RDM ρ2(3CAT) of a U(3) Schrödinger cat (23) as a function of the phase-
space CP 2 coordinates α, β [they just depend on the moduli]. As for the one-quDit case, they attain their maximum
value at the phase-space point (α, β) = (1, 1); however, unlike the one-quDit case, pairwise entanglement entropies do
not attain the maximum value of 1 at this point, but La

2 = 5/6 and Sa
2 ≃ 0.623 for large N . As already commented,

variational (spin coherent) approximations to the ground state of the LMG 3-level atom model [discussed later in
Section V] recover this maximum entanglement point (α, β) = (1, 1) at high interactions λ → ∞ (as can be seen in
the magenta curve).

For NODON states (30), the two-quDit RDM is

ρ2(NODON) =
1

D

D∑

k=1

Ekk ⊗ Ekk, (52)

and therefore ρ2(NODON)2 = 1
Dρ2(NODON), which means that the linear entropy is La

2(NODON) = D/(D+1), indicating
a high level of pairwise entanglement in a NODON state.

IV. SU(D) SPIN SQUEEZING: A PROPOSAL

As we have already commented in the introduction, Wang and Sanders [22] showed a direct relation between the
concurrence C, extracted from the two-qubit RDM (47) for D = 2, and the SU(2) spin J⃗ = (Jx, Jy, Jz) squeezing
parameter

ξ2 =
4

N
min
θ

⟨(cos(θ)Jx + sin(θ)Jy)
2⟩ = 2

N

[
⟨J2
x + J2

y ⟩ −
√

⟨J2
x − J2

y ⟩2 + ⟨JxJy + JyJx⟩2
]

(53)

introduced by [15], which measures spin fluctuations in an orthogonal direction to the mean value ⟨J⃗⟩ with minimal
variance. Actually, the definition (53) refers to even and odd symmetric multi-qubit states [remember the extension
of this concept to multi-quDits after (17)] for which ⟨J⃗⟩ = (0, 0, ⟨Jz⟩) and therefore the orthogonal direction lies in
the plane XY. This definition can be extended to even and odd symmetric multi-quDit states for which ⟨Sij⟩ ∝ δij
[see e.g. (26) for the case of the even DCAT state]. Using the embedding (3) of D(D − 1)/2 SU(2) spin subalgebras
into U(D), and mimicking (53), we can define D(D− 1)/2 spin squeezing parameters ξij , i > j for D-spin systems as:

ξ2ij =
1

N(D − 1)

[
⟨SijSji + SjiSij⟩ − 2|⟨S2

ij⟩|
]
, i > j = 1, . . . , D − 1. (54)

We have chosen the normalization factor 1
N(D−1) so that (54) reduces to (53) for D = 2 and so that the total D-spin

squeezing parameter

ξ2D =
D∑

i>j=1

ξ2ij (55)

is one (no squeezing) for the DSCSs |z⟩ in (9). Actually, for DSCSs we have that ξ2ij = (|zi|2 + |zj |2)/(|z|2(D − 1))

is written in terms of average level populations ⟨z|Sii|z⟩ = N |zi|2/|z|2 of levels i and j, acording to (12). Therefore,
the presence of D-spin squeezing means in general that ξ2D < 1. Using the EVs (31) for NODON states (30), the
corresponding spin squeezing parameters are ξij = 2/[D(D − 1)], which gives ξ2D = 1, thus implying that NODON

states do not exhibit spin squeezing.
Note that D-spin squeezing parameters ξij are constructed in terms of D-spin quadratic EVs, as the two-quDit

RDM (47) and its purity (48) do. Therefore, the deep relation between pairwise entanglement and spin squeezing
revealed by Wang-Sanders in [22] for symmetric multi-qubit systems is extensible to symmetric multi-quDits in the
sense proposed here. In Figure 5 we show a contour plot of the total D-spin squeezing parameter ξ2D for the 3CAT.
As in previous figures, the magenta curve represents the trajectory in phase space of the stationary points (59) of
the energy surface (57) of the three-level LMG Hamiltonian (56) as a function of the control parameter λ. See later
around Figure 9 in Section VI for further discussion.

V. LMG MODEL FOR THREE-LEVEL ATOMS AND ITS QUANTUM PHASE DIAGRAM

In this section we apply the previous mathematical machinery to the study and characterization of the phase
diagram of quantum critical D-level Lipkin-Meshkov-Glick atom models. The standard case of D = 2 level atoms has
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FIG. 5. Contour plots of the squeezing parameter ξ2D=3 of a U(3) Schrödinger cat for N = 10 atoms, as a function of the
phase-space coordinates α, β (it just depends on moduli). The meaning of the magenta curve is the same as in previous Figures.

already been studied in the literature (see e.g. [37]). We shall restrict ourselves to D = 3 level atoms for practical
calculations, although the procedure can be easily extended to general D. In particular, we propose the following
LMG-type Hamiltonian

H =
ϵ

N
(S33 − S11)−

λ

N(N − 1)

3∑

i ̸=j=1

S2
ij , (56)

written in terms of collective U(3)-spin operators Sij . Hamiltonians of this kind have already been proposed in the
literature [38–42] [see also [21] for the role of mixed symmetry sectors in QPTs of multi-quDit LMG systems]. We
place levels symmetrically about i = 2, with intensive energy splitting per particle ϵ/N . For simplicity, we consider
equal interactions, with coupling constant λ, for atoms in different levels, and vanishing interactions for atoms in the
same level (i.e., we discard interactions of the form SijSji). Therefore, H is invariant under parity transformations
Πj in (17), since the interaction term scatters pairs of particles conserving the parity of the population nj in each
level j = 1, . . . , D. Energy levels have good parity, the ground state being an even state. We divide the two-body
interaction in (56) by the number of atom pairs N(N − 1) to make H an intensive quantity, since we are interested
in the thermodynamic limit N → ∞. We shall see that parity symmetry is spontaneously broken in this limit.

As already pointed long ago by Gilmore and coworkers [14, 55], coherent states constitute in general a powerful
tool for rigorously studying the ground state and thermodynamic critical properties of some physical systems. The
energy surface associated to a Hamiltonian density H is defined in general as the coherent state expectation value of
the Hamiltonian density in the thermodynamic limit. In our case, the energy surface acquires the following form

E(α,β)(ϵ, λ) = lim
N→∞

⟨z|H|z⟩ = ϵ
ββ̄ − 1

αᾱ+ ββ̄ + 1
− λ

α2
(
β̄2 + 1

)
+
(
β2 + 1

)
ᾱ2 + β̄2 + β2

(
αᾱ+ ββ̄ + 1

)2 , (57)

where we have used DSCS EVs of linear (12) and quadratic (14) powers of D-spin operators Sij [actually, linear powers
are enough due to the lack of quantum spin fluctuations in the thermodynamic limit (16)], and we have used the
parametrization z = (1, α, β), as in eq. (23), for U(3) SCSs. Note that this energy surface is invariant under α→ −α
and β → −β, which is a consequence of the inherent parity symmetry of the Hamiltonian (56). The minimum energy

E0(ϵ, λ) = minα,β∈CE(α,β)(ϵ, λ) (58)
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FIG. 6. Contour plot of the energy surface (57) for real α and β, in the vicinity of the critical points λ = 1/2 and λ = 3/2 (in
ϵ units). Degenerate minima are perceived in phases II ( 1

2
≤ λ ≤ 3

2
) and III (λ ≥ 3

2
).

is attained at the stationary (real) phase-space values α±
0 = ±α0 and β±

0 = ±β0 with

α0(ϵ, λ) =





0, 0 ≤ λ ≤ ϵ
2 ,√

2λ−ϵ
2λ+ϵ ,

ϵ
2 ≤ λ ≤ 3ϵ

2 ,√
2λ

2λ+3ϵ , λ ≥ 3ϵ
2 ,

β0(ϵ, λ) =

{
0, 0 ≤ λ ≤ 3ϵ

2 ,√
2λ−3ϵ
2λ+3ϵ , λ ≥ 3ϵ

2 .
(59)

In Figures 2, 3, 4 and 5 we plotted (in magenta color) the stationary-point curve (α0(λ), β0(λ)) on top of level, one-
and two-qutrit entanglement entropies, and squeezing parameter, noting that (α0(λ), β0(λ)) → (1, 1) for high λ→ ∞
interactions. We will come to this later in Section VI. Inserting (59) into (57) gives the ground state energy density
at the thermodynamic limit

E0(ϵ, λ) =





−ϵ, 0 ≤ λ ≤ ϵ
2 , (I)

− (2λ+ϵ)2

8λ , ϵ
2 ≤ λ ≤ 3ϵ

2 , (II)

− 4λ2+3ϵ2

6λ , λ ≥ 3ϵ
2 . (III)

(60)

Here we clearly distinguish three different phases: I, II and III, and two second-order QPTs at λ(0)I↔II = ϵ/2 and
λ
(0)
II↔III = 3ϵ/2, respectively, where ∂2E0(ϵ,λ)

∂λ2 are discontinuous. In the stationary (magenta) curve (α0(λ), β0(λ)), the
phase I corresponds to the origin (α0, β0) = (0, 0) (squared point), phase II corresponds to the horizontal part β0 = 0
up to the star point, and phase III corresponds to β0 ̸= 0.

Note that the ground state is fourfold degenerated in the thermodynamic limit since the four U(3) SCSs |z±±
0 ⟩ =

|1,±α0,±β0⟩ have the same energy density E0. These four U(3) SCSs are related by parity transformations Πj in
(17) and, therefore, parity symmetry is spontaneously broken in the thermodynamic limit. In order to have good
variational states for finite N , to compare with numerical calculations, we have two possibilities: 1) either we use
the 3CAT (23) as an ansatz for the ground state, minimizing ⟨3CAT|H|3CAT⟩, or 2) we restore the parity symmetry
of the U(3) SCS |1, α0, β0⟩ for finite N by projecting on the even parity sector. Although the first possibility offers a
more accurate variational approximation to the ground state, it entails a more tedious numerical minimization than
the one already obtained in (58) for N → ∞. Therefore, we shall use the second possibility which, despite being less
accurate, it is straightforward and good enough for our purposes. That is, we shall use the 3CAT (23), evaluated at
α = α0 and β = β0 and conveniently normalized (24), as a variational approximation |3CAT0⟩ to the numerical (exact)
ground state |ψ0⟩ for finite N .

VI. ENTANGLEMENT AND SQUEEZING AS SIGNATURES OF QPTS

The objective in this Section is to use level and particle entanglement and squeezing measures as signatures of
QPTs in these LMG models, playing the role of order parameters that characterize the different phases or markers of
the corresponding critical points. We restrict ourselves to linear entropy which, as already shown, gives qualitative
information similar to von Neumann entropy for this study, with the advantage that it requires less computational
resources. As already commented, Refs. [44, 45] contain more general information about the relation between both
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entropies. Linear entropies of one- and two-qutrit RDMs turn also to provide similar qualitative information, although
pairwise entanglement shows a more direct relation to spin squeezing.

We have numerically diagonalized the Hamiltonian (56) for N = 50 3-level atoms, and several values of λ (in ϵ units),
and we have calculated level, one- and two-qutrit entanglement linear entropies for the ground state |ψ0⟩ =

∑′
n⃗ cn⃗|n⃗⟩,

plugging the coefficients cn⃗ into (8,33,48). We have also calculated level and atom entanglement linear entropies for
the variational approximation |3CAT0⟩ to the ground state |ψ0⟩ discussed in the previous Section for N = 50. In Figure
7 we compare numerical with variational ground state entanglement measures between levels i = 1, 2, 3. According
to Figure 7, we see that, in phase I, 0 ≤ λ ≤ 1/2, variational results indicate that there is no entanglement between
levels, whereas numerical results show a small (but non-zero) entanglement for N = 50. In phase II, 1/2 ≤ λ ≤ 3/2,
levels i = 1 and i = 2 get entangled, but level i = 3 remains almost disconnected. In phase III, λ ≥ 3/2, level i = 3
gets entangled too. Interlevel entanglement grows with λ attaining the maximum value of 0.84 at the limiting point
(α0(∞), β0(∞)) = (1, 1) for N = 50. This behavior of the interlevel entropy for the 3CAT variational state can be also
appreciated by looking at the stationary (magenta) curve in Figure 2 with relation to the isentropic curves.

Concerning atom entanglement, Figure 8 shows a better agreement between variational and numerical results,
showing a rise of entanglement when the coupling strength λ grows across the three phases, attaining values close to
the large N maximum values La

1 = 1 and La
2 = 5/6 at the limiting point (α0(∞), β0(∞)) → (1, 1). The entanglement

growth is more abrupt between phases I and II than between phases II and III. We see that both, level and atom
entanglement measures capture differences between the three phases, even for finite N , and therefore they can be
considered as precursors of the corresponding QPT. The main features of the inter-atom entanglement entropy for
the 3CAT variational state are also captured by the trajectory of the stationary (magenta) curve in Figures 3 and 4
through the isentropic curves.
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FIG. 7. Level entanglement linear entropies Lℓi (for levels i = 1, 2 and 3) of the ground state of the three-level atom LMG model
Hamiltonian (56), for N = 50 atoms, as a function of the control parameter λ (in ϵ units). Critical points, at which a QPT takes
place, are marked with vertical grid lines, whereas the horizontal grid line labels the asymptotic value Lℓi → 1− 2/

√
πN ≃ 0.84

of the entropies. We compare exact results, obtained from numerical diagonalization of the Hamiltonian, with variational
(analytical) results obtained from a parity symmetry restoration (in terms of Schrödinger cats) of mean field results.

In Figure 9 we represent the D = 3 spin total squeezing parameter ξ2D (55) of the variational and numerical ground
states for N = 50 atoms, as a function of the control parameter λ (in ϵ units). The results reveal a clear growth of
squeezing at the critical points, the change being more abrupt at these points for the variational (parity adapted mean
field) than for the numerical ground state. Note that the variational ground state only shows squeezing (ξ2D < 1) at
the critical points, whereas the numerical ground state exhibits squeezing for any λ ̸= 0. Looking at the stationary
(magenta) curve of Figure 5 we appreciate that it practically lies in regions of no squeezing (in red color) except near
the critical points, where squeezing suddenly increases (yellow color regions).

VII. CONCLUSIONS AND OUTLOOK

We have extended the concept of pairwise entanglement and spin squeezing for symmetric multi-qubits (namely,
identical two-level atoms) to general symmetric multi-quDits (namely, identical D-level atoms). For it, we have
firstly computed expectation values of U(D) spin operators Sij in general symmetric multi-quDit states like: U(D)-
spin coherent states, their adaptation to parity (Schrödinger DCAT states), and an extension of NOON states to D
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FIG. 8. One-qutrit La
1 and two-qutrit La

2 entanglement linear entropies of the ground state of the three-level atom LMG model
Hamiltonian (56) as a function of the control parameter λ (in ϵ units). Critical points, at which a QPT takes place, are marked
with vertical grid lines, whereas horizontal grid lines label the asymptotic values La

1 → 1 and La
2 → 5/6 of the entropies. We

compare numerical with variational results for N = 50 atoms.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

Control parameter λ

S
qu
ee
zi
ng
pa
ra
m
et
er

ξ D
2

ξD2 , Variational , N=50

ξD2 , Numerical , N=50

FIG. 9. D-spin total squeezing parameter ξ2D (55) of the ground state of the three-level atom LMG model Hamiltonian (56) as
a function of the control parameter λ (in ϵ units). Critical points, at which a QPT takes place, are marked with vertical grid
lines. We compare numerical with variational results for N = 50 atoms.

levels (NODON states). The reduced density matrices to one- and two-quDits extracted at random from a symmetric
multi-quDit state exhibit atom entanglement for DCAT states, but not for U(D)-spin coherent states. We have used
entanglement to characterize quantum phase transitions of LMG D-level atom models (we have restricted to D = 3
for simplicity), where DCAT states (as an adaptation to parity of mean-field spin coherent states) turn out to be
a reasonable good variational approximation to the exact (numerical) ground state. We have also proposed an
extension of standard SU(2)-spin squeezing to SU(D)-spin operators, which recovers D = 2 as a particular case. We
have evaluated SU(3)-spin squeezing of the ground state of the LMG 3-level atom model, as a function of the control
parameter λ, and we have seen that squeezing grows in the neighborhood of critical points λc, therefore serving as a
marker of the corresponding quantum phase transition. A deeper study and discussion of squeezing in these models
requires a phase space approach in terms of a coherent (Bargmann) representation of states, such as the Husimi and
Wigner functions, and it will be the subject of future work.
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ABSTRACT

In this paper we pursue the use of information measures (in particular, information diagrams)
for the study of entanglement in symmetric multi-quDit systems. We use generalizations to U(D)
of spin U(2) coherent states and their adaptation to parity (multicomponent Schrödinger cats) and
we analyse one- and two-quDit reduced density matrices. We use these correlation measures to
characterize quantum phase transitions occurring in Lipkin-Meshkov-Glick models of D = 3-level
identical atoms and we propose the rank of the corresponding reduced density matrix as a discrete
order parameter.

Keywords: Information diagrams, entanglement entropies, symmetric quDits, parity adapted coherent states,
quantum phase transitions, many-body systems, parity adapted states

I. INTRODUCTION

Information diagrams were introduced to discuss the relation between two different information measures, like von
Neumann entropy and error probability [1], or von Neumann and linear entropies [2]. In the particular case of linear
(L) and von Neumann (S) entropies, pairs (L(ρ),S(ρ)) are usually plotted for any valid probability distribution ρ.
Here ρ can also represent the density matrix of a quantum system (or rather a vector with its eigenvalues), and this
is our main interest in this paper. Special attention is paid to the boundaries of the resulting information diagram
region, where the associated probability distributions (or density matrices) will be denoted as “extremal”. In Ref.
[3], a comparison is made between both entropies in the case of two qubits (see also [4] for the case of the ion-laser
interaction). In [5], a detailed study of information diagrams is carried out for arbitrary pairs of entropies. There it
is proved that, for certain conditions (satisfied by linear, von Neumann and Rényi entropies), the extremal density
matrices are always the same. Counterexamples are given but, in general, the deviation will be very small and we can
safely assume that these extremal density matrices have universal character.

In this paper we shall use information diagrams to obtain global qualitative information of particle entanglement
in symmetric multi-quDit systems described by generalized “Schrödinger cat” (multicomponent DCAT) states (first

introduced in [6] as two-component, even and odd, states for an oscillator). These DCAT states turn out to be a ZD−12

parity adaptation of U(D)-spin coherent (quasi-classical) states and they have the structure of a quantum superposition
of weakly-overlapping (macroscopically distinguishable) coherent wave packets with interesting quantum properties.
For that purpose we make use of one- and two-quDit reduced density matrices (RDM), obtained by extracting one
or two particles/atoms from a composite system of N identical quDits described by a cat state, and tracing out the
remaining system. It is well known (see [3] and references therein) that the entropy of these RDMs provides information
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about the entanglement of the system. We shall plot the information diagrams associated to these RDMs and extract
qualitative information about one- and two-quDit entanglement, and also about the rank of the corresponding RDM,
which also provides information on the entanglement of the original system [7].

We shall apply these results to the characterization of quantum phase transitions (QPT) occurring in Lipkin-
Meshkov-Glick models of 3-level identical atoms, complementing the results of [8]. In particular, we have seen that
the rank of the one- and two-quDit RDMs can be considered as a discrete order parameter precursor detecting the
existence of QPTs.

The paper is organized as follows. Section II reviews the notion of information diagram, describing its main
properties, particularly with respect to the rank. Section III reviews the concept of U(D)-spin coherent states and

their ZD−12 parity adapted version, the DCAT. In Section IV we compute one- and two-quDit RDMs for the 2CAT and the
3CAT, their Linear and von Neumann entropies, plotting them and constructing the associated information diagrams.
In Section V we use information diagrams to provide qualitative information about QPTs in Lipkin-Meshkov-Glick
(LMG) models. Section VI is devoted to conclusions.

II. INFORMATION DIAGRAMS

To determine the boundaries in information diagrams [2] we need to show that, for two different measures of entropy
(or information) E1 and E2, there are maximum and minimum possible values of E1 (resp. E2) for a given value of
E2 (resp. E1) [5]. That is, the region ∆ given by the image of the map ρ 7→ (E1(ρ), E2(ρ)) is a bounded set in the
plane, where ρ denotes all possible probability distributions (or density matrices) for a given dimension d.

Since usual measures of entropy for density matrices are based on the trace, they are invariant under changes of
basis. Hence, the only relevant information of a density matrix is contained in its eigenvalues, thus in this paper we
shall identify density matrices ρ with their eigenvalues (λ1, λ2, . . . , λd), the order being irrelevant. Therefore, for our
purposes, we can identify probability distributions and density matrices using a vector notation in terms of eigenvalues,
referring to both of then as density matrices for short. Notwithstanding, we shall continue to treat density matrices
as matrices in some situations.

In [5] it was proved that, under rather general assumptions on the convexity/concavity of the entropy measures,
the maximum and minimum values are always attained in two standard forms of density matrices

ρmax(λ) = (λ, λ̄, (d−1). . . , λ̄) , λ̄ =
1− λ
d− 1

≤ λ , λ ∈ [
1

d
, 1), (1)

ρ
(k)
min(λ) = (λ, (k). . ., λ, λ̄, 0, . . . , 0) , λ̄ = 1− kλ < λ , λ ∈ [

1

k + 1
,

1

k
) (2)

respectively, where k = 1, . . . , d− 1. Let us write the previous equations as (convex) sums of density matrices, that in
turn can be seen as lower dimensional density matrices. For that purpose denote by ρk the maximally mixed density

matrix (or equal probabilities distribution) in dimension k, ρk = ( 1
k ,

(k). . ., 1k ) = 1
k Ik, where Ik is the identity matrix in

dimension k. Then we have:

ρmax(ε) = (1− ε) ρd + ε ρ1 ⊕ 0d−1 , ε ∈ [0, 1) (3)

ρ
(k)
min(ε) = (1− ε) ρk ⊕ 0d−k + ε 0k ⊕ ρ1 ⊕ 0d−1−k , ε ∈ (0,

1

1 + k
] (4)

where 0k is the null matrix (or vector) in dimension k and k = 1, . . . , d − 1. The relation between ε and λ is
λ = 1

d −
(
1− 1

d

)
ε for eqns. (1,3) and λ = 1−ε

k for eqns. (2,4).
In most cases, the pair of entropies (L,S) is considered, where L and S denote linear and von Neumann entropies,

respectively. We shall consider here normalized linear and von Neumann entropies, i.e:

L(ρ) =
d

d− 1

(
1− Tr(ρ2)

)
, S(ρ) = −Tr(ρ logd ρ), (5)

in such a way that both entropies range from 0 (pure states) to 1 (maximally mixed states). The values of both
entropies for each family of curves are:

L(ρmax(ε)) = 1− ε2,

S(ρmax(ε)) = −(d− 1)
1− ε
d

logd

(
1− ε
d

)
−
(

1 + (d− 1)ε

d

)
logd

(
1 + (d− 1)ε

d

)
, (6)
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and

L(ρ
(k)
min(ε)) =

d

d− 1

(
1− ε2 − (1− ε)2

k

)
,

S(ρ
(k)
min(ε)) = −(1− ε) logd(1− ε)− ε logd(ε) + (1− ε) logd(k). (7)

In Figure 1a the curves ρ 7→ (L(ρ),S(ρ)) are shown for ρ equal to ρmax(ε) and ρ
(k)
min(ε), delimiting the corresponding

region ∆ (we are setting d = 5).
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FIG. 1: (a) Information diagram for linear and von Neumann entropies in dimension d = 5, where the region ∆ is
bounded by the curves associated with the density matrices given by eqns. (3) (above) and (4) (below). All curves

except ρmax are traced from left to right when ε increases. (b) Curves associated with density matrices ρ̄
(k)
min(ε) for

k = 1, . . . , d− 1, which are traced from right to left. Note that in the case k = 1 the associated curve is the same as
in (a), but traced backwards. Also, for k = d− 1 the associated curve coincides with that of ρmax. (c) Plot of the
asymptotic curves (8,9) for density matrices near a pure state (bottom-left, red and pink, respectively) and the

asymptotic curve (10) near the maximally mixed state (upper-right, green)

Note that the density matrices (3) can be seen (for small ε) as the maximally mixed density matrix ρd perturbed
by a rank-1 density matrix, while those of (4) can be seen as maximally mixed density matrix of dimension k, ρk,
perturbed by a (orthogonal) rank-1 density matrix, for k = 1, . . . , d− 1.

It should be stressed that the range of the parameter ε in the curves ρ
(k)
min(ε) can be extended to the interval [0, 1].

Let us denote by ρ̄
(k)
min(ε) the family of density matrices (4) for the range ε ∈ ( 1

1+k , 1]. Their corresponding curves in
the information diagram are shown in Figure 1b.

A. Information diagrams and rank of density matrices

As it can be seen in Figure 1b, there are only d− 3 distinct ρ̄
(k)
min curves, for k = 2, . . . , d− 2. These curves divide the

region ∆ into d − 2 subregions, ∆k, k = 2, . . . , d − 1, bounded by the curves ρ
(k)
min, ρ̄

(k)
min and ρ̄

(k−1)
min . Each subregion

∆k contains density matrices of rank greater than k. Density matrices of rank 1 (pure states) lie on the origin,

while density matrices of rank 2 lie on the curve ρ
(1)
min = ρ̄

(1)
min. See Figure 2 for a plot of a sample of 20000 density

matrices of dimension d = 5 randomly generated following a χ2 distribution for the eigenvalues where the color of the
corresponding point in the information diagram is associated to its rank (warmer colors correspond to higher rank).

From the expression of the extremal density matrices (1,2), or their alternative expressions (3,4), and the expression

of the inner curves ρ̄
(k)
min(ε), it is clear that, for a given value of the linear entropy and a fixed rank k+ 1, the extreme

values of the von Neumann entropy are reached for k identical eigenvalues. If the remaining eigenvalue is larger than

the rest (i.e. we are in ρ̄
(k)
min) then there is a maximum, and if it is smaller than the rest (in ρ

(k)
min) then it is a minimum

of von Neumann entropy.
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FIG. 2: Colored plot of a sample of 20000 density matrices of dimension d = 5 randomly generated following a χ2

distribution for the eigenvalues in an information diagram where the different colors represent the rank of the
density matrix (warmer colors represent higher ranks)

B. Asymptotic curves

It is interesting to obtain approximate expressions for the function S(L) in some regions of the information diagram.
Near a pure state (bottom left of the information diagram), we have the following asymptotic expressions for the

curves ρmax and ρ
(1)
min:

S(L) =
d− 1

2d log(d)

[
(1 + log(2d))L − L log(L)

]
, (8)

S(L) =
d− 1

2d log(d)

[
(1 + log(2d)− log(d− 1))L − L log(L)

]
, (9)

respectively. Near the maximally mixed density matrix (upper right of the information diagram), both ρmax and

ρ
(d−1)
min collapse into the same curve, with asymptotic expression:

S(L) = 1− d− 1

2 log(d)
(1− L). (10)

See Figure 1c for a plot of these asymptotic curves in an information diagram with d = 5.
Once we have explained what the information diagrams are, and their main features, we shall use them in the

study of one- and two-quDit entanglement of generalized Schrödinger cat states, which arise as a parity adaptation
of U(D)-spin (symmetric multi-quDit) coherent states.

III. U(D)-SPIN COHERENT STATES AND THEIR ADAPTATION TO PARITY IN SYMMETRIC
MULTI-QUDIT SYSTEMS

In this section we introduce the main ingredients and notation required to define parity adapted U(D)-spin coherent
states in symmetric multi-quDit systems. These kind of states where introduced long ago in [6] as nonclassical (even
and odd) states of light. We shall particularize to D = 2 and D = 3 for practical cases. See [8] for a more detailed
study of the general case.

We consider a system of N identical (indistinguishable) quDits, namely, D-level identical atoms. Denoting by a†i
(resp. ai) the creation (resp. annihilation) operator of an atom in the i-th level (namely, i = 1, 2 for ground and
excited –or spin up and down– in the case D = 2, or i = 1, 2, 3 for a 3-level atom in the case of D = 3), the collective
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U(D)-spin operators can be expressed (in the fully symmetric representation) as bilinear products of creation and
annihilation operators as (Schwinger representation)

Sij = a†iaj , i, j = 1, . . . , D, (11)

which generate the unitary symmetry U(D). The operator Sii represents the number of quDits in the level i, whereas
Sij , i 6= j are raising and lowering (tunneling) operators. The fully symmetric representation space of U(D) is

embedded into Fock space, with Bose-Einstein-Fock basis (|~0〉 denotes the Fock vacuum)

|~n〉 = |n1, . . . , nD〉 =
(a†1)n1 . . . (a†D)nD

√
n1! . . . nD!

|~0〉, (12)

when fixing n1 + · · ·+nD = N (the linear Casimir C1 = S11 + · · ·+SDD) to the total number N of quDits. Collective
U(D)-spin operator (11) matrix elements are given by

〈~m|Sii|~n〉 = niδ~m,~n, (13)

〈~m|Sij |~n〉 =
√

(ni + 1)njδmi,ni+1δmj ,nj−1
∏

k 6=i,j
δmk,nk

, ∀i 6= j.

The expansion of a general symmetric N -particle state ψ in the Fock basis will be written as

|ψ〉 =
∑

~n

′ c~n|~n〉 =
∑

n1+···+nD=N

cn1,...,nD
|n1, . . . , nD〉, (14)

where
∑′

is a shorthand for the restricted sum. Among all symmetric multi-quDit states, we shall pay special
attention to U(D)-spin coherent states (DSCSs for short), which adopt the multinomial form1

|z〉 = |z2, . . . , zD〉 =
1√
N !

(
a†1 + z2a

†
2 + · · ·+ zDa

†
D√

1 + |z2|2 + · · ·+ |zD|2

)N
|~0〉, (15)

and are labeled by complex points z = (z2, . . . , zD) ∈ CD−1. These DSCSs can be seen as Bose-Einstein condensates
(BECs) of D modes, generalizing the spin U(2) (binomial) coherent states of two modes introduced by [9] and [10]
long ago. If we order levels i = 1, . . . , D from lower to higher energies, the state |z = 0〉 would be the ground state,
whereas general |z〉 could be seen as coherent excitations. Coherent states are sometimes called “quasi-classical”
states and we shall see in Section V that |z〉 turns out to be a good variational state that reproduces the energy and
wave function of the ground state of multilevel LMG atom models in the thermodynamic (classical) limit N →∞.

Expanding the multinomial (15), we identify the coefficients c~n of the expansion (14) of the DSCS |z〉 in the Fock
basis as

c~n(z) =

√
N !

∏D
i=1 ni!

∏D
i=2 z

ni
i

|z|N , (16)

where we have written |z| ≡ (z · z)1/2 = (1 +
∑D
i=2 |zi|2)1/2 for the “length” of z. Note that DSCS are not orthogonal

(in general) since

〈z′|z〉 =
(z′ · z)N

(z′ · z′)N/2(z · z)N/2
, z′ · z ≡ 1 + z̄′2z2 + · · ·+ z̄′DzD, (17)

is not zero, in general. However, contrary to the standard (canonical, harmonic oscillator) CSs, they can be orthogonal
when z′ · z = 0.

In [8] we have shown that DSCSs are separable and exhibit no quDit entanglement (although they do exhibit
interlevel entanglement). In fact they can be written as a tensor product of 1-quDit coherent states:

|z〉(N) = |z〉1 ⊗ |z〉2 ⊗ · · · ⊗ |z〉N , (18)

1 In eq. (15) and the following ones we have put z1 = 1, where z1 is the parameter multiplying a†1, see [8]. Consequently, it has been
removed from the expression of |z〉.
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where we added the superscript (N) to the N -particle coherent state (15), and |z〉i denotes the one-particle coherent
state for the i-th quDit. Note that this state is explicitly symmetric under the interchange of quDits and therefore
there is no need to symmetrize it.

The situation changes when we deal with parity adapted DSCSs, sometimes called “Schrödinger cat states”, since
they are a quantum superposition of weakly-overlapping (macroscopically distinguishable) quasi-classical coherent
wave packets. These kind of cat states arise in several physical situations and display interesting nonclassical prop-
erties. The case of even parity cat states is particularly important since they turn out to be good variational states
[10], reproducing the energy of the ground state of quantum critical models in the thermodynamic limit N →∞. In
[8], the even parity multi-quDit cat state DCAT have been constructed for general D, and here we shall reproduce the
construction to fix notation.

The parity operators are defined as

Πj = exp(iπSjj), j = 1, . . . , D. (19)

Note that Π−1i = Πi and Π1 . . .ΠD = (−1)N , a constraint that says that the parity group for symmetric quDits is

not Z2× D. . . ×Z2 but Z2× D−1. . . ×Z2 = ZD−12 instead. Therefore, we can discard in our discussion one of the parity
operators, and we select Π1 (since we will use level 1 as reference level in Sec. V).

Parity operators are conserved when the Hamiltonian scatters pairs of particles conserving the parity of the pop-
ulation nj in each level j = 1, . . . , D, like in the D-level LMG model considered in Sec. V. Using the multinomial
expansion (15), it is easy to see that the effect of parity operators on symmetric DSCSs |z〉 is then

Πi|z〉 = Πi|z2, . . . , zi, . . . , zD〉 = |z2, . . . ,−zi, . . . , zD〉 , i = 2, . . . , D . (20)

The projector onto the even parity subspace is given by:

Πeven = 21−D
∑

b∈{0,1}D−1

Πb2
2 Πb3

3 . . .ΠbD
D , (21)

where the binary string b = (b2, . . . , bD) ∈ {0, 1}D−1 labels the elements of the parity group ZD−12 . We shall also
denote the symbol 0 for the string (0, . . . , 0).

Let us define the even parity generalized Schrödinger cat state

|DCAT〉 =
1

N (DCAT)
Πeven|z〉 =

21−D

N (DCAT)

∑

b

|zb〉, (22)

where |zb〉 ≡ |(−1)b2z2, . . . , (−1)bDzD〉 and we are using
∑

b as a shorthand for
∑

b∈{0,1}D−1 . The DCAT is just the

projection of a DSCS onto the even parity subspace. The normalization factor is given by

N (DCAT)2 = 21−D
∑

b Lb

L0
(23)

where Lb = 1 + (−1)b2 |z2|2 + · · ·+ (−1)bD |zD|2. We shall also use the alternative notation Lσ ≡ Lb for σ = (−1)b =
((−1)b2 , . . . , (−1)bD ) for convenience.

As an illustration, let us provide the particular expressions of |DCAT〉 for D = 2 and D = 3. Denoting by |z〉 =
|z2〉 = |α〉 the coherent state (15) for D = 2, the corresponding even parity 2CAT state is given by

|2CAT〉 =
1

2N (2CAT)

(
|α〉+ | − α〉

)
, (24)

with normalization factor

N (2CAT)2 =
1

2

[
1 +

(
1− |α|2
1 + |α|2

)N]
=

1

2

LN+ + LN−
LN+

, (25)

with L± = 1± |α|2. Note that the overlap 〈α| − α〉 = (L−/L+)N
N→∞−→ 0 for α 6= 0, which means that |α〉 and | − α〉

are macroscopically distinguishable wave packets for any α 6= 0 (they are orthogonal for |α| = 1).
Likewise, denoting by |z〉 = |z2, z3〉 = |α, β〉 the coherent state (15) for D = 3, the corresponding even parity 3CATs

state is explicitly given by

|3CAT〉 =
1

4N (3CAT)

(
|α, β〉+ | − α, β〉+ |α,−β〉+ | − α,−β〉

)
, (26)



7

where

N (3CAT)2 =
1

4

[
1 +

(1− |α|2 + |β|2)N + (1 + |α|2 − |β|2)N + (1− |α|2 − |β|2)N

(1 + |α|2 + |β|2)N

]

=
1

4

LN++ + LN−+ + LN+− + LN−−
LN++

, (27)

with Lσ1σ2
= 1 + σ1|α|2 + σ2|β|2, for σ1, σ2 = ±. We shall use (26) and (27) in Section V, when discussing a LMG

model of atoms with D = 3 levels. The 3CAT state has also been used in U(3) vibron models of molecules [11, 12] and
Dicke models of 3-level atoms interacting with a polychromatic radiation field [13, 14].

IV. ENTROPIC MEASURES ON REDUCED DENSITY MATRICES TO QUANTIFY
ENTANGLEMENT

One of the most important applications of entropy measures is to quantify the entanglement of the state of a system.
For that purpose we define several types of bipartition of the whole system, computing the corresponding RDMs and
entanglement measures for symmetric multi-quDit states ψ in terms of linear L and von Neumann S entropies. We
shall focus on one- and two-quDit entanglement, computing the one- and two-particle RDMs (ρ1 and ρ2) for a single
and a pair of particles extracted at random from a symmetric N -quDit state ψ. The procedure is straightforwardly
extended to ρM for an arbitrary number M ≤ N/2 of quDits. However, as we shall see, it is not necessary to go
beyond two particles since the two-particle RDMs provides enough information for small values of D. Actually, in
the particular case of D = 2, the one-particle RDM contains all necessary information about the entanglement of the
system.

In [8] we gave the general expression of the one-quDit RDM of any normalized symmetric N -quDit state ψ like
(14), expressed in terms of expectation values of U(D)-spin operators Sij as

ρN1 (ψ) =
1

N

D∑

i,j=1

〈ψ|Sji|ψ〉Eij , (28)

where Eij represent D2, D×D-matrices with entries (Eij)lk = δilδjk (1 in row i, column j, and 0 elsewhere). Likewise,
the two-particle RDM of a symmetric state ψ of N > 2 quDits is written as [8]

ρN2 (ψ) =
1

N(N − 1)

D∑

i,j,k,l=1

(
〈ψ|SjiSlk|ψ〉 − δil〈ψ|Sjk|ψ〉

)
Eij ⊗ Ekl. (29)

The matrices Eij are the generalization to arbitrary D of standard Pauli matrices for qubits (D = 2), namely
E12 = σ+, E21 = σ−, E11−E22 = σ3 and E11 +E22 = σ0 (the 2×2 identity matrix). Actually, the one- and two-qubit
RDMs for D = 2 were already considered time ago by Wang and Mølmer in [15]. Here we shall consider both cases,
D = 2 (qubits) and D = 3 (qutrits), in order to discuss the similitudes and differences.

A. One-quDit reduced density matrices

For the case of a DSCS |z〉, the linear and von Neumann entropies of ρ1(z) are zero, i.e. there is no entanglement
between quDits in a DSCS. This is because a DSCS is eventually obtained by rotating each quDit individually.
The situation changes when we deal with parity adapted DSCSs or “Schrödinger cat states” like (25)-(26). Indeed,
the one-quDit RDM ρ1(DCAT) does not correspond now to a pure state since it has the expression (we provide its
eigenvalues)

ρN1 (2CAT) =
1

2LN+N (2CAT)2
(
LN−1+ + LN−1− , |α|2

(
LN−1+ − LN−1−

))
, (30)

for an N -qubit system and

ρN1 (3CAT) =
1

4LN++N (3CAT)2
(
LN−1++ + LN−1−+ + LN−1+− + LN−1−− , (31)

|α|2
(
LN−1++ − LN−1−+ + LN−1+− − LN−1−−

)
,

|β|2
(
LN−1++ + LN−1−+ − LN−1+− − LN−1−−

))
,
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for an N -qutrit system. Note that, for α 6= 0 in the case of ρN1 (2CAT), and α 6= 0 or β 6= 0 in the case ρN1 (3CAT),
the corresponding one-quDit RDM has rank greater that 1. That is, unlike |z〉, the Schrödinger cat |DCAT〉 is not
separable in the tensor product Hilbert space [CD]⊗N . In addition, ρN1 (3CAT) has rank 2 if α 6= 0 or β 6= 0 and has
rank 3 if both are different from zero. See below for a more detailed discussion on this point.

Since the main features of these density matrices are captured in theN →∞ (thermodynamic) limit (infinite number
of quDits), we shall restrict ourselves to this limit, where the expression of the (diagonalized) density matrices are
simpler:

ρ∞1 (2CAT) =
1

1 + |α|2
(
1, |α|2

)
, (32)

ρ∞1 (3CAT) =
1

1 + |α|2 + |β|2
(
1, |α|2, |β|2

)
. (33)

It will be interesting to discuss also the case |α| = 1, for qubits, and (|α|, |β|) = (1, 1), for qutrits, since these values will

appear as limiting points of the stationary curve (α0(λ), β0(λ)) in Eq. (49) for high λ, i.e. (α0(λ), β0(λ))
λ→∞−→ (1, 1),

where λ is the strength of two-body (two-quDit) interactions in a D-level atom LMG model (see later in Section V
for more information). Therefore, we are also interested in the “high coupling limit”

lim
|α|→1

ρ∞1 (2CAT) =

(
1

2
,

1

2

)
, (34)

lim
(|α|,|β|)→(1,1)

ρ∞1 (3CAT) =

(
1

3
,

1

3
,

1

3

)
. (35)

Hence, in this high coupling limit, the 1-quDit RDM is maximally mixed and therefore the entanglement is maximum.
For D = 2, the asymptotic behavior of ρ∞1 for large |α| is:

ρ∞1 (2CAT) = (0, 1) +O(
1

|α|2 )(1, 1), |α|2 � 1, (36)

while for D = 3 the limit (|α|, |β|) → (∞,∞) does not exist. Actually, the asymptotic behavior of ρ∞1 (3CAT) along
the lines |α| = r cos θ, |β| = r sin θ, , for large r, is:

ρ∞1 (3CAT) =
(
0, sin2 θ, cos2 θ

)
+O(

1

r2
)(1, 1, 1) , r � 1, (37)

implying that, in this limit, the 1-quDit RDMs have in general lower ranks, exhibiting no entanglement for D = 2
and D = 3 for vertical (θ = π/2) and horizontal (θ = 0) directional limits.

In Figures 3a and 3b we represent contour plots of linear and von Neumann

L∞1 =
D

D − 1
(1− tr((ρ∞1 )2)), S∞1 = −tr(ρ∞1 logD ρ

∞
1 ) (38)

entanglement entropies in the limit N →∞ of the one-qutrit RDM, ρ∞1 (3CAT), of the 3CAT in Eq. (26), as a function
of the phase-space CP 2 coordinates (α, β) [actually, they just depend on the moduli]. Both entropies are again
normalized to 1. They attain their maximum value of 1 at the phase-space point (α, β) = (1, 1) corresponding to
a maximally mixed RDM. This behavior of the entropies, and therefore of entanglement (together with squeezing,
see [8]) parallels that of the standard harmonic oscillator cat states where the maximun entanglement and squeezing
takes place for relatively small values of the coherent state parameter [16]. The diference here in the D = 3 case
is that for large values of the parameter there can still be entanglement (and squeezing), dependent on the angle of
the directional limit (see eq. (37)). These Figures also show (in magenta color) the values of the entropies along the
stationary curve (α(λ), β(λ)) in Eq. (49), that we already mentioned before the Eq. (34). For high interactions λ→∞
we have (α(λ), β(λ))→ (1, 1), which means that highly coupled quDits are maximally entangled in a cat-like ground
state (we shall come back again to this discussion later in Section V). In Figures 3c and 3d the asymptotic behavior
for large |α| and β| is shown, where contours of linear and von Neumann entropies coincide with the (isentropic) lines
θ =constant, according to the asymptotic behavior of ρ∞1 (3CAT) in (37).

In Figure 4a we plot the information diagram for the family of 1-qutrit RDMs for a 3CAT (31) in the limit N →∞,
for all values of |α| and |β|. It can be seen that they fill completely the region ∆. Also, the stationary curve (49) is

shown, starting at the origin (zero entropy and therefore no entanglement), moving on the curve ρ
(1)
min and through

the region ∆2, to finish at the maximally mixed state, indicating that this state is maximally entangled.
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FIG. 3: Contour plots of (a) linear L∞1 and (b) von Neumann S∞1 entanglement entropies of the one-qutrit RDM
ρ∞1 (3CAT) of a U(3) Schrödinger cat (26) in the limit of an infinite number of qutrits, as a function of the phase-space
coordinates α, β (they just depend on moduli). The asymptotic behaviour of (c) L∞1 and (d) S∞1 for large values of

|α| and |β| displays isentropic curves θ =constant, according to the expression of ρ∞2 (3CAT) in Eq. (37).
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FIG. 4: Information diagram for the family of (a) 1-qutrit RDMs and (b) 2-qutrit RDMs for 3CAT in the limit
N →∞, for all values of |α| and |β|. See the main text for explanation.

B. Two-quDit reduced density matrices

As for the one-quDit RDM, the linear and von Neumann entropies for a two-quDit RDM of a DSCS |z〉 are zero, i.e.
there is no pairwise quDit entanglement in a DSCS. The situation changes for parity adapted DSCSs or “Schrödinger
cat states” |DCAT〉 like the ones in (25)-(26), where the two-quDit RDM ρ2(DCAT) in (29) has the expression (once
diagonalized) for D = 2 and D = 3 and N particles:
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ρN2 (2CAT) =
1

2LN+N (2CAT)2
(
(1 + |α|4)

(
LN−2+ + LN−2−

)
, 2|α|2

(
LN−2+ − LN−2−

)
, 0, 0

)
,

ρN2 (3CAT) =
1

4LN++N (3CAT)2
(
(1 + |α|4 + |β|4)

(
LN−2++ + LN−2−+ + LN−2+− + LN−2−−

)
,

2|α|2
(
LN−2++ − LN−2−+ + LN−2+− − LN−2−−

)
, (39)

2|β|2
(
LN−2++ + LN−2−+ − LN−2+− − LN−2−−

)
,

2 |α|2|β|2
(
LN−2++ − LN−2−+ − LN−2+− + LN−2−−

)
, 0, 0, 0, 0, 0

)

As it is deduced from the previous expressions, the 2-qudit RDM has rank 1 for α = 0 in the case of the 2CAT, or
α = β = 0 for the case of the 3CAT. For α 6= 0 (or β 6= 0 for the 3CAT) the rank is two, and for α 6= 0 and β 6= 0 the
rank of ρ2(3CAT) is 4.

As for the one-quDit RDM case, it is convenient to consider the thermodynamic limit N → ∞ to obtain simpler
expressions without losing important qualitative information:

ρ∞2 (2CAT) =
1

(1 + |α|2)
2

(
1 + |α|4, 2|α|2, 0, 0

)
, (40)

ρ∞2 (3CAT) =
1

(1 + |α|2 + |β|2)
2

(
1 + |α|4 + |β|4, 2|α|2, 2|β|2, 2|α|2|β|2, 0, 0, 0, 0, 0

)
.

The high coupling limit, |α| → 1 or (|α|, |β|)→ (1, 1), discussed before (34) for 1-quDit RDMs, looks like this now for
2-quDit RDMs:

lim
|α|→1

ρ∞2 (2CAT) =

(
1

2
,

1

2
, 0, 0

)
, (41)

lim
(|α|,|β|)→(1,1)

ρ∞2 (3CAT) =

(
1

3
,

2

9
,

2

9
,

2

9
, 0, 0, 0, 0, 0

)
, (42)

thus implying that, in the high coupling limit, the 2-qubit (D = 2) RDM is maximally mixed of rank 2, but it doesn’t
attain the maximum value of the entropies. For D = 3, the 2-qutrit RDM is not even maximally mixed of rank 4 (in

fact it lies on the curve ρ̄
(3)
min), although the value of the entropies is very similar to that of ρ4 (see Figure 1).

For D = 2 the asymptotic behaviour of ρ∞2 for large |α| is:

ρ∞2 (2CAT) = (0, 1, 0, 0) +O(
1

|α|2 )(1, 1, 0, 0), |α| � 1, (43)

while for D = 3 the limit (|α|, |β|) → (∞,∞) does not exist. The asymptotic behavior, for large r, along the lines
|α| = r cos θ, |β| = r sin θ, is:

ρ∞2 (3CAT) =

(
1

4
(cos(4θ) + 3), 0, 0, 2 cos2(θ) sin2(θ), 0, 0, 0, 0, 0

)

+O(
1

r2
)(1, 1, 1, 1, 0, 0, 0, 0, 0), r � 1, , (44)

implying that, in this limit, the 2-quDit RDMs have in general lower ranks, exhibiting no pairwise entanglement for
D = 2 and D = 3 for vertical (θ = π/2) and horizontal (θ = 0) directional limits.

In Figure 5a-5b, we represent contour plots of normalized linear and von Neumann

L∞2 =
D2

D2 − 1
(1− tr((ρ∞2 )2)), S∞2 = −tr(ρ∞2 logD2 ρ∞2 ), (45)

pairwise entanglement entropies in the thermodynamic limit N → ∞ for the two-qutrit RDM, ρ∞2 (3CAT), of a U(3)
Schrödinger cat (26), as a function of the phase-space CP 2 complex coordinates (α, β) [they just depend on the
moduli]. As for the one-qutrit case, they attain their maximum value at the phase-space point (α, β) = (1, 1) (“high
coupling limit”); however, unlike the one-qutrit case, pairwise entanglement entropies do not attain the maximum
value of 1 at this point, but L2 = 5/6 ' 0.833 and S2 ' 0.623 for large N . As already commented, variational
(parity adapted spin coherent) approximations to the ground state of the LMG 3-level atom model [discussed later
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FIG. 5: Contour plots of (a) linear L∞2 and (b) von Neumann S∞2 entanglement entropies of the two-qutrit RDM
ρ2(3CAT) of a U(3) Schrödinger cat (26) for N →∞, as a function of the phase-space coordinates α, β (they just

depend on moduli). The meaning of the magenta curve is the same as in the Figure 3. The asymptotic behaviour of
(c) L∞2 and (d) S∞2 for large values of |α| and |β| displays isentropic curves θ =constant, according to the expression

of ρ∞2 (3CAT) in Eq. (44).

in Section V] recover this maximum entanglement point (α, β) = (1, 1) at high interactions λ → ∞, as can be seen
in the already discussed stationary curve (49). In Figures 5c and 5d, the asymptotic behavior for large |α| and β| is
shown, where contours of linear and von Neumann entropies coincide with the lines θ =constant, according to the
asymptotic behavior of ρ∞2 (3CAT) in (44).

We also plot in Figure 4b the information diagram for the 2-qutrit RDM of the 3CAT in the thermodynamic limit
N →∞. It is clear that the ∆ region is not completely filled; only the subregions ∆2 and ∆3 are partially filled, the
reason being that ρ2(3CAT) has rank 1, 2 or 4. The stationary curve (α0(λ), β0(λ)) in Eq. (49) is also shown, with a
behaviour similar to the case of the 1-qutrit RDM, with the difference that it ends near the maximally mixed RDM
of rank 4, more precisely, at the point

(
1
3 ,

2
9 ,

2
9 ,

2
9 , 0, 0, 0, 0, 0

)
. It is important to notice that the stationary curve is

most of the time at the inferior boundary of the set of 2-qutrit RDMs. This means that, from all 2-qutrit RDMs of
the 3CAT with a given linear entropy, it has the minimum allowed value of von Neumann entropy. We conjecture that
this is due to the variational character of the ground state and the universality of the extremal states lying at the
boundaries of the region ∆.

V. INFORMATION DIAGRAMS AND QUANTUM PHASE TRANSITIONS IN
LIPKIN-MESHKOV-GLICK MODELS OF 3-LEVEL IDENTICAL ATOMS

Now we apply the previous results to the study of QPTs of D-level Lipkin-Meshkov-Glick atom models. The standard
case of D = 2 level atoms has already been studied in the literature (see e.g. [17]). We shall restrict ourselves to D = 3
level atoms for practical calculations, although the procedure can be easily extended to general D. In particular, we
propose the following LMG-type Hamiltonian

H =
ε

N
(S33 − S11)− λ

N(N − 1)

3∑

i 6=j=1

S2
ij , (46)
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written in terms of collective U(3)-spin operators Sij . Hamiltonians of this kind have already been proposed in the
literature [18–22] [see also [23] for the role of mixed symmetry sectors in QPTs of multi-quDit LMG systems]. We
place levels symmetrically about i = 2, with intensive energy splitting per particle ε/N . For simplicity, we consider
equal interactions, with coupling constant λ, for atoms in different levels, and vanishing interactions for atoms in the
same level (i.e., we discard interactions of the form SijSji). Therefore, H is invariant under parity transformations
Πj in (19), since the interaction term scatters pairs of particles conserving the parity of the population nj in each
level j = 1, . . . , D. Energy levels have good parity, the ground state being an even state. We divide the two-body
interaction in (46) by the number of atom pairs N(N − 1) to make H an intensive quantity, since we are interested
in the thermodynamic limit N →∞. We shall see that parity symmetry is spontaneously broken in this limit.

As already pointed long ago by Gilmore and coworkers [10, 24], coherent states constitute in general a powerful tool
for rigorously studying the ground state and critical properties of some physical systems in the thermodynamic limit.
The energy surface associated to a Hamiltonian density H is defined in general as the coherent state expectation value
of the Hamiltonian density in the thermodynamic limit. In our case, the energy surface acquires the following form

E(α,β)(ε, λ) = lim
N→∞

〈z|H|z〉 = ε
ββ̄ − 1

αᾱ+ ββ̄ + 1
− λα

2
(
β̄2 + 1

)
+
(
β2 + 1

)
ᾱ2 + β̄2 + β2

(
αᾱ+ ββ̄ + 1

)2 , (47)

where we have used the parametrization z = (α, β), as in eq. (26), for U(3)-spin coherent states |z〉. Note that this
energy surface is invariant under α → −α and β → −β, which is a consequence of the inherent parity symmetry of
the Hamiltonian (46) and the transformation (20) of |z〉 under parity.

The minimum energy

E0(ε, λ) = minα,β∈CE(α,β)(ε, λ) (48)

is attained at the stationary (real) phase-space values α±0 = ±α0 and β±0 = ±β0 with

α0(ε, λ) =





0, 0 ≤ λ ≤ ε
2 ,√

2λ−ε
2λ+ε ,

ε
2 ≤ λ ≤ 3ε

2 ,√
2λ

2λ+3ε , λ ≥ 3ε
2 ,

β0(ε, λ) =

{
0, 0 ≤ λ ≤ 3ε

2 ,√
2λ−3ε
2λ+3ε , λ ≥ 3ε

2 .
(49)

In Figures 3 and 5 we plotted (in magenta color) the stationary-point curve (α0(λ), β0(λ)) on top of one- and two-
qutrit entanglement entropies, noting that (α0(λ), β0(λ))→ (1, 1) for λ→∞ (high interactions). Inserting (49) into
(47) gives the ground state energy density at the thermodynamic limit

E0(ε, λ) =





−ε, 0 ≤ λ ≤ ε
2 , (I)

− (2λ+ε)2

8λ , ε
2 ≤ λ ≤ 3ε

2 , (II)

− 4λ2+3ε2

6λ , λ ≥ 3ε
2 . (III)

(50)

Here we clearly distinguish three different phases: I, II and III, and two second-order QPTs at λ
(0)
I↔II = ε/2 and

λ
(0)
II↔III = 3ε/2, respectively, where ∂2E0(ε,λ)

∂λ2 are discontinuous. In the stationary (magenta) curve (α0(λ), β0(λ))
shown in Figures 3a, 3b, 4, 5a, 5b, and 6, the phase I corresponds to the origin (α0, β0) = (0, 0) (square point), phase
II corresponds to the horizontal part β0 = 0 up to the star point, and phase III corresponds to β0 6= 0.

Note that the ground state is fourfold degenerated in the thermodynamic limit since the four U(3)-spin coherent
states |z±±0 〉 = | ± α0,±β0〉 have the same energy density E0. These four coherent states are related by parity
transformations and, therefore, parity symmetry is spontaneously broken in the thermodynamic limit. In order to
have good variational states for finite N , to compare with numerical calculations, we have two possibilities: 1) either we
use the 3CAT (26) as an ansatz for the ground state, minimizing 〈3CAT|H|3CAT〉, or 2) we restore the parity symmetry
of the coherent state |α0, β0〉 for finite N by projecting on the even parity sector. Although the first possibility offers
a more accurate variational approximation to the ground state, it entails a more tedious numerical minimization than
the one already obtained in (48) for N →∞. Therefore, we shall use the second possibility which, despite being less
accurate, it is straightforward and good enough for our purposes. That is, we shall use the 3CAT (26), evaluated at
α = α0 and β = β0, as a variational approximation |3CAT0〉 to the numerical (exact) ground state |ψ0〉 for finite N .

Let us apply the tools developed in previous sections to this model and draw the main conclusions. Firstly, in Figure
6a and 6b, we have added to the information diagrams for 1 and 2 qutrits RDMs already shown in Figure 4, the



13

curves (as a function of λ) of the numerically computed ground states of the 3-level LMG model for different values
on N (in green colors), together with the already shown analytical variational curve (in magenta) (α0(λ), β0(λ)) for
N →∞. We can conclude that they do not lie in the inferior part of the region ∆, as the variational one, but as N
grows the numerical curves approach the analytical one.
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FIG. 6: Information diagram for the family of (a) 1-qutrit RDMs and (b) 2-qutrit RDMs for 3CAT in the limit
N →∞, for all values of |α| and |β|, where the curves of numerical RDMs, as a function of λ for different values of
N , has been added, as well as the analytical stationary curve for N →∞ (in magenta). Observe that, as N grows,

the numerical (green) curves approach the (magenta) analytical one.

Secondly, suggested by the results about the rank of 1 and 2 quDits RDMs of Section IV, we plot in Figure 7 the
rank of the RDMs as a function of λ for both variational (N →∞) and numerical (N = 50) solutions for the ground

state of Hamiltonian (46). The QPT critical points λ
(0)
I↔II = ε/2 and λ

(0)
II↔III = 3ε/2, are clearly marked in the case of

the variational curve, with a jump from rank 1 to rank 2 at λ = ε/2 and another jump from rank 2 to rank 4 (3 in the
case of 1 qutrit RDMs) at λ = 3ε/2. In the case of the numerical curve, where a small threshold has been applied to
the eigenvalues to suppress spurious oscillations, the first jump continues to be at λ ' 0.5, whereas the second jump
takes place at slightly larges values of λ = 1.5 (in ε = 1 units). This behaviour is the same as with other precursors
of QPTs, like susceptibility of fidelity in the 3-level LMG model [23].
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FIG. 7: Plot of rank of 1-quDit and 2-quDit RDMs along the stationary curve both for analytical (variational,
N →∞) and numerical (N = 50) solution of the 3-level LMG model as a function of λ (in ε = 1 units).

From this, it is clear that the rank of the RDMs is a good precursor of a QPT, with the advantage of being a
discrete parameter.
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VI. CONCLUSIONS

In this paper we have used an information-theoretic tool like the information diagrams to extract qualitative
information about the quDit entanglement (and rank) of parity adapted U(D)-spin coherent states (DCATs) using
one- and two-quDit reduced density matrices, and we have applied it to the study of atom entanglement in the ground
state (both variational, in the N →∞, and numerical, with finite N) of the 3-level atom LMG model.

We have shown how the allowed region ∆ of information diagrams is completely filled in the case of one-qutrit
RDMs, while only the lower part of it is partially filled in the case of two-qutrits RDMs. This indicates that the
maximum pairwise (2-qutrit) entanglement attained in a 3CAT state is smaller that the maximum one corresponding
to a maximally mixed RDM or order 32. We have already seen that this maximally entangled 3CAT is attained for the
values (α, β) = (1, 1) (or α = 1 for D = 2), and these are precisely the values obtained for the variational analytical
approximation to the ground state of a 3-level LMG model in the high coupling regime.

In addition, we have shown that the variational curve (α0(λ), β0(λ)) practically all the time lies in the inferior
part of the information diagram subregion filled by all 3CAT states. We conjecture that this is due to the variational
character of these states (minimum of the energy surface (47)) and the universality character of the extremal states
lying at the boundary of the region ∆.

Information diagrams also provide qualitative information about the rank of the RDMs. This has motivated us to
study with detail their rank for different values of the parameters α and β of 3CAT states (see Section IV), indicating
that the one- and two-quDit RDMs have in general lower ranks than the maximal rank allowed by the corresponding
dimension. Focusing on the variational analytic curve (α0(λ), β0(λ)), and in the numerical solution for the ground
state for finite N , Figure 7 shows that the rank of one- and two-qutrit RDMs has jumps precisely at the points where
QPTs occurs (or near these values in the numerical finite N case). Therefore the rank can be used as a discrete
precursor of a QPT in the LMG model, but this conclusion can be probably extended to other critical models.

All these results motivate us to further study the application of information diagrams and rank of RDMs to other
parity adapted U(D)-spin coherent states, but with different parity character. Here we have restricted ourselves to
the even case, but remember that there are 2D−1 different parity adapted U(D)-spin coherent states, the even one
just being a particular case. For example, odd parity cat states (for D = 2) are known to be well suited as variational
states to approximate excited states in, for example, the Dicke model of superradiance [25].

Since the rank of a RDM is equal to the Schmidt number, by the Schmidt decomposition theorem (see, for instance
[26]), it would be interesting to study with detail the Schmidt decomposition of parity adapted U(D)-spin coherent
states (not only of the even one, but for all 2D−1 parity invariant states) when we extract 1, 2, or in general M quDits,
and find the basis realizing the Schmidt decomposition in the larger factor.
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ABSTRACT

We study phase-space properties of critical, parity symmetric, N -quDit systems undergoing a
quantum phase transition (QPT) in the thermodynamic N → ∞ limit. The D = 3 level (qutrit)
Lipkin-Meshkov-Glick (LMG) model is eventually examined as a particular example. For this pur-
pose, we consider U(D)-spin coherent states (DSCS), generalizing the standard D = 2 atomic
coherent states, to define the coherent state representation Qψ (Husimi function) of a symmetric
N -quDit state |ψ⟩ in the phase space CPD−1 (complex projective manifold). DSCS are good vari-
ational aproximations to the ground state of a N -quDit system, specially in the N → ∞ limit,
where the discrete parity symmetry ZD−1

2 is spontaneously broken. For finite N , parity can be re-
stored by projecting DSCS onto 2D−1 different parity invariant subspaces, which define generalized
“Schrödinger cat states” reproducing quite faithfully low-lying Hamiltonian eigenstates obtained by
numerical diagonalization. Precursors of the QPT are then visualized for finite N by plotting the
Husimi function of these parity projected DSCS in phase space, together with their Husimi moments
and Wehrl entropy, in the neighborhood of the critical points. These are good localization measures
and markers of the QPT.

I. INTRODUCTION

Information theoretic and statistical measures together
with phase space methods have proved to be useful in
the description and characterization of quantum phase
transitions (QPTs). For example, in the traditional An-
derson metal-insulator transition [1–3], where Hamilto-
nian eigenfunctions underlie strong fluctuations. Phase
space methods are a fundamental tool in quantum optics
[4], providing connections between quantum mechanics
(in the so-called Wigner/Weyl/Moyal scheme [5]) and
classical statistical mechanics. This connection is of-
ten established through (quasi-classical, minimum uncer-
tainty) coherent states (CSs). The best known CSs are
the canonical (harmonic oscillator) CSs introduced long
time ago by Schrödinger [6] and later used by Glauber to

∗ albmayrey97@ugr.es
† jguerrer@ujaen.es
‡ calixto@ugr.es

study the radiation field [7]. Canonical CSs are linked to
the Heisenberg-Weyl group (with the typical Lie algebra
canonical commutation relations [q, p] = iℏ) and can be
seen as a group action/displacement on the vacuum. Re-
placing the Heisenberg-Weyl group by the rotation group
SU(2) (with angular momentum commutation relations
[Jx, Jy] = iℏJz and cyclic permutations), we get the so
called spin-j, atomic or Bloch CSs [8, 9]. From this per-
spective, generalizations to arbitrary (finite-dimensional)
Lie groups G provide further families of CSs (we ad-
dress the reader to the standard reference [10]). In par-
ticular, this article is involved with the generalization
from U(2) to U(D), which is in the heart of the gen-
eralization from qubits (physically represented by two-
level/component atom/particle quantum systems) to qu-
Dits (D-level quantum systems).

Canonical CSs provide complex analytic (Bargmann,
phase space) representations of quantum states and oper-
ators in quantum mechanics [11]. Among all phase-space
quasi-probability distribution functions (playing a role
similar to genuine probability distributions of statistical
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mechanics), the more popular are Wigner W , Husimi Q
and Glauber-Sudarshan P (also called Berezin’s covari-
ant and contravariant symbols, respectively) functions,
usually associated with the symmetric, antinormal and
normal ordering of position and momentum operators,
respectively [4, 12, 13]. Although Wigner function is
perhaps more popular, Husimi function can be more eas-
ily extended to general phase spaces associated to coset
spaces X = G/H of a symmetry Lie group G for an
isotropy subgroup H ⊂ G. This will be our case, with
G = U(D) the unitary group of degree D, and phase
space X = U(D)/U(D − 1) = CPD−1 the complex pro-
jective space generalizing the Bloch sphere S2 = CP 1

for D = 2. This case is linked to the totally symmetric
(bosonic) representation of U(D), to which we are going
to restrict ourselves here (see [14] for other phase spaces
like the flag manifold U(D)/U(1)D linked to more general
fermion mixtures and Young tableaux).

Given a CS system {|z⟩, z ∈ X}, the Husimi function
of a density matrix ρ is the phase spaceX valued function
Qρ(z) = ⟨z|ρ|z⟩. In an attempt to build bridges between
classical and quantum entropies, and even though Qρ(z)
is only a semiclassical quasi-probability distribution func-
tion, a semiclassical Shannon-like entropy was defined
by Wehrl [15] as SW (ρ) = −

∫
Qρ(z) logQρ(z)dµX(z),

with dµX(z) a G-invariant measure on the phase space
X. Wehrl’s entropy measures the area occupied by the
quantum state ρ in phase space; actually, moments Mν

of Qρ (and their associated Rényi-Wehrl entropies [16–
18]), like the so called inverse participation ratio M2, also
measure the localization of ρ in phase space and are eas-
ier to compute. Some early works where these measures
where studied are [19, 20]. They have also been employed
recently in other systems [21–25]

For a critical quantum system described by a Hamilto-
nian H(λ) depending on a control parameter λ, abrupt
changes in the Wehrl entropy of the ground state (as
a function of λ) usually provide good indicators of the
existence of a quantum phase transition (QPT) around
a critical point λc, even for a finite number N of par-
ticles. Moreover, Wehrl entropy can be also used to
identify the order of a QPT [26], as an alternative defi-
nition to the standard Ehrenfest classification based on
discontinuities of the derivatives of the ground state en-
ergy density with respect to λ in the thermodynamic
limit N → ∞. Husimi function and its Wehrl entropy
have already given a good phase space description of
interesting quantum critical systems like Bose-Einstein
condensates [27], the Dicke model of superradiance for
two-level [28, 29] and three-level [30] atoms, the U(3) vi-
bron model of molecular benders [31], the U(4) bilayer
quantum Hall system [32], the U(2) (two-level) ubiqui-
tous Lipkin-Meshkov-Glick (LMG) model [33–35], etc.
Here we want to extend the scope of applicability of these
phase space methods to symmetric multi-quDit systems
(like D-level atom models) described by a U(D) invari-
ant LMG model. In addition to the obvious technical
complication, U(D) provides some novelties and a much

richer structure that is not possible to grasp starting from
U(2). In particular, the standard discrete parity symme-
try group Z2 = {0, 1}, which is spontaneously broken in
the thermodynamic limit for second order QPTs ofD = 2
level systems, now becomes ZD−1

2 and provides more case
studies of Schrödinger cat states than the standard even
and odd ones of the literature [36–39], in the sense of
quantum superpositions of weakly overlapping quasiclas-
sical (coherent) states, the most symmetric one mimick-
ing the structure of the ground state in the highly inter-
acting quantum phase (see later in Section V and [40]
for previous studies on Dicke models of three-level atoms
interacting with one-mode radiation field).

The organization of the article is as follows. In Sec.
II we introduce the D-level LMG model and particular-
ize it for the cases D = 2 (qubits) and D = 3 (qutrits).
A brief discussion about the Fock basis and the discrete
parity symmetry ZD−1

2 is also included. In Sec. III we
define U(D)-spin coherent states |z⟩ (DSCSs for brevity)
labelled by points z ∈ CPD−1 in phase space; we also
compute the DSCS matrix elements ⟨z|Sij |z′⟩ of U(D)-
spin operators Sij , i, j = 1, . . . , D, and we project DSCSs
|z⟩ into the 2D−1 invariant subspaces c of the parity sym-
metry group ZD−1

2 , introducing the notion of “c-parity
U(D) Schrödinger cat states” |z⟩c (called c-DCAT states,
for short). Then, in Sec. IV, the traditional Husimi func-
tion Qψ(z) = |⟨z|ψ⟩|2 of a quantum state |ψ⟩ in the stan-
dard phase space C ∋ z (for canonical, harmonic oscil-
lator or Heisenberg-Weyl coherent states) is extended to
the phase space CPD−1 ∋ z using DSCSs |z⟩ and a con-
venient Haar integration measure, which allows to define
ν-moments of the Husimi function and the Wehrl entropy
as usefull localization measures in phase space. These
measures are computed in the case of DSCS and c-DCAT
states, including their thermodynamic limit N → ∞.
The Appendices B and C show in more detail some of
the long calculations of this section. In Sec. V we fo-
cus on the D = 3 level LMG Hamiltonian for symmetric
qutrits and the minimization of its energy surface in the
limit N → ∞ using DSCSs as variational states. The
degeneration of the ground state in the thermodynamic
limit and the QPTs make their apparition here, but are
not discussed in depth until the next two sections. In Sec.
VI, the variational ground state obtained in the previous
section is projected on parity c subspaces and the corre-
sponding c-DCATs are compared to the low-lying Hamil-
tonian eigenstates of the LMG model obtained by numer-
ical diagonalization for finite N . This procedure (projec-
tion after energy minimization) provides a fairly good
variational aproximation to the ground state in terms of
the completely even, c = 0, DCAT state, but not so pre-
cise for first excited states in terms of DCAT states of
other parities c, for which we try a proper overlap max-
imization (fidelity) procedure. In Sec. VII, the Husimi
function and the localization measures of the Sec. IV
are employed to visualize how the variational and the
numerical eigenstates split into Gaussian-like wave pack-
ets throughout the three different quantum phases of the
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D = 3 level LMG model. The Inverse Participation Ra-
tio (Husimi second moment) and the Wehrl entropy are
also used to quantify the overlap of these packets, and
hence the localization/spread of the low-lying Hamilto-
nian eigenstates in phase space is compared to that of
DSCS and c-DCAT variational states. Finally, in Sec.
VIII we present the main conclusions of this work.

II. D-LEVEL LMG MODEL HAMILTONIAN
AND PARITY SYMMETRY

The original (D = 2 levels/modes) LMG schematic
shell model appeared in nuclear physics [41–43] to de-
scribe the quantum phase transition from spherical to
deformed shapes in nuclei. Since then, it is an ubiquitous
model that appears in a multitude of physical contexts.
For example, the Hamiltonian of an anisotropic XY Ising
model, with µ = 1, . . . , N lattice sites, in an external
transverse magnetic field ε with infinite-range constant
interactions

HXY = ε
N∑

µ=1

σ(µ)
z +

∑

µ<ν

λxσ
(µ)
x σ(ν)

x +
∑

µ<ν

λyσ
(µ)
y σ(ν)

y , (1)

[σ(µ)
x,y,z denote the Pauli matrices at site µ] adopts the

form of the two-level LMG schematic shell model Hamil-
tonian [41, 42]

H2 = εJz +
λ1
2
(J2

+ + J2
−) +

λ2
2
(J+J− + J−J+) (2)

when written in terms of the SU(2) angular momentum
collective operators

J⃗ = (Jx, Jy, Jz) =

N∑

µ=1

(σ(µ)
x , σ(µ)

y , σ(µ)
z ), (3)

and J± = (Jx ± iJy)/2, as usual. We could also think
of a model describing a system of N interacting two-
level identical atoms (symmetric “qubits”). Long-range
constant interactions make this Hamiltonian translation
invariant, that is, it is symmetric under permutation of
lattice sites µ ↔ ν (or permutation of atoms/qubits).
Therefore, the Hamiltonian does not couple different an-
gular momentum sectors j = N/2, N/2 − 1, . . . , 1/2 or
0 (for odd or even N , respectively) and it is a common
practice to restrict oneself to the largest (fully symmetric)
sector j = N/2 to which the ground state of the system
belongs. This restriction reduces the size of the Hamilto-
nian matrix to be diagonalized from 2N to N+1 = 2j+1
and assumes that D = 2-level atoms/qubits are indistin-
guishable. For this case, it is convenient to use a Jordan-
Schwinger realization of angular momentum operators in
terms of bilinear products of bosonic creation a†i and an-
nihilation aj operators as

Sij = a†iaj , i, j = 0, . . . , D − 1, (4)

where we are already extending to arbitraryD-level atom
systems with U(D) symmetry. For example, forD = 2 we
recover J+ = S10, J− = S01, Jz = 1

2 (S11 − S00) and the
conserved total numberN of particles C1 = S00+S11 [the
linear Casimir operator of U(2)]. U(D)-spin operators Sij
fulfill the commutation relations

[Sij , Skl] = δjkSil − δilSkj . (5)

The LMG Hamiltonian H2 in (2) for D = 2 level systems
is generalized to arbitrary D levels as

HD =

D−1∑

i=0

εi(Si+1,i+1 − Sii) +

D−1∑

i ̸=j=0

(λ1S
2
ij + λ2SijSji),

(6)
where εi now denotes the energy gap between levels i and
i+ 1. The λ1 interaction term annihilates pairs of parti-
cles in one level and creates pairs in other level, whereas
the λ2 term scatters one particle from i → j while an-
other is scattered back from j → i. The total number
of particles N =

∑D−1
i=0 Sii (the linear Casimir operator

of U(D)) is conserved. For the sake of simplicity, we
shall consider λ2 = 0 and εi = ε (same energy spacing
between levels). Since we are interested in the thermody-
namic limit N → ∞, we shall also renormalize one-body
interactions ε → ϵ/N by the total number N of parti-
cles, and two-body interactions λ2 → −λ/[N(N − 1)] by
the total number N(N − 1) of pairs, so that the final
Hamiltonian density for us becomes

H =
ϵ

N
(SD−1,D−1 − S00)−

λ

N(N − 1)

D−1∑

i ̸=j=0

S2
ij . (7)

We shall measure energy in ϵ > 0 units, and discuss the
energy spectrum and the phase diagram in terms of the
control parameter λ (see later in Section V). There are
already some studies in the literature of this Hamiltonian
for D = 3 level atoms and its chaotic behavior (see e.g.
[14, 44–49]).

We shall consider indistinguishable atoms, so that the
Hilbert space dimension reduces from DN to

(
N+D−1
D−1

)
,

the dimension of the fully symmetric irreducible repre-
sentation of U(D) (which coincides with the total num-
ber of compositions of N into D non-negative integers
when order does not matter). This restriction consid-
erably reduces the computational complexity for large
number of particles N (see [14] for the role played by
other mixed permutation symmetry sectors in the ther-
modynamic limit N → ∞). Therefore, the Hilbert space
is spanned by the Bose-Einstein-Fock basis states (|⃗0⟩
denotes the Fock vacuum)

|n⃗⟩ = |n0, . . . , nD−1⟩ =
(a†0)

n0 . . . (a†D−1)
nD−1

√
n0! . . . nD−1!

|⃗0⟩, (8)

where ni denotes the occupancy number of level i (the
eigenvalue of Sii), with the restriction n0 + · · ·+nD−1 =
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N (the total number of atoms/quDits). In the low-
interaction regime λ ≪ 1, the ground state of (7) is a
Bose-Einstein condensate 1√

N !
(a†0)

N |⃗0⟩ of N atoms in the
i = 0 level, which we shall take as a reference level from
now on.

These Fock states are the natural generalization of an-
gular momentum j = N/2 Dicke states |j,m⟩ with an-
gular momentum third component m = −j, . . . , j; more
explicitly

|j,m⟩ = |n0 = j +m,n1 = j −m⟩, (9)

so that m = (n0 −n1)/2 (the eigenvalue of Jz = 1
2 (S11 −

S00)) represents the population imbalance between levels
i = 0 and i = 1. The expansion of a general symmetric
N -quDit state ψ in the Fock basis will be written as

|ψ⟩ =
∑

∥n⃗∥1=N

cn⃗|n⃗⟩, (10)

where the sum is restricted to ∥n⃗∥1 = n0 + · · ·+ nD−1 =
N . Collective U(D)-spin operators (4) matrix elements
in the Fock basis are easily computed as

⟨m⃗|Sii|n⃗⟩ = niδm⃗,n⃗ , (11)

⟨m⃗|Sij |n⃗⟩ =
√
(ni + 1)njδmi,ni+1δmj ,nj−1

∏

k ̸=i̸=j
δmk,nk

.

At this point, we would like to highlight the existence
of an interesting parity symmetry. Indeed, this symme-
try of the Hamiltonian has to do with the fact that the
interaction only scatters pairs of particles, thus conserv-
ing the parity Πj = exp(iπSjj), even (+) or odd (−), of
the population Sjj in each level j = 0, . . . , D − 1. Note
that Πj |n⃗⟩ = (−1)nj |n⃗⟩, and therefore we have the con-
straint Π0 . . .ΠD−1|n⃗⟩ = (−1)N |n⃗⟩ which allows to write
for example Π0 = (−1)NΠ1 . . .ΠD−1. Hence, this dis-
crete parity symmetry corresponds to the finite group
ZD−1
2 = Z2× D−1. . . ×Z2, with Z2 = {0, 1} the usual par-

ity group (the cyclic group of order 2). Consequently,
energy eigenstates have well defined parity under ZD−1

2 .
We will see later in Sec. V that low-lying Hamiltonian
eigenstates with different parities collapse in the thermo-
dynamicN → ∞ limit, giving rise to a degenerate ground
state as a consequence of a spontaneous breakdown of the
parity symmetry ZD−1

2 .
Let us denote by the binary string b = [b1, . . . , bD−1] ∈

{0, 1}D−1 one of the 2D−1 elements of the parity group
ZD−1
2 . There are 2D−1 parity invariant subspaces labeled

by the inequivalent group characters c = [c1, . . . , cD−1] ∈
{0, 1}D−1 of the Pontryagin dual group ẐD−1

2 ∼ ZD−1
2 .

The projectors onto these invariant subspaces of definite
parity c are given by

Πc = 21−D
∑

b∈{0,1}D−1

(−1)c·bΠb , (12)

with c · b = c1b1 + · · ·+ cD−1bD−1 and

Πb ≡ Πb11 . . .Π
bD−1

D−1 . (13)

Note that
∑

c∈{0,1}D−1

Πc = I , (14)

the identity I in the representation space. For example,
for D = 2 we have just Π0 = Πeven and Π1 = Πodd

the standard projectors on even and odd parities, with
I = Πeven + Πodd. For general D, we sometimes shall
single out the totally even 0 = [0, . . . , 0] and totally odd
1 = [1, . . . , 1] parity representations.

III. U(D)-SPIN COHERENT STATES AND
ADAPTATION TO PARITY

A. U(D)-spin coherent states

U(D)-spin coherent states (DSCSs for brevity) are de-
fined as a generalization of standard binominal (two-
mode) U(2)-spin coherent states to the multinomial (D-
mode) case as

|z⟩(N) =
1√
N !

(
a†0 + z1a

†
1 + · · ·+ zD−1a

†
D−1√

1 + |z1|2 + · · ·+ |zD−1|2

)N
|⃗0⟩,

(15)
so that they are labeled byD−1 complex numbers zj ∈ C
arranged in the column vector z = (z1, z2, . . . , zD−1)

t ∈
CD−1. Properly speaking, this really corresponds to a
certain patch of the complex projective manifold CPD−1,
which results when choosing i = 0 as a reference level;
see e.g. [50] for more information about other choices and
patches. DSCSs are also labeled by the total number of
particles N [also labelling a specific symmetric represen-
tation of U(D)], which will be omitted as superscript in
eq.(15) to simplify the notation, i.e. |z⟩ ≡ |z⟩(N).

DSCSs |z⟩ have the form of a Bose-Einstein conden-
sate of D modes, generalizing the spin U(2) (binomial)
coherent states of two modes introduced by [51] and [9]
long time ago. If we take i = 0 as a reference energy
level, then the state |z = 0⟩ would be the ground state,
whereas general |z⟩ could be seen as coherent excitations.
The coefficients cn⃗(z) of the expansion (10) of |ψ⟩ = |z⟩
in the Fock basis are simply

cn⃗(z) =

√
N !

∏D−1
i=0 ni!

∏D−1
i=1 zni

i

(1 + z†z)N/2
, (16)

where z†z = |z1|2 + · · · + |zD−1|2 denotes the standard
scalar product in CD−1.

In general, DSCSs are not orthogonal since the scalar
product

⟨z|z′⟩ = (1 + z†z′)N

(1 + z†z)N/2(1 + z′†z′)N/2
(17)

is not necessarily zero. However, they are a overcomplete
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set of states closing a resolution of the identity

1 =

∫

CD−1

|z⟩⟨z|dµ(z), (18)

dµ(z) =
(D − 1)!

πD−1

(
N +D − 1

N

)
d2z1 . . . d

2zD−1

(1 + z†z)D
,

with d2zi = dℜ(zi)dℑ(zi) the Lebesgue measure on C
and dµ(z) the Fubini-Study measure [16, 52] in the corre-
sponding complex projective space. This closure relation
of DSCSs will be important when discussing phase space
constructions.

B. Coherent state operator matrix elements

DSCS matrix elements of D-spin operators Sij are eas-
ily computed from (11) and (16) and they are simply

⟨z′|Sij |z⟩ = Nz̄′izj
(1 + z′†z)N−1

(1 + z′†z′)N/2(1 + z†z)N/2
, (19)

where we understand z0 = 1 = z′0. From here, DSCS
matrix elements of quadratic powers of D-spin operators
can be concisely written as

⟨z′|SijSkl|z⟩ = δjk⟨z′|Sil|z⟩ (20)

+
N − 1

N

⟨z′|Sij |z⟩⟨z′|Skl|z⟩
⟨z′|z⟩ .

Note that

lim
N→∞

⟨z|SijSkl|z⟩
⟨z|Sij |z⟩⟨z|Skl|z⟩

= 1, (21)

which means that quantum fluctuations are negligible in
the thermodynamic (classical) limit N → ∞. We shall
use these ingredients when computing energy surfaces in
Section V.

C. Parity adapted U(D)-spin coherent states

DSCSs are sometimes called “quasi-classical” states.
As we shall see in Section V, |z⟩ turns out to be a good
variational state, which reproduces the energy and wave
function of the ground state of multilevel LMG atom
models in the thermodynamic (classical) limit N → ∞.
However, DSCSs do not display the parity symmetry
ZD−1
2 of the LMG Hamiltonian, which is commented at

the end of Section II. This parity symmetry is sponta-
neously broken in the thermodynamic limit N → ∞ due
to the degeneration of the different parity states, but it
should be restored for finite N to properly reproduce the
ground (and excited) state wave function properties. A
parity adaptation of DSCSs can be done by applying pro-
jectors Πc in (12) on invariant subspaces of definite par-
ity c. The effect of level i population parity operations

Πi = exp(iπSii) on DSCSs reduces to

Πi|z⟩ = |(z1, . . . ,−zi, . . . , zD−1)⟩. (22)

That is, Πi just changes the sign of zi in |z⟩. Let us
denote by

|z⟩b = Πb|z⟩ = |((−1)b1z1, . . . , (−1)bD−1zD−1)⟩ ≡ |zb⟩,
(23)

with Πb in (13), and by

|z⟩c ≡ Πc|z⟩
N (z)c

=
21−D

N (z)c

∑

b∈{0,1}D−1

(−1)c·b|z⟩b, (24)

with Πc in (12), the normalized projection of |z⟩ onto the
parity c invariant subspace, with squared normalization
factor

N (z)2
c
= 21−D

∑
b
(−1)c·b(1 + z†zb)N

(1 + z†z)N
. (25)

We will write |z⟩b = |zb⟩ indistinctly, with zb =
((−1)b1z1, . . . , (−1)bD−1zD−1) as defined in the eq.(23).
The same as Πb and Πc denote different operators, do
not confuse |z⟩b with |z⟩c, which can be seen as the dual
Fourier (Walsh-Hadamard) transformed version of |z⟩b
with

χc(b) = (−1)c·b = (−1)c1b1+...cD−1bD−1 (26)

the characters of the parity group ZD−1
2 . The fac-

tors (−1)cibi are the analogue of the traditional dis-
crete Fourier transform characters χω(t) = eiωt, ω, t =
0, . . . ,M − 1 but for the additive group ZM of integers
modulo M (or the multiplicative group of M -th roots of
unity), with M = 2 in our case. The characters (26) have
some useful properties such as

∑

c∈{0,1}D−1

χc(b) = 2D−1δc,0 , (27)

χc(b) = χb(c) , (28)
χc(0) = 1 , (29)

χc(b)χc′(b) = χc+c′(b) . (30)

The coefficients cn⃗(z)c of the expansion (10) of |ψ⟩ =
|z⟩c in the Fock basis can be derived from (24) and (16),

cn⃗(z)c =
21−D

N (z)c

∑

b∈{0,1}D−1

(−1)(c+n)·bcn⃗(z)

=
1

N (z)c
cn⃗(z)δn,c , (31)

where n = [mod(n1, 2), . . . ,mod(nD−1, 2)] is retrieved
from n⃗ removing n0 and expressing it in modulo 2, and
δn,c = δmod(n1,2),c1 · · · δmod(nD−1,2),cD−1

is the product of
Kronecker deltas.
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For D = 2, the parity adaptations |z⟩[0] = |z⟩+ and
|z⟩[1] = |z⟩− of a U(2)-spin coherent state |z⟩ (for z =
(z1) = z) adopt the form

|z⟩± =
|z⟩ ± | − z⟩√

2± 2
(

1−|z|2
1+|z|2

)N , (32)

and are sometimes called even (+) and odd (−)
“Schrödinger cat states”, since they are a quantum su-
perposition of weakly-overlapping (or distinguishable, i.e.
⟨z| − z⟩ N→∞−−−−→ 0 for z ̸= 0) quasi-classical (minimal un-
certainty) coherent wave packets. Hence, we shall name
c-DCATs the c-parity adapted DSCSs |z⟩c in (24) from
now on.

Likewise, for D = 3 we have 2D−1 = 4 parity sectors,

c = [c1, c2] ∈
{
[0, 0], [0, 1], [1, 0], [1, 1]

}
, (33)

and therefore four Schrödinger cat states associated to
the DSCS |z⟩ = |(z1, z2)⟩ adopting the explicit form

|z⟩c =
1

4N (z)c

[
|(z1, z2)⟩ (34)

+(−1)c1 |(−z1, z2)⟩+ (−1)c2 |(z1,−z2)⟩
+(−1)c1+c2 |(−z1,−z2)⟩

]
,

with squared norm

N (z)2
c
=

1

4(1 + |z1|2 + |z2|2)N
[
(1 + |z1|2 + |z2|2)N

+ (−1)c1(1− |z1|2 + |z2|2)N

+ (−1)c2(1 + |z1|2 − |z2|2)N

+ (−1)c1+c2(1− |z1|2 − |z2|2)N
]
. (35)

Note that there are at most 2D−1 Schrödinger cat
states |z⟩c associated to a DSCS |z⟩ for arbitrary z.
However, we can have Πc|z⟩ = 0 and N (z)c = 0 when
ci = 1 and zi = 0, so that the c-DCAT in (24) contains
an indeterminate form of type “0/0”. For instance, in
the previous example with D = 2, the odd 2CAT state
becomes

lim
z→0

|z⟩− = lim
z→0

|z⟩ − | − z⟩√
2− 2

(
1−|z|2
1+|z|2

)N

= lim
z→0

(
2
√
N√

(N−1)!
z(a†0)

N−1a†1 +O(z2)

)
|⃗0⟩

2
√
Nz +O(z2)

= |n0=N−1, n1=1⟩. (36)

The result is then a Fock basis state (8), which codifies
the antisymmetry of the odd 2CAT |z⟩− by filling the
level i = 1 with n1 = 1 particle. This “transmutation” of
c-DCATs into Fock states for some zero components of

z will be visualized when plotting the Husimi function of
the c-DCATs in the next section. On the other hand, the
even 2CAT also transmutes to another Fock basis state
in the limit lim

z→0
|z⟩+ = |n0=N,n1=0⟩.

It is also relevant to calculate the zi → 0 limits in the
particular case of the c-3CATs, as they will be used to
study the variational aproach to the Hamiltonian eigen-
states of the LMG U(3) model in the different quantum
phases in Sec. VI. For D = 3, the 3CAT state (34) has
the following limits

lim
z1→0

|z⟩(N)
c

=(a†1)
c1 |(0, z2)⟩(N−c1)

[c2]
,

lim
z2→0

|z⟩(N)
c

=(a†2)
c2 |(z1, 0)⟩(N−c2)

[c1]
,

lim
z1,z2→0

|z⟩(N)
c

= |n0=N−c1−c2, n1=c1, n2=c2⟩ , (37)

where a†i are the bosonic creation operators (4), and

|(0, z2)⟩[c2] ∝Π[c2]|(0, z2)⟩
=2−1

∑

b2∈{0,1}
(−1)c2b2 |(0, (−1)b2z2)⟩ ,

|(z1, 0)⟩[c1] ∝Π[c1]|(z1, 0)⟩
=2−1

∑

b1∈{0,1}
(−1)c1b1 |((−1)b1z1, 0)⟩ , (38)

are reduced-parity projected U(3) CSs, according to (12)
and (22). In the expression (37), we have also recovered
the superscript |z⟩(N) notation of the DSCSs (15) to high-
light that, the c-3CAT |z⟩(N)

c = |(z1, z2)⟩(N)
[c1,c2]

of N par-

ticles, becomes a reduced [c2]-3CAT |(0, z2)⟩(N−c1)
[c2]

(resp.

[c1]-3CAT |(z1, 0)⟩(N−c2)
[c1]

) with N−c1 (resp. N−c2) par-
ticles after the limit z1 → 0 (resp. z2 → 0). The new
[ci]-3CATs after the limits have a smaller parity symme-
try group, as [c1] and [c2] belong to Z1

2 ̸= Z2
2, the original

3CAT parity group ZD−1
2 for D = 3. Despite the states

in eq.(38) have a similar structure to the 2CATs in (32),
they are actually Z1

2-parity adapted U(3)-spin CSs, as
they belong to a 3-level Fock space. Furthermore, they
have a similar structure to the photon-added CSs, which
are defined as a creation operator acting on a canoni-
cal CS [53], but for the U(3)-spin CSs in our case. The
photon-added CSs has also been extended to SU(2) [54]
and SU(1,1) [55]. As these states have only been stud-
ied for the Heisenberg-Weyl group, and for SU(2) [54]
and SU(1,1) [55], the generalization to SU(D) presents a
novel research topic [56].

The zi → 0 limits in the general c and D cases of
a c-DCAT are not straightforward to compute analyti-
cally (see [56]), thus, the Appendix A is devoted to show
in detail these calculations. However, it is necessary to
introduce the following limit and notation to progress
in our discussion. The zero limit zi → 0 can be used
repeatedly for a set of l = D − 1 − k different coordi-
nates zL = {zi1 , . . . , zil}, whose indexes are taken from
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a set of non-repeated indexes L = {i1, . . . , il}. Equiva-
lently, we can define the set of the k non-zero coordinates
zK = {zj1 , . . . , zjk} which are not used in the limits,
where the indexes K = {j1, . . . , jk} are not duplicated
neither. Note that z = (zK , zL) = (z1, . . . , zD−1) in-
clude all the projective coordinates as k + l = D − 1 by
definition. After the limits, the c-DCAT is transformed
into

lim
zL→0L

|z⟩(N)
c

=(a†i1)
ci1. . .(a†il)

cil |(zK , zL = 0L)⟩(N−∥cL∥0)
cK

,

(39)
obtaining a reduced cK-DCAT |(zK , zL = 0L)⟩cK , with
N − ∥cL∥0 particles, cK = [cj1 , . . . , cjk ] ∈ Zk2 parity, and
to which it is added a series of ∥cL∥0 particles occupying
the levels ni1 = ci1 , . . . , nil = cil . The expression ∥cL∥0
means the 0-norm (number of non-zero components) of
cL = [ci1 , . . . , cil ]. The rest of the notation in (39) is
similar to the one used in the eq.(A3). The eq.(39) gen-
eralizes the results for D = 2 in (36) and for D = 3 in
(37).

We will use the equations (34, 35, 37) in Section (V) to
restore the parity c = 0 = [0, 0] of the variational DSCS
of a N atoms LMG model with D = 3 levels, since the
true ground state of this model exhibits a Schrödinger
cat structure with totally even parity 0. We will also
see that the other parities in (37) can model some of the
first excited states in the LMG U(3) model. But before
that, we shall introduce the Husimi function and some
localization measures in phase space to characterize the
different quantum phases that appear in the LMG model.

IV. HUSIMI FUNCTION AND LOCALIZATION
MEASURES IN PHASE SPACE

Coherent states provide phase space representations
(also known as Bargmann/holomorphic representation)
of wave functions in quantum physics. Here we shall con-
centrate on the Husimi or Q-function [57] of a pure state
|ψ⟩, defined as Qψ(z) = |⟨z|ψ⟩|2 for a given overcom-
plete set of coherent states |z⟩. The most popular case
is in quantum optical systems, for which |z⟩ makes refer-
ence to a Glauber [7] or canonical (harmonic oscillator)
coherent state associated to the Heisenberg-Weyl group.
This definition can be extended to other coherent state
systems like those associated to more general symmetry
groups [10] (see also [58] for some generalizations). In
our case, the Husimi function of the quantum state (10)
is defined in terms of the DSCS coefficients (16) as

Qψ(z) = |⟨z|ψ⟩|2 =

∣∣∣∣∣∣
∑

∥n⃗∥1=N

cn⃗(z)cn⃗(ψ)

∣∣∣∣∣∣

2

, (40)

and it is normalized
∫

CD−1

Qψ(z)dµ(z) = 1, (41)

according to the measure (18). This definition is straight-
forwardly extended to non pure states defined by a den-
sity matrix ρ as Qρ(z) = ⟨z|ρ|z⟩ (see e.g., [16, 58]).

The Husimi function of a DSCS |z⟩ is simply
Q|z⟩(z′) = |⟨z′|z⟩|2, where the coherent state overlap
⟨z′|z⟩ is given in (17). A more interesting example is
the Husimi function of a c-DCAT state |z⟩c (24), which
adopts the form

Q|z⟩c(z
′) = |⟨z′|z⟩c|2 =

41−D

N (z)2
c

∣∣∣∣∣
∑

b

(−1)c·b⟨z′|zb⟩
∣∣∣∣∣

2

=
21−D

∣∣∑
b
(−1)c·b(1 + z†z′b)N

∣∣2

(1 + z′†z′)N
∑

b
(−1)c·b(1 + z†zb)N

, (42)

where we have used the coherent state overlap ⟨z′|zb⟩
in (17) and the normalization constant N (z)c in (25).
There are studies in the literature relating the distribu-
tion of zeros in phase space of the Husimi function of the
ground state of a critical quantum system and the onset
of quantum chaos (see e.g. [59, 60]) and also studies on
the critical behavior of excited states and its relation to
order and chaos [61]. Note that, for c-DCAT states |z⟩c,
the structure of zeros of their Husimi function (42) de-
pends on the parity c. Moreover, the case D > 2 is much
richer and opens new possibilities since Q is multivariate
and its zeros are not necessarily isolated points but form
curves, surfaces, etc.

In order to visualize the QPT in the critical LMG
model across the phase diagram, we shall use the ν-th
moments of the Husimi quasi-distribution function

Mν(ψ) =

∫

CD−1

[Qψ(z)]
νdµ(z), ν > 1. (43)

Among all Husimi moments, we shall single out ν = 2,
which corresponds with the so called “Inverse Participa-
tion Ratio” (IPR) [2, 32], that measures the localization
of (inverse area occupied by) Qψ in phase space and
can be generalized to any probability density function
[62, 63]. The ν-th moments of the Husimi function sup-
posedly reach their maximum value when ψ itself is a
coherent (highly localized) state, that is, when ψ only
participates of a single coherent state. These conjecture
has been proved in the cases of families of coherent states
of compact semisimple Lie groups [58], including the sym-
metric and antisymmetric representations of SU(D) as
particular cases [64]. This affirmation is widely known
as part of the Lieb conjecture, which is mentioned at the
end of this subsection. For example, for the particular
case of |ψ⟩ = |z = 0⟩ = 1√

N !
(a†0)

N |⃗0⟩ (a boson conden-
sate of N atoms in their ground state i = 0) and a generic
number of levels D, a quite straightforward calculations
gives

Mν(|0⟩) =
(Nν)!

N !

(N +D − 1)!

(Nν +D − 1)!
(44)

=
(N +D − 1)D−1

(Nν +D − 1)D−1

N→∞−−−−→ 1/νD−1,
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where (x)n = x(x−1) . . . (x−n+1) denotes the descend-
ing factorial or Pochhammer symbol. The last result (44)
can be straightforwardly extended to any DSCS, that is

Mν(|z⟩) =Mν(|0⟩), ∀z ∈ CD−1, (45)

and, in fact, to any boson condensate of N atoms in any
level i = 0, . . . , D− 1 (see Appendix B for a proof). This
in particular means that all coherent states occupy the
same area in phase space. Indeed, any DSCS |z⟩ can be
obtained by translating/rotating |z = 0⟩ → U(z)|0⟩ by
a unitary transformation U(z) ∈ U(D) (that is, |z⟩ can
be seen as a “displaced ground state”), which means that
Q|z⟩(z′) = Q|0⟩(z′ ∗z−1) with U(z′ ∗z−1) = U†(z)U(z′)
the composition of two U(D) transformations; the fact
that the Fubini-Study measure dµ(z) in (18) is U(D)-
invariant completes the proof. Therefore, the ν-moments
of the Husimi function of a DSCS |z⟩ do not depend on
the phase space points z ∈ CD−1, but just on ν, the
number of particles/atoms N , and the number of atom
levels D. The equations (44, 45) agree with those of
Refs. [18, 31] in the particular cases of D = 2 and D = 3
respectively, and with [64] in the general D case.

The c-DCAT states |z⟩c in (24) participate on several
coherent states |zb⟩ and therefore have a lower IPR value
(i.e., they occupy a bigger area in phase space), usually
a fraction of Mν(|0⟩). More concretely, the ν-moment of
Q|z⟩c can be explicitly calculated as in the reference [64],

Mν(|z⟩c) =Mν(|z⟩)
∑

|⃗k|=Nν

|B2
k⃗
| , (46)

with

Bk⃗ =

√
(N !)ν

(Nν)!

∑

|n⃗1|=...=|n⃗ν |=N

(
k⃗

n⃗1, n⃗2, . . . , n⃗ν

)1/2

× cn⃗1
(z)ccn⃗2

(z)c · · · cn⃗ν
(z)c , (47)

where cn⃗i
(z)c are the c-DCAT coefficients in the Fock

basis (31). The last sum is restricted to n⃗1 + n⃗2 + . . .+

n⃗ν = k⃗, and we are denoting
(

k⃗

n⃗1, n⃗2, . . . , n⃗ν

)
≡ k⃗!

n⃗1! · · · n⃗ν !
, (48)

where all the vectors n⃗1, n⃗2, . . . , n⃗ν correspond to dif-
ferent Fock vectors according to (8), i.e. |n⃗i⟩ =
|ni,0, ni,1, . . . , ni,D−1⟩, so that we mean by n⃗i! ≡∏D−1
j=0 (ni,j)! and by |n⃗i| ≡

∑D−1
j=0 ni,j .

In the thermodynamic N → ∞ limit, the bulky expres-
sion (46) reduces to the more compact one (see Appendix
C for a proof)

lim
N→∞

Mν(|z⟩c) = (2D−1)1−ν lim
N→∞

Mν(|z⟩) =
(2D−1)1−ν

νD−1
,

(49)

which proves that c-DCATs have lower IPR value than
DSCSs, since (2D−1)1−ν < 1 for all ν ≥ 2. Hence, DCATs

are less localized (occupy a greater area) than DSCSs in
phase space. In addition, the limit is independent of the
DCAT parity c. To be more precise, the equation above
is only valid when all the coordinates zi are non-zero,
i.e. zi ̸= 0 ∀i = 1, . . . , D − 1. Nevertheless, for a totally
even 0-DCAT which has only k < D− 1 non-zero vector
components in z, we can apply the equation (A3) for all
the zi that tend to 0, transforming the 0-DCAT into a
reduced 0K-DCAT with a parity symmetry described by
Zk2 . This leads to a expression similar to (49),

lim
N→∞

lim
zL→0L

Mν(|z⟩0) = (2k)1−ν lim
N→∞

lim
zL→0L

Mν(|z⟩)

=
(2k)1−ν

νD−1
, (50)

where the notation is the same as in the eq.(39). Note
that the denominator νD−1 is the same as in the equation
(49), as we calculate the N → ∞ limit of a U(D) CS,
not a U(k) one (this result is proven in the Appendix
C). For a general parity c-DCAT, the expression above
transforms into

lim
N→∞

lim
zL→0L

Mν(|z⟩c) =
(2k+∥cL∥0)1−ν

νD−1
, (51)

where ∥cL∥0 and k = ∥z∥0 are the number of non-zero
components in cL and z respectively. The sum k+∥cL∥0
coincides with the number of humps displayed by the
Husimi function Q|z⟩c(z

′) in the phase space coordinates
z′, as we will see in Section VII. The equation (51) in-
cludes the eq.(50) as a particular case, since ∥cL∥0 = 0
for the 0-DCAT.

Instead of Mν(ψ), it is sometimes preferred to express
delocalization (as a measure of area in phase space) in
terms of Rényi-Wehrl entropy, which is defined as [16–
18] as

SW,ν(ψ) =
1

1− ν
ln[Mν(ψ)], ν ̸= 1. (52)

Taking the limit ν → 1 in the Rényi-Wehrl entropy (52),
one obtains the Wehrl entropy [65] given by

SW (ψ) = −
∫

CD−1

Qψ(z) ln[Qψ(z)]dµ(z). (53)

Since the definition of the Husimi function is related to
a specific classical phase space (the CPD−1 complex pro-
jective space defined by DSCSs in our case), the Wehrl
entropy is also called (semi)classical entropy [65, 66].
It is the Gibbs entropy continuous form of the Husimi
probability function Qρ for the state described by a den-
sity matrix ρ [16, 65]. This picture contrast with other
common entropies such as the von Neumann entropy
SN = −tr(ρ ln ρ), which we have previously used to study
entanglement (quantum nonlocality) in symmetric mul-
tiquDit systems [50], and has no immediate relation to
classical mechanics. The last one measures how much
a state is mixed (non pure), rather than its localization
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in phase-space. According to the Lieb conjecture [67],
the minimum Wehrl entropy (53) is attained when ψ is a
DSCS. It was proved for SU(2) spin-j CSs in [66, 68], for
symmetric SU(D) spin CSs (DSCSs for us) in [69], and
for any compact semisimple Lie group in [58]. The mini-
mum Wehrl entropy value can be easily obtained from the
Husimi ν-moment of the highest-weight vector |z⟩ = |0⟩
in (44), once we realize that SW = limν→1 SW,ν in (52),
and that

min
ψ

SW (ψ) = SW (|z⟩) = SW (|0⟩) (54)

according to (45). Therefore, taking the limit ν → 1 in
(44) we arrive to

SW (|0⟩) =N
(
ψ(0)(N +D)− ψ(0)(N + 1)

)
(55)

=N
D−1∑

k=1

1

N + k

N→∞−−−−→ D − 1,

for a generic number D of levels, where ψ(0)(x) =
Γ′(x)/Γ(x) is the digamma function. There is a par-
ticular version of this result for a U(3) vibron model in
[31]. As a particular case, in the thermodynamic limit
N → ∞, the minimum Wehrl entropy is D − 1 = 1
for D = 2, which is the minimum value of the Wehrl
entropy predicted by Lieb in [67] for the harmonic oscil-
lator coherent states (Heisenberg-Weyl group). This is
so because Bloch SU(2) spin-j coherent states |z⟩ tend
to the Heisenberg-Weyl (harmonic oscillator) coherent
states |α⟩ in the large spin limit j = N/2 ≫ 1 with
the rescaling z = α/

√
N [10, 70]. Unlike for DSCSs, we

do not have closed analytical formulas for the Wehrl en-
tropy of c-DCAT states, except in the thermodynamic
limit when, in general,

lim
N→∞

SW (|z⟩c) = lim
N→∞

SW (|z⟩) + log(2D−1)

= (D − 1)(1 + log(2)), (56)

being the same for all different parities c. As we already
commented in the equation (50), when there are only k
non-zero components in z for the fully even 0-DCAT, the
expression above (56) has to be replaced by

lim
N→∞

lim
zL→0L

SW (|z⟩0) = (D − 1) + k log(2) . (57)

Therefore, the totally even parity adaptation of a DSCS
entails a Wehrl entropy (area in phase space) excess of

SW (|z⟩0)− SW (|z⟩) N→∞−−−−→ k log(2) (58)

in the thermodynamic limit. This is a particular case of
the result proposed by Mintert and Zyczkowski in [16].
Also, the limits (50,57) for the 0-DCAT generalize the
results obtained in [31] for D = 3 and z = (z1,−z̄1),
which is equivalent to have only one non-zero component
in z, i.e., k = 1. For the general c-parity case, we use
the eq.(51) to obtain

lim
N→∞

lim
zL→0K

SW (|z⟩c) = (D − 1) + (k + ∥cL∥0) log(2) .
(59)

All the expressions in the thermodynamic limit presented
in this section are examined in more detail in the Ap-
pendix C.

In Section VII, we propose Husimi second moments
and Rényi-Wehrl entropies of the ground state of a 3-
level atom LMG model (7) as localization measures in
phase space, in order to characterize the three quantum
phases appearing in this model. But previously we are
going to study the phase diagram of the critical D = 3
level LMG model in the next section.

V. LMG MODEL FOR THREE-LEVEL ATOMS
AND ITS QUANTUM PHASE DIAGRAM

We particularize the Hamiltonian (7) forD = 3 (3-level
atoms or qutrits). Therefore, our Hamiltonian density
will be

H =
ϵ

N
(S33 − S11)−

λ

N(N − 1)

3∑

i̸=j=1

S2
ij . (60)

We shall measure energy in ϵ units and discuss the en-
ergy spectrum and the phase diagram in terms of the
only control parameter λ. In [14] we have proved that
this model displays three different quantum phases for
the completely symmetric unitary irreducible representa-
tion of U(3) labelled by the total number of particles N ;
Ref. [14] also studies other permutation symmetry sec-
tors (fermionic mixtures from two-row Young diagrams)
which will not be discussed here. Let us summarize the
essential points. Coherent (semiclassical) states are in
general good variational states which faithfully reproduce
the ground state energy of Hamiltonian models in the
semiclassical/thermodynamic limit N → ∞. Therefore,
we define the energy surface associated to the Hamilto-
nian density H in (60) as the DSCS expectation value of
the Hamiltonian density in the thermodynamic limit

E|z⟩(ϵ, λ) = lim
N→∞

⟨z|H|z⟩ (61)

= lim
N→∞

(
ϵ ⟨z|S33|z⟩−⟨z|S11|z⟩

N − λ
∑3

i̸=j=1⟨z|Sij |z⟩2
N(N−1)

)
,

with ⟨z|Sij |z⟩ in (19). Note that we have used that there
are no spin fluctuations in the thermodynamic limit (21).
Denoting z = (z1, z2) the phase space coordinates for
U(3)-spin coherent states (15), the energy surface has
the explicit form

E|z⟩(ϵ, λ) = ϵ
|z2|2 − 1

|z1|+ |z2|2 + 1
− λ

z21
(
z̄22 + 1

)
+ z22 + c.c.

(|z1|+ |z2|2 + 1)
2 .

(62)
This energy surface is invariant under parity transforma-
tions z1 → −z1, z2 → −z2, a symmetry which is inher-
ited from the discrete parity symmetry of the Hamilto-
nian (60). In fact, the energy surface E|z⟩(ϵ, λ) coincides
with all c-DCAT Hamiltonian expectation values in the
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thermodynamic limit, that is

E|z⟩c(ϵ, λ) = E|z⟩(ϵ, λ) ∀c ∈ ZD−1
2 . (63)

This can be seen by using the linear and quadratic U(D)-
spin operator expectation values in a c-parity DCAT de-
fined in [50], and realizing that

lim
N→∞ c⟨z|Sij |z⟩c = lim

N→∞
⟨z|Sij |z⟩, (64)

which can also be extended to quadratic (two-body)
U(D)-spin operator expectation values because of the
absence of quantum fluctuations in the thermodynamic
limit (21). This fact has important consequences in the
spontaneous breakdown of the parity symmetry in the
thermodynamic limit and the quantum phase transition,
as we are going to see in the following.

The variational minimum (ground state) energy

E(0)(ϵ, λ) = minz1,z2∈CE|(z1,z2)⟩(ϵ, λ) (65)

is attained at the critical (real) coherent state parameters

z
(0)
1±(ϵ, λ) = ±





0, 0 ≤ λ ≤ ϵ
2 ,√

2λ−ϵ
2λ+ϵ ,

ϵ
2 ≤ λ ≤ 3ϵ

2 ,√
2λ

2λ+3ϵ , λ ≥ 3ϵ
2 ,

z
(0)
2±(ϵ, λ) = ±

{
0, 0 ≤ λ ≤ 3ϵ

2 ,√
2λ−3ϵ
2λ+3ϵ , λ ≥ 3ϵ

2 .
(66)

Inserting (66) into (62) gives the ground state energy
density in the thermodynamic limit

E(0)(ϵ, λ) =





−ϵ, 0 ≤ λ ≤ ϵ
2 , (I)

− (2λ+ϵ)2

8λ , ϵ
2 ≤ λ ≤ 3ϵ

2 , (II)

− 4λ2+3ϵ2

6λ , λ ≥ 3ϵ
2 . (III)

(67)

Here we clearly distinguish three different phases: I, II
and III, and two second-order QPTs (according to Ehren-
fest’s classification) occurring at critical points λ(0)I↔II =

ϵ/2 and λ(0)II↔III = 3ϵ/2, respectively, at which the second
derivative of E0(ϵ, λ) is discontinuous. As we have al-
ready anticipated, the ground state is degenerated, since
there are four different DSCSs |z(0)1± , z

(0)
2±⟩ (or equivalently,

four 3CAT states |z⟩c with parities c = [0, 0], [1, 0], [0, 1],
and [1, 1]) with the same energy (67) in the thermody-
namic limit N → ∞. This is a consequence of the spon-
taneous breakdown of the discrete parity symmetry Z2

2

of the Hamiltonian (60), as was already pointed out in
[14]. For general D, the ground state degeneracy would
go as 2k, with k the number of nonzero components of
z(0), with a maximum degeneracy of 2D−1 (the number
of elements of the parity group ZD−1

2 ).

VI. FIDELITY BETWEEN VARIATIONAL
CATS AND NUMERICAL LOW-LYING
HAMILTONIAN EIGENSTATES WITH

DEFINITE PARITY

For a finite numberN of atoms, coherent states |z⟩ still
provide a fairly good approximation to the ground state
when properly adapted to the (not yet broken) parity.
There are two possible variational approaches for finite
N :

1. Project |z⟩ onto parity c = 0 = [0, 0] (the ground
state is always totally even), use this 0-3CAT state
|z⟩0 as a variational state, and determine the criti-
cal coherent state parameters z(0,N) that minimize
the energy expectation value 0⟨z|H|z⟩0 for finite
N (the matrix elements 0⟨z|Sij |z⟩0 can be found
in [50]), or

2. Use one of the four critical coherent state param-
eters combinations z(0) = (z

(0)
1+ , z

(0)
2+) obtained for

N → ∞ in (66), substitute them into |z⟩ for finite
N creating |z(0)⟩, then restore parity by projecting
onto fully even parity

Π0|z(0)⟩ = 1

4

[
|z(0)1+ , z

(0)
2+⟩+ |z(0)1+ , z

(0)
2−⟩

+ |z(0)1− , z
(0)
2+⟩+ |z(0)1− , z

(0)
2−⟩
]

(68)

and normalize

|z(0)⟩0 =
Π0|z(0)⟩
N (z(0))0

. (69)

The second procedure is less accurate but much easier.
We shall adopt it in the following to obtain variational
approximations |z(0)⟩0 (the properly normalized projec-
tion of Π0|z(0)⟩) to the ground state |ψ0⟩, and to evalu-
ate how faithful (in the sense of [71]) they are to numeri-
cal solutions obtained by direct Hamiltonian diagonaliza-
tion. Moreover, we shall naively extend this procedure
to evaluate the fidelity between other c-3CATs |z(0)⟩c ∝
Πc|z(0)⟩ and the first excited states |ψi⟩, i = 1, 2, 3, 4, 5
(in increasing order of energy), which have definite par-
ity c and are obtained by numerical diagonalization of
the Hamiltonian (60) for different values of the control
parameter λ. In this case, the c-3CATs are reduced to a
smaller parity group 3CATs when some of the coordinates
in z(0) = (z

(0)
1+ , z

(0)
2+) tend to 0 (see equation (37) and the

discussion below it). Therefore, it would be more precise
to define the variational excited states (ES for short) as

|z(0)⟩c = lim
z→z(0)

|z⟩c , ∀c ̸= 0 (70)

rather than directly using the equation (69), in order
to avoid a null projection (see the discussion above the
eq.(36) for more details). This will become important
when plotting Figures 2, 6 and 9.
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The condition for a Hamiltonian eigenstate |ψi⟩ to have
a definite parity c is ⟨ψi|Πc|ψi⟩ = 1. In particular, for
N = 20 and λ ∈ (0, 3), we have obtained the following
parities for the fist low-lying Hamiltonian eigenstates (in
increasing order of energy)

⟨ψ0|Π[0,0]|ψ0⟩ =1, ⟨ψ1|Π[1,0]|ψ1⟩ = 1, (71)
⟨ψ2|Π[0,0]|ψ2⟩ =1, ⟨ψ3|Π[0,1]|ψ3⟩ = 1,

⟨ψ4|Π[1,0]|ψ4⟩ =1, ⟨ψ5|Π[1,1]|ψ5⟩ = 1.

In Figure 1 we represent the low-lying spectrum of the
LMG Hamiltonian (60) as a function of the control pa-
rameter λ for N = 20 particles. The four colored lines
represent the states ψi, i = 0, 1, 3, 5 which have the same
c-parity of specific c-DCATs. After the first phase tran-
sition around λ

(0)
I↔II = ϵ/2, the states i = 0, 1 (red and

blue) start getting closer until they finally merge for
large λ. This degeneracy in the ground state for finite
N can be considered as a "precursor" of the first QPT
at λ = ϵ/2. The degeneracy is also present in the ex-
cited states i = 3, 5 (green and orange) around λ

(0)
I↔II.

Furthermore, as we move towards the next critical point
λ
(0)
II↔III = 3ϵ/2, the states i = 0, 1, 3, 5 start to merge

in a 4-fold degenerate ground state, providing another
“precursor" but for the second QPT at λ = 3ϵ/2. This
degeneracy phenomenom is more and more evident as
we approach the thermodynamic limit, where the ground
state is completely 4-fold degenerate.
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FIG. 1. Energy density spectrum of the first excited states of
the LMG U(3) model, obtained by numerical diagonalization
of the LMG U(3) Hamiltonian (60) for N = 20 particles, as a
function of the control parameter λ. The colored lines repre-
sent states with well defined parity, which is indicated in the
legend. The black lines represent the rest of the eigenstates
energy densities. The quantum critical points λ(0)

I↔II = ϵ/2

and λ(0)
II↔III = 3ϵ/2 are indicated by vertical dashed grid lines.

Energies and λ are given in ϵ units.

Figure 2 shows the fidelity

F (|z(0)⟩c, |ψi⟩) = |c⟨z(0)|ψi⟩|2, (72)

between variational excited states (70) and numerical
low-lying Hamiltonian eigenstates ψi with the same par-
ity c (states with different parities are orthogonal). As
expected, the 3CAT state |z(0)⟩0 gives a fairly good ap-
proximation to the ground state |ψ0⟩, with a high fi-
delity F ≳ 0.8 (specially in phase I), except near the
critical points λ(0)I↔II = ϵ/2 and λ

(0)
II↔III = 3ϵ/2, where

fidelity always drops. Figure 2 also shows the fidelity be-
tween the variational approximations |z(0)⟩c, with pari-
ties c = [1, 0], [0, 1], [1, 1], and the excited states |ψi⟩, i =
1, 3, 5, respectively. The excited states |ψ2⟩ and |ψ4⟩ are
not considered in this discussion because they already
share parity with |ψ0⟩ and |ψ1⟩, respectively, and there-
fore they can not be faithfull to |z(0)⟩[0,0] and |z(0)⟩[1,0]
since ⟨ψ2|ψ0⟩ = 0 and ⟨ψ4|ψ1⟩ = 0, i.e., they are mutu-
ally orthogonal as Hamiltonian eigenstates with diferent
eigenvalues. Let us continue discussing Figure 2. The
fidelity |[1,0]⟨z(0)|ψ1⟩| is also fairly high, although not as
much as for the ground state. Note that, according to
Eq. (66), the first component z(0)

1 of z(0) is zero in phase
I and z

(0)
2 = 0 in phases I and II. Therefore, accord-

ing to the equations (37) and (38), in the phases I and
II, the fidelity must be calculated using reduced-parity
3CATs. For instance, in the phase I, the 3CAT |z(0)⟩[1,0]
becomes a Fock basis state |n0=N−1, n1=1, n2=0⟩ because
z(0)(λ) = (0, 0) at λ < ϵ/2; and in the phase II, it “trans-
mutes” to a Z2-parity 3CAT |(z(0)1+ , 0)⟩

(N)
[1] . The same hap-

pens with the fidelities |[0,1]⟨z(0)|ψ3⟩| and |[1,1]⟨z(0)|ψ5⟩|,
which are fairly high far from the critical points. All the
fidelities presented in Figure 2 tend to 1 when λ → 0,
which corresponds to the coordinates z(0)(λ) = (0, 0).
This is possible because the numerical diagonalization
in the noninteracting case (λ = 0) reproduces very ac-
curately the Fock basis states at the bottom of the eq.
(37). The spectrum classification of the non-interacting
LMG U(3) model was already studied analytically in [14],
giving Fock basis states as eigenstates of the Hamilto-
nian. Additionally, the 4-fold degeneracy of the eigen-
states i = 0, 1, 3, 5 is present in Figure 2 at high λ ≫ 1,
where all the colored lines merge.

The failure of the variational state |z(0)⟩c to properly
represent the numerical Hamiltonian eigenstate |ψi⟩ (for
the corresponding parity c) near the quantum critical
points λ = ϵ/2 and λ = 3ϵ/2, can be fixed by simply
maximizing the overlap

|c⟨z|ψi(λ)⟩|2 = N (z)2
c
Qψi(λ)(z) (73)

in the phase space coordinates z = (z1, z2) for each value
of λ. This procedure, of course, results in fitting values
zmax
i = (zmax

1,i , z
max
2,i ), which are different from the critical

values z(0) = (z
(0)
1± , z

(0)
2±) in (66) at the thermodynamic

limit. Indeed, in Figure 3 we plot the (real) values of
zmax
i , to be compared to z(0), as a function of λ. Both
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FIG. 2. Fidelity |c⟨z(0)|ψi(λ)⟩|2 between the variational c-
3CATs (70) and the numerical LMG Hamiltonian eigenstates
ψi as a function of λ (ϵ units and log-scale in abscissa axis)
for N = 20. Vertical grid lines denote the quantum critical
points.

values meet at λ = 0 and λ≫ 1, i.e. when the two-body
interaction is not present and when it predominates, re-
spectively. Then, in Figure 4, we represent the overlap
|c⟨zmax

i |ψi(λ)⟩|2, which now attains values above 0.8 for
all values of λ, thus improving the results of (72).

VII. LOCALIZATION MEASURES OF THE
GROUND STATE IN PHASE SPACE

THROUGHOUT THE PHASE DIAGRAM

Now we are interested in analyzing the QPT of the
three-level atom LMG model by using the localization
measures (area in phase space) introduced in Section IV.

Let us start by analyzing the structure of the Husimi
function Q|z(0)⟩0

(z′) of the variational ground state
|z(0)⟩0 (see eq.(69)). The variational Husimi function
Q|z(0)⟩0

(z′) depends on the complex phase space coordi-
nates z′ = (z′1, z

′
2) ∈ C2. It also depends on the control

parameter λ through the critical point z(0) = (z
(0)
1+ , z

(0)
2+)

(we take ϵ energy units for simplicity, see eq.(66)). In
order to plot Q|z(0)⟩0

(z′) in phases I, II and III, we shall
separate “position” x1,2 = Re(z′1,2) and “momentum”
p1,2 = Im(z′1,2) coordinates (see e.g. [72, 73] for phase-
space approaches to quantum mechanics and [29, 31] for
a justification in other models, like quadratures of the
electromagnetic field).

In Figure 5 we make contour plots of the variational
Husimi function in position (left panel) and momentum
(right panel) spaces for three different characteristic val-
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FIG. 3. Parametric plot of the fitting points zmax
i =

(zmax
1,i , z

max
2,i ) maximizing the overlap or fidelity |c⟨z|ψi(λ)⟩|2,

as a function of λ ∈ (0, 20) (ϵ units and log-scale) for N = 20
particles. The fitting points are compared to the critical val-
ues z(0) = (z

(0)
1± , z

(0)
2±) in (66), represented by the solid ma-

genta line.

ues λ1, λ2, λ3,

λ1 = 0 < λ
(0)
I↔II < λ2 = 1 < λ

(0)
II↔III < λ3 = 2.5, (74)

of the control parameter λ inside each phase for N = 20
particles. Contour plots of Q|z(0)⟩0

(z) in position space
give a clear visual explanation of the delocalization of the
ground state in phase space as we move from phase I to
phases II and III. Indeed, the Husimi function is com-
posed of a single lump/hump/packet in phase I, which
coincides with 2k = 1 for k = 0, the number of non-zero
components of z(0) = (z

(0)
1+ , z

(0)
2+) according to (66); simi-

larly, we have 2k = 2 and 2k = 4 lumps in phases II and
III for k = 1 and k = 2 non-zero components of z(0),
respectively. The behavior of the Husimi function in mo-
mentum space is a little bit more subtle, as it entails some
modulations which, in the large N limit, correspond to
a (Gaussian-like) packet modulated by a cosine function
which oscillates rapidly for high N mainly in phase III
(see [28] for a similar behavior in the Dicke model in the
superradiant phase).

Additionally, in Figure 6 we study the Husimi func-
tion Q|z(0)⟩c(z

′) of variational excited states i = 1, 3, 5

of the LMG U(3) model (already defined in eqs.(66,70)
and classified in Figure 1). We shall restrict the plot
and discussion to position coordinates x1,2 = Re(z′1,2)
for convenience. It is interesting that, in the phase I
at λ = 0 (left column in Figure 6), the variational ES
Husimi functions have more than a single hump, which
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FIG. 4. Maximum overlap or fidelity |c⟨zmax
i |ψi(λ)⟩|2 be-

tween the c-DCATs |z⟩c and the LMG numerical eigenvec-
tors |ψi(λ)⟩ of different parity as a function of λ (ϵ units and
log-scale) for N = 20 particles.

was not the case of the GS in Figure 5. This is because
the variational ES |z(0)⟩c preserve their parity c ̸= 0

even when z(0) λ→0−−−→ (0, 0). Actually, this limit was al-
ready given in the eq. (37). For instance, the variational
first ES c = [1, 0] (top row in Figure 6) transforms into
a Fock state |z(0)⟩(N)

[1,0]

λ→0−−−→ |n0=N−1, n1=1, n2=0⟩. Having
only one particle in level 1, n1 = 1, implies odd-parity
in x1 = Re(z′1) when plotting Q

z
(0)

[1,0]

(z′) (check the eqs.

(16) and (40)). Therefore, the variational first ES can-
not be 0 at x1 = x2 = 0 and has two humps along the
x1-axis direction (top left panel in Figure 6). The vari-
ational third ES c = [1, 0] (middle row) has a similar
behavior at λ = 0 but along the x2-axis, |z(0)⟩(N)

[0,1]

λ→0−−−→
|n0=N−1, n1=0, n2=1⟩. The fifth ES c = [1, 1] (bottom row)
has double odd-parity in the axis x1 and x2 and presents
four humps, |z(0)⟩(N)

[0,1]

λ→0−−−→ |n0=N−2, n1=1, n2=1⟩. In the
phase II at λ = 1 (middle column in Figure 6), all the
Husimi functions of the variational ES have symmetric
humps along the x1-axis as the GS did in Figure 5. How-
ever, the third and fifth ES also display symmetric humps
along the x2-axis, as both have c2 = 1 in c. Finally, in
the phase III at λ = 2.5 (right column in Figure 6), the
ESs have four humps as the GS, demonstrating the de-
generation already showed in Figure 1 at λ ≫ 1. This
result agrees with the eq.(C6) in Appendix C (number
of terms in the sum

∑
b∈{0,1}2), but for relatively large

finite (N = 20) number of particles.

As a general rule, we propose that the number of
humps (in the phase space coordinates z′) of a c-DCAT

-1.0-0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x1

x 2

λ1=0

0

0.2

0.4

0.6

0.8

1.0

-0.4-0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

0.4

p1

p 2

λ1=0

0

0.2

0.4

0.6

0.8

1.0

-1.0-0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x1

x 2

λ2=1

0

0.2

0.4

0.6

0.8

1.0

-0.4-0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

0.4

p1

p 2

λ2=1 × 10-3

0

0.2

0.4

0.6

0.8

1.0

-1.0-0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x1

x 2
λ3=2.5

0

0.2

0.4

0.6

0.8

1.0

-0.4-0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

0.4

p1

p 2

λ3=2.5 × 10-5

0

0.2

0.4

0.6

0.8

1.0

FIG. 5. Contour plots in phase space coordinates of the
Husimi function Q|z(0)⟩0

(z′) of the variational ground state
|z(0)⟩0 of the LMG U(3) model (66,69), for N = 20 parti-
cles and three different values of the control parameter λ (ϵ
units) inside the three phases I, II and III. The left and right
columns correspond to “position" x1,2 = Re(z′1,2) and “mo-
mentum" p1,2 = Im(z′1,2) coordinates, respectively.

Husimi function is

#humps
(
Q|z⟩c(z

′)
)
= 2∥z∥0+∥cL∥0 ∀N >> 1 , (75)

where K = {j1, . . . , jk} and L = {i1, . . . , il} are the
set of indexes of the non-zero and zero coordinates in
z respectively, and k = ∥z∥0 and ∥cL∥0 are the num-
ber of non-zero components in z and cL respectively (see
the eqs.(A3,39,51) to revisit the notation). The proof of
this proposition is based on the thermodynamic limit of
Q|z⟩c(z

′) and its ν-moments (51). The number of humps
in the expression above cannot be greater than 2D−1,
as ∥z∥0 + ∥cL∥0 ≤ D − 1, where ∥z∥0 = k ≤ D − 1
and ∥cL∥0 ≤ l = D − 1 − k by construction. For in-
stance, in the case D = 3, we have a maximum of 22 = 4
humps, like in Figures 5 and 6. If we focus on the eq.(39),
we realize that 2∥z∥0 is the number of humps of the re-
duced cK-DCAT |(zK , zL = 0L)⟩(N−∥cL∥0)

cK in the ther-
modynamic limit, while the Fock state |n⃗K=0⃗K ,n⃗L=cL⟩ has
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FIG. 6. Contour plots in phase space position coordinates
x1,2 = Re(z′1,2) of the Husimi function Q|z(0)⟩c(z′), where
|z(0)⟩c are the variational excited states (70) of the LMG U(3)
model (66). We have chosen N = 20 particles and three
different values of the control parameter λ (ϵ units) inside
the three phases I, II and III (columns from left to right).
Each row in the plot represents a variational excited state of
definite c-parity.

2∥cL∥0 humps by construction. The reduced cK-DCAT
coordinates zK are non-zero by definition, so ∥z∥0 = k
and we obtain the maximum number of humps 2k allowed
in a reduced phase space with k coordinates. In the case
of the fully even DCAT, c = 0 and ∥cL∥0 = 0, we re-
cover the results of Figure 5 and the equation (C16). We
shall also highlight that 2∥z∥0+∥cL∥0 is also the rank of
the M -particle reduced density matrix of a c-DCAT, as
it is shown in [56]. The connection of the two concepts
is subject to further investigation.

The delocalization (area) of the Husimi function in
phase space, which is perceived in Figures 5 and 6 across
the different phase transitions, can be quantified by us-
ing the Wehrl entropy (53). In Figure 7, we present the
Wehrl entropy of the variational (black curves) and nu-
merical (red curves) ground state (GS) of the LMG U(3)
model, as a function of the control parameter λ for differ-
ent values of N . The entropy suddenly grows around the
quantum critical points λ(0)I↔II = 1/2 and λ

(0)
II↔III = 3/2,

which are represented with vertical dashed lines. This
effect is more abrupt with increasing N . In addition, the
values of the entropy in each phase tend to the thermo-
dynamic limit of the 3CAT entropy (57), with different
number k of non-zero components in z. In particular for
D = 3, this limit is 2 + k log(2) with k = 0, 1, and 2 in
the phases I, II, and III respectively, which corresponds to

the gray dashed horizontal lines in Figure 7. When there
is a QPT in the LMG U(3) model, the GS Husimi func-
tion in the position space (left column in Figure 5) splits
into two identical subpackets with negligible overlap, so
the Wehrl entropy experiences an increment of ln(2) (see
[29] for a similar result in the case of the Dicke model of
superradiance). This delocalization effect happens twice
from the phase I to the III, hence the 22 subpackets of
the Husimi function in the phase III and the total growth
of 2 log(2) in the Wehrl entropy.

The “Numerical” red curves in Figure 7 refer to the
ground state obtained by numerical diagonalization of
the Hamiltonian (60). The eigenvectors are calculated
in the Fock basis (10), introduced in the Husimi func-
tion equation (40), and then, the Wehrl function (53) is
numerically integrated. The change of entropy in the nu-
merical (exact) case (red curves) is less abrupt than in the
variational one (black curves) around the quantum criti-
cal points for a given number of particles N , although it
becomes steeper and steeper as N increases.
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FIG. 7. Wehrl entropy of the variational |z(0)⟩0 and numer-
ical |ψ0⟩ ground state of the LMG U(3) model for N = 20
and 50 particles. The gray dashed vertical lines represent the
quantum critical points at λ(0)

I↔II = 1/2 and λ(0)
II↔III = 3/2 (in

ϵ units). The gray dashed horizontal lines are the N → ∞
limits of the Wehrl entropy of the 0-3CAT |z(0)⟩0 (57), with
k humps (the number of non-zero coordinates in z(0)(λ)).

Equivalently, one can also measure the localization of
the ground state in phase space with the IPR or the
Husimi second moment (43). This quantity is usually
easier (and faster) to calculate than the Wehrl entropy.
That is why it is more common to focus on the IPR when
studying localization [74–76]. The IPR of the ground
state attains the thermodynamic limit value presented in
the equation (50) for ν = 2 and k = 0, 1, 2. Variational
calculations provide sharper results than the numerical
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ones. For large values of the control parameter λ, the
ground state behaves as a 3CAT which is less localized
than the DSCS in phase space (check out Husimi function
in Figure 5), and therefore, Figure 8 shows a decrease of
the IPR when increasing λ.
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FIG. 8. Inverse Participation Ratio (IPR) of the variational
|z(0)⟩0 and numerical |ψ0⟩ ground state of the LMG U(3)
model for N = 20 and 50 particles. The gray dashed vertical
lines represent the critical points at λ(0)

I↔II = 1/2 and λ(0)
II↔III =

3/2 (in ϵ units). The gray dashed horizontal lines are the
N → ∞ limit of the IPR of the 0-3CAT according to (50) for
ν = 2 and D = 3, that is, limN→∞M2(|z(0)⟩0) = 2−k−2 =
{ 1
4
, 1
8
, 1
16
}, for k = 0, 1, 2 the number of non-zero components

in z(0)(λ).

As the IPR numerical computation is faster than the
Wehrl entropy one, it is also feasible to reproduce Figure
8 but for the ESs of the LMG U(3) model. In particu-
lar, Figure 9 shows the IPR of the numerical ESs |ψi⟩,
i = 0, 1, 3, 5, and its associated variational ESs |z(0)⟩c
regarding the equation (70), where we have used N = 20
particles and the color code is the same as in the energy
spectrum in Figure 1. In the top panel, the variational
ESs approximate faster to the gray dashed horizontal
lines (eq.(51) for ν = 2 and k + ∥cL∥0 = 0, 1, 2) than
the numerical ones in the bottom panel, as it happened in
Figure 8 for the GS. The three different phases of Figure 9
are delimited by the gray dashed vertical lines, so that in
the phases I, II and III there are k = ∥z(0)(λ)∥0 = 0, 1, 2
non-zero coordinates in z(0)(λ) (see eq.(66)). Therefore,
the IPR of the ESs reaches the gray dashed horizontal
lines according the number of humps displayed in Figures
5 and 6, which depends on k and ∥cL∥0 as 2k+∥cL∥0 (see
eq.(75)). That is, for example, for c = [1, 0] or i = 1 (blue
line), the ES has two (k = 0, ∥cL∥0 = 1), two (k = 1,
∥cL∥0 = 0), and four (k = 2, ∥cL∥0 = 0) humps in the
three respective phases of Figure 6 (top row); hence, it
attains the values k + ∥cL∥0 = 1, 1, 2 marked by gray

dashed horizontal lines in each phase of Figure 9, re-
spectively. This result is in agreement with the general
expression in eq. (51) for the thermodynamic limit of the
c-DCAT Husimi moments for ν = 2 and D = 3.
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FIG. 9. Inverse Participation Ratio (IPR) of the variational
|z(0)⟩c (top panel) and numerical |ψi⟩ (bottom panel) excited
states of the LMG U(3) model for N = 50 particles. The gray
dashed vertical lines represent the critical points at λ(0)

I↔II =

1/2 and λ(0)
II↔III = 3/2 (in ϵ units). The gray dashed horizontal

lines are theN → ∞ limit of the IPR of the c-3CAT according
to (51) for ν = 2 and D = 3, that is, limN→∞M2(|z⟩(0)c ) =

2−k−∥cL∥0−2 = { 1
4
, 1
8
, 1
16
}, for k+ ∥cL∥0 = 0, 1, 2 the possible

number of humps of Q|z(0)⟩c(z′) for N >> 1 (75).

VIII. CONCLUSIONS

The concept of Husimi function in the canonical
phase space is extended to the complex projective space
CPD−1 = U(D)/[U(1)×U(D−1)] using U(D)-spin coher-
ent states (DSCSs for short) for symmetric multi-quDit
systems. The ν-moments of the Husimi function and
some localization measures in phase space such as the
Inverse Participation Ratio and the Wehrl entropy are
accordingly extended with a proper integration (Haar)
measure. We prove that the Lieb conjecture is fulfilled
for the DSCSs in the eq.(44) and the Appendix B. The
parity ZD−1

2 ∋ c adaptations of DSCSs (called c-DCAT
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states) turn out to be less localized than the DSCSs,
which exhibit maximum localization (minimum area in
phase space) according to Lieb’s conjecture. This be-
comes clear when we calculate the thermodynamic limit
of the Husimi function ν-th moments and Wehrl entropy
for DSCSs and c-DCAT states.

The previous study of the LMG U(3) ground state [14]
is then extended to the first excited states, which turn out
to be modeled by c-3CATs of different parities, as Figures
1 and 2 show. In particular, we compare the numerical
eigenstates of the LMG U(3) model (for finite N) to dif-
ferent variational c-3CATs states via fidelity (72), where
the variational states are evaluated at the critical points
z(0) = (z

(0)
1± , z

(0)
2±) which minimize the LMG U(3) energy

surface in the thermodynamic limit (66). The variational
c-3CAT states turn out to be fairly faithful to the low-
lying excited Hamiltonian eigenstates except in the vicin-
ity of the critical points λ(0)I↔II = ϵ/2 and λ

(0)
II↔III = 3ϵ/2

separating quantum phases I, II and III. We believe this
is a consequence of the growth of quantum fluctuations
at the critical points. However, this fidelity can be im-
proved by maximizing the corresponding overlap in the
complex projective phase space CP 2 ∋ z, as we display
in Figures 3 and 4.

The fact that the minimization of the energy surface
in the thermodynamic limit provides critical vectors z(0)

with some zero components in certain phases, makes it
necessary to revise the ZD−1

2 -parity adaptation |z(0)⟩c of
|z(0)⟩c and to resolve some “0/0” indeterminacies. In the
case when z has l = D − 1− k null coordinates, the cor-
responding c-DCAT |z(0)⟩c reduces to cK-DCATs with
lower Zk2-parity times a Fock state with Z∥cL∥0

2 -parity
(39). This result permeates in the majority of magni-
tudes (Husimi function, its moments, etc.) calculated in
this work.

The QPTs of the LMG U(3) model are visualized in the
phase space CP 2 ∋ z′ across the phase diagram via the
Husimi function Q0(z

′) of the variational ground state
|z(0)⟩0. We draw contour plots of the Husimi function
in “position space” (x1, x2) = Re(z′) and in “momentum
space” (p1, p2) = Im(z′) in Figure 5). In position space,
the variational GS Husimi function Q0(z

′) displays sev-
eral humps depending on the number of non-zero coordi-
nates of z(0)(λ), which changes in the different quantum
phases I, II and III. A similar reasoning is followed in Fig-
ure 6 with the Husimi function of the other variational
c-3CAT states |z(0)⟩c mimicking low-lying Hamiltonian
eigenstates with parity c. We propose a general expres-
sion (75) for the number of humps (in position phase) of
the Husimi function of general c-3CATs |z⟩c, depending
on the number of zero components of z and the parity c.
This number also appears in the thermodynamic limit of
the c-DCAT Husimi moments (51) and in the rank of the
M -particle reduced density matrix of a c-DCAT [56].

Finally, we also characterize the QPTs via localization
measures in phase space, since the Husimi fuction Q0 of
the ground state of the LMG model suddenly suffers de-

localization when passing through the quantum critical
λ(0) points, as shwon in Figures of Wehrl entropy 7 and
IPR 8 of Q0 as a function of the control parameter λ.
More localization implies less Wehrl entropy (less area)
and more IPR. This effect is more abrupt for the varia-
tional ground state than for the numerical one, and gets
sharper and sharper when increasing N , approaching to
the limits proposed in Section IV and proved in the Ap-
pendix C. The same analysis is extended to the numerical
excited states and variational c-3CATs in Figure 9, which
also experience delocalization, but only when its Husimi
function number of humps changes according to Figure
6.
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Appendix A: Reduced parity adapted U(D)-spin
coherent states

We generalize the zi → 0 limits in (36) and (37) for a
general c-DCAT. Firstly, in the fully even case c = 0, it
is easy to check that the 0-DCAT in the equation (24)
turns into a reduced 0i-DCAT,

lim
zi→0

|z⟩(N)
0 = |zi⟩(N)

0i
=

Π0i

N (zi)0i

|zi⟩(N) , (A1)

whose projective coordinates include zi = 0, zi =
(z1, . . . , zi−1, 0, zi+1, . . . , zD−1), but its parity string c

does not contain ci = 0, i.e. 0i = [0, (D−2). . . , 0] ∈ ZD−2
2 .

That is, Π0i
only acts onto the non-zero coordinates of

|zi⟩. Note that the reduced 0i-DCAT is not a (D-1)CAT,
as it is the ZD−2

2 -parity adapted version of a DSCS with
zi = 0, i.e. |zi⟩(N) = limzi→0 |z⟩(N). The normaliza-
tion constant N (zi)0i

is calculated as in (25) but using
a reduced sum in bi ∈ {0, 1}D−2, and with the new co-
ordinates zi,

N (zi)
2
0i

= 22−D
∑

bi∈{0,1}D−2(1 + z†
i z

bi
i )N

(1 + z†
i zi)

N
. (A2)

The zero limit (A1) can be used repeatedly for a set of
l = D − 1 − k different coordinates zL = {zi1 , . . . , zil},
whose indexes are taken form the set L = {i1, . . . , il},
transforming the totally even 0-DCAT into a reduced
0K-DCAT with a parity symmetry given by Zk2 ,

lim
zL→0L

|z⟩(N)
0 = |(zK , zL = 0L)⟩(N)

0K
, (A3)
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where (zK , zL = 0L) = limzL→0L
z has only k non-

zero coordinates zK = {zj1 , . . . , zjk}, whose associated
parity components are 0K = [0, (k). . ., 0] ∈ Zk2 . That is,
K = {j1, . . . , jk} is the set including all the k non-zero
coordinates of z. 0L denotes the l coordinates (0, l. . ., 0).
The existence and uniqueness of the multiple limit (A3)
can be derived using hyperspherical coordinates with the
moduli of |zi|. The norm of the reduced 0K-DCAT in
(A3) is calculated using an equivalent expression of the
eq.(A2).

In the case where all coordinates zi tend to 0 (k = 0),
the 0-DCAT collapses to a Fock state,

lim
z→0

|z⟩(N)
0 = |n0=N,n1=0, ..., nD−1=0⟩ , (A4)

which is the highest weight vector of the N -particle sym-
metric irreducible representation of U(D) that we are
considering. This highest weight vector deserves our at-
tention because it is the ground state of the free (λ = 0)
LMG U(D) Hamiltonian (see in Section V for a detailed
discussion). The limit (A4) has previously been calcu-
lated in [56] for a general c-DCAT, giving the so called
Fock-cat states.

Appendix B: Analytical calculation of the
ν-moments of the Husimi function of a DSCS

Here we show in detail the calculations that lead to the
expressions of the ν-th moments of the DSCSs (44,45),
the DCATs (46) and its thermodynamic limit (44,49,50).

Firstly, the moments of the DSCSs are computed by
previously using the highest-weight state |ψ⟩ = |z = 0⟩ =
(a†0)

N/
√
N !|⃗0⟩ (a boson condensate of N atoms in their

lower level i = 0) according to the equation(15). Using
the scalar product of the DSCSs (17), we calculate the
Husimi function (40) of this state as

Q|0⟩(z) = |⟨z|0⟩|2 =
1

(1 + z†z)N
. (B1)

It is straightforward to perform the integration in the
ν-moments formula (43) for the Husimi function Q|0⟩(z)
and arbitrary ν. The integral in CD−1 is mapped to
(R+ × [0, 2π])D−1 using polar coordinates zj = ρje

iθj ,
d2zj = ρjdρjdθj for all j = 1, . . . , D − 1. Then, we
integrate recursively for all ρj from j = 1 to j = D −
1, and the equation (44) for Mν(|0⟩) is achieved. The
extension (45) from |z = 0⟩ to an arbitrary DSCS |z⟩
is direct using the U(D) invariance of the Fubini-Study
measure dµ(z) in CPD−1.

Appendix C: Thermodynamic limit of the
ν-moments of the Husimi function of a c-DCAT

In Eq. (46) we have given the ν-moments of the Husimi
function Q|zc⟩ of a c-DCAT. This bulky expression ac-

quires a simpler form (50) in the thermodynamic limit.
Let us prove it.

We shall initially give some auxiliary results and calcu-
late their Husimi function. First of all, the scalar product
of the DSCSs (17) has a Kronecker delta-like thermody-
namic limit,

lim
N→∞

⟨z′|z⟩ =
{
1 if z′ = z ,

0 if z′ ̸= z ,
(C1)

which leads to

lim
N→∞

⟨z′|zb⟩⟨zb′ |z′⟩ =
{
1 if z′ = zb and z′ = zb

′
,

0 elsewhere ,
(C2)

as (1 + z†zb) < (1 + z†z) for all b ̸= 0 and z with
non-zero components. The non-null condition of the last
equation implies that zb = zb

′
, what leads to b = b

′

provided that zi ̸= 0 for all i = 1, . . . , D − 1. Therefore,
we begin studying the case where z does not have any
null component.

The Husimi function of the c-DCAT (42) can also be
written using the Husimi function (40) and the c-DCAT
(24) definitions,

Q|z⟩c(z
′) = |⟨z′|z⟩c|2 (C3)

=

(
21−D

N (z)c

)2∑

b,b′

(−1)c·(b+b
′)⟨z′|zb⟩⟨zb′ |z′⟩ .

Since the c-DCAT normalization N (z)c is non-zero for
all z (without any null component) and c, we take the
limit of the numerator and denominator of Q|z⟩c(z

′) sep-
arately. The denominator is, according to the equation
(25),

lim
N→∞

N (z)2
c
= lim

N→∞
21−D

∑
b
(−1)c·b(1 + z†zb)N

(1 + z†z)N

=21−D
∑

b

(−1)c·b lim
N→∞

(1 + z†zb)N

(1 + z†z)N

=21−D . (C4)

The numerator limit is performed using the equation
(C2) and its derived condition b = b

′,

lim
N→∞

∑

b,b′

(−1)c·(b+b
′)⟨z′|zb⟩⟨zb′ |z′⟩

= lim
N→∞

∑

b

(−1)c·(b+b)⟨z′|zb⟩⟨zb|z′⟩

= lim
N→∞

∑

b

Q|zb⟩(z
′) , (C5)

as (−1)c·(b+b) = 1. Therefore, the limit of the c-DCAT
Husimi function is

lim
N→∞

Q|z⟩c(z
′) = 21−D lim

N→∞

∑

b

Q|zb⟩(z
′) . (C6)
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The number of humps of lim
N→∞

Q|z⟩c(z
′) in the phase

space z′ will be the number of terms in the sum
∑

b

(right term in eq.(C6)), that is 2D−1, as showed in Fig-
ures 5 and 6 for D = 3 and λ = 2.5.

The next step is calculate the limit of the ν-th power
of the Husimi function of the c-DCAT, [Q|z⟩c(z

′)]ν for
all ν ≥ 2. We split again the limit in numerator and
denominator, where the last one is trivial using the same
procedure as in (C4), that is lim

N→∞
N (z)2ν

c
= (21−D)ν .

The numerator limit is

lim
N→∞


∑

b,b′

(−1)c·(b+b
′)⟨z′|zb⟩⟨zb′ |z′⟩



ν

(C7)

= lim
N→∞

∑

b1,...,bν

∑

b′
1,...,b

′
ν

(−1)c·
∑ν

i=1(bi+b
′
i)

×
ν∏

i=1

⟨z′|zbi⟩⟨zb′
i |z′⟩ ,

which reduces, with the auxiliary equation (C2), to

lim
N→∞

∑

b

(−1)c·2νb
ν∏

i=1

⟨z′|zb⟩⟨zb|z′⟩

= lim
N→∞

∑

b

[Q|zb⟩(z
′)]ν . (C8)

So we have

lim
N→∞

[Q|z⟩c(z
′)]ν = (21−D)ν lim

N→∞

∑

b

[Q|zb⟩(z
′)]ν .

(C9)
Eventually, we can calculate the ν-moments of the c-

DCAT Husimi function, that is

lim
N→∞

Mν(|z⟩c) = lim
N→∞

∫

CD−1

[Q|z⟩c(z
′)]νdµ(z′) .

(C10)

Employing the equation (C9), and commuting the inte-
gral and the limit, the last expression turns into

lim
N→∞

Mν(|z⟩c) = (21−D)ν
∫

lim
N→∞

∑

b

[Q|zb⟩(z
′)]νdµ(z′)

= (21−D)ν lim
N→∞

∑

b

∫
[Q|zb⟩(z

′)]νdµ(z′) .

(C11)

The new integral is equal to the moment Mν(|zb⟩) of
the DSCS |zb⟩, which fulfills Mν(|zb⟩) = Mν(|z⟩) =
Mν(|0⟩) according to the equation (45) and the Fubini-
Study measure invariance. In the end, the equation (49)
of the moments of the c-DCAT in the thermodynamic
limit is reached,

lim
N→∞

Mν(|z⟩c) = (21−D)ν lim
N→∞

∑

b

Mν(|z⟩)

= (2D−1)1−ν lim
N→∞

Mν(|z⟩) . (C12)

When there are only k non-zero components in z, the
even 0-DCAT (with 0 ∈ ZD−1

2 ) reduces to a 0K-DCAT
with a smaller parity symmetry 0K = [0, (k). . ., 0] ∈ Zk2 (see
the notation of the eq.(A3)). Therefore, the equation
(C3) turns into

lim
zL→0L

Q|z⟩0
(z′) = Q|zK⟩0K

(z′) = |⟨z′|zK⟩0K
|2

=

(
2−k

N (zK)0K

)2 ∑

bK ,b′
K

(−1)0K ·(bK+b′
K)⟨z′|zbK

K ⟩⟨zb
′
K

K |z′⟩ ,

(C13)

where zK = limzL→0L
z (it would be more correct to

write it as (zK , zL = 0L)) and 0K ,bK ,b′
K ∈ Zk2 .

As previously done in the non-zero case (C4), the re-
duced normalization constant of the denominator tends
to limN→∞ N (zK)0K

= 2−k, where we have used a gen-
eralization of the expression (A2). The equation (C2)
can be adapted to

lim
N→∞

⟨z′|zbK

K ⟩⟨zb
′
K

K |z′⟩ =
{
1 if z′ = zbK

K and z′ = z
b

′
K

K ,

0 elsewhere ,
(C14)

where the non-null value is achieved when zbK

K = z
b

′
K

K ,
which implies bK = b

′
K . This is true because all the

coordinates in zK ((zK , zL = 0L) in fact) associated to
bK are non-zero by construction. Consequently, the nu-
merator in (C13) transforms into

lim
N→∞

∑

bK ,b′
K

(−1)0K ·(bK+b′
K)⟨z′|zbK

K ⟩⟨zb
′
K

K |z′⟩

= lim
N→∞

∑

bK

⟨z′|zbK

K ⟩⟨zbK

K |z′⟩

= lim
N→∞

∑

bK

Q|zbK
K ⟩(z

′) , (C15)

using in the second line the property (29) of the parity
group characters. The thermodynamic limit of the 0̃-
DCAT Husimi function is finally

lim
N→∞

Q|zK⟩0K
(z′) = 2−k lim

N→∞

∑

bK

Q|zbK
K ⟩(z

′) . (C16)

From this moment on, it is straightforward to adapt
the procedure followed at the beginning for the moments
of the c-DCAT to the 0K-DCAT, arriving to the expres-
sion

lim
N→∞

Mν(|zK⟩0K
) (C17)

=(2−k)ν lim
N→∞

∑

bK

∫

CD−1

[Q|zbK
K ⟩(z

′)]νdµ(z′)

= (2−k)ν lim
N→∞

∑

bK

Mν(|zbK

K ⟩) = (2k)(1−ν) lim
N→∞

Mν(|z⟩) ,

since Mν(|zbK

K ⟩) = Mν(|z⟩) (45), and using the parity
characters property (27) for the reduced parity group
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Zk2 . The last equation ends the calculations to prove the
eq.(50) for the 0-DCAT. The general case of zero coor-
dinates in the c-DCAT (see eq.(51)) has been computed
with a symbolic calculation software, so the analytical
calculations are devoted to future research.
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I. INTRODUCTION

Coherent states (CS), either of the harmonic oscillator (HO) or for a spin system, have many applications in
QuantumMechanics and Quantum Optics (among many other fields), and in particular parity adapted CS (a particular
instance of a Schrödinger cat state) for the HO or for U(2)1 are interesting since they are used in many protocols in
Quantum Information Processing or appear as the lower energy states in some nuclear or molecular models like the
Dicke [1] or Lipkin-Meshkov-Glick (LMG) models [2].

We shall consider in this paper “spin” CS for U(D) in its symmetric representation (i.e. made of a fixed number N
of indistinguishable quDits) and we shall construct from them parity adapted CS, i.e states which are invariant under

the parity group. The parity group in the case of U(D) is ZD−1
2 , generalizing the case of SU(2), where the parity

group is simply Z2 = {−1,+1}.
For applications, it is important to characterize the entanglement properties of these states, therefore we shall

consider entropic entanglement measures in terms of the entropy of M -particle reduced density matrices (RDM), i.e.
in terms of a bipartition of the N quDits in N −M and M quDits and tracing out the N −M subsystem.

There is an intense debate in the literature concerning the notion of entanglement in systems of identical and
indistinguishable particles (like the case of symmetric multi-quDits). Some authors [3, 4] consider that particle
entanglement, obtained through RDM by tracing out a number of particles [5–7], cannot be used as a quantum
resource in quantum information tasks for indistinguishable particles. Other authors consider that the entanglement
due to exchange symmetry can indeed be useful in those tasks, providing some examples of it [8, 9]. The authors of
[3, 4] propose mode entanglement as the only meaningful way of defining entanglement for indistinguishable particles.

In this paper we shall consider the notion of particle entanglement in symmetric multi-quDit systems since it is
mathematically consistent and physically justified in the case of parity adapted coherent states. The case of mode
entanglement will be considered in a future work.

To characterize the entanglement of parity adapted U(D) CS, we need to compute the Schmidt decomposition of
these states when a bipartition in N −M and M particles is considered. The main result of this paper is that, under
this decomposition, parity adapted CS decompose as the convolution over all possible parities, of tensor products of
parity adapted CS of N −M and M particles. The coefficients of this decomposition (Schmidt coefficients) and their
squares (Schmidt eigenvalues) are determined for all N and M , and the main features of them and their behaviour
under various limits are estudied. For a detailed account of these features, a variety of graphical tools are used, like
contour plots, angular plots, etc., but, in the case of a large D, information diagrams (see [10] and references therein)
prove to be a valuable tool when appropriate colormaps are used (see the Supplementary Material).

The content of the paper is the following. In Sec. II the symmetric representation of U(D) is reviewed in order
to fix notation (second quantization approach), and parity transformations and parity projectors are introduced. In
Sec. III CS for the symmetric representation of U(D) are reviewed, and some results for their relation with identical
tensor product states are given. In Sec. IV parity adapted CS are defined and some of their properties are given, in
particular their behaviour under certain limits. In Sec. V we specify the entanglement measure used in this paper to
study the entanglement properties of parity adapted CS. In Sec. VI the main result of this paper is proved, namely
the Schmidt decomposition of parity adapted CS of N particles into N −M and M particle subsystems, with the
determination of the Schmidt coefficients and eigenvalues. In Sec. VII some limits for the Schmidt eigenvalues are
studied. In Sec. VIII some physical appliations and possible methods to generate these states are given, in particular
the interesting subject of quDit loss, where the Schmidt decomposition here provided can be of crucial importance.
The paper ends with a conclusing section X. In the Supplementary Material, a reminder of the subject of information
diagrams is included, and a exhaustive set of figures shown the entanglement properties of parity adapted CS for
D > 2 is provided.

II. SYMMETRIC REPRESENTATION OF U(D)

The fully symmetric representation of dimension
(
N+D−1

N

)
of U(D) can be realized as a system of N identical

and indistinguishable particles (atoms) with D levels (internal states), that will be referred to as quDits, with levels
labelled by |0⟩, |1⟩, . . . , |D − 1⟩ (for D = 2 we have the standard qubit usually labelled by |0⟩,|1⟩ or | ↑⟩,| ↓⟩).

Introducing the boson operators ai, a
†
i (a

†
i creates a quDit in the i-th level and ai annihilates it), the Lie algebra of

U(D) can be realized (in the Schwinger representation [11]) as:

Sij = a†iaj , i, j = 0, . . . , D − 1 . (1)

1 We shall consider in this paper unitary groups U(D) instead of special unitary groups SU(D) since the difference between them is an
irrelevant global phase and it is easier to write down a basis of the Lie algebra in the case of unitary groups.
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The operator Sii is the number operator for the population of the i-th level, and Sij (i ̸= j) creates a quDit in the
level i and annihilates another one in the level j. Therefore Sij preserves the total number N of quDits.

It is important to note that the U(D) operators Sij are collective operators, in the sense that they do not act on
the individual states of the particles (which can be an ill-defined concept due to symmetrization). They have in fact
been built up using the second quantization formalism [12, 13]. They fulfill the commutation relations:

[Sij , Skl] = δjkSil − δilSkj . (2)

The carrier Hilbert space HN of our symmetric N -quDit system is spanned by the Bose-Einstein-Fock basis states
(|⃗0⟩ denotes the Fock vacuum):

|n⃗⟩ = |n0, . . . , nD−1⟩ =
(a†0)

n0 . . . (a†D−1)
nD−1

√
n0! . . . nD−1!

|⃗0⟩ , n0 + · · ·+ nD−1 = N , (3)

where ni ≥ 0 denotes the occupancy number of the ith-level (the eigenvalue of Sii), with the restriction given by the

linear Casimir of U(D), C1 =
∑D−1
i=0 Sii, the total number of quDits. The expansion of a general symmetric N -quDit

state ψ in the Fock basis will be written as

|ψ⟩ =
∑

∥n⃗∥1=N

cn⃗|n⃗⟩, (4)

where the sum is restricted to those n⃗ such that ∥n⃗∥1 = n0 + · · ·+ nD−1 = N .

In order to define the notion of entanglement, we shall consider in HN various families of states. The simplest states
that one usually introduces, in order to define separable (non-entangled) states, are Tensor Product States (TPS)

|ψ⃗⟩(N) = |ψ1⟩ ⊗ · · · ⊗ |ψN ⟩. However, due to the exchange symmetry, in HN the only TPS are the subset of identical
tensor product states (ITPS):

AITPS
N = {|ψ ⟩⊗N ∈ HN : |ψ⟩⊗N = |ψ⟩⊗ N· · · ⊗|ψ⟩} ⊂ HN . (5)

with |ψ⟩ ∈ H1. If the one-quDit state |ψ⟩ ∈ H1 is expressed as:

|ψ⟩ = w0|0⟩+ w1|1⟩+ · · ·+ wD−1|D − 1⟩ ≡ |w0, w1, . . . , wD−1⟩ ≡ |w⟩ , |w0|2 + |w1|2 · · ·+ |wD−1|2 = 1 , (6)

then it can be shown (see [14]) that the expression of the N -quDit state |ψ⟩⊗N in the Fock basis is:

|ψ⟩⊗N ≡ |w⟩⊗N =
∑

∥n⃗∥1=N

√(
N

n⃗

)

D−1∏

j=0

w
nj

j


 |n⃗⟩ , (7)

where
(
N
n⃗

)
= N !

n⃗ ! is a multinomial and n⃗ ! stands for
∏D−1
i=0 ni!.

As an important example of ITPS we have the coherent states discussed below.

In place of TPS, in HN we can consider the subset of Symmetrized TPS (STPS), obtained from a TPS under
symmetrization:

ASTPS
N =

{
|ψ⃗ ⟩(ΣN) ∈ HN : |ψ⃗⟩(ΣN) =

1

N (ψ⃗)(ΣN)
Σ|ψ⃗⟩ = 1

N (ψ⃗)(ΣN)

1

N !

∑

σ∈SN

|ψσ(1)⟩⊗
N· · · ⊗|ψσ(N)⟩

}
⊂ HN , (8)

with
(
N (ψ⃗)(ΣN)

)2
= (N)⟨ψ⃗|Σ|ψ⃗⟩(N), SN is the symmetric group of permutations of N elements, and where Σ is

the symmetrization operator, i.e. the projector operator onto the symmetric subspace under SN .

Another important family of states is the Hilbert subspace spanned by AITPS
N , i.e. HITPS

N = span(AITPS
N ),

containing all possible finite linear combinations of ITPS. We shall focus on this paper on states obtained as finite
linear combinations of coherent states (see Sec. III), which belong to HITPS

N .
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A. Parity operators for U(D)

Parity operators play an important role in the representation theory of the group U(D), and also in its physical
applications. They are given by (Roman i denotes the imaginary unit):

Πj = exp(iπSjj) , j = 0, 1, . . . , D − 1 , (9)

with the action on Fock states:

Πj |n⃗⟩ = (−1)nj |n⃗⟩ , (10)

indicating the even (+) or odd (−) character of the population nj of each level j = 0, . . . , D − 1. Note that parity
operators, like the U(D) generators Sij , are collective operators, in the sense that they only depend on the populations
of each level, and do not depend on the individual particle states (which could be ill-defined due to symmetrization).

The action of parity operators on ITPS states is given by:

Πj |w⟩⊗N =
∑

∥n⃗∥1=N

√(
N

n⃗

)(D−1∏

i=0

wni
i

)
(−1)nj |n⃗⟩ = |w0, . . . ,−wj , . . . , wD−1⟩⊗N . (11)

Due to the constraint of the fixed number of particles equating to N , we have the relation Π0 . . .ΠD−1|n⃗⟩ =
(−1)N |n⃗⟩. Hence, discarding for instance Π0, the true discrete parity symmetry group corresponds to the finite

Abelian group ZD−1
2 = Z2× D−1. . . ×Z2.

Taking this into account, let us denote by Πb = Πb11 . . .Π
bD−1

D−1 , where Πbi1 = (Πi)
bi and the binary string b =

[b1, . . . , bD−1] ∈ {0, 1}D−1 denotes one of the 2D−1 elements of the parity group ZD−1
2 . There are 2D−1 parity

invariant subspaces labelled by the inequivalent group characters χc, with c = [c1, . . . , cD−1] ∈ {0, 1}D−1 denoting

elements of the Pontryagin dual group ẐD−1
2 ∼ ZD−1

2 .
The projectors onto these invariant subspaces of definite parity c are given by the Fourier Transform (FT) between

ZD−1
2 and its dual ẐD−1

2 (which in this case is a multidimensional Discrete Fourier Transform of dimension 2× D−1. . . ×2,
whose matrix realization is the Walsh-Hadamard transform [15]):

Πc = 21−D
∑

b

χc(b)Π
b , (12)

with group characters χc(b) = (−1)c·b = (−1)c1b1+···+cD−1bD−1 . The sum in b is on the whole parity group ZD−1
2 ,

but we shall omit it for notational convenience (the same applies to the sums in c that run on the dual group, which

is isomorphic to ZD−1
2 ).

Using the properties of the characters χc of the parity group ZD−1
2 , the projectors satisfy:

ΠcΠc′ = δc,c′Πc (13)

and since they are self-adjoint, they are orthogonal projectors.

By the Fourier inversion formula between ẐD−1
2 and ZD−1

2 , the parity operators can be recovered from the parity
projectors through the inverse FT:

Πb =
∑

c

χc(b)Πc , (14)

where we have used that, in this case, the caracters are real and therefore χc(b) = χc(b). Denoting by 0 and 1 the
binary strings [0, 0, . . . , 0] and [1, 1, . . . , 1], respectively, we obtain:

Π0 =
∑

c

Πc = I , (15)

Π1 =
∑

c

(−1)c·1Πc , (16)

with I the identity operator on HN . Note that Π1 = Π1 . . .ΠD−1 represents the total parity of all the states
1, 2, . . . D − 1, and that Π0 = I and Π1 generate a Z2 subgroup (the “total parity” subgroup) of the parity group.
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By Eq. (15) and the orthogonality of the projectors, the Hilbert space HN decomposes into a direct sum of parity
adapted (or projected) subspaces:

HN =
⊕

c

H(c)
N . (17)

In order to clarify the meaning of the different objects appearing in the remaining sections, we shall make explicit
the number of particles (say M) of the involved representations in the notation of U(D) generators, parity, projection
and identity operators:

Sij −→ S
(M)
ij , Πb −→ Πb(M) , Πc −→ Π(M)

c
, I −→ I(M) . (18)

Let us state the following Lemma, which will be helpful in the proof of the rest of results of this paper.

Lemma 1. M -particle parity operators Π
(M)
i can be factorized into one-particle parity operators:

Π
(M)
i =

M∏

k=1

I(k−1) ⊗Π
(1)
i ⊗ I(M−k) . (19)

Proof: The proof is a consequence of the fact that M -particle collective U(D) generators S
(M)
ij can be decomposed as

a sum of one-particle U(D) generators S
(1)
ij (see [14]):

S
(M)
ij =

M∑

k=1

I(k−1) ⊗ S
(1)
ij ⊗ I(M−k) . (20)

Then eq. (19) follows from the definition of parity operators (9) and the commutativity of the diagonal operators

S
(M)
ii .■
According to this Lemma the parity operators are identical tensor product operators (ITPO). These operators

preserve the subset AITPS
N and therefore leave invariant the Hilbert subspace HITPS

N . They also commute with the
symmetrization operator Σ, as Πb and Πc also do.

III. COHERENT STATES FOR THE SYMMETRIC REPRESENTATION OF U(D)

U(D)-spin coherent states are defined as [16]:

|z⟩ = 1√
N !

(
a†0 + z1a

†
1 + · · ·+ zD−1a

†
D−1√

1 + |z1|2 + · · ·+ |zD−1|2

)N
|⃗0⟩ . (21)

They are labeled by D− 1 complex numbers zj ∈ C arranged in the column vector z = (z1, z2, . . . , zD−1)
t ∈ CD−1.

They are in fact labelled by the points in the complex projective space CPD−1, but for simplicity we have considered
the chart in CPD−1 where z0 ̸= 0 and divided all coefficients by z0 (see, for instance, [17]).

Note that the state for z = 0, |0⟩ = a†N
0√
N !

|⃗0⟩ (usually denoted as highest-weight state), should not be confused with

the Fock vacuum |⃗0⟩.
The coefficients cn⃗(z) of |ψ⟩ = |z⟩ in the Fock basis are (see eq. (4))

cn⃗(z) =

√
N !

n⃗ !

∏D−1
i=1 zni

i

(1 + z†z)N/2
, (22)

where z†z = |z1|2 + · · ·+ |zD−1|2 denotes the standard scalar product in CD−1 and n⃗ ! stands for
∏D−1
i=0 ni!.

From the previous expression, and comparing with eq. (7), it is clear that coherent states are ITPS, cf. eq. (6),
with coefficents wj =

zj√
1+z†z

, j = 0, 1, . . . D − 1 (where z0 = 1).

In general, these CS are non-orthogonal since the scalar product

⟨z|z′⟩ = (1 + z†z′)N

(1 + z†z)N/2(1 + z′†z′)N/2
(23)
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is not necessarily zero. However, they constitute an overcomplete set of states closing a resolution of the identity [16]

I =

∫

CD−1

|z⟩⟨z|dµ(z), (24)

dµ(z) =
(D − 1)!

πD−1

(
N +D − 1

N

)
d2z1 . . . d

2zD−1

(1 + z†z)D
,

with d2zi = dRe(zi)dIm(zi) the usual (Lebesgue) measure on C ∼ R2.
It turns out that a CS for a representation with N particles is the tensor product of N copies of one-particle CS

states, all of them with the same value of z (see, for instance, [14]). Therefore coherent states belong to the subset
AITPS
N , and will be denoted as |z⟩⊗N when we need to specify the number of quDits in the representation.
In fact, the only ITPS are coherent states, as it is proven in the following Lemma and Proposition.

Lemma 2. There is a bijective map between H1 and the set of one-particle coherent states.

Proof: An arbitrary state in H1 is given by eq. (6), with |w0|2 + |w1|2 + · · · + |wD−1|2 = 1. By the proyective
character of H1 (invariance under a global phase), the topology of this space is that of the product of the first hyper-
octant of SD−1 times the hypertorus TD−1 (the relative phases), see [18]. Note that for U(2) this reduces to S2 ≡ CP1,

usually referred to as the Bloch sphere (for pure states). In general, it corresponds to the projective space CPD−1,
which we shall call the Bloch projective space.

To construct the bijection with one-particle coherent states, let us consider a particular chart and suppose w0 ̸= 0,
then invariance under a global phase allows to choose w0 > 0.

One-particle coherent states are of the form

|z⟩ = |0⟩+ z1|1⟩+ z2|2⟩+ · · ·+ zD−1|D − 1⟩√
1 + |z1|2 + · · ·+ |zD−1|2

, (25)

and the geometry is also that of the projective space CPD−1, where again we have used the chart where z0 ̸= 0 (see,
for instance, [19]).

Thus, to a one-particle coherent state we can associate a unique element of the Bloch projective space given by:

w0 =
1√

1 + |z1|2 + · · ·+ |zD−1|2
> 0 , wi =

zi√
1 + |z1|2 + · · ·+ |zD−1|2

, (26)

for i = 1, . . . , D − 1. Conversely, to an element of the Bloch projective space (with w0 > 0) we can associate the
coherent state with parameters:

zi =
wi
w0

. (27)

The case w0 = 0 is handled considering a different chart in the projective space of coherent states and in the Bloch
projective space. ■
Proposition 1. There is a biyection between AITPS

N and the set of N -particle coherent states.

Proof: Consider tensor products of the same one-particle state and apply the previous Lemma for each particle.■

As a corollary of this result, it turns out that HITPS
N coincides with span({|z⟩⊗N : z ∈ CD−1}.

From Eq. (27) it is clear that the parameterization z for coherent states is the projective version of the parametriza-
tion w for the Bloch projective space. Thus, we can identify the general one-particle state (6) and its corresponding
N -particle ITPS as:

|ψ⟩ = |w⟩ = |z⟩ , |ψ⟩⊗N = |w⟩⊗N = |z⟩⊗N . (28)

However, the parametrization z has important properties from the analytical and geometrical point of view, making
them more suitable in the applications. According to these results, the familiy of coherent states, due to their useful
geometric and analytic properties, is a convenient way of parametrizing HITPS

N .
We can go one step further and write any state in HN as a finite linear combination of coherent states (or ITPS,

as you like).

Theorem 1. Any state in HN can be written as a finite linear combination of ITPS, i.e. HITPS
N = HN .
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Proof: We provide here an sketch of the proof, leaving a detailed proof for a future publication [20]. Although coherent
states are not orthogonal, they generate the whole space HN since they are overcomplete by eq. (24). Since HN is
finite-dimensional, it is possible to find a finite subset of coherent states generating the whole HN (see for instance
[21] for the case of SU(2)), and therefore HITPS

N = HN .■
Note that this theorem does not hold in the case of non-compact groups, where the irreducible unitary represen-

tations are realized in an infinite dimensional Hilbert space H∞, and therefore finite linear combinations of coherent

states are only dense in the Hilbert space, i.e. HITPS
N ̸= H∞ but HITPS

N = H∞ (see [22] for the case of SU(1, 1)).
For the case of SU(2) an stronger result can be given: HN is made of symmetrized tensor product states.

Theorem 2. For D = 2, HN = ASTPS
N .

Proof: The usual proof is given in terms of the Majorana representation and Majorana constellation [23, 24]. The
Majorana representation for the SU(2) state |ψ⟩ of spin s, with N = 2s, is given in terms of the Husimi amplitude
M(z) = ⟨z|ψ⟩. Ignoring a global factor depending on |z|, the Majorana function M(z) is a polynomial in z̄ which
is characterized by its zeros, having up to 2s zeros. Completing this zeros with the zeros at infinity of M(z), the
Majorana representation of the state |ψ⟩ is characterized by 2s points on the sphere (once the complex zeros are
mapped to the sphere by inverse stereographic projection and the zeros at infinity are associated with the North pole
of the sphere), denoted as Majorana constellation.

On the other hand, the Majorana representation of a STPS |ψ⃗⟩ is given by:

Mψ⃗(z) =
1

N (ψ⃗)(ΣN)

1

N !

∑

σ∈SN

⟨z|ψσ(1)⟩ ⊗ · · · ⊗ ⟨z|ψσ(N)⟩

=
1

N (ψ⃗)(ΣN)
⟨z|ψ1⟩ · · · ⟨z|ψN ⟩ , (29)

which coincides, up to a global normalization factor independent of z, with the Majorana representation of a (non-
symmetrical) TPS state. By Lemma 2 every |ψi⟩ coincides with a coherent state |zi⟩, thus

Mψ⃗(z) =
1

N (ψ⃗)(ΣN)
⟨z|z1⟩ · · · ⟨z|zN ⟩ . (30)

The zeros of Mψ⃗(z) are clearly those values of z that make zero any of the overlaps ⟨z|zi⟩, for some i = 1, . . . , N ,

and, for SU(2) coherent states, the unique zero values of the overlaps are the antipodal points − 1
z̄i
. By the unicity

of the representation of the Majorana function in terms of its zeros, we conclude that any state of spin s corresponds
to a STPS.■.

Unfortunately, although we can define a Majorana representation for D ≥ 3 in terms of the Husimi amplitudes
M(z) = ⟨z|Ψ⟩, defined on the projective spaces CPD−1, they cannot be characterized in terms of their zeros (which
are no longer isolated points), and a result like Theorem 2 is not available. However, Theorem 1 is still valid and it
can be used to compute the Schmidt decomposition of arbitrary parity adapted multi-quDit states [20].

IV. PARITY ADAPTED U(D)-SPIN COHERENT STATES

Parity operators Πj = exp(iπSjj) act on CS as

Πj |z⟩ = |z1, . . . ,−zj , . . . , zD−1⟩ , j = 0, 1, . . . , D − 1 , (31)

thus Πj just changes the sign of zj in |z⟩. Let us denote zb ≡ ((−1)b1z1, . . . , (−1)bD−1zD−1)
t, then

|zb⟩ ≡ Πb|z⟩ =
D−1∏

i=1

Πbii |z⟩ . (32)

Define also parity c adapted U(D)-spin CS as

|z⟩c ≡ Πc|z⟩
Nc(z)

=
21−D

Nc(z)

∑

b

χc(b)|zb⟩ , (33)
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as the normalized projection of |z⟩ onto the invariant subspace of parity c (or normalized FT of |zb⟩), where the
normalization factor is given by:

Nc(z)
2 = 21−D

∑

b

χc(b)⟨z|zb⟩ = 21−D
∑

b
χc(b)(1 + z†zb)N

(1 + z†z)N
, (34)

i.e., Nc(z)
2 is the FT of the overlap between a coherent state and its parity transformed versions. Note that Nc(z)

is a function only of the absolute values |zi| , i = 1, . . . , D − 1, and does not depend on the relative phases.
Note that Nc(z) can be zero (as well as Πc|z⟩) for some particular values of z and c. We shall discuss these cases

in the next subsections.
The rest of the paper will be devoted to study the entanglement properties of these parity adapted CS, which can

be seen as particular instances of Entangled CS [25] (see also the review [26]).

A. Limit values for normalization factors

It is worth showing some particular values of the normalization factor, that will be usefull in computing some limit
values of the Schmidt eigenvalues in Sec. VII.

At z = 0 we have

Nc(0)
2 = δc,0 , (35)

implying that the normalization at z = 0 is zero except for the completely even unnormalized parity adapted CS
state (see Sec. IVC for a detailed study of the limit z → 0 of these states).

The ∥z∥ → ∞ limit does not exist (except for the case D = 2, see below), since its value depends on the direction.

Using hyper-spherical coordinates in the first hyper-octant, |zi| = ryi(θ⃗), θ⃗ ∈ [0, π2 ]
D−2 , i = 1, 2, . . . D − 1, we can

compute the directional limits:

lim
r→∞

Nc(z)
2 = 21−D

∑

b

χc(b)Yb(θ⃗)
N , (36)

with Yb(θ⃗) =
∑D−1
i=1 (−1)biyi(θ⃗)

2. For instance, for D = 3 we have polar coordinates, and in this case Yb(θ) =

(−1)b1 cos2 θ + (−1)b2 sin2 θ .
For D = 2 the limit |z| → ∞ exists, ant it is given by:

lim
|z|→∞

Nc(z)
2 = δNc,0 . (37)

with Nc = (N − c) mod 2.
Another interestig limit is the thermodynamic limit, i.e. when the number of particles N grows to infinity:

lim
N→∞

Nc(z)
2 = 2−kδc0,00

, (38)

where k = ∥z∥0, with the 0-norm being the number of nonzero components of the vector z, and c0 indicates the
subset of components of c whose indices coincide with the indices of the zero components of z.

Finally, let us consider the rescaled thermodynamic limit, when N grows to infinity but at the same time z
approach 0 such that

√
Nz = α is finite. This process is equivalent to the group contraction from U(D) to the

harmonic oscillator (HO) group in D − 1 dimensions2, HOD−1:

lim
N→∞

Nc

(
α√
N

)2

=

D−1∏

i=1

(
NHO
ci (αi)

)2
, (39)

where NHO
c (α) are the normalization factors of the even (c = 0) and odd (c = 1) Schrödinger cat states of the

one-dimensional harmonic oscillator:

(
NHO
c (α)

)2
=

1

2

∑

b=0,1

(−1)bc⟨α|(−1)bα⟩ = 1

2

∑

b=0,1

(−1)bce((−1)b−1)|α|2 = e−|α|2expc(|α|2) , (40)

2 The harmonic oscillator group in D − 1 dimensions is the Lie group generated by the Lie algebra of the canonical annihilation and
creation operators in D−1 dimensions, including the corresponding number operators and the rotations. Alternatively, this contraction
procedure can be seen as the large N limit of the generalized Holstein-Primakoff realization of SU(D), see [27, 28].
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with |α⟩ the coherent states of the harmonic oscillator, and where:

expc(x) =

{
cosh(x) , c = 0 (even) ,
sinh(x) , c = 1 (odd) .

(41)

The behaviour of the normalization factors Nc(z)
2 is summarized in Fig. 1 for the case D = 2.

FIG. 1. Plots of the normalization factor Nc(z)2 for D = 2, N = 6 (left), N = 7 (center) and in the restaled thermodynamic
limit (right), for |z|, |α| ∈ [0, 10].

B. Fock coefficients

The coefficients cn⃗(z)c of |z⟩c in the Fock basis are:

cn⃗(z)c =
21−D

Nc(z)

∑

b

χc+n(b)cn⃗(z) =
cn⃗(z)

Nc(z)
δn⃗0 mod 2,c , (42)

where n⃗0 = (n1, . . . , nD−1) is retrieved from n⃗ by removing n0. With this expression of the Fock coefficients for |z⟩c,
the squared norm can be rewritten as

Nc(z)
2 =

∑

∥n⃗∥1=N

δn⃗0 mod 2,c|cn⃗(z)|2 (43)

Thus, parity adapted U(D)-spin CS |z⟩c in Eq. (33) contain only basis Fock states |n⃗⟩ with the same parity as c
(in the indices i = 1, . . . , D − 1).

Due to these properties, parity adapted CS can be considered multicomponent Schrödinger cat states, being an
extension to D levels and parity c ∈ ZD−1

2 of SU(2) Schrödinger cat states [29], which in turn are the SU(2) version
of the traditional even and odd Schrödinger cat states for one-mode harmonic oscillator [30]. They are also the U(D)
version (extended to all possible parities) of Schrödinger cat states of the multimode harmonic oscillator [31]. The
SU(2) version of these states are related to spin cat states [32–35], with interesting metrological properties. We shall
call them “c-DCATs”, or “DCATs” for short when the parity c is not relevant.

It is interestig to note that if we consider parity adapted CS but restricted to the total parity subgroup, i.e. the
one generated by Π0 = I and Π1, the resulting states are the U(D) version of the even and odd multimode (or
polychromatic) Schrödinger cat states introduced in [31]. In this case, the even or odd parity refers to the total parity,
i.e, that of the sum n1 + n2 + . . .+ nD−1 = N − n0.

Finally, note that due to the equivalence between the set of coherent states and the Bloch projective space, given
by Lemma 2 and Proposition 1, we can extend the definitions in this section to the states parametrized by the Bloch
projective space and the ITPS obtained from them, i.e. we can define in the obvious way the (N -particle states):

|wb⟩ , |w⟩c , |ψb⟩ , |ψ⟩c , (44)

where |ψ⟩ here stands for N identical copies of the state given in Eq. (6). Note that the parity transformed states
|wb⟩ and |ψb⟩ are N -particle ITPS, whereas the parity adapted states |w⟩c and |ψ⟩c are finite sums of ITPS.

Also, by Theorem 1, any state |Ψ⟩ ∈ HN (not necessarily an ITPS) can be writen as a finite sum of coherent states.
Therefore we can define |Ψ⟩b and |Ψ⟩c as the corresponding finite sums of parity transformed or parity adapted
coherent states. Although parity transformations are well defined for any state through its action on Fock states, see
eq. (10), for the purpose of the Schmidt decomposition the expansion in terms of coherent states will be useful in
order to use the factorization property of parity transformations given in Lemma 1.
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C. Limit values for DCATs at z = 0: Fock-cat states

It could seem that c-DCATs for parities c ̸= 0 do not exist at z = 0, in view of the zero vale of the norm of the
unnormalized parity adapted states Πc|z⟩ (see Eq. (35) and Fig. 1 for D = 2). However, if we consider the normalized
c-DCATs states |z⟩c in Eq. (33), they are well-behaved at z = 0, and their Fock coefficients have the expression:

lim
z→0

cn⃗(z)c = δn⃗0,c . (45)

This means that c-DCATs are Fock states at z = 0, in particular the ones given by:

lim
z→0

|z⟩c = |n0 = N − k, n⃗0 = c⟩ = |N − k, c1, . . . , cD−1⟩ , (46)

with k = ∥c∥0 the number of non-zero components of c. We shall call these states Fock-cat states, since they are Fock
states but sharing many properties with DCATs, since they are limits of DCATs when z → 0.

In the thermodynamic limit (N → ∞), the same result still applies, but now n0 → ∞ in all cases.
In the rescaled thermodynamic limit (the contraction to D − 1 harmonic oscillators), the result is also similar, but

in this case the z → 0 limit is the (D − 1)-dimensional harmonic oscillator Fock state:

lim
z→0

|z⟩HO
c

= |c⟩ = |c1, . . . , cD−1⟩ . (47)

D. Limit values for DCATs when ∥z∥ → ∞

As it can be seen for the case D = 2 at Fig. 1 (the two leftmost graphics), the norm approaches either zero or one
when ∥z∥ → ∞. A similar behaviour can be observed for higher values of D at the coordinate axes. This suggests
that we should study with detail these limits in order to properly identify these states.

Define the vector z ∈ {0, 1}D−1 such that ∥z∥0 = 1, i.e. z is a unitary vector pointing in the positive direction of
one of the coordinate axes in RD−1 (that is, z is a particular element of the canonical basis of RD−1). Then the Fock
coefficients of the c-DCATs in the limit along the coordinate axes are given by:

lim
r→∞

cn⃗(rz)c = δn⃗0,c+(N−∥c∥0−Nc)z , (48)

with Nc = (N − ∥c∥0) mod 2. This means again that c-DCATs approach Fock states in these limits, in particular the
ones given by:

lim
r→∞

|rz⟩c = |Nc, c+ (N − ∥c∥0 −Nc)z⟩ , (49)

and thus they are also Fock-cat states.
In some particular cases, depending on the parity of N and on c and z, the resulting Fock state has all the particles

in the same level (i.e. they are ITPS, with no entanglement). For instance, for D = 2 the resulting Fock state in the
limit |z| → ∞ is |0, N⟩ if N and c have the same parity. For D = 3, c = [0, 0], and even N , in the limit z → (∞, 0)
the resulting state is |0, N, 0⟩ and in the limit z → (0,∞) the resulting state is |0, 0, N⟩. For c = [1, 0] and odd N , in
the limit z → (∞, 0) the resulting state is |0, N, 0⟩. For c = [0, 1] and odd N , in the limit z → (0,∞) the resulting
state is |0, 0, N⟩. For c = [1, 1], in none of the cases we obtain a Fock state with all the particles in the same level.

It should be noted that zi → ∞ for some i = 1, . . . , D − 1 means that the chosen chart (the one for which z0 ̸= 0)
is no longer valid since z0 turns out to be zero. In this case the chart for which zi ̸= 0 should be used instead.

Taking into account this fact, the cases ∥z∥ → 0 and zi → ∞ for some i = 1, . . . , D − 1 should stand on the same
foot. For instance, the Fock state |0, . . . , 0, N, 0, . . . , 0⟩, with the N particles at level i, corresponds (in the notation
used in Eq. (6)) to wi = 1, wj = 0 for j ̸= i and c = 0 if N is even and c = [0, . . . , 0, 1, 0, . . . , 0] (with a one at
position i) if N is odd. The other cases can be treated in a similar fashion.

V. ENTANGLEMENT MEASURES

Entanglement implies quantum correlations among the different parts of a multipartite system. We shall restrict
to bipartite entanglement of pure states, where different measures of entanglement exist, depending on how non-
entangled (separable) states are defined. In [3] some definitions of entanglement are introduced, and in the most basic
one (Entanglement-I) separable states are identical TPS states (ITPS), thus the only separable states are coherent
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states, as shown in Prop. 1. In particlar, symmetrized TPS are entangled according to this definition, due to the
exchange symmetry.

For other definitions of entanglement, like (Entanglement-V) in [3], also known as mode entanglement, separable
states are obtained, in the second quantization formalism, by acting on the Fock vacuum with a product of creation
operators which act on a different set of modes (or levels). An example of separable states are basis Fock states |n⃗⟩,
which however are not separable (except in the case when all the particles are in the same level) with respect to
Entanglement-I. Also, with respect to Entanglement-V, coherent states are not separable (see, for instance, [19] for
U(3) coherent states).

There is an intense debate in the literature about which of the different notions of entanglement is the correct one
for indistinguishable particles, in the sense that entanglement could be used as a resource in quantum information,
computation, communication or metrology tasks, see [3, 4, 9] and references therein.

Without entering in this debate, we shall stick in this paper to the notion of Entanglement-I, which is very common
in the literature, and which provides a mathematically consistent notion of entanglement in terms ofM -particle RDMs
(when N −M quDits are traced out) and their corresponding Schmidt coefficients (see [36] and references therein).
We shall use entropic measures on the RDMs to quantify the entanglement (see [5] for the case of qubits). From the
physical (and also the mathematical) point of view, this is justified since we shall work only with CS and finite sums
of them. Also, in certain situations, like quDit loss (see Sec. VIII B), the process of losing one or more quDits is
modelled by tracing out by these quDits, and our decomposition fits in perfectly in this scheme.

Since the computation of many entropies (like von Neumann entropy) requires the knowledge of the eigenvalues of
the RDM, we shall mainly focus on computing the eigenvalues of these M -particle RDMs.

By the Schmidt decomposition theorem (see [36]) the nonzero eigenvalues (the squares of the so called Schmidt
coefficients) of the M -particle RDM coincide with those of the (N − M)-particle RDM, thus we shall restrict to
1 ≤M ≤ ⌊N2 ⌋. Only in the study of robustness (see Sec. VIII B) we will be interested in the (N −M)-particle RDM.

Starting with a pure state |ψ⟩(N) in the symmetric irreducible representation of U(D) with N particles/quDits, we
define the M -particle RDM as:

ρ(M) = TrN−M |ψ⟩⟨ψ|(N) . (50)

Due to the symmetry of the original state |ψ⟩(N), the resulting density matrix ρ(M) lies in the symmetric irreducible
representation of U(D) with M particles.

VI. SCHMIDT DECOMPOSITION OF DCATS

In this section we provide the main results of the paper on Schmidt decomposition of DCATs under the bipartition
in M and N −M particles, with 1 ≤M ≤ ⌊N2 ⌋.

A. Decomposition of definite parity projection operators

The following Lemma will be of extreme importance in the following results about Schmidt coefficients of reduced
density matrices for states with definite parity, stating that projectors Πc onto subspaces of definite parity c for a
given number of particles can be decomposed as a sum over all possible parities of tensor products of projectors on
subspaces of definite parity with smaller number of particles.

Lemma 3. Let N,M integers with N > 1 and 1 ≤M ≤ ⌊N2 ⌋. Then:

Π(N)
c

=
∑

c′

Π
(N−M)
c−c′ ⊗Π

(M)
c′ =

∑

c′

Π
(M)
c−c′ ⊗Π

(N−M)
c′ =

∑

c′

Π
(N−M)
c′ ⊗Π

(M)
c−c′ . (51)

Proof: The proof is obvious using Convolution Theorem for ZD−1
2 :

Π(N)
c

= 21−D
∑

b

χc(b)Π
b(N) = 21−D

∑

b

χc(b)
(
Πb(N−M) ⊗ I(M)

)(
I(N−M) ⊗Πb(M)

)
(52)

=
∑

c′

(
Π

(N−M)
c−c′ ⊗ IM

)(
I(N−M) ⊗Π

(M)
c′

)
=
∑

c′

Π
(N−M)
c−c′ ⊗Π

(M)
c′ ,
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where we have used Lemma 1 to factorize Πb(N):

Πb(N) = Πb11 . . .Π
bD−1

D−1 = exp(iπ
D−1∑

j=1

bjS
(N)
jj ) = exp(iπ

D−1∑

j=1

bj(S
(N−M)
jj ⊗ I(M) + I(N−M) ⊗ S

(M)
jj )) (53)

= exp(iπ
D−1∑

j=1

bjS
(N−M)
jj ⊗ I(M)) exp(iπbjI

(N−M) ⊗ S
(M)
jj ) =

(
Πb(N−M) ⊗ I(M)

)(
I(N−M) ⊗Πb(M)

)
,

together with the fact that the number operators Sjj commute among them for all values of j.■
Note the symmetry under the interchange (N −M) ↔M , due to the Schmidt Theorem, and the symmetry under

the interchange (c− c
′) ↔ c

′, due to the Convolution Theorem.

B. Decomposition of parity adapted CS

Using the previous result applied to a coherent state we obtain the main result of this paper:

Theorem 3. Let N,M integers with N > 1 and 1 ≤ M ≤ ⌊N2 ⌋. Then the c-DCAT of N particles can be decomposed
in terms of superpositions of tensor products of DCATs of M and N −M particles as:

|z⟩(N)
c

=
∑

c′

lN,M
c,c′ (z)|z⟩(N−M)

c−c′ ⊗ |z⟩(M)
c′ , (54)

with Schmidt coefficients

lN,M
c,c′ (z) =

N (N−M)
c−c′ (z)N (M)

c′ (z)

N (N)
c (z)

. (55)

Proof: The proof is obvious by applying the previous Lemma and restoring the normalization of the diverse DCATs
appearing in the equation.■

The Schmidt eigenvalues of the RDM obtained after tracing out N −M particles are given by the squares of the
Schmidt coefficients:

λN,M
c,c′ (z) =

(
lN,M
c,c′ (z)

)2
. (56)

Note that the Schmidt eigenvalues depend only on the absolute values |zi| , i = 1, . . . , D− 1, and do not depend on
the relative phases. They are also invariant under the simultaneous interchange of (N −M) ↔M and (c− c

′) ↔ c
′.

The M -particle RDMs are well-defined density matrices, since the eigenvalues are positive and their sum is one.

Proposition 2. The trace of the M -particle RDM ρ
(M)
c (z) of a c-DCAT is:

Tr ρ(M)
c

(z) = Tr
(
TrN−M

(N)|z⟩c c⟨z|(N)
)
=
∑

c′

λN,M
c,c′ (z) = 1 . (57)

Proof: Using the definition of the Schmidt numbers, it is easily proven that

∑

c′

λN,M
c,c′ (z) =

1
(
N (N)
c (z)

)2
∑

c′

(
N (N−M)
c−c′ (z)N (M)

c′ (z)
)2

=
1

(
N (N)
c (z)

)2 21−D
∑

b

χc(b)⟨z|zb⟩(N−M)⟨z|zb⟩(M)

=
1

(
N (N)
c (z)

)2 21−D
∑

b

χc(b)⟨z|zb⟩(N) = 1 , (58)

where Convolution Theorem for ZD−1
2 has been used again in the second line.■

It could seem that the Schmidt decomposition provided by Eq. (54) is ill-defined since the right-hand side of the
equation is not invariant under particle permutations. However, it is easy to show that, due to the group-theoretical
properties of parity adapted CS, it is in fact symmetric, guaranteeing that the standard Schmidt decomposition for
distinguishable bipartite systems works in our case without the need of modification (see for instance the modification
suggested in [7] for the case of two indistinguishable qubits).
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C. Schmidt rank of DCATs

Although there are 2D−1 terms in the decomposition of a parity adapted CS, not all the eigenvalues λN,M
c,c′ are in

general different from zero. There are some general bounds on the rank that we should take into account:

• If some zi = 0 in eq. (21) ⇒ the number of eigenvalues is reduced in a factor 2 if ci = 0 (see Sec. VIIC)
Thus, the minimum Schmidt number (attained when z → 0) is 2k, with k = ∥c∥0 the number of non-zero
components of the vector c.

• For a given M , the dimension of the symmetric representation with M particles is
(
M+D−1

M

)
.

From this considerations, the next Corollary follows.

Corollary 1. The Schmidt number of the M -particle RDM, defined as the rank of ρ
(M)
c (z), for a c-DCAT satisfy the

bounds:

rank(ρ(M)
c

(z)) = min{2∥z∥0+∥c0∥0 ,
(
M+D−1

M

)
} , (59)

with ∥z∥0 ≤ D−1 the number of non-zero entries of the vector z, and where ∥c0∥0 is the number of nonzero entries of
the vector c0, defined as the subset of components of c whose indices coincide with the indices of the zero components
of z.

In Table I some examples for the different dimensions are shown, indicating in red the cases where the dimension
of the symmetric representation with M particles is smaller than the maximum number of DCATs.

Full tensor product DM Symmetric irrep
(
M+D−1

M

)
Maximum number of DCATs 2D−1

D = 2,M = 1 2 2 2

D = 3,M = 1 3 3 4

D = 3,M = 2 9 6 4

D = 4,M = 1 4 4 8

D = 4,M = 2 16 10 8

D = 5,M = 1 5 5 16

D = 5,M = 2 25 15 16

D = 5,M = 3 125 35 16

TABLE I. Dimensions of the full tensor product space H⊗M
1 and the symmetric representation space HM compared with the

maximun number of DCATs, for different values of D and M . Red colors refer to cases where the maximum number of DCATs
exceeds the dimension of HM .

As it can be seen, in general, for D = 2 (qubits) it is enough to consider 1-particle RDMs to account for the two
possible 2CATs (even and odd). For D = 3 (qutrits) we need 2-particle RDMs to have enough room to accomodate
the four 3CATs, and for D = 5 it is necessary to use 3-particle RDMs to have room for the sixteen 5CATs. Since 2D−1

grows exponentially with D, whereas the binomial coefficient
(
M+D−1

M

)
grows as a polynomial of degree M in D, if

we fix M , clearly the number of DCATs will exceed the maximun rank of the RDMs as D grows. We need to increase
also M to have enough room for all possible DCATs in the RDMs.

From the previous discussion, we can compute the Schmidt rank, i.e. the maximun Schmidt number for all possible
M -RDM.

Corollary 2. The Schmidt rank of a c-DCAT is:

Schmidt rank of |z⟩c = max
1≤M≤⌊N

2 ⌋
rank(ρ(M)

c
(z)) = 2∥z∥0+∥c0∥0 ≤ 2D−1 . (60)

D. M-wise Entanglement entropy of parity adapted U(D)-spin coherent states

The knowledge of the Schmidt coefficients and eigenvalues allows to easily compute the Linear and von Neumann
entropies

L(ρ) = d

d− 1
(1− Tr(ρ2)) , S(ρ) = −Tr(ρ logd ρ) (61)
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of the M -wise RDM matrices, with d a suitable dimension to normalize the entropies between 0 and 1.
In our case the chosen dimensions (according to the dimension of the symmetric representation for M particles,

when M is finite, and to the maximum rank of the RDM for parity adapted CS) are:

d =





(
M+D−1

M

)
, finite M ,

2D−1 , infinite M .

(62)

In Sec. IX (and in the Supplementary Material) we shall show different plots of von Neumann entropy (line plots
for D = 2, contour plots for D = 3, angular plots with ∥z∥2 = R for D = 4 and information diagrams for arbitrary
values of D). In these plots we shall observe the main features of the entropy of the M -wise RDM of parity adapted
CS, and therefore of the entanglement of these states.

VII. SOME INTERESTING LIMITS OF THE SCHMIDT EIGENVALUES

In this section we shall analyse with detail the behaviour of the Schmidt eigenvalues under certain limits (N → ∞,
M → ∞, ∥z∥ → 0, zi → 1, ∥z∥ → ∞, etc.). We shall make use of the limit values of the normalization factors Nc(z)
computed in Sec. IV.

A. Single thermodynamic limit

In many-body systems, the thermodynamic limit is the limit where the number of particles N grows to infinity.
The limit N → ∞ of the Schmidt eigenvalues has the expression:

lim
N→∞

λN,M
c,c′ (z) =

(
N (M)
c′ (z)

)2
. (63)

It turns out that, in this limit, the Schmidt eigenvalues do not depend on the original parity c, therefore all c-DCATs
have the same Schmidt decomposition in the thermodynamic limit. Thus, looking at the RDMs, we cannot infer the
parity of the original state in this limit. This confers an universal character to the thermodynamic limit of the Schmidt
decomposition, erasing all information about the parity c of the original state.

B. Double thermodynamic limit

Another interesting limit is the double thermodynamic limit, when both N and M go to infinity independently.
However, this limit is not well-defined. In fact only one of the iterated limits makes sense (since M ≤ N). The only
possible iterated double thermodynamic limit is:

lim
M→∞

lim
N→∞

λN,M
c,c′ (z) = 2−kδc0,c′0 , (64)

where k = ∥z∥0 is the number of nonzero components of the vector z, and c0 indicates the subset of components of
c whose indices coincide with the indices of the zero components of z.

This shows that the ∞-RDM of an infinite number of quDits corresponds to a maximally mixed state of dimension
2k.

We can also consider the rescaled directional double thermodynamic limit, where both N and M go to infinity but
with M/N = 1− η fixed, and simultaneously the variable z is rescaled by

√
N :

lim
N→∞

M=(1−η)N
λN,M
c,c′ (α/

√
N) =

D−1∏

i=1

λHO,ηci,c′i
(αi) (65)

with

λHO,ηc,c′ (α) =

(
NHO
c−c′(

√
ηα)NHO

c′ (
√
1− ηα)

NHO
c (α)

)2

(66)
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with η ∈ [ 12 , 1). Using the expression of NHO
c (α) given in Sec. IV, we arrive at:

λHO,ηc,c′ (α) =
expc−c′(η|α|2)expc′((1− η)|α|2)

expc(|α|2)
=

1

2
+ (−1)c−c

′ expc((1− 2η)|α|2)
2expc(|α|2)

. (67)

Note that for η = 1
2 we have λ

HO, 12
1,c′ (α) = 1

2 (the odd cat state is maximally entangled for all non-zero values of α),
and for η → 1 we have

lim
η→1

λHO,ηc,c′ (α) = δc′,0 , (68)

indicating that the fidelity with respect to the original state approaches 1 as η → 1 (see Sec. VIII B).
This represents a generalization to higher dimensions of the results of [37] (see also [38] for the case η = 1

2 ), for
decoherence of a Schrödinger cat state of the harmonic oscillator (realized with a laser beam) by photon absorption
modelled by the passage through a beam splitter of transmisivity η.

This suggests that in the case of DCATs, the Schmidt decomposition we have obtained can be physically interpreted
as a decoherence process under the loss ofM -quDits. In this sense, our results can help in designing quantum systems
robust under quDit loss, for instance in quantum error correction protocols (see [39, 40] for the case of qubit loss).
We shall further discuss this point in Section VIII B.

C. Limits when ∥z∥ → 0, |zi| → 1, ∥z∥ → ∞

In this subsection we shall consider diverse limits of the Schmidt eigenvalues in the variable z.
The limit at z = 0 = (0, 0, . . . , 0) is important since it will provide the minimum rank of the RDM. It general its

expression is cumbersome and we will only give the cases D = 2 and D = 3.
For D = 2 we have:

lim
z→0

λN,Mc,c′ (z) =
M

N
δc,c′ +

N −M

N
δc′,0 . (69)

Thus at z = 0 the Schmidt rank is 1 (pure state) for the completely even (c = 0) 2CAT and 2 for the even case
(c = 1) 2CAT. Note that this last statement should be understood in the limit sense since for c ̸= 0 the action of the
parity projector onto the highest state (which lies in the completely even subspace) is zero, Πc|0⟩ = 0.

For D = 3 we have:

lim
(z1,z2)→(0,0)

λN,M[0,0],c′(z1, z2) = (1, 0, 0, 0)

lim
(z1,z2)→(0,0)

λN,M[0,1],c′(z1, z2) =

(
M

N
,
N −M

N
, 0, 0

)

lim
(z1,z2)→(0,0)

λN,M[1,0],c′(z1, z2) =

(
M

N
, 0,

N −M

N
, 0

)
(70)

lim
(z1,z2)→(0,0)

λN,M[1,1],c′(z1, z2) =

(
M(M − 1)

N(N − 1)
,
M(N −M)

N(N − 1)
,
M(N −M)

N(N − 1)
,
(N −M)(N −M − 1)

N(N − 1)

)
,

where at the right-hand side the vector of Schmidt eigenvalues is shown, ordered according to the decimal expression
of c′. From this expression the rank of the RDM at z = 0 is easily obtained and generalized to arbitrary D, resulting
in a rank equal to 2∥c∥0 . Note that if some ci = 0, in the limit z → 0 the DCATs with c′i = 1 are absent in the Schmidt
decomposition.

The expression we have obtained for the Schmidt eigenvalues in the limit z → 0 provide the Schmidt decomposition
of Fock-cat states appearing in Secs. IVC and IVD.

The limit when |zi| → 1 , i = 1, . . . , D− 1 also deserves attention, since at this point the entropy of the RDM takes
its maximum value, as can be checked in the graphs shown in the Supplementary Material. However, the general
analytic expression of the limit is cumbersome, therefore we shall consider only some special cases.

For D = 2 we have:

lim
|z|→1

λN,Mc,c′ (z) =
1

2
, ∀c, c′,∀N,M, 1 ≤M ≤ ⌊N

2
⌋ . (71)

Then we conclude that for D = 2 the RDM is maximally mixed at |z| = 1.
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For D = 3 we have:

lim
(|z1|,|z2|)→(1,1)

λN,M
c,c′ (z) = (72)

(3N−M + (−1)c1−c
′
1 + (−1)c2−c

′
2 + (−1)c1+c2−c

′
1−c′2+N−M )(3M + (−1)c

′
1 + (−1)c

′
2 + (−1)c

′
1+c

′
2+M )

4(3N + (−1)c1 + (−1)c2 + (−1)c1+c2+N )
,

∀c, c′,∀N,M1 1 ≤M ≤ ⌊N2 ⌋. In particular we have for M = 1:

lim
(|z1|,|z2|)→(1,1)

λN,1
c,[1,1](z) = 0 , ∀c,∀N > 1 , (73)

which is due to the fact that N[1,1](z)
(1) = 0 ,∀z ∈ C2. Also, in this case for the other values of c′ ̸= [1, 1] and k > 1:

lim
(|z1|,|z2|)→(1,1)

λ2k,1[0,0],c′(z) =
1

3
, (74)

lim
(|z1|,|z2|)→(1,1)

λ2k+1,1
[1,1],c′ (z) =

1

3
. (75)

In all other cases the nonzero eigenvalues are practically 1
3 , approaching

1
3 for large odd N . Then we conclude that

for M = 1 the RDM is (approximatelly) maximally mixed when (|z1|, |z2|) = (1, 1).
Similar conclusions can be obtained for larger values of D, although the expressions are cumbersome. Then we can

conclude that at the point |zi| = 1, i = 1, . . . , D − 1, the rank of the M -wise RDM is min{
(
M+D−1

M

)
, 2D−1}.

The ∥z∥ → ∞ limit does not exist (except for the case D = 2, see below), since its value depends on the direction.

Using hyper-spherical coordinates in the first hyper-octant, |zi| = ryi(θ⃗), θ⃗ ∈ [0, π2 ]
D−2 , i = 1, 2, . . . D − 1, we can

compute the directional limits:

lim
r→∞

λN,M
c,c′ (r, θ⃗) = 21−D

∑
b
χc−c′(b)Yb(θ⃗)N−M∑

b
χc′(b)Yb(θ⃗)

M

∑
b
χc(b)Yb(θ⃗)N

, (76)

with Yb(θ⃗) =
∑D−1
i=1 (−1)biyi(θ⃗)

2.

For instance, for D = 3 we have polar coordinates Yb(θ⃗) = (−1)b1 cos2 θ + (−1)b2 sin2 θ .
The case D = 2 deserves special attention, since the limit exists, but care should be taken since in some particular

cases undetermined limits can appear. The result is:

lim
|z|→∞

λN,Mc,c′ (z) =
1

2

[
1 +

N −M

N
(−1)c

′+M +
M

N
(−1)c−c

′+N−M
]
. (77)

VIII. PHYSICAL APPLICATIONS

Quantum superpositions of macroscopically distinct quasi-classical states (the so-called Schrödinger cat states) are
an important resource for quantum metrology, quantum communication and quantum computation. In particular,
superpositions 1

2N (α)

(
|α⟩ ± |eiϕα⟩

)
of harmonic oscillator CS |α⟩ with the same |α| but with different phases (like the

even ϕ = 0 and odd ϕ = π parity adapted CS discussed here) are a common resource in a large variety of experiments
(see for instance the encode of a logical qubit in the subspace generated by this kind of superpositions, which is
protected against phase-flip errors [41, 42]).

In this section we shall discuss how the DCATs introduced in this paper can be generated using different Hamiltonians,
and how the Schmidt decomposition found here can be usefull to study the interesting problem of quDit loss.

A. DCATs generation

In [37] different methods of producing optical Schrödinger cats for the harmonic oscillator were discussed, and some
of them have been realized experimentally [43]. The experimental creation of optical Schrödinger cat states in cavity
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QED is discussed in [44]. A Schrödinger cat state of an ion in a trap has been generated expermentally [45], and
a Schrödinger cat state formed by two interacting Bose condensates of atoms in different internal states (two-well)
has been proposed [46]. Another proposal is the generation of optomechanical Schrödinger cat states in a cavity
Bose-Einstein condensate [47], with a considerable enhancement in the size of the mechanical Schrödinger cat state.

An important tecnique to produce Schrödinger cat states is the use of Kerr o Kerr-like media, like in [41, 42], which
allows to create, control and measure a qubit in the subspace generated by various Schrödinger cat states, which is
protected against phase-flip errors.

Another Hamiltonian where Schrödinger cat states appear is the Lipkin-Meshkov-Glick (LMG) nuclear model [2].
In this case they appear as the ground state solution in the thermodynamic limit, or as approximate solutions for the
lowest eigenstates of the Hamiltonian for finite N . The LMG model has been also realized in circuit QED scheme
[48], and proposed for optimal state prepration with collective spins [49].

1. LMG D-Level model

It is surprising that in the literature, when multimode (with D > 2 modes) systems are considered, the only

studied cat states are the ones associated to the total parity subgroup Z2 ⊂ ZD−1
2 (the one formed by the parity

transformations in Eqns. (15)-(16), see for instance [50, 51]. However, there are models, like the D-level LMG model,
where the Hamiltonian is invariant under parity transformations, where the lowest energy eigenstate and some of the
first excited states are parity adapted CS. More precisely in the limit where the interaction parameter λ→ ∞ in the
LMG D-level model for a finite number of particles, the lowest energy state is approximatelly (with a high fidelity) a
completelly even DCAT with z = (1, 1, . . . , 1) [17], which corresponds to a maximally entangled state among all parity
adapted CS, as was shown in Eqns. (72)-(75). Also, some of the lower excited energy eigenstates are also c-DCATs
with different parities c.

2. Generation by Kerr-like effect

The optical Kerr effect is a universal technique to generate non-classical states in quantum optics. In [52] multi-
component Schrödinger cat states were generated in a circuit QED where an intense artifical Kerr effect is created,
allowing for single-photon Kerr regime.

In [53], a logical qubit is encoded in two or four harmonic oscillator Schrödinger cat states of a microwave cavity,
of the form 1

2N (α) (|α⟩ ± | − α⟩) and 1
2N (α) (|iα⟩ ± | − iα⟩), realizing the π/2 rotation around the z-axis by means of

Kerr effect, and exploiting multi-photon driven dissipative processes. A two-photon driven dissipative process is used
to stabilize a logical qubit basis of two-component Schrödinger cat states against photon dephasing errors, while a
four-photon driven dissipative process stabilizes a logical qubit in four-component Schrödinger cat states, which is
protected against single-photon loss.

In [41] a logical qubit is created in the subspace of four Schrödinger cat states, 1
2N (α) (|α⟩±|−α⟩) and 1

2N (α) (|α⟩±i|−
α⟩), using a Hamiltonian that encompasses both Kerr effect and squeezing in a superconducting microwave resonator.
The created qubit is protected under phase-flip errors.

Kerr-like effect in U(2) and U(D) can also be exploited to create Schrödinger cat states, using Hamiltonians of the
type Hkerr = χJ2

z (Jz =
1
2 (S22 − S11) is the third component of the angular momentum operator) for SU(2) or

Hkerr = χ
D−1∑

j=1

S2
jj (78)

for the case of U(D). Note that this Hamiltonian is a particular case of the interacting term of the LMG Hamiltonian
for general D [17], which, in the rescaled double thermodinamic limit, approaches the (multimode) Kerr Hamiltonian
plus a squeezing term (see [28]).

Denoting the revival time as Trev = 2π
χ , for times t = Trev/q, with q = 2, 3, . . ., this kind of Hamiltonians produce

multicomponent Schrödinger cat states, where the number of components is q for odd q and q
2 for even q (see [54] for

the case of SU(2) and the harmonic oscillator).

B. QuDit loss

A commented in Sec. VIIA, when the rescaled directional double thermodynamic limit was discussed and the
results in the literature for the study of photon loss were recovered (and generalized to a larger number or harmonic
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oscillators, or polycromatic lasers), we can infer that the Schmidt decomposition of parity adapted CS in terms of a
sum for all parities of tensor products of parity adapted CS with smaller number of particles, really corresponds to
the physical process of quDit loss, when some quDits of a symmetric multi-quDit state are lost by some irreversible
process (like decoherence by interaction with the environment or other similar process), and that this process is
mathematically described by the partial trace (see, for instance [55]).

This suggests that in the case of c-DCATs, the Schmidt decomposition we have obtained can be used to describe
a decoherence process under the loss of M -quDits. In this sense, our results can help in designing quantum error
correction protocols (see [39, 40] for the case of qubit loss).

Our Schmidt decomposition can also be useful in the generalization to quDits of the study of robustness of entan-
glement under qubit loss [55]. In this context, robustness is defined as the survival of entanglement after the loss ofM

qubits, i.e. the RDM after tracing out M qubits, ρ
(N−M)
c (z) (which describes in general a mixed state), is entangled.

In our case, as it can be checked in the limit values discussed in Sec. VII and in the Figures in Sec. IX (and in the
Supplementary Material), the rank of the RDM is larger than one except possibly in the cases ∥z∥ → 0 and |zi| → ∞
(i.e, along some of the axes), and the entropy of the RDM is lower than the NEMSs (Not Entangled Mixed States)
limit except in the cases marked in red in Table I (changing M by N −M), when maximally mixed (not entangled)
RDM can appear.

The limits of the DCATs when ∥z∥ → 0 and |zi| → ∞ were studied in Secs. IVC and IVD, and they turn to be Fock
states and in some particular cases they are ITPS. Thus, except for the cases where the original state is an ITPS (and

therefore it is not entangled), the rank of the resulting RDM is larger than one and ρ
(N−M)
c (z) is entangled (except

in the cases marked in red in Table I).
Therefore, we can guarantee that, except in the mentioned cases, the entanglement of the original DCAT is robust

under quDit loss. This should be compared with the case of GHZ or NOON states, which are maximally entangled
but they are fragile under qubit loss [55]. In fact, spin cat states [32] with moderate entanglement can reach the
standard quantum limit even in the presence of a relative large amount of qubit loss, whereas GHZ states lose this
capability with an small fraction of qubit loss.

Motivated by the example discussed in [37, 38], where in the case of photon loss when η → 1 the fidelity with the
original state approaches one, we would like to introduce the concept of fidelity also in our case. Strictly speaking,
the fidelity

FN,M
c

(z) ≡ (N)
c⟨z|ρ(N−M)

c
(z)|z⟩(N)

c
, (79)

makes sense only in the case N → ∞, since otherwise the number of particles do not match and the expectation value
makes no sense. Alternatively, we can define the fidelity for finite N as:

FN,M
c

(z) ≡ λN,M
c,0 (z) , (80)

i.e., as the component in the Schmidt decompostion where the (N −M) subsystem has the same parity as the original
system, and this, according to our definition, corresponds to c′ = 0 in Eqn. (54).

This definition of fidelity (and its maximization with respect to z) could be interesting in some protocols where it
is important that the parity c of the state should be robust under quDit loss. In other situations, however, it could
be interesting the fact that the state has a (quasi) definite parity under quDit loss, without worrying about its value.

In this case, λN,M
c,c′ (z) should be maximized for all possible values of c′, too. And in other situations, it could be

interesting to maximize a balanced combination of robustness + fidelity.

IX. FIGURES FOR D = 2 ATOM LEVELS (QUBITS)

A. Finite number N of qubits

In this section, in Figures 2 (N = 6) and 3 (N = 7) we show plots of the normalized von Neumann entropy (see
Eq. (61)) of M -wise RDMs of the even (c = [0]) and odd (c = [1]) c-2CAT as a function of |z|, for values in the range
[0, 10] . We can observe that all normalized entropies reach the maximum for |z| = 1, with a value 1, i.e. the 2CAT is
maximally entangled, for M = 1.

In the case of an even number of particles N , for the even parity (c = [0]) 2CAT the entropy is zero (i.e. the 2CAT

is a separable pure state) at z = 0 and for large |z|, whereas for the odd (c = [1]) 2CAT both at z = 0 and for large
|z| the entropy takes the same non-zero value, approaching 1

2 when M
N approaches 1

2 .
For N odd, the behaviour is similar but the even and odd c cases get interchanged for large |z|.
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FIG. 2. Plots of von Neumann entropy for D = 2, N = 6 and M = 1, 2, 3, for |z| ∈ [0, 10].

FIG. 3. Plots of von Neumann entropy for D = 2, N = 7 and M = 1, 2, 3, for |z| ∈ [0, 10].

B. Single thermodynamic limit

In this section, in Figure 4 we show plots of the normalized von Neumann entropy of RDMs of the even (c = [0])
and odd (c = [1]) c-2CAT as a function of |z|, for values in the range [0, 10], in the case N → ∞. We can observe that
all normalized entropies reach the maximum for |z| = 1, with a value of 1 (i.e. the 2cats are maximally entangled) for
M = 1, and approach zero when |z| approach zero or grows to infinity. In this case the entropies coincide for both
parities, agreeing with Eq. (63).

FIG. 4. Plots of von Neumann entropy for D = 2, N = 6 and M = 1, 2, 3, for |z| ∈ [0, 10].

C. Rescaled double thermodynamic limit

Finally, in Figure 5 we show plots of the normalized von Neumann entropy of RDM of the even (c = [0]) and odd
(c = [1]) c-2CAT as a function of |z|, for values in the range [0, 10], in the case N,M → ∞ with M = (1 − η)N . We
can observe that for the even 2CAT the normalized entropy reach the maximum of 1 when |z| grows to infinity, and
approach zero when z approach zero. For the odd 2CAT, the normalized entropy reach the maximum of 1 when |z|
grows to infinity, but approach a non-zero value when |z| → 0, and this value approach 1 when η approach 1

2 , agreeing
with the results of Sec. VIIB.
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FIG. 5. Plots of von Neumann entropy for D = 2, N = 6 and M = 1, 2, 3, for |z| ∈ [0, 10].

X. CONCLUSIONS

In this paper we provide a thorough discussion of the entanglement properties of symmetric N -quDit systems
described by parity adapted CS for U(D) (c-DCATs), in terms of the entropy of the M -wise RDM and proving a
Schmidt decomposition theorem under a bipartition of the system in terms of M < N and N −M particles (quDits).

We show that the Schmidt decomposition turns out to be a sum over all possible parities of tensor products of
parity adapted CS with smaller number of particles. This Schmidt decomposition is well-defined even though we are
treating with indistinguishable particles, the reason being the constraints imposed by the group-theoretical properties
of the parity adapted states.

The properties of the Schmidt eigenvalues have been studied for different limit values and different thermodynamic
limits, reproducing, in the case of the rescaled double termodynamic limit, known results in the literature for photon
loss. This suggests that the obtained Schmidt decomposition and entanglement properties could be useful in designing
quantum information and computation protocols with parity adapted CS for quDits of arbitrary D, and studying
their decoherence properties under quDit loss.

Possible generalizations of this work in different directions are under study. One of them is considering different
transformation groups generalizing the parity group ZD−1

2 , for instance ZD−1
n with n > 2 (an anisotropic version

Zn1 × . . .ZnD−1
could also be considered). See [56] for a the particular case of the one-mode harmonic oscillator.

Another possible generalization is to consider mode entanglement instead of particle entanglement, i.e. considering
a bipartition of different modes or levels, for instance D −K and K, with 0 < K < ⌊D2 ⌋. In this case, it is expected
that a similar result for the Schmidt decomposition should hold but the decomposition involving parity adapted CS
of U(D −K) and U(K). Interlevel entanglement for the case K = 1 has already been discussed in [19] for K = 1.
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I. INTRODUCTION

The breakthrough in the development of new quantum technologies requires mathematical modeling and an adequate
theoretical framework for the study of the underlying nuclear, atomic, molecular, optical and condensed matter
systems. Algebraic, numerical, analytical and topological mathematical tools for dealing with complex many-body
quantum systems are necessary to analyze their properties. In particular, for the understanding of new and exotic
topological quantum phases of matter [characterized by topological numbers like Chern, Pontryagin, Skyrmion (64),
etc. and other winding numbers] and their exploitation for technological applications. Indeed, the discovery of new
quantum phases of matter (mainly of a topological nature), their classification, analysis and understanding, is a very
hot/topical subject. High-temperature superconductors and an emergent category two-dimensional materials provide
new types of topological phases, sometimes characterized by exotic electronic (edge) states and currents remarkably
robust to impurities and thermal fluctuations. Quantum Hall effect provides the paradigmatic example of a topological
phase, but dispersion-less edge currents also appear in the absence of magnetic field, for example, in some graphene
analogues (silicene, germanene, etc) with a strong spin-orbit coupling. Two-dimensional topological insulators (see
[1] for a text book, [2, 3] for reviews and [4] for progress and prospects) were predicted theoretically by Kane and
Mele [5] using a two-dimensional graphene-like material model with spin-orbit interaction. They were first proposed
[6] and observed experimentally [7] in mercury cadmium telluride (HgTe/CdTe) semiconductor quantum wells and
later in other materials. Another rapidly developing field has to do with topological quantum computation; see [8] for
Kitaev’s original proposal, [9] for a text book and [10] for a current perspective on Majorana zero modes. Topological
quantum computation is an approach to fault-tolerant quantum computation in which the unitary quantum gates
result from the braiding of certain topological quantum objects called “anyons”. Topological degrees of freedom
promise to encode decoherence-resistant and scalable quantum information. For example, magnetic skyrmions are
promising for technological applications, including spintronics and neuromorphic computing. They might be used as
information carriers in future advanced memories, logic gates and computing devices (see [11, 12] and [13] for bilayer
systems). The creation and transmission of an isolated magnetic skyrmion in thin films is a key for future skyrmionics,
which utilizes skyrmions as information carriers in advanced memories, logic gates and computing devices [11, 12].
Therefore, a deeper fundamental/theoretical study of models related to this subject is justified by its future use in
quantum technologies.

In this article we concentrate on the study of systems of interacting N -component fermions. Traditionally, the
paradigmatic case for electrons is N = 2 (spin 1/2), extensible to N = 3 (flavor, color) components for leptons and
quarks (see [14] for high energy consequences of topological quantum effects), N = 4 (spin-isospin) components in
nuclear physics, etc. The subject of SU(N) fermions has been recently further fueled in condensed matter physics by
the fact that SU(N) symmetries can be extended to larger N in ultracold atomic gases (see e.g. the text books [15, 16]
and [17] for a review). For example, fermionic alkaline-earth atomic gases trapped in optical lattices realize the SU(N)
generalization of the Hubbard model [18, 19]. Exciting recent advances in cooling, trapping and manipulating more
and more complex systems of this kind, make Feynman’s original ideas about the simulation of quantum systems and
quantum information processing increasingly possible.

Here we want to revisit and deepen the particular subject of U(N) quantum Hall (Heisenberg-like) ferromagnets
(QHF). As it is briefly reviewed in Appendix A, the exchange interaction for N -component planar electrons in a
perpendicular magnetic field adopts the form of a U(N) QHF Hamiltonian

H = −J
∑

〈α,β〉

N∑

i,j=1

Sij(α)Sji(β), (1)

on a square lattice when written in terms of U(N)-spin operators Sij(α) = c†i (α)cj(α) realized in terms of creation
c†i (α) and annihilation ci(α) operators of an electron with component i, j = 1, . . . , N in a given Landau/lattice site α of
a given Landau level (namely, the lowest one). The sum over 〈α, β〉 extends over all near-neighbor Landau/lattice sites,
and J is the exchange coupling constant (the spin stiffness for the XY model). Electrons become multicomponent
when, for example, in addition to the usual spin components ↑ and ↓, they acquire extra “pseudospin” internal
components associated: (a) with layer (for a multilayer arrangement), (b) with valley (like in graphene and other 2D
Dirac materials), (c) with sub-lattice, etc. In addition, multilayer arrays introduce extra components (“flavors”) to the
electron and much richness, so that the unitary group U(N) also plays a fundamental role here. For example, twisted
bilayer (and trilayer) graphene for “magic” angles exhibit interesting superconducting properties [20, 21]. In the case
of a bilayer quantum Hall system in the lowest Landau level, one Landau site can accommodate N = 4 internal states
|i〉, i = 1, 2, 3, 4 (let us call them fermion “flavors/components”, in general); more schematically

|1〉 = | ↑ t〉, |2〉 = | ↑ b〉, |3〉 = | ↓ t〉, |4〉 = | ↓ b〉, (2)
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where t and b make reference to the “top” and “bottom” layers, respectively. Since the electron field has N = 4
degenerate components, the bilayer system possesses an underlying U(4) symmetry. Likewise, the `-layer case carries
a U(2`) symmetry (see next Section II for more details).

For N -component electrons, the Pauli exclusion principle allows M ≤ N electrons per Landau/lattice site (the
filling factor). Selecting a ground state Φ0 (|0〉F denotes the Fock vacuum)

|Φ0〉 = ΠL
α=1ΠM

i=1c
†
i (α)|0〉F, (3)

which fills all L Landau sites with the first M internal levels i = 1, . . . ,M ≤ N [i.e., for integer filling factor M ],
spontaneously breaks the U(N) symmetry since a general unitary transformation mixes the first M “spontaneously
chosen” occupied internal levels with the N −M unoccupied ones. The ground state |Φ0〉 is still invariant under the
stability subgroup U(M)×U(N−M) of transformations among theM occupied levels and theN−M unoccupied levels,
respectively. Therefore, the transformations that do not leave |Φ0〉 invariant are parametrized by the Grassmannian
coset GNM = U(N)/U(M) × U(N −M), which reduces to the well known sphere S2 = U(2)/U(1) × U(1) for N = 2
spin components and M = 1 electron per Landau site. The kind of irreducible representations (IRs) of U(N) related
to Grassmann phase spaces GNM are those described by rectangular Young tableaux of M rows and L columns, where
L labels the corresponding IR, just as spin s does for SU(2).

The objective of this article is to describe the carrier Hilbert space associated with these U(N) representations, their
coherent states (see e.g. the standard text books [22, 23]), and the classical limit. In the classical limit L→∞ (large
U(N)-spin representations), the collective operators Sij become c-numbers (their coherent state expectation values, to
be more precise), and the low energy (long wavelength) U(N)-spin-wave coherent excitations are named “skyrmions”
(see e.g. some recent books and thesis [24–27]). These coherent excitations turn out to be described by a ferromagnetic
order parameter associated to this spontaneous symmetry breaking and labeled by (N −M) ×M complex matrices
Z parametrizing the complex Grassmannian manifold GNM (see later on Section V for more information about its
structure). Actually, the classical dynamics associated to these SU(N) quantum spin chains can be described by a
Grassmannian nonlinear sigma model (NLσM) [28–33], generalizing the SU(2) NLσM for the continuum dynamics
of Heisenberg (anti)ferromagnets [34–36]. In references like [30, 31], N represents the number of fermion “flavors”,
whereas L is referred to as the number of “colours” nc.

The organization of the paper is the following. In Section II we motivate the description of low energy sectors
of U(N) QHF by representations linked rectangular Young tableaux, using the Lieb-Mattis ordering of electronic
energy levels based on the pouring principle for Young tableaux. In Section III we develop this idea and construct
the Hilbert space of ML N -component fermions occupying L Landau sites (integer filling factor M) making use of
a bosonic realization of the U(N)-spin collective operators Sij acting on Fock space states. The whole construction
relies on the definition of a highest-weight (ground) state in Sec. III A, a “boson condensate” version of the ground
state (3). We provide a representation of basis vectors in terms of Young tableaux, Gelfand-Tsetlin vectors and Fock
(boson and fermion) states III B. The monolayer N = 2 case at filling factor M = 1, the bilayer N = 4 case at filling
factor M = 2 and the trilayer N = 6 case at M = 3 are worked out as particular examples. General Hilbert-space
dimension formulas are provided in Sec. III C. Matrix elements of the U(N) physical operators are provided in Sec.
IV, together with the spectrum of Casimir operators, paying special attention to the quadratic Casimir operator since
it is related with the exchange interaction Hamiltonian at low energies. Section V is devoted to the discussion of
Grassmannian coherent states and the expectation values of U(N)-spin collective operators. U(N) coherent states
can be seen as coherent excitations above the highest weight (ground) state in the form of Bose-Einstein condensates.
Coherent states are essential to discuss the classical limit of large L representations of U(N) QHF in terms of NLσMs
on Grassmannian manifolds GNM , of which we also comment in the second half of Section V. The last Section VI is
devoted to conclusions and outlook. For completeness, and to be as self-contained as possible, we include in Appendix
A a brief remind on the derivation of U(N) QHF models from first principle (two-body exchange) interactions. The
proof of propositions II.1 and III.1 is given in Appendices B and C, respectively. A more detailed relation between
Gelfand-Tsetlin and Fock states is left for the Appendix D. The spin-pseudospin structure of basis states for bilayer
U(4) QHF at filling factor M = 2 is made explicit in the Appendix E. Explicit particular expressions of U(N)-spin
matrices for N = 4,M = 1, L = 1, 2 and N = 4,M = 2, L = 1 are given in Appendix F. Finally, general considerations
about the highest weight state for Young tableaux of arbitrary shape are given in Appendix G.

II. U(N) FERROMAGNETISM AND LIEB-MATTIS ORDERING OF ELECTRONIC ENERGY LEVELS

Let us denote by HαN [1M ] the
(
N
M

)
-dimensional carrier Hilbert space at site α of the fully antisymmetric IR of U(N)

described by the Young frames/diagrams of shape [1M ], that is, withM boxes on a single column. This is a convenient
way of graphically representing U(N) (and symmetric group SP ) invariant subspaces, i.e., by Young diagrams of P



4

boxes/particles

h1︷ ︸︸ ︷
... ... ... ... ...

: : : : :
...

(4)

of shape h = [h1, . . . , hN ], with h1 ≥ · · · ≥ hN , hi the number of boxes in row i = 1, . . . , N and h1 + · · · + hN = P
the total number of particles. This is why h is also called a partition of P . We sometimes use the shorthand
[h, M. . ., h, 0, . . . , 0] = [hM ], obviating zero-box rows. Basis vectors of HαN [1M ] are the M -particle Slater determinants
(in Fock and Young tableau notation)

ΠM
µ=1c

†
iµ

(α)|0〉F =
i1
:
iM

(5)

obtained by filling out columns of the corresponding Young diagram with components iµ ∈ {1, . . . , N} in strictly
increasing order i1 < · · · < iM . The ground state (“highest weight”) vector (3) is just one example. One can see that
there are exactly

(
N
M

)
different arrangements of this kind (the dimension of HαN [1M ]).

The Hilbert space of a U(N) QHF with L Landau/lattice sites at integer filling factor M is the
(
N
M

)L
-dimensional

L-fold tensor product space H⊗LN [1M ] =
⊗L

α=1HαN [1M ]. In Young tableau notation

M

{
: ⊗ L times. . . ⊗ : ↔ [1M ]⊗L = [1M ]⊗ L. . . ⊗[1M ] . (6)

This tensor product representation of U(N) is reducible and it decomposes into a direct sum of irreducible represen-
tations of different shapes. For example, the Clebsch-Gordan decomposition of a tensor product of L = 2 IRs of U(N)
of shape [1M ], with filling factor M = 2 ≤ N ≥ 4, is represented by the following Young diagrams

⊗ = ⊕ ⊕ ↔ [12]⊗ [12] = [22]⊕ [2, 12]⊕ [14]. (7)

The P (= ML)-particle ground state (3) is a vector of H⊗LN [1M ]. In particular, for filling factor M = 2 and L = 2
lattice sites, |Φ0〉 is represented by the rectangular Young tableau

Π2
α=1Π2

i=1c
†
i (α)|0〉F = 1 1

2 2
, (8)

where rows are filled in a non-decreasing order. One can see that, for N = 4 electron components, there are 20
different Young tableau arrangements of this kind, which is the dimension of the IR of U(4) given by the rectangular
Young diagram of shape [22] (see later on Section III C for general dimension formulas). In fact, the corresponding
dimensions for the tensor product decomposition (7) for N = 4 is 6× 6 = 20 + 15 + 1. Note that the ground state (3)
is invariant under permutation of lattice sites α (look at the equations (A4, A5)); therefore, it will always belong to
IRs of U(N) of rectangular shape

[LM ] = M

{
L︷ ︸︸ ︷
...

: : :
...

(9)

arising in the Clebsch-Gordan decomposition of the tensor product (6). The rectangular Young tableaux of shape
[LM ] are antisymmetric under the interchange of rows (electron components or “flavors”) and symmetric under the
interchange of columns (lattice sites or “colors”).

Let us show how Lieb-Mattis’ theorem [37], and some generalizations [38], also confer “dominance” to the rectangular
Young diagrams [LM ] [like [22] in (7)] over the rest of diagrams arising in the Clebsch-Gordan decomposition of (6).
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The set of Young diagrams is partially ordered (not all P -particle diagrams can be compared for P > 5) by the so
called “dominance order” �, such that

[h1, . . . , hN ] � [h′1, . . . , h
′
N ]↔ h1 + · · ·+ hk ≥ h′1 + · · ·+ h′k ∀k ∈ [1, N ] . (10)

It is said that h dominates h′ or that h′ precedes h (h′ � h). Intuitively, it means that one can go from h to h′
by moving a certain number of boxes from upper rows to lower rows, so that h is “more symmetric”. Lieb-Mattis’
theorem [37] talks about the “pouring principle”, saying that h′ can be “poured into” h. The theorem states that,
under general conditions on the symmetric Hamiltonian of the system, if h′ � h then E(h) < E(h′) [E(h) ≤ E(h′)
for “pathologic” potentials], with E(h) the ground state energy inside each IR h of U(N). From this, the following
proposition can be demonstrated

Proposition II.1. All Young diagrams arising in the Clebsch-Gordan direct sum decomposition of the L-fold tensor
product (6) can be pored into the rectangular Young tableaux of shape [LM ]. That is, the ground state for a U(N)
QHF at filling factor M belongs to the carrier Hilbert space HN [LM ] of the rectangular IR [LM ] of U(N) inside the
total Hilbert space H⊗LN [1M ].

The proof is made in the Appendix B. Note that states in [LM ] are invariant under the permutation of lattice sites
α = 1, . . . , L, thus becoming indistinguishable (“bosonized”). Another way of interpreting it is the following. Given
the Fourier transform Sij(q) =

∑L
α=1 e

iqαSij(α) of U(N)-spin operators, the long-wavelength (low momentum/energy
q ' 0) ground state excitations are described by the collective operators Sij(0) =

∑L
α=1 Sij(α), which are invariant

under site permutations α ↔ α′. Moreover, the low-energy long-wavelength semi-classical (L → ∞) dynamics of
U(N) QHF is described by a NLσM which target space is the Grasmannian (the phase space associated to U(N) IRs
with rectangular Young diagrams).

Once we have motivated/highlighted the dominant role of rectangular Young diagrams of shape [LM ] at low ener-
gies, let us explicitly construct these representations in a boson realization of U(N) generators, together with their
associated coherent states labeled by matrix points Z on the Grassmann phase space U(N)/U(M) × U(N − M).
These kind of representations have been studied in (mainly mathematically oriented) text books like [39], but rarely
associated with the low energy sector of spin systems like the ones pursued in this article. This is why we think this
discussion deserves attention.

III. LOW ENERGY SECTOR OF U(N) QUANTUM HALL FERROMAGNETS AT FILLING FACTOR M

A. Boson realization of U(N)-spin operators, Fock space, highest-weight state and ladder operators

In the quantum Hall approach, each electron occupies on average a surface area of 2π`2B (a Landau site, with `B
the magnetic length) that is pierced by one magnetic flux quantum φ0 = 2π~/e (see Appendix A for more information
about this picture). This image allows a dual bosonic Schwinger realization of U(N)-spin operators

Sij =

M∑

µ=1

a†iµajµ, i, j = 1, . . . , N, (11)

this time in terms of creation a†iµ and annihilation ajµ boson operators of magnetic flux quanta attached to the electron
µ = 1, . . . ,M with component i = 1, . . . , N [we use Greek indices µ, ν for electron labels to avoid confusion]. From
the usual bosonic commutation relations [aiµ, a

†
jν ] = δijδµν we derive the U(N)-spin commutation relations

[Sij , Skl] = δjkSil − δilSkj , (12)

where δjk is the usual Kronecker delta. This bosonic picture is quite common in algebraic approaches to nuclear
and molecular structure [40–42], for example in the interacting boson model (IBM) [43]. Therefore, we have a
representation of U(N) in Fock space made of Fock states

|n〉 =

∏N
i=1

∏M
µ=1(a†iµ)nµi

(
∏N
i=1

∏M
µ=1 nµi!)

1/2
|0〉F. (13)

The exponent nµi of a
†
iµ indicates the number of Landau/lattice sites (flux quanta) available to the electron µ of flavor

i (that is, the occupancy number a†iµaiµ). We write nµi and not niµ because µ will later make reference to a row index
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of a Young diagram. Since U(N) IRs are finite-dimensional, we know that the representation of U(N) in Fock space
must be reducible. In particular, U(N)-spin operators conserve the total number of particles C1 =

∑N
i=1 Sii ∼ ML

[the linear Casimir operator of U(N)]. According to Schur’s lemma, for a U(N) IR, every operator acting on the
representation space and commuting with all Sij must be trivial (a multiple of the identity). Note that the operators

Λµν =
N∑

i=1

a†iµaiν , µ, ν = 1, . . . ,M, (14)

close a UΛ(M) Lie algebra, where we are writing the subscript Λ to emphasize that this is different from all the other
appearances of U(M) that are related to the “first” Sij generators (i, j ≤ M) of U(M) as a subgroup of U(N). In
fact, the operators Λµν are in general independent of Sij , that is, Λµν can not be written in terms of Sij (except for
M = 1, when Λ11 = C1) since they realize an independent Lie algebra. The operators Λµν preserve the IR space and
they commute with all the U(N)-spin operators, i.e.

[Sij ,Λµν ] =
M∑

µ′=1

N∑

i′=1

[a†iµ′ajµ′ , a
†
i′µai′ν ] = 0.

Therefore, the operators Λµν can be consistently imposed as constraints on Fock state vectors to reduce the repre-
sentation of Sij in a consistent manner. Actually, since each electron has L Landau/lattice sites at its disposal (i.e.,
a total number of L flux quanta), then the constraint Λµµ|ψphys.〉 = L|ψphys.〉 has to be imposed on physical states
|ψphys.〉. This constraint is extended to Λµν |ψphys.〉 = Lδµν |ψphys.〉 for non-diagonal µ 6= ν operators [see below in
eq. (18) for the case of the highest weight vector]. For the basis Fock states (13), the constraint Λµµ|n〉 = L|n〉 in
particular means that

∑N
i=1 nµi = L, the total number of Landau/lattice sites available to electron µ.

Our aim is to construct a state basis of the Hilbert space HN [LM ] ⊂ H⊗LN,M , carrying the IR [LM ] of U(N), given
in terms of linear combinations of Fock states (13). The Hilbert space HN [LM ] can be constructed from the so called
“highest weight” HW (resp. lowest-weight) vector |mhw〉 by applying lowering Sij , i > j (resp. raising Sij , i < j)
operators (see below for a more detailed explanation). This procedure reminds the standard construction of SU(2)
spin-j (Dicke) states {|j,m〉,m = −j, . . . , j} from the highest (resp. lowest) weight state |j, j〉 (resp. |j,−j〉) by
applying ladder angular momentum operators J− (resp. J+). Given a common eigenvector |ψw〉 of Sii, i = 1, . . . , N ,
its weight w = [w1, . . . , wN ] is made of the corresponding eigenvalues wi, i = 1, . . . , N , which count the number of
electrons with flavor/component i; therefore, w1 + · · · + wN = P = ML, the total number of particles, which is
the value of the linear Casimir operator C1 = S11 + · · · + SNN of U(N). Any other state |ψw′〉 has lower weight
w′ than |ψw〉 if the first non-vanishing coefficient of w − w′ is positive. It is clear that the highest weight must be
W = [L, M. . ., L, 0,N−M. . . , 0], which can also be read from the shape of the Young diagram [LM ] (remember that we are
discarding zeros). Let us state this in a more formal way. Before, for the sake of compact notation, we shall denote
by

A =



a11 . . . a1M
...

...
aN1 . . . aNM


 , A† =



a†11 . . . a†N1
...

...
a†1M . . . a†NM


 , (15)

the N ×M and M ×N annihilation and creation operator matrices, respectively.

Proposition III.1. Let A†hw be the M ×M submatrix

A†hw =



a†11 . . . a†M1
...

...
a†1M . . . a†MM


 (16)

of A† in (15), given by its first M columns (the leading principal submatrix of order M). Then the state

|mhw〉 =
det
(
A†hw

)L

(∏M
p=1(p)L

)1/2
|0〉F, (p)L = p(p+ 1) . . . (p+ L− 1) (17)
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satisfies the highest weight (HW) conditions:

Λµν |mhw〉 = Lδµν |mhw〉, µ, ν = 1, . . . ,M, (18)

Sij |mhw〉 =
{
Lδij |mhw〉, i, j ≤M
0, j > M. (19)

It is also normalized [(p)L denotes the Pochhammer symbol] and invariant under U(M)×U(N −M) ⊂ U(N) trans-
formations.

The proof is left for the Appendix C. The vector |mhw〉 is the boson analogue of the fermion state |Φ0〉 in (3). The
determinant structure of |mhw〉 guarantees that this state is antisymmetric under electron exchange (i.e. under row
exchange of A†hw) as long as L is odd. Otherwise, a statistical transmutation occurs for the fermion mixture.

Let us identify the ladder operators. It can be seen that any other state Sjk|mhw〉 is either zero or has lower weight
than W = [L, M. . ., L, 0,N−M. . . , 0]. Indeed, using the commutation relations (12),

[Sii, Sjk] = δijSik − δikSji ⇒ SiiSjk|mhw〉 = (Wi + δij − δik)Sjk|mhw〉. (20)

Actually, from property (19), Sjk|mhw〉 gives a non-zero vector of weight w 6= W only when k ≤M < j. The resulting
vector Sjk|mhw〉 has the same structure as |mhw〉 but replacing column k, (a†k1, . . . , a

†
kM )t, of A†hw in |mhw〉 by column

j, (a†j1, . . . , a
†
jM )t of A† in (15). When i ≤M , the weight component wi of Sjk|mhw〉 is wi = Wi−δik = L−δik. When

i > M the weight component wi of Sjk|mhw〉 is wi = 0 + δij . Only the weight components Wj and Wk are shifted:
Wj increases by 1 and Wk decreases by 1. Therefore, Sjk|mhw〉 becomes of lower weight since the first non-vanishing
coefficient of W − w is (W − w)k = 1 > 0. In this sense, Sjk, with j > k acts as a lowering ladder operator; It
transfers one electron from component k into component j > k. Of special interest are the step 1 lowering operators
Si,i−1, from which we can obtain the action of any other lowering operator making use of the recursion formulas

Si,i−k = [Si,i−1, Si−1,i−k], k > 0. (21)

The same argument can be applied to raising ladder operators Skj with j > k. We shall provide an explicit expression
for the matrix elements of step 1 lowering Si,i−1 and raising Si−1,i operators for any IR of U(N) of a given HW in
Section IV.

Let us see how to label and graphically represent basis states of any IR of shape h of U(N) in Young tableau and
Gelfand notation. We shall pay special attention to the Hilbert space HN [LM ],

B. Young tableaux, Gelfand and Fock basis states

Young tableaux are constructed by filling out rows (resp. columns) of the corresponding Young diagram with
components i = 1, . . . , N in non-decreasing (resp. strictly increasing) order from left to right (resp. from top to
bottom). For example, for filling factor M = 2, L = 7 Landau sites and N = 4 fermion components/flavors, the
following Young tableau

1 1 1 2 2 2 3
2 3 3 3 4 4 4 (22)

is in the standard form. The occupancy number nµi described after (13) can be calculated as the number of times
that the state i appears in the row µ (counting downwards) of the tableau. In the previous example we have

n11 = 3, n12 = 3, n13 = 1;n22 = 1, n23 = 3, n24 = 3,

and zero the rest. It is clear that
∑N
i=1 nµi = L, µ = 1, . . . ,M , that is, each electron µ = 1, . . . ,M has L Landau sites

available (“it carries L flux quanta”). The highest weight vector |mhw〉 in (17) is written in Young tableau notation as

|mhw〉 =
1 ... 1
: : :
M ...M

. (23)

To subsequently write matrix elements of U(N)-spin operators Sij in a compact form (see Section IV), it is convenient
to introduce the Gelfand-Tsetlin notation for vectors as triangular patterns of non-negative integer numbers mi,j of
the form

|m〉 =

∣∣∣∣∣∣

m1,N m2,N . . . mN−1,N mN,N
m1,N−1 . . . . . . mN−1,N−1

. . . . . . . . .
m1,1

〉
(24)
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obeying the betweenness conditions

mi,j ≥ mi,j−1 ≥ mi+1,j ≥ 0. (25)

That is, each number in the pattern m is constrained to vary between its two closest upper neighbors. Sometimes
we shall denote a Gelfand pattern by its N rows m = {mN , . . . ,m1}. The relation between a Young tableau and the
corresponding Gelfand pattern m = {mN , . . . ,m1} is built as follows (the prescription applies to a Young tableau of
general shape, not only rectangular [LM ]):

• The top row mN is read off the shape of the tableau, and it coincides with the highest weight. In terms of the
occupancy numbers nµi, we have

mN = [

N∑

i=1

n1,i, M. . .,

N∑

i=1

nN,i] . (26)

• The second row mN−1 is read off the shape of the tableau that remains after all boxes containing the compo-
nent/flavor i = N are removed, that is, mi,N−1 = mi,N − ni,N .

• . . .
• mN−k is read off the shape of the tableau that remains after all boxes containing the flavors i = N,N−1, . . . , N−
k + 1 are removed, that is, mi,N−k = mi,N−k+1 − ni,N−k+1.

• . . .
• m2 is read off the shape of the tableau that remains after all remaining boxes containing i = 3 are removed.

• Finally, m1 is read off the shape of the tableau that remains after all remaining boxes containing i = 2 are
removed.

For example, for the Young tableau (22) we have

1 1 1 2 2 2 3
2 3 3 3 4 4 4

=

∣∣∣∣∣∣

7 7 0 0
7 4 0

6 1
3

〉
. (27)

Let us work out some particular examples, for the sake of clarity, before stating more general formulas.

1. U(2) quantum Hall ferromagnet at filling factor M = 1

Let us describe the simplest example of a QHF where each Landau site accommodates M = 1 electron with N = 2
flavors, for example, a spin 1/2 electron

1 = | ↑〉, 2 = | ↓〉. (28)

For L Landau sites, the Hilbert space H2[L1] basis vectors can be labeled by the number L1 of spin-up (flavor i = 1)
electrons in Young tableau, Gelfand and Fock (boson and fermion) forms as

L1+L2=L︷ ︸︸ ︷
1 ... 1 2 ... 2 =

∣∣∣L 0
L1

〉
=

(a†11)L1(a†21)L2

√
L1!L2!

|0〉F =
1√
L!

∑

σ∈SL

L1∏

α=1

c†1
(
σ(α)

) L2∏

β=L1+1

c†2
(
σ(β)

)
|0〉F , (29)

whereSL is the symmetric group of degree L and σ a permutation. Moreover, for this case, a Dicke state representation
{|j,m〉,m = −j, . . . , j} is also possible, with total angular momentum j = L/2 and spin third component m = (2L1−
L)/2. The highest (L1 = L) and lowest (L2 = L) weight states correspond to angular momentum third components
m = L/2 = j and m = −L/2 = −j, respectively. The Hilbert space dimension is clearly D[L1] = L+ 1 = 2j + 1.

This is time for a clarification. Even though we are using the equality sign “=” in (29), to be precise, each of
the vectors in those equalities belong to different vector spaces. That is, they are different mathematical ways of
representing the same physical state. However, we will keep this little abuse of notation in the hope that no confusion
arises.
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2. U(4) quantum Hall ferromagnet at filling factor M = 2

Let us consider now a bilayer system (with top t and bottom b layers) where each Landau site accommodatesM = 2
electrons with N = 4 flavors

1 = | ↑ t〉, 2 = | ↑ b〉, 3 = | ↓ t〉, 4 = | ↓ b〉. (30)

The basis states of [L2] are given by the Gelfand vectors and their betweenness conditions

|m〉 =

∣∣∣∣∣∣

L L 0 0
L m23 0
m12 m22

m11

〉
,





L ≥ m23 ≥ 0,
L ≥ m12 ≥ m23,
m23 ≥ m22 ≥ 0,
m12 ≥ m11 ≥ m22.

(31)

In this case, the basis vectors are indexed by four labels (m11,m12,m22,m23). Particular examples are the highest-
|mhw〉 and the lowest- |mlw〉 weight states

|mhw〉 = 1 ... 1
2 ... 2

=

∣∣∣∣∣∣

L L 0 0
L L 0
L L
L

〉
= [(1)L(2)L]−

1
2

∣∣∣∣
a†11 a†21

a†12 a†22

∣∣∣∣
L

|0〉F =
L∏

α=1

c†1(α)c†2(α)|0〉F, , (32)

|mlw〉 = 3 ... 3
4 ... 4

=

∣∣∣∣∣∣

L L 0 0
L 0 0

0 0
0

〉
= [(1)L(2)L]−

1
2

∣∣∣∣
a†31 a†41

a†32 a†42

∣∣∣∣
L

|0〉F =
L∏

α=1

c†3(α)c†4(α)|0〉F, (33)

in Young tableau, Gelfand and Fock (boson and fermion) notation, respectively. The relation between Gelfand and
Fock states for general L is a bit more involved for states other than the highest and lowest weight; therefore, we leave
the general prescriptions for the Appendix D. An alternative basis for this case was, noted by

|j,mqt,qb〉, qt, qb = −j, . . . , j, 0 ≤ 2j +m ≤ L, (34)

has been given in [44], where j (half-integer) represents an angular momentum and m (integer) is related to a
population imbalance between layers t and b (both non-negative).

From the betweenness conditions (31), one can easily compute the dimension of the IR [L2] of U(4) as

D[L2] =

L∑

m23=0

L∑

m12=m23

m23∑

m22=0

m12∑

m11=m22

1 =
1

12
(L+ 1)(L+ 2)2(L+ 3). (35)

Note that D[L2] grows as L4/12 for large L. We shall recover in Section III C the expression (35) as a particular case
of the so called “hook-length” general formula, which is a special case of the Weyl’s character formula (see e.g. [39]).

In Appendix E we explicitly work out the case L = 1, for which D[12] = 6, thus recovering the dimension
(
N
M

)

of the totally antisymmetric IR [1, 1] of U(4). The corresponding basis vectors for this case can be divided into two
spin/pseudospin (layer) sectors, and we shall make use of them when writing Grassmannian G4

2 coherent states later
in equation (60).

3. U(6) quantum Hall ferromagnet at filling factor M = 3

Let us consider now a trilayer system (with top t, central c, and bottom b layers) where each Landau site accom-
modates M = 3 electrons with N = 6 flavors

1 = | ↑ t〉, 2 = | ↑ c〉, 3 = | ↑ b〉, 4 = | ↓ t〉, 5 = | ↓ c〉, 6 = | ↓ b). (36)

The basis states of [L3] are given by the Gelfand vectors indexed by 9 labels

(m11;m12,m22;m13,m23,m33;m24,m34;m35).

In particular, the HW state

|mhw〉 =
1 ... 1
2 ... 2
3 ... 3

= [(1)L(2)L(3)L]−1/2

∣∣∣∣∣∣

a†11 a†21 a†31

a†12 a†22 a†32

a†13 a†23 a†33

∣∣∣∣∣∣

L

|0〉F =
L∏

α=1

c†1(α)c†2(α)c†3(α)|0〉F (37)
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corresponds to the Gelfand vector with all 9 labels mij = L. As we did in (35), from the betweenness conditions (25)
of these labels, one can compute the dimension

D[L3] =
(L+ 1)(L+ 2)2(L+ 3)3(L+ 4)2(L+ 5)

8640
. (38)

For L = 1 we have D[13] = 20, thus recovering the dimension
(
N
M

)
of the totally antisymmetric IR [13] of U(6). Note

that D[L3] grows like L9/8640 for large L.

C. General dimension formulas

The dimension of the carrier Hilbert space of a IR of U(N) with general HW mN = [m1N , . . . ,mNN ] (a partition
of P ) is given by the Weyl dimension formula (see e.g. [39])

D[mN ] =

∏
i<j(miN −mjN + j − i)

∏N−1
i=1 i!

. (39)

It can also be written with the so called “hook formula”

D[mN ] =
∏

i,j

N + j − i
|hmN (i, j)| , (40)

where |hmN (i, j)| is the length of the hook located at the box/cell position (i, j) (row, column) of the corresponding
Young diagram of shape mN . The hook hmN (i, j) is the set of cells/boxes (k, l) such that k = i and l ≥ j or k ≥ i
and l = j. The hook length |hmN (i, j)| is the number of cells/boxes in hmN (i, j).

These formulas correspond to the number of independent Gelfand patterns m fulfilling the betweenness conditions
(25), and also to the number of different Young tableau arrangements.

For rectangular Yound diagrams mN = [LM , 0N−M ] the dimension formula (39) acquires the form

D[LM ] =

∏N
i=N−M+1

(
i+L−1
i−1

)
∏M
i=2

(
i+L−1
i−1

) , (41)

This formula reproduces the previous particular examples. Note thatD[LM ] = D[LN−M ] (conjugated representation).

IV. MATRIX ELEMENTS OF U(N)-SPIN COLLECTIVE OPERATORS

In this Section we shall provide explicit expressions for matrix elements 〈m′|Sij |m〉 of U(N)-spin operators Sij (11)
in the Gelfand-Tsetlin basis {|m〉}. We have already given some indications in Section III B. In fact, recursion formulas

Si,i−l = [Si,i−1, Si−1,i−l] , Si−l,i = [Si−l,i−1, Si−1,i] , l > 1 , (42)

allow us to obtain any non diagonal operator Sij matrix element from the matrix elements of step 1 lowering Si,i−1

and raising Si−1,i operators. Let us consider an arbitrary IR of U(N) of HW mN . Denoting by m̄k =
∑k
i=1mik,

k = 1, . . . , N the sum of k-th row of a pattern m, and setting m̄0 ≡ 0, the action of diagonal operators Skk on an
arbitrary Gelfand state |m〉 is

Skk|m〉 = (m̄k − m̄k−1)|m〉, (43)

which reproduces the expressions (19) for the highest-weight vector |mhw〉 with rows mN−k = [LM , 0N−M−k] for
0 ≤ k < N −M and mk = [Lk] for 1 ≤ k ≤ M . The linear Casimir C1 =

∑N
k=1 Skk fulfills C1|m〉 = ML|m〉, the

eigenvalue P = ML being the total number of particles.
Let us denote by ejk the “auxiliary pattern” with 1 at place (j, k) and zeros elsewhere [we call it “pattern” because

it has the triangular shape, although it does not necessarily fulfill the betweenness conditions (25)]. The action of
step 1 lowering S−k ≡ Sk,k−1 and rising operators S+k ≡ Sk−1,k is given by [39]

S±k|m〉 =
k−1∑

j=1

c±j,k−1(m)|m± ej,k−1〉, (44)
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with coefficients

c±j,k−1(m) =

(
−
∏N
i=1(m′ik −m′j,k−1 + 1∓1

2 )
∏k−2
i=1 (m′i,k−2 −m′j,k−1 − 1±1

2 )∏
i6=j(m

′
i,k−1 −m′j,k−1)(m′i,k−1 −m′j,k−1 ∓ 1)

)1/2

, (45)

where m′ik = mik − i and c±j,k−1(m) ≡ 0 whenever any indeterminacy arises. In fact, from the commutation relations
(20), the weight w′ of S−k|m〉 is given by

SiiS−k|m〉 = (wi + δi,k − δi,k−1)S−k|m〉 = w′iS−k|m〉, (46)

and therefore, S−k|m〉 becomes of lower weight than |m〉 since the first non-vanishing coefficient of w − w′ is (w −
w′)k−1 = 1 > 0. From the definition (45) one can prove that

c±j,k−1(m) = c∓j,k−1(m± ej,k−1), (47)

which means that S†+k = S−k. Also, applying induction and the recurrence formulas (42), we obtain S†k,k−l = Sk−l,k.
Therefore, we can construct proper hermitian U(N)-spin operators as: Sii = Sii, Sij = Sij+Sji and S̃ij = i(Sij−Sji),
i < j ≤ N , with i the imaginary unit. In Appendix F we provide explicit expressions of these U(N)-spin matrix
elements for particularly interesting cases.

For completeness, we shall provide the eigenvalues of the N invariant (Casimir) U(N) operators Cp belonging to
the enveloping algebra, whose expression is given by p powers of the operators Sij as

Cp = Si1,i2Si2i3 . . . Sip−1ipSipi1 , p = 1, . . . , N, (48)

where sum on repeated indices is understood. That is, Cp is of degree p. We have already argued that C1|m〉 = m̄N |m〉
with m̄N =

∑N
i=1miN . For mN = [LM , 0N−M ], the C1 eigenvalue is m̄N = ML = P the total number of particles.

The eigenvalues of Cp on the carrier Hilbert space of mN are given in [39] and they are constructed as follows. Let B
a N ×N square matrix with entries

bij = (miN +N − i)δij − uij , uij =
{

1 for i < j
0 for i ≥ j,

and let J be the N ×N all-ones matrix (that is, Jij = 1). Then the spectrum of the Casimir operators is given by

Cp(mN ) = tr(BpJ), (49)

where Bp is the p-th power of B. The quadratic Casimir operator C2 plays a fundamental role as the U(N) invariant
part of the QHF Hamiltonian and we shall pay special attention to it. In particular, the eigenvalue of the quadratic
Casimir operator is simply given in general by C2(mN ) =

∑N
i=1miN (miN + N + 1 − 2i) and, for the case of mN =

[LM , 0N−M ], the expression reduces to C2(mN ) = ML(L+N −M).

V. GRASSMANNIAN COHERENT STATES AND NONLINEAR SIGMA MODELS

A. Grassmannian coherent states

We have seen in Proposition III.1 that the HW (ground) state |mhw〉 is invariant under the subgroup U(M) ×
U(N −M) of U(N). Therefore |mhw〉 breaks the U(N) symmetry since a general U(N) rotation mixes the first M
(“spontaneously chosen”) occupied internal orbitals with the remainder (N −M) unoccupied ones. This structure is
also very relevant for systems with particle-hole symmetry, like in nuclear and molecular models [40–43]. U(N)-spin-
wave excitations occur in U(N) QHF. These coherent excitations (named “skyrmions”) turn out to be described by a
ferromagnetic order parameter associated to this spontaneous symmetry breaking and labeled by (N−M)×M complex
matrices Z parametrizing the complex Grassmannian coset GNM = U(N)/[U(M)×U(N −M)]. This parametrization
is related to the Bruhat-Iwasawa block matrix decomposition (see e.g. Chapter 3 of Ref. [39]) of the complexification
GL(N,C) of U(N). For the fundamental N -dimensional representation, this block matrix decomposition reads

U =

(
A B

C D

)
=

(
∆1 −Z†∆2

Z∆1 ∆2

)

︸ ︷︷ ︸
Q(Z)

(
V1 0

0 V2

)

︸ ︷︷ ︸
V

(50)
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where A and D are invertible square complex matrices of orders M and N −M , respectively, with

Z = CA−1, ∆1 = (AA†)1/2 = (1M + Z†Z)−1/2, ∆2 = (DD†)1/2 = (1N−M + ZZ†)−1/2 (51)

and V1 = ∆−1
1 A ∈ U(M), V2 = ∆−1

2 D ∈ U(N −M) are unitary matrices. The normalization matrix factors ∆1,2

are related by the Woodbury matrix identity ∆2
1 = 1M − Z†∆2

2Z. Complex (N −M) ×M matrix points Z on the
Grassmann manifold GNM are associated to quotient representatives Q(Z) ∈ U(N).

Let us firstly discuss the simplest N = 2 case. The decomposition (50) for U ∈ U(2) adopts the form

U =

(
a b

c d

)
=

(
δ −z̄δ
zδ δ

)

︸ ︷︷ ︸
Q(z)

(
a/δ 0

0 d/δ

)
, δ = (1 + |z|2)−1/2, (52)

which is adapted to the quotient G2
1 = U(2)/[U(1) × U(1)] = S2 (the two-sphere), with z = c/a = tan(θ/2)eiφ the

stereographic projection of a point (θ, φ) (polar and azimuthal angles) of the sphere S2 onto the complex plane C 3 z.
Let us consider filling factorM = 1. TheM×N creation operator matrix A† in (15) reduces to A† = (a†11, a

†
21). Denote

by Qhw(z) = (δ, zδ)t the first column of Q(z) in (52). Coherent excitations above the HW vector |mhw〉 =
(a†11)L√

L!
|0〉F

for filling factor M = 1 can be written as a two-mode Bose-Einstein condensate of the form

|z〉L =
A†Qhw(z)|0〉F√

L!
=

1√
L!

(
a†11 + za†21√

1 + |z|2

)L
|0〉F

=
[

cos(θ/2)| ↑〉+ sin(θ/2)eiφ| ↓〉︸ ︷︷ ︸
|z〉

]⊗L
= |z〉⊗L, (53)

where we are using the notation (28) for spin up and down states at a Landau site, respectively. That is, the
spin j = L/2 coherent state |z〉L adopts the form of a symmetric L-qubit state. The direct product structure (not
entanglement between lattice sites) ensures the underlying translational invariance. For example, for the particular
case of L = 2 (spin j = 1) we have

|z〉2 =
(| ↑〉+ z| ↓〉)⊗2

1 + |z|2 =
| ↑↑〉+ z(| ↑↓〉+ | ↓↑〉) + z2| ↓↓〉

1 + |z|2 , (54)

where we identify the spin triplet

{|1, 1〉 = | ↑↑〉, |1, 0〉 =
| ↑↓〉+ | ↓↑〉√

2
, |1,−1〉 = | ↓↓〉}

basis written in terms of the usual Dicke (total angular momentum) states |j,m〉 (with m = −j, . . . , j, the magnetic
quantum number) already discussed after (29). In general, spin j = L/2 coherent states can be written in the Dicke
basis as (see e.g. [22, 23] for standard references)

|z〉2j = (1 + |z|2)j
j∑

m=−j

√(
2j

j −m

)
zj−m|j,m〉. (55)

Even further, coherent states |z〉L can also be created by applying a U(2) transformation/rotation on the HW vector

|z〉L = eyS21−ȳS12 |mhw〉 =
ezS21 |mhw〉√

1 + |z|2
, z =

y

|y| tan |y|, y =
θ

2
eiφ, (56)

where S21 is the spin lowering operator, and the relation between the complex coordinate y and the stereographic
projection coordinate z arises from the application of the Baker-Campbell-Hausdorff-Zassenhaus factorization formula
to the group U(2) [22, 23]. Note that, in the tensor product representation of U(2), all qubits/spins are rotated “in
unison” to account for translation/permutation symmetry. Other non-symmetric definitions of spin coherent states
are possible for the group product U(2) × · · · × U(2), in which every qubit/spin is rotated independently of each
other (see e.g. [45]). Here we restrict ourselves to spin j = L/2 (Bloch/atomic) symmetric coherent states introduced
a long time ago by [46] and [47]. Haldane used them to study the semi-classical approximation of 1-D Heisenberg
anti-ferromagnetic spin chains, whose continuum dynamics is described by SU(2) NLσMs [34–36].
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All these construction can be extended to U(N) QHF at filling factor M as follows. Define Qhw(Z) =

(
1M
Z

)
∆1

as the first M columns of Q(Z) in (50) and split the M ×N creation operator matrix A† in (15) into a 2-block matrix
A† = (A†hw|A

†
lw), where A†hw makes reference to the first M columns (HW components) and A†lw to the last N −M

columns (LW components). Grassmannian GNM coherent states (see [23] for related fermionic coherent states) are then
labeled by the (N −M)×M complex matrices Z and have the form of a Bose-Einstein condensate

|Z〉L =
det
(
A†Qhw(Z)

)L|0〉F
∏M
p=1(p)

1
2

L

=
1

∏M
p=1(p)

1
2

L




det
(
A†hw +A†lwZ

)

√
det(1M + Z†Z)



L

|0〉F. (57)

Note that |Z = 0〉L corresponds to the HW state (17). As for spin coherent states in (56), Grassmannian coherent
states can also be written as a U(N) transformation/rotation of the HW vector as

|Z〉L = exp


 ∑

1≤j≤M,M+1≤i≤N+M

(YijSij − ȲijSji)


 |mhw〉 (58)

=
exp

[∑
1≤j≤M,M+1≤i≤N+M ZijSij

]
|mhw〉

√
det(1M + Z†Z)

, Z = Y (Y †Y )−
1
2 tan

(
Y †Y

) 1
2 ,

where the relation between the (N −M)×M complex matrices Y and Z [similar to the relation between y and z in
(56)] now arises from the application of the Baker-Campbell-Hausdorff-Zassenhaus factorization formula to the group
U(N) (see e.g. [23] for related fermionic coherent states). Note that Grassmannian coherent states |Z〉L can be seen
as a matrix version/extension of spin coherent states |z〉L.

Let us explicitly work out a couple of examples related to the bilayer system (N = 4) of Section III B 2. We shall
denote the states like in (30) and talk about spin ↑, ↓ and pseudo-spin or layer t, b. For filling factor M = 1 we have

|Z〉L =
[|1〉+ z2|2〉+ z3|3〉+ z4|4〉]⊗L
(1 + |z2|2 + |z3|2 + |z4|2)L/2

, (59)

where Z = (1, z2, z3, z4)t denotes a point on the complex projective space CP 3 = U(4)/U(1)×U(3). For filling factor
M = 2, the Hilbert space Hα4 [12] at each Landau/lattice site α has dimension

(
4
2

)
= 6. In Appendix E we provide

a basis (made of spin triplet |S±1,0〉 and pseudo-spin triplet |P±1,0〉 states) for Hα4 [12] adapted to the spin-layer
intrinsic structure of this case. Coherent states here adopt the form

|Z〉L =
1√
2

∣∣∣∣
(
a†11 a†21

a†12 a†22

)
+

(
a†31 a†41

a†32 a†42

)(
z11 z12

z21 z22

)∣∣∣∣
L

|0〉F

det(12 + Z†Z)
L/2

=

[√
2|S1〉+ (z11 + z22)|S0〉+

∣∣∣∣
z11 z12

z21 z22

∣∣∣∣ |S−1〉+
√

2z12|P1〉+ (z22 − z11)|P0〉 −
√

2z21|P−1〉
]⊗L

det(12 + Z†Z)
L/2

, (60)

with Z =

(
z11 z12

z21 z22

)
a matrix point on the Grassmannian G4

2 = U(4)/U(2)2. |Z〉L can also be written in terms of

Gelfand vectors |m〉 as the U(N) rotation (58) with U(N)-spin operators Sij given by their matrix elements (45) (see
e.g. Appendix F for some particular cases).

Coherent states are sometimes called “semi-classical” (they exhibit minimal uncertainty, etc.) and they are used as
variational states to study the semiclassical and thermodynamic limit, specially in quantum phase transitions [48].
We have used U(4) coherent states, introduced by us in [44, 49], to study their entanglement properties [50] and
the phase diagram of bilayer quantum Hall systems at filling factor M = 2 in [51, 52], which turn out to reproduce
previous results of Ezawa and collaborators [53, 54]. Let’s take a closer look to the role of Grasmannian coherent
states to construct semi-classical models of U(N) QHF in terms of NLσM.

B. Grassmannian nonlinear sigma models

In order to study the semi-classical/thermodynamical limit L → ∞ of U(N) QHF, one has to replace U(N)-spin
operators Sij by their coherent state expectation values 〈Z|Sij |Z〉. Let us adopt a compact notation and denote by S
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the operator matrix with operator matrix entries Sij . The corresponding coherent state expectation value matrix is

S(Z) ≡ 2

L
〈Z|S − L

2
1N |Z〉L = Q(Z)†EMQ(Z), EM = diag(1, M. . . 1,−1,N−M. . . ,−1), (61)

where Q(Z) is defined in (50). We have renormalized the matrix operator S by L to define the matrix expectation value
S as a density (intensive quantity), with a good thermodynamical limit L → ∞. Moreover, we have shifted Cartan
U(N)-spin operators Sii by L/2 for convenience. The complex N ×N matrix S(Z) plays the role of a ferromagnetic
order parameter associated to the symmetry-breaking ground state. Let us take the continuum limit, that is, small
lattice constant ` → 0 and large number of lattice sites L → ∞, so that α` → x = (x1, x2) are coordinates on the
plane and the finite difference (S(α + 1) − S(α))/` → ∂xS(x) becomes the derivative; that is, the order parameter
S becomes a matrix field at every point x of the plane. The low energy physics of the U(N) QH ferromagnet [when
considering only nearest-neighbor interactions Jαβ = J δα,β±1 in the exchange energy (A9)] is then described by a
NLσM field theory with action

A[Z] =

∫
dx0dx1dx2

[
tr(EMQ

†∂x0
Q) + J tr(~∇S · ~∇S)

]
, (62)

where ∂x0
≡ ∂0 means partial derivative with respect to time t = x0, ~∇ = (∂x1

, ∂x2
) ≡ (∂1, ∂2) is the gradient

and ~∇S · ~∇S is the scalar product. The first (kinetic) term of the action (62) is the Berry term (provided by the
coherent state representation of the path integral quantization (see e.g. [31, 33] for more information about the origin
of the Berry term, and [55] for the application of path-integral quantization to indistinguishable particle systems
topologically confined by a magnetic field). The second term describes the energy cost when the order parameter is
not uniform. The topological current

Jµ =
i

16π
εµνλtr(S∂νS∂λS) (63)

(ε is the Levi-Civita antisymmetric symbol in 1+2 dimensions) leads to the topological (Pontryagin) charge or
Skyrmion number

C =

∫
dx1dx2J

0. (64)

See e.g. Ref. [33] for more information.
Note that we do not have N2 real field components for S but only 2M(N −M) corresponding to the (N −M)×M

complex matrix Z. This is due to the constraints given by the N values (49) of the N Casimir operators (48). For
example, the linear and quadratic Casimir values say that

C1 =

N∑

i=1

〈Z|Sii|Z〉 = ML, C2 =

N∑

i,j=1

〈Z|SijSji|Z〉 = ML(L+N −M). (65)

For large L, the leading term for the expectation values of quadratic spin powers is 〈Z|SijSji|Z〉 ' 〈Z|Sij |Z〉〈Z|Sji|Z〉
(spin fluctuations are negligible in the classical L → ∞ limit). For N = 2, M = 1 and L = 2j, the linear C1 = 2j

and quadratic C2 = 2j(2j + 1) Casimir constraints reproduce the well known sphere equation ~J2 = j(j + 1) for
Jx = (S12 + S21)/2, Jy = (S12 − S21)/(2i) and Jz = (S11 − S22)/2.

Since the kinetic (Berry) term involves a single time derivative, half of the Grassmannian fields Z are conjugate
momenta of the other half (that is, The Grassmannian GNM target space is a phase space), thus expecting M(N −M)
independent spin-wave modes. Given the relation (61) between the order parameter S and the Grassmann matrix
Z, after a little bit of algebra, the spatial part (potential energy) of the Lagrangian (62) can be written in terms of
minimal matrix fields Z as [56, 57]

J tr(~∇S · ~∇S) = J tr
(

∆2
2
~∇Z · ∆2

1
~∇Z†

)
, (66)

where we have used the expression (61) of S(Z) in terms of Q(Z) in (50), together with the Woodbury matrix identity
∆2

2Z = Z∆2
1. It would be worth revising the classical limit of U(N) quantum Hall ferromagnets for large L → ∞

representations, considered long time ago by [28–33] for anti-ferromagnets, in boson/fermion mixture picture exposed
in this article. This is work in progress.
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VI. CONCLUSIONS AND OUTLOOK

In this article we have presented several group-theoretical tools to study interacting N -component fermions on a lat-
tice, like U(N) quantum Hall ferromagnets arising from two-body exchange interactions. We have restricted ourselves
to the lower energy permutation symmetry sector (according to the Lieb-Mattis theorem [37]) corresponding to fermion
mixtures described by rectangular Young diagrams with M rows (the filling factor) and L columns (Landau/lattice
sites). We have provided orthonormal basis vectors of the corresponding Hilbert space in terms of Youn tableaux,
Gelfand-Tsetlin patterns |m〉 and boson/fermion Fock states. We have written general matrix elements of U(N)-spin
collective operators Sij in the Gelfand-Tsetlin basis. Several particular examples have been explicitly worked out to
better understand the general expressions, specially the case of bilayer U(4) quantum Hall systems at filling factor
M = 2 appearing in the literature [53, 54, 58–65] Dimension formulas for these irreducible representations of U(N)
have also been provided. Special attention has been paid to the highest weight state, which can be associated to the
ground state of the system. From this perspective, the “spontaneously chosen” ground state breaks the original U(N)
symmetry and the associated U(N) ferromagnetic order parameter S [the expectation value of collective U(N)-spin
operators S in a Grassmannian coherent state |Z〉] describes coherent state excitations in the classical limit, whose
dynamics is governed by a Grassmannian nonlinear sigma model.

Restricting to the dominant permutation symmetry sector is a common practice to reduce the computational
complexity when dealing with quantum many-body systems. For example, critical and chaotic quantum systems of P ,
N -level/component, identical particles (“quNits”, a higher dimensional generalization of qubits for N > 2) undergoing
a quantum phase transition in the thermodynamic (classical) limit P →∞, are usually studied by restricting to the(
P+N−1

P

)
-dimensional (the number of ways of exciting P particles with N levels when order does not matter) totally

symmetric sector [P ] in the NP -dimensional P -fold tensor product [1]⊗P = [P ] ⊕ [P − 1, 1] ⊕ . . . of N -dimensional
(fundamental) irreducible representations [1] of U(N). Replacing [1]⊗P by [P ] then reduces the size of the Hilbert
space from NP to

(
P+N−1

P

)
, which is a great simplification when N > 1 and P is large. The justification of this

restriction is that the ground state of the many-body system always belongs to totally symmetric representation, in
accordance with the Lieb-Mattis ordering problem. In more physical terms, and for the particular example of the
Dicke model of super-radiance [66], the assumption that the P atoms of N = 2-levels are indistinguishable (bosons) is
admissible when the emitters are confined to a cavity volume V � `3 much smaller than the scale of the wavelength `
of the optical transition. However, the role of mixed permutation symmetry sectors in many body quantum systems
should not be disregarded at higher energies, and we have already made some steps in [67] for the case of critical
N -level Lipkin-Meshkov-Glick atom models. Entanglement characterization of quantum phases in these systems have
also been studied [68]. This is also our next step for U(N) quantum Hall ferromagnets.

Finally, concerning physical applications and quantum technological implementations, as we have already mentioned
in the introduction, the subject of SU(N) fermions and SU(N) magnetism has been recently further fueled in condensed
matter physics with exciting advances in cooling, trapping and manipulating fermionic alkaline-earth atoms trapped in
optical lattices. Also, magnetic Skyrmion materials display a robust topological magnetic structure, being a candidate
for the next generation of spintronic memory devices. Multilayer quantum Hall arrangements, bearing larger U(N)
symmetries, also display interesting new physics. Such is the case of superconducting properties of twisted bilayer
(and trilayer) graphene predicted by [20] and observed by [21]. Therefore, this is a highly topical subject, in which
we believe this article makes a novel (not standard) contribution of a fundamental nature. Further perspectives
worth exploring have to do with the interplay between quantum information and quantum topological phases of
matter. Namely, the identification of topological order by entanglement entropy (see e.g. [69, 70]). Indeed, quantum
information concepts can be used to reformulate and characterize topological order. Some of us have already applied
quantum information techniques to the characterization of topological insulator phases of graphene analogues [71–75]
and fosforene [76, 77]. Also, Schur basis, like the ones discussed here in terms of Young tableaux, have probed to be
useful for efficient quNit circuits [78].
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Appendix A: Quantum Hall ferromagnets from exchange interactions

Let us briefly remind how the Hamiltonian of a U(N) quantum Hall ferromagnet can be derived from fundamental
microscopic two-body (let us say Coulomb) interactions between N -component electrons (see also [54]). The field
theoretical expression of the Hamiltonian for two-body interactions between N -component electrons in 2-dimensional
space is

HC =
1

2

N∑

i,j=1

∫
d2xd2x′Ψ†i (x)Ψ†j(x

′)V (|x− x′|)Ψj(x
′)Ψi(x), (A1)

where V (|x− x′|) is the two-body potential and Ψi(x) is the electron field, which can be expanded in terms of a set
of one-body wave (Wannier) functions {ψα(x)}, localized around the lattice/Landau sites α = 1, . . . , L, with L the
total number of lattice/landau sites as

Ψi(x) =
L∑

α=1

ci(α)ψα(x). (A2)

In the case of quantum Hall systems in the Landau gauge ~A(x) = (Bx2, 0, 0) (B is the constant perpendicular magnetic
field and ~A is the vector potential), the one-body functions are canonical (harmonic oscillator) coherent states

ψk(x) =
1√

π1/2`B
exp(ikx1) exp

(
− 1

2`2B
(x2 + k`2B)2

)
, (A3)

describing a plane wave propagating in the x1 direction with momentum ~k (`B =
√

~/(eB) denotes the magnetic
length). The probability of finding the electron at x2 has a sharp peak at x2 = −k`2B and a width ∆x2 = `2B∆k, where
∆k = 2π/λ1 (here λ1 denotes the x1-size of the system), because the wave number is quantized as kn = 2πn/λ1,
with n an integer. Thus, these states are represented by strips on a rectangular geometry occupying an area of
∆A = λ1∆x2 = 2π`2B and defining a von Neumann lattice (see e.g.[54]). Therefore, the number of Landau/lattice
sites enclosed by the system of area A = λ1λ2 is L = A/∆A = A/(2π`2B), which coincides with the number of
magnetic flux quanta penetrating the sample, that is, the ratio of the total magnetic flux BA to the magnetic flux
quantum φ0 = 2π~/e. In the symmetric gauge ~A(x) = (Bx2,−Bx1, 0)/2, the “strips in a rectangular geometry” image
is replaced by “rings in a disk geometry”, where the linear momentum k is replaced by the angular momentum m (see
[54] for more information).

The coefficients ci(α)
(
c†i (α)

)
denote annihilation (creation) operators of electrons of component i = 1, . . . , N at

site α, fulfilling the usual anticommutation rules
{
ci(α), c†j(α)

}
= δij ,

{
ci(α), cj(α)

}
=
{
c†i (α), c†j(α)

}
= 0 ∀i, j = 1, . . . , N . (A4)

It is also important to emphasize that these operators commute among different Landau/lattice sites, that is,
[
ci(α), c†j(β)

]
=
[
ci(α), cj(β)

]
=
[
c†i (α), c†j(β)

]
= 0, i, j = 1, . . . , N , α 6= β. (A5)

Let us denote by

Vβαβ′α′ =
1

2

∫
d2xd2x′ψ̄β(x)ψα(x)V (|x− x′|)ψ̄β′(x′)ψα′(x′). (A6)

The terms that effectively contribute to the energy are Uββ′ = Vβββ′β′ and Jβα = Vβααβ , corresponding to the direct
(D) and exchange (E) energies

HC = HD
C +HE

C =
L∑

β,β′=1

Uββ′ρ(β)ρ(β′) +
L∑

β,α=1

N∑

i,j=1

Jβαc†i (β)c†j(α)cj(β)ci(α), (A7)

where ρ(β) =
∑N
i=1 c

†
i (β)ci(β) is the electron number operator at site β. In the case of Coulomb interaction, the

direct termHD
C represents the usual Coulomb energy between two charge distributions |ψβ(x)|2 and |ψβ′(x′)|2 localized

around the Landau/lattice sites β and β′, respectively. The exchange term HE
C has no classical counterpart and owes
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its origin to the Pauli exclusion principle. Note that Jβα vanishes when there is no overlap between the wave functions
ψβ and ψα at sites β and α (for example, for distant sites). One can define the U(N)-spin operators at site α by

Sij(α) = c†i (α)cj(α). (A8)

They allow one to write the exchange energy as a generalized Heisenberg spin-spin interaction

HE
C = −

L∑

α,β=1

Jαβ
N∑

i,j=1

Sij(α)Sji(β) +N
L∑

α=1

Jααρ(α). (A9)

which depends on the relative U(N)-spin orientation at neighboring sites α and β. From here the name of “U(N)
quantum Hall ferromagnet”, where all U(N)-spins tend to be equally polarized (for Jαβ > 0) to lower the exchange
energy HE

C . This Hamiltonian is U(N)-invariant and therefore the U(N)-spin “direction” is spontaneously chosen.
This invariance can be explicitly broken by adding Zeeman, pseudo-Zeeman, layer bias, etc. external couplings [54].

Appendix B: Proof of Proposition II.1

We shall proceed by induction in L. The L = 2-fold tensor product representation of U(N) decomposes as

: ⊗ : = [1M ]⊗ [1M ] =
k∗⊕

k=0

[2M−k, 12k] , k∗ =

{
N −M ∀M > bN2 c
M ∀M ≤ bN2 c

, (B1)

where we understand [a0] = [0] for all a ∈ N. It is clear that [2M ] � [2M−k, 12k] for all k = 0, . . . , k∗, in accordance
with the dominance order definition (10). Now suppose that [LM ] dominates over all Young diagrams arising in
[1M ]⊗L. Then, we have to prove by induction that [(L+1)M ] dominates over all Young diagrams arising in [1M ]⊗L+1.
Firstly, we shall state an auxiliary lemma.

Lemma B.1. Let [h] = [h1, h2, . . . , hN ] be any Young diagram of U(N). The tensor product [h] ⊗ [1M ] between [h]
and the totally antisymmetric IR [1M ] leads to a decomposition into Young diagrams with shape

[h̃] = [h̃1, h̃1, . . . , h̃N ] = [h1 + n1, h2 + n2, . . . , hN + nN ], ni ∈ {0, 1},
N∑

i=1

ni = M, h̃1 ≥ · · · ≥ h̃N . (B2)

Proof. It is straightforward taking into consideration the multiplication rules of Young diagrams (section 9.5.1 of
[79]). Specially the one which states: Reading the resulting diagrams from right to left and starting with the top
row, at any point must the number of ai’s encountered exceed the number of previously encountered ai−1’s. If we
are multiplying any diagram with the totally antisymmetric (one column), every ai will appear only once in the new
diagrams. Therefore, the aforementioned rule will limit by one the number of boxes per row that we can add to the
original diagram to construct the new ones. For instance, using a U(6) diagram and the antisymmetric IR [15],

⊗

a1

a2

a3

a4

a5

∼=

a1

a2

a3

a4

a5

⊕

a1

a2

a3

a4

a5

⊕

�
�
�
�
�
�Z

Z
Z
Z
Z
Z

a1

a2

a3 a4

a5

⊕ . . . (B3)

It is convenient to name the rectangular diagram as [h] = [h1, h2, . . . , hN ] = [LM ] = [L, M. . ., L, 0,N−M. . . , 0], and all
Young diagrams arising from [1M ]⊗L as [h′] = [h′1, h

′
2, . . . , h

′
N ], including the rectangular one (h′ = h). Therefore, the

dominance of [LM ] is written as [h] � [h′], or equivalently (10),

kL = h1 + · · ·+ hk ≥ h′1 + · · ·+ h′k ∀k ∈ [1, N ] . (B4)

According to the lemma B.1, the tensor product [1M ]⊗(L+1) = [1M ]⊗L ⊗ [1M ] generates the diagrams [h̃′] =

[h̃′1, h̃
′
2, . . . , h̃

′
N ] = [h′1 + n1, h

′
2 + n2, . . . , h

′
N + nN ] with ni ∈ {0, 1} and

∑N
i=1 ni = M . Among them, there is a new
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rectangular diagram [h̃] = [h̃1, . . . , h̃N ] = [(L + 1)M ] = [h1 + 1, . . . , hM + 1, hM+1, . . . , hN ], with hM+1, . . . , hN = 0.
The restriction

∑N
i=1 ni = M implies

∑k
i=1 ni ≤ k, which leads to

h̃1 + . . .+ h̃k = h1 + . . .+ hk + k ≥ h1 + . . .+ hk + n1 + . . .+ nk ∀k ∈ [1, N ] , (B5)

and using the equation (B4),

h̃1 + . . .+ h̃k ≥ h1 + . . .+ hk + n1 + . . .+ nk ≥ h′1 + . . .+ h′k + n1 + . . .+ nk = h̃′1 + . . .+ h̃′k ∀k ∈ [1, N ] . (B6)

Therefore, considering the dominance order definition, we arrive to [h̃] � [h̃′], eventually proving that the rectangular
Young diagram [h̃] = [(L+ 1)M ] dominates the other diagrams arising from [1M ]⊗(L+1) and concluding the proof by
induction.

�

Appendix C: Proof of Proposition III.1

Looking at the structure of

det
(
A†hw

)
=
∑

σ∈SM
sgn(σ)

M∏

i=1

a†i,σi =

M∑

µ1,...,µM=1

εµ1,...,µM

M∏

i=1

a†i,µi ,

[where SM is the symmetric group of degreeM and ε is the Levi-Civita symbol] it is clear that det
(
A†hw

)L
|0〉F is made

of P = ML particles, as desired. The basic boson commutation relations [a, a†] = 1 imply that [a, ψ(a†)] = ψ′(a†) or
aψ(a†)|0〉F = ψ′(a†)|0〉F, where ψ is a function and ψ′ denotes the formal derivative with respect to the argument.
Therefore, let us simply write aiµ = ∂/∂a†iµ. In order to prove (18), we have that

Λµν det
(
A†hw

)L
|0〉F =

N∑

i=1

a†iµ
∂

∂a†iν
det
(
A†hw

)L
|0〉F = Ldet

(
A†hw

)L−1 M∑

i=1

a†iµ
∂

∂a†iν
det
(
A†hw

)
|0〉F.

The last summation consists of replacing row ν by row µ inside the determinant det
(
A†hw

)
, and therefore we have

M∑

i=1

a†iµ
∂

∂a†iν
det
(
A†hw

)
= δµν det

(
A†hw

)
,

which proves the constraint (18). To prove (19), we follow the same steps as for (18), that is

Sij det
(
A†hw

)L
|0〉F =

M∑

µ=1

a†iµ
∂

∂a†jµ
det
(
A†hw

)L
|0〉F = Ldet

(
A†hw

)L−1 M∑

µ=1

a†iµ
∂

∂a†jµ
det
(
A†hw

)
|0〉F.

If i, j ≤ M , the last summation consists of replacing column j by column i inside the determinant det
(
A†hw

)
, and

therefore Sij |mhw〉 = Lδij |mhw〉, which means that |mhw〉 is invariant under the subgroup U(M) ⊂ U(N). If j > M ,
then column j is absent from det

(
A†hw

)
and Sij |mhw〉 = 0, which means that |mhw〉 is in fact invariant under the

subgroup U(M)×U(N −M) ⊂ U(N). Note the similarities with invariance properties of the ground state |Φ0〉 of Eq.
(3). This will be an important fact when discussing the Grassmannian structure associated to U(N) quantum Hall
ferromagnets at filling factor M later in Section V. The other possibilities for Sij correspond to rising and lowering
operators and will be discussed later.

It remains to prove that the squared norm of det
(
A†hw

)L
|0〉F is given by NL =

∏M
p=1(p)L in (17), where (p)L is the

usual Pochhammer symbol. We proceed by mathematical induction. Firstly we prove that N1 = M !. Indeed,

〈0|det(Ahw) det
(
A†hw

)
|0〉F =

∑

σ∈SM
1 = M !.
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Now we assume that 〈0|det(Ahw)
L

det
(
A†hw

)L
|0〉F = NL and we shall prove that

〈0|det(Ahw)
L+1

det
(
A†hw

)L+1

|0〉F = NL+1.

Indeed, it can be shown that

〈0|det(Ahw)
L+1

det
(
A†hw

)L+1

|0〉F = (L+ 1)M 〈0|det(Ahw)
L

det
(
A†hw

)L
|0〉F.

The proof is cumbersome in general and we shall restrict ourselves to the more maneuverable M = 2 case, which
grasps the essence of the general case. In fact,

det(Ahw) det
(
A†hw

)L+1

|0〉F =

(
∂

∂a†11

∂

∂a†22

− ∂

∂a†12

∂

∂a†21

)
(a†11a

†
22 − a†12a

†
21)L+1|0〉F

= (L+ 1)Ldet
(
A†hw

)L
|0〉F + 2(L+ 1) det

(
A†hw

)L
|0〉F

= (L+ 1)2 det
(
A†hw

)L
|0〉F.

In general

det(Ahw) det
(
A†hw

)L+1

|0〉F = (L+ 1)M det
(
A†hw

)L
|0〉F.

To finish, we realize that (L+ 1)MNL = NL+1, which concludes the proof by induction.
�

Appendix D: Relation between Gelfand-Tsetlin and Fock states

We already know the general expression of the HW state |mhw〉 in Fock space, given by (17). In this expression,
the leading principal minor det

(
A†hw

)
of order M of A† plays a fundamental role. Remember that the M ×M square

submatrix A†hw was obtained from A† in (15) by deleting the last N−M columns. In the proof of Proposition III.1, in
the Appendix C, we argued that ladder operators Sij , i 6= j replace column j by column i inside the minor det

(
A†hw

)
.

In general, we can obtain
(
N
M

)
different minors of size M ×M , corresponding to the different ways one can choose M

columns from the N columns of A†. Let I = {i1, . . . iM}, with iµ < iµ+1 (increasing order), denote one of these
(
N
M

)

column choices and

A†I =



a†i11 . . . a†iM1
...

...
a†i1M . . . a†iMM


 (D1)

the corresponding M ×M submatrix of A†. The cases I = {1, . . . ,M} (first M columns) and I ′ = {N −M, . . . , N}
(last M columns) are special, since they are related to the highest- and lowest-weight states, respectively; actually,
we are denoting A†{1,...,M} simply by A†hw. There are several ways of attaching nµ,i flux quanta to the electron µ ≤M
with flavor i ≤ N . For a given I = {i1, . . . iM} containing i, let us denote {lI ≥ 0} a composition (a partition where
order matters) of nµ,i in the sense that

nµ,i =
∑

i1<···<iµ<···<iM
l{i1,...,iM}, 0 ≤ ik ≤ N. (D2)

[iµ means that we put i in the µ-th place]. Namely, for the example (22), we have M = 2 (µ = 1, 2) and we can
arrange these compositions into planar tables, where sum on column i gives n1i and sum on row i gives n2i, as follows

n11 = 3 n12 = 3 n13 = 1

n24 = 3 l14 l24 l34

n23 = 3 l13 l23

n22 = 1 l12

= 1 1 1

1 2

1

+ 0 2 1

2 1

1

+ 2 0 1

0 3

1

. (D3)
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Denoting ∆I = det
(
A†I

)
a minor of sizeM×M of A†, a Gelfand state |m〉 corresponds to the following (un-normalized)

Fock state

|m〉 ∝
∑

l(m)

(NM)∏

I=1

∆lI
I |0〉F, (D4)

where the sum is extended to all components l(m) associated to m (or equivalently, to the occupancy numbers nµi).
Note that

∏
I ∆lI

I is a homogeneous polynomial of degree ML in the creation operators a†iµ. For example, taking
into account the three components (D3) of the Gelfand state (27) for filling factor M = 2 and N = 4 flavors, the
corresponding Fock state can be written as

(
∆1

12∆1
13∆1

14∆2
23∆1

24∆1
34 + ∆1

12∆2
13∆0

14∆1
23∆2

24∆1
34 + ∆1

12∆0
13∆2

14∆3
23∆0

24∆1
34

)
|0〉F. (D5)

This expression gets simpler for highest and lowest weight states. For example, in (32) and (37) we have seen that the
corresponding HW states for M = 2 and M = 3 are just given in terms of ∆12 and ∆123 (just one single component),
respectively. In the same way, the lowest-weight state |mlw〉 for N = 4 and M = 2 is given in terms of only ∆34 in
(33). The computation of compositions (D2) of the occupancy numbers nµi for M > 2 gets more and more involved
since the planar picture (D3) becomes a higher-dimensional arrangement.

Appendix E: Single Landau site Hilbert space basis for a bilayer U(4) QHF at M = 2

Let us explicitly work out the case N = 4, M = 2 and L = 1, for which the Hilbert space H4[12] has dimension(
N
M

)
= 6. The corresponding basis vectors for this case can be divided into two sectors: the spin-triplet pseudospin-

singlet sector

|S1〉 = c†↑tc
†
↑b|0〉F = 1

2
=

∣∣∣∣∣∣∣∣

1 1 0 0

1 1 0

1 1

1

〉
=

1√
2

∣∣∣∣
a†11 a†21

a†12 a†22

∣∣∣∣ |0〉F , (E1)

|S−1〉 = c†↓tc
†
↓b|0〉F = 3

4
=

∣∣∣∣∣∣∣∣

1 1 0 0

1 0 0

0 0

0

〉
=

1√
2

∣∣∣∣
a†31 a†41

a†32 a†42

∣∣∣∣ |0〉F ,

|S0〉 =
c†↑tc

†
↓b + c†↓tc

†
↑b√

2
|0〉F =

1√
2

(
1
4
− 2

3

)
=

1√
2




∣∣∣∣∣∣∣∣

1 1 0 0

1 0 0

1 0

1

〉
−

∣∣∣∣∣∣∣∣

1 1 0 0

1 1 0

1 0

0

〉



=
1√
2

( ∣∣∣∣
a†11 a†41

a†12 a†42

∣∣∣∣−
∣∣∣∣
a†21 a†31

a†22 a†32

∣∣∣∣
)
|0〉F .
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and the pseudospin-triplet spin-singlet sector

|P1〉 = c†↑tc
†
↓t|0〉F = 1

3
=

∣∣∣∣∣∣∣∣

1 1 0 0

1 1 0

1 0

1

〉
=

1√
2

∣∣∣∣
a†11 a†31

a†12 a†32

∣∣∣∣ |0〉F, (E2)

|P−1〉 = c†↑bc
†
↓b|0〉F = 2

4
=

∣∣∣∣∣∣∣∣

1 1 0 0

1 0 0

1 0

0

〉
=

1√
2

∣∣∣∣
a†21 a†41

a†22 a†42

∣∣∣∣ |0〉F ,

|P0〉 =
c†↑tc

†
↓b − c

†
↓tc
†
↑b√

2
|0〉F =

1√
2

(
1
4

+ 2
3

)
=

1√
2




∣∣∣∣∣∣∣∣

1 1 0 0

1 0 0

1 0

1

〉
+

∣∣∣∣∣∣∣∣

1 1 0 0

1 1 0

1 0

0

〉



=
1√
2

( ∣∣∣∣
a†11 a†41

a†12 a†42

∣∣∣∣+

∣∣∣∣
a†21 a†31

a†22 a†32

∣∣∣∣
)
|0〉F .

Appendix F: Explicit particular expressions of U(N)-spin matrix elements

In Section IV we have given general formulas (45) for the matrix coefficients 〈m′|Sij |m〉 of the U(N)-spin operators
Sij in the Gelfand basis {|m〉} for a given IR of U(N) characterized by the highest-weight h = mN = [m1,N , . . . ,mN,N ]
[top row of the Gelfand vector |m〉 in (24)]. In this Appendix we provide particular examples to explain the underlying
algorithm. Firstly, we need to order the Gelfand basis {|m〉}. For it, we choose an increasing order of the components
mij , j < N of the Gelfand vector array (24) from top to bottom and from left to right, fulfilling the betweenness
conditions (25). Schematically, the vectors of the basis are ordered within a list generated by nested indexes

{{. . . {{. . . { |m〉 }m12
m11=m22

. . . }m1,N−1
m1,N−2=m2,N−1

}mN,NmN−1,N−1=mN−1,N
. . . }m2,N

m2,N−1=m3.N
}m1,N
m1,N−1=m2,N

. (F1)

For example, this ordering convention coincides with the order in which we add in equation (35) the basis vectors of
the representation m4 = [L2] of U(4) to compute its dimension. Note that the first basis vector is the lowest weight
vector |mlw〉, whereas the last basis vector is the highest weight vector |mhw〉. Let us see some particular simple
examples.

1. U(2)-spin matrices for M = 1 and L = 1

The general formulas (45) for the Gelfand-Tsetlin basis vectors

|1〉 =

∣∣∣∣
1 0

0

〉
, |2〉 =

∣∣∣∣
1 0

1

〉
, (F2)

give the U(2)-spin operator matrices

S11 =

(
0 0

0 1

)
, S12 =

(
0 0

1 0

)
, S21 =

(
0 1

0 0

)
, S22 =

(
1 0

0 0

)
. (F3)

These matrices are in one-to-one correspondence to the SU(2) Pauli matrices (j = 1/2), σz = S22 − S11, σ+ = S21,
σ− = S12 plus identity.

2. U(2)-spin matrices for M = 1 and L = 2

|1〉 =

∣∣∣∣
2 0

0

〉
, |2〉 =

∣∣∣∣
2 0

1

〉
, |3〉 =

∣∣∣∣
2 0

2

〉
. (F4)
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S11 =




0 0 0

0 1 0

0 0 2


 , S12 =




0 0 0√
2 0 0

0
√

2 0


 , S21 =




0
√

2 0

0 0
√

2

0 0 0


 , S22 =




2 0 0

0 1 0

0 0 0


 . (F5)

These matrices are related to the SU(2) spin j = 1 matrices, Jz = 1
2 (S22 − S11), J+ = S21, J− = S12 .

3. U(4)-spin matrices for M = 2 and L = 1

|1〉 =

∣∣∣∣∣∣∣∣

1 1 0 0

1 0 0

0 0

0

〉
, |2〉 =

∣∣∣∣∣∣∣∣

1 1 0 0

1 0 0

1 0

0

〉
, |3〉 =

∣∣∣∣∣∣∣∣

1 1 0 0

1 0 0

1 0

1

〉
, (F6)

|4〉 =

∣∣∣∣∣∣∣∣

1 1 0 0

1 1 0

1 0

0

〉
, |5〉 =

∣∣∣∣∣∣∣∣

1 1 0 0

1 1 0

1 0

1

〉
, |6〉 =

∣∣∣∣∣∣∣∣

1 1 0 0

1 1 0

1 1

1

〉
.

S11 =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1



, S22 =




0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1



, S33 =




1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0



, S44 =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



,

S12 =




0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0



, S23 =




0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0



, S34 =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0



. (F7)

The rest of the Sij matrices can be obtained using the commutation relations in the equation (42).

Appendix G: The case of non-rectangular Young tableaux

For a Young tableau of general shape mN = [m1N , . . . ,mNN ], the HW state (17) is generalized to

|mhw〉 = N (mN )∆m1N−m2N
1 ∆m2N−m3N

12 . . .∆
mN−1,N−mNN
1,...,N−1 ∆mNN

1,...,N |0〉F, (G1)

where ∆1,...,n = det
(
A†{1,...,n}

)
are leading (corner) principal minors of order n of A† (for M = N , in general), like in

(D4); N (mN ) denotes a normalizing factor. This HW state satisfies the HW conditions:

Λµν |mhw〉 = mµNδµν |mhw〉 , µ ≤ ν , (G2)
Sij |mhw〉 = miNδij |mhw〉 , i ≤ j . (G3)

If all components of mN are different, that is, m1N > m2N > · · · > mNN , then all leading principal minors ∆I of A†
are present in the product (G1) and the HW state |mhw〉 is only invariant under U(1)N ⊂ U(N) (all internal/flavor
states i = 1, . . . , N are occupied). In this case, the ferromagnetic order parameter associated to the symmetry breaking
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is labeled by dimC[U(N)/U(1)N ] = N(N − 1)/2 complex parameters zij ∈ C, i > j = 1, . . . , N − 1, parameterizing
the coset (flag manifold) FN−1 = U(N)/U(1)N . See e.g. [57] for the Bruhat-Iwasawa decomposition in this case.
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We analyze the magneto-optical conductivity (and related magnitudes like transmittance and
Faraday rotation of the irradiated polarized light) of some elemental two-dimensional Dirac materi-
als of group IV (graphene analogues, buckled honeycomb lattices, like silicene, germanene, stannane,
etc.), group V (phosphorene), and zincblende heterostructures (like HgTe/CdTe quantum wells)
near the Dirac and gamma points, under out-of-plane magnetic and electric fields, to character-
ize topological-band insulator phase transitions and their critical points. We provide plots of the
Faraday angle and transmittance as a function of the polarized light frequency, for different exter-
nal electric and magnetic fields, chemical potential, HgTe layer thickness and temperature, to tune
the material magneto-optical properties. We have shown that absortance/transmittance acquires
extremal values at the critical point, where the Faraday angle changes sign, thus providing fine
markers of the topological phase transition. In the case of non-topological materials as phospho-
rene, a minimum of the transmittance is also observed due to the energy gap closing by an external
electric field.

I. INTRODUCTION

Two-dimensional (2D) materials have been extensively
studied in recent years (and are expected to be one of
the crucial research topics in future years) especially
because of their remarkable electronic and magneto-
optical properties which make them hopeful candidates
for next generation optoelectronic devices. Graphene is
the archetype of a 2D nanomaterial with exceptional high
tensile strength, electrical conductivity, transparency,
etc. In spite of being the thinnest one, it exhibits a gi-
ant Faraday rotation (ΘF ∼ 6◦) on polarized light in
single- and multilayer arrangements [1–6] with experi-
mental confirmation [7]. Faraday rotation is a funda-
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¶ ocasta@nucleares.unam.mx

mental magneto-optical phenomenon used in various op-
tical control, laser technology and magnetic field sensing
techniques.

Magneto-optical properties of other buckled honey-
comb lattices, like silicene [8], have been studied in [9–11],
together with other monolayer transition metal dichalco-
genides [12] and anisotropic versions like phosphorene
[13]. Magneto-optical measurements also provide signa-
tures of the topological phase transition (TPT; see [14–
16] for standard textbooks on the subject) in inverted
HgTe/CdTe quantum wells (QW), distinguishing quan-
tum Hall (QH) from quantum spin Hall (QSH) phases
[17], where one can tune the band structure by fabricat-
ing QWs with different thicknesses λ. A universal value
of the Faraday rotation angle, close to the fine structure
constant, has been experimentally observed in thin HgTe
QW with critical thickness [18].

To determine experimentally the Faraday rotation ef-
fect in Dirac materials it is convenient to consider: (1) A
transverse-magnetic-polarized wave incident from the left
onto a single topological insulator sandwiched by dielec-
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tric layers, which yields an enhancement of the Faraday
rotation with an angle larger than 700 mrad and with
a transmission higher than 90% [19]. (2) A graphene
sheet sandwiched by one-dimensional topological pho-
tonic crystals also an enhancement of the Faraday ro-
tation can be achieved with high transmittance [20]. (3)
In thin films of 3D topological insulators [21] or by con-
sidering thin films of Floquet topological insulators where
giant Faraday and Ker rotations have been observed un-
der the action of a perpendicular magnetic field or in
a non-resonant optical field [22]. The inverse Faraday
effect (IFE) has been studied in Dirac materials in 2D
and 3D, and these studies have concluded that IFE is
stronger than in conventional semiconductors. Then the
Dirac materials can be potentially useful for the optical
control of magnetization in optoelectronic devices [23].

Information theoretic measures also provide signatures
of the TPT in silicene [24–28] and HgTe/CdTe QWs [29],
as an alternative to the usual topological (Chern) num-
bers. They also account for semimetalic behavior of phos-
phorene [30, 31] under perpendicular electric fields.

In this paper we perform a comparative study of the
magneto-optical properties of several 2D Dirac materials,
looking for TPT signatures when the band structure is
tuned by applying external fields or by changing the ma-
terial characteristics. For this purpose, we focus on trans-
mittance and Faraday rotation near the critical point of
the topological phase transition for topological materi-
als such as silicene and HgTe quantum wells. We found
that, for these materials, transmittance attains an abso-
lute minimum T0 at the critical TPT point for a certain
value Ω0 of the normal incident polarized light frequency.
This minimal behavior does not depend on the chosen
values of magnetic field, chemical potential and temper-
ature, although the location of Ω0 varies with them. An
inflection point of the Faraday angle is observed at each
peak of the transmittance, coinciding in frequency. As a
novel perspective, we study that non-topological materi-
als, such as phosphorene, also exhibit an extremal value
of the transmittance when the energy gap is closed by an
external electric field.

The organization of the article is as follows. In Sec.
II we discuss the structure of time independent Bloch
Hamiltonians for general two-band 2D-Dirac material
models, their Chern numbers and their minimal coupling
to an external perpendicular magnetic field. We partic-
ularize to graphene analogues (silicene, germanene, etc.)
in Sec. II A, zincblende heterostructures (HgTe/CdTe
quantum wells) in Sec. II B and anisotropic materials
like phosphorene in IIC, calculating their energy spec-
trum and Hamiltonian eigenstates (Landau levels) and
describing their topological phases (when they exist). In
Sec. III we recall the Kubo-Greenwood formula for the
magneto-optical conductivity tensor σ of a 2D electron
system in a perpendicular magnetic field B and an oscil-
lating electric field of frequency Ω. In particular, we are
interested in analyzing the transmittance and Faraday
rotation of linearly polarized light of frequency Ω for nor-

mal incidence on the 2D material. Magneto-optical prop-
erties of graphene analogues, zincblende heterostructures
and phosphorene are analyzed in Sections III A, III B and
III C, respectively. For topological insulator materials,
we find that the critical point is generally characterized
by a minimum transmittance T0 at a given light frequency
Ω0, where the Faraday angle changes sign. The effect of
anisotropies is also discussed in phosphorene in Section
III C. Finally, Sec. IV is devoted to conclusions.

II. SOME TWO-BAND 2D-DIRAC MATERIAL
MODELS

The time independent Bloch Hamiltonian of a two-
band 2D insulator has the general form

H(k) = ϵ0(k)τ0 + d(k) · τ , (1)

where τ = (τx, τy, τz) is the Pauli matrix vector, τ0 de-
notes the 2 × 2 identity matrix and d(k) parameterizes
an effective spin-orbit coupling near the center Γ or the
Dirac valleys K and K ′ of the first Brillouin zone (FBZ),
with k = (kx, ky) the two-dimensional wavevector. The
energy of the two bands is ϵ±(k) = ϵ0(k)± |d(k)|.

To distinguish between band insulator and topologi-
cal insulator phases, one can use the TKNN (Thouless-
Kohmoto-Nightingale-Nijs) formula [32] providing the
Chern-Pontryagin number (related to the quantum spin
Hall conductance and the Berry phase [33])

C =
1

2π

∫ ∫

FBZ

d2k

(
∂d̂(k)

∂kx
× ∂d̂(k)

∂ky

)
· d̂(k), (2)

with d̂ = d/|d|, which counts the number of times (wind-
ing number) the unit vector d̂(k) wraps around the unit
sphere as k wraps around the entire FBZ. The Chern
number C usually depends on the sign of some mate-
rial and (external) control parameters in the Hamiltonian
H (see later for some examples), taking different values
in different phases. We shall see that magneto-optical
conductivity measures also capture the topological phase
transition.

We shall consider the interaction with a perpendicular
magnetic field B = (0, 0, B). Promoting the wavevector
k to the momentum operator k → p/ℏ = −i∇, this inter-
action is introduced through the usual minimal coupling,
p → P = p + eA with A = (Ax, Ay) = (−By, 0) the
electromagnetic potential (in the Landau gauge) and e
the elementary charge (in absolute value). After Peierls’
substitution, which results in

kx → Px/ℏ =
a† + a√
2ℓB

, ky → Py/ℏ =
a† − a

i
√
2ℓB

, (3)

the Hamiltonian (1) can be eventually written in terms
of creation a† and annihilation

a =
ℓB√
2ℏ

(Px − iPy) =
−1√
2ℓB

(y − y0 + iℓ2Bpy/ℏ), (4)
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∆so (meV) l (Å) v (105m/s)
Si 4.2 0.22 4.2
Ge 11.8 0.34 8.8
Sn 36.0 0.42 9.7
Pb 207.3 0.44 –

TABLE I. Approximate values of model parameters ∆so

(spin-orbit coupling), l (interlattice distance) and v (Fermi
velocity) for two dimensional Si, Ge, Sn and Pb sheets. These
data have been obtained from first-principles computations in
[38] (∆so and l) and [39, 40] (v).

operators, where ℓB =
√

ℏ/(eB) is the magnetic length
and y0 = ℓ2Bkx is the coordinate of the conserved center
of the cyclotron orbit.

Let us review some relevant physical examples.

A. Graphene analogues: silicene, germanene, etc

Silicene, germanene, and other transition metal
dichalcogenides (of the Xene type) exhibit an intrinsic
non-zero spin-orbit coupling Hso = − 1

2sξ∆soτz (s = ±1
is the spin of the electron and ξ = ±1 refer to the
Dirac valleys K and K ′) due to second neighbors hop-
ping terms in the tight binding model [34]. Spin-orbit
interaction Hso combined with and external perpendic-
ular electric field coupling H∆z

= 1
2∆zτz, gives d(k) =

(vℏξkx, vℏky,∆sξ), where ∆sξ = (∆z − sξ∆so)/2 results
in a tunable (Dirac mass) gap (see e.g. [35–38]). In Ta-
ble I we show a comparative of spin-orbit coupling and
Fermi velocity values for several 2D materials.

The Chern number (2) turns out to be

Csξ = ξ sign(∆sξ), (5)

where we have integrated on the whole plane, as corre-
sponds to the FBZ in the continuum limit (zero lattice
constant). Therefore, the topological phase is determined
by the sign of the Dirac mass at each valley ξ. More pre-
cisely, there is a TPT from a topological insulator (TI,
|∆z| < ∆so) to a band insulator (BI, |∆z| > ∆so), at a
charge neutrality point (CNP) ∆(0)

z = sξ∆so, where there
is a gap cancellation between the perpendicular electric
field and the spin-orbit coupling.

Using the general prescription (3), the minimal cou-
pling with a perpendicular magnetic field B then results
in a different Hamiltonian Hξ for each valley ξ = ±1

H1 =

(
∆s,1 ℏωa
ℏωa† −∆s,1

)
, H−1 =

(
∆s,−1 −ℏωa†

−ℏωa −∆s,−1

)
,

(6)
where ω =

√
2v/ℓB denotes the cyclotron frequency. The

eigenvalues of both Hamiltonians are simply:

Esξn =

{
sgn(n)

√
|n|ℏ2ω2 +∆2

sξ, n ̸= 0,

−ξ∆sξ, n = 0,
(7)

and the corresponding eigenstates are written in terms
of Fock states ||n|⟩, for Landau level (LL) index n =
0,±1,±2, . . . [valence (−) and conduction (+) states], as
spinors

|n⟩sξ =


 Asξn

∣∣∣|n| − ξ+1
2

〉

Bsξn

∣∣∣|n|+ ξ−1
2

〉

 , (8)

with coefficients (see [9, 41–43] for similar results)

Asξn =

{
sgn(n)√

2

√
1 + sgn(n) cos θsξn , n ̸= 0,

(1− ξ)/2, n = 0,

(9)

Bsξn =

{
ξ√
2

√
1− sgn(n) cos θsξn , n ̸= 0,

(1 + ξ)/2, n = 0,

where θsξn = arctan
(
ℏω
√

|n|/∆sξ

)
, that is, cos θsξn =

∆sξ/|Esξn |. Note that Asξn and Bsξn can eventually be
written as cos(θsξn /2) or sin(θsξn /2), depending on sgn(n).

In Figure 1 we plot the low energy spectra of silicene,
given by (7), as a function of the external electric field
∆z, together with the charge neutrality (critical) points
∆

(0)
z = ±|∆so| (marked by vertical dashed lines) at which

the TPT takes place.

B. HgTe/CdTe quantum wells

In [44–47] it was shown that quantum spin Hall effect
can be realized in mercury telluride-cadmium telluride
semiconductor quantum wells. Similar effects were also
predicted in Type-II semiconductor quantum wells made
from InAs/GaSb/AlSb [48]. The surface states in these
3D topological insulators can be described by a 2D mod-
ified effective Dirac Hamiltonian

H =

(
H+ 0

0 H−

)
, Hs(k) = ϵ0(k)τ0 + ds(k) · τ , (10)

where s = ±1 is the spin and H−(k) = H∗
+(−k) (tem-

porarily reversed). The expansion of Hs(k) about the
center Γ of the first Brillouin zone gives [45]

ϵ0(k) = γ − δk2, ds(k) = (αskx, αky, µ− βk2), (11)

where α, β, γ, δ and µ are expansion parameters that de-
pend on the heterostructure (the HgTe layer thickness λ).
The most important one is the mass or gap parameter µ,
which changes sign at a critical HgTe layer thickness λc
when going from the normal (λ < λc or µ/β < 0) to the
inverted (λ > λc or µ/β > 0) regime [49]. Typical val-
ues of these parameters for different HgTe layer thickness
(below and above λc) can be found in [49] and in Table
II (γ can be neglected).
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FIG. 1. Low energy spectra of silicene as a function of the
external electric potential ∆z (in ∆so units) for B = 0.05 T.
Landau levels n = ±1,±2 and ±3 [valence (−) and conduction
(+)], at valley ξ = 1, are represented by thin solid lines, blue
for s = −1 and red for s = 1 (for the other valley we simply
have Es,−ξn = E−s,ξ

n ). The edge states n = 0 are represented
by thick lines at both valleys: solid at ξ = 1 and dashed
at ξ = −1. Vertical dashed gray lines indicate the charge
neutrality points separating band insulator (|∆z| > ∆so) from
topological insulator ( |∆z| < ∆so) phases.

λ(nm) α(meV·nm) β(meV·nm2) δ(meV·nm2) µ(meV)
5.5 387 -480 -306 9
6.1 378 -553 -378 -0.15
7.0 365 -686 -512 -10

TABLE II. Material parameters for HgTe/CdTe quantum
wells with different HgTe layer thicknesses λ [49].

The energy of the two bands is

ϵ±(k) = ϵ0(k)±
√
α2k2 + (µ− βk2)2. (12)

The TKNN formula (2) for ds(k) provides the Chern
number

Cs = s[sign(µ) + sign(β)], (13)

where we have integrated on the whole plane, as corre-
sponds to the continuum limit. According to Table II,
β does not change sing and, therefore, the topological
phase transition occurs when µ changes sign, as already
mentioned. In reference [49], the normal and inverted
regimes are equivalently given by the sign of µ/β.

Using again the general prescription (3), the minimal
coupling with a perpendicular magnetic field B now re-

sults in

H+ =

(
γ + µ− (δ+β)(2N+1)

ℓ2B

√
2α
ℓB

a
√
2α
ℓB

a† γ − µ− (δ−β)(2N+1)
ℓ2B

)
,

H− =

(
γ + µ− (δ+β)(2N+1)

ℓ2B
−

√
2α
ℓB

a†

−
√
2α
ℓB

a γ − µ− (δ−β)(2N+1)
ℓ2B

)
,

(14)

with N = a†a. A Zeeman term contribution

HZ
s = −s

2
BµB

(
ge
τ0 + τz

2
+ gh

τ0 − τz
2

)
(15)

can also be added to the Hamiltonian, with µB ≃
0.058 meV/T the Bohr magneton and ge,h the effective
(out-of-plane) g-factors for electrons and holes (conduc-
tion and valence bands).

Using (Fock state) eigenvectors ||n|⟩ of the (Landau
level) number operator N = a†a, one can analytically
obtain the eigenspectrum

Esn = γ − 2δ|n|−sβ
ℓ2B

− s ge+gh4 BµB (16)

+ sgn(n)

√
2α2|n|
ℓ2B

+
(
µ− 2β|n|−sδ

ℓ2B
− s ge−gh4 BµB

)2
,

for LL index n = ±1,±2,±3, . . . [valence (−) and con-
duction (+)] , and

Es0 = γ−sµ− δ − sβ

ℓ2B
−BµB

(
s+ 1

4
gh +

s− 1

4
ge

)
, (17)

for the edge states n = 0, s = ±1. These eigenvalues
coincide with those in [17, 50, 51] for the identification
s = {−1, 1} = {↑, ↓}.

The corresponding eigenvectors are

|n⟩s =
(
Asn
∣∣|n| − s+1

2

〉

Bsn
∣∣|n|+ s−1

2

〉
)
, (18)

with coefficients

Asn =

{
sgn(n)√

2

√
1 + sgn(n) cosϑsn, n ̸= 0,

(1− s)/2, n = 0,

(19)

Bsn =

{
s√
2

√
1− sgn(n) cosϑsn, n ̸= 0,

(1 + s)/2, n = 0,

where

ϑsn = arctan




√
2|n|α/ℓB

µ− 2β|n|−sδ
ℓ2B

− s ge−gh4 BµB


 . (20)

As for the graphene analogues in (10), the coefficients Asn
and Bsn can eventually be written as sine and cosine of
half angle, depending on sgn(n).
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According to (17), the band inversion for edge states
occurs when

E+
0 = E−

0 ⇒ Binv =
µ

eβ/ℏ− µB(ge + gh)/4
, (21)

which gives the critical magnetic field Bc which separates
the QSH and QH regimes [51]. For example, for the mate-
rial parameters in Table II corresponding to a QW thick-
ness λ = 7.0 nm and g-factors ge = 22.7, gh = −1.21, one
obtains Binv ≃ 7.4 T. See also Figure 2 for a graphical
representation of this band inversion.

From now on we shall discard Zeeman coupling for
the sake of convenience since our main conclusions re-
main qualitatively equivalent. We address the interested
reader to the Supplemental Material [52] where we re-
produce some results of Reference [17] for non-zero Zee-
man coupling and contrast with the zero Zeeman cou-
pling case.

We shall use a linear fit

µ(λ) = 77.31 − 12.53λ,

α(λ) = 467.49− 14.65λ,

β(λ) = 283.58− 138.16λ,

δ(λ) = 458.46− 138.25λ, (22)

of the material parameters in Table II as a function of
the HgTe layer thickness λ (dimensionless units and λ in
nm units). In all cases the coefficient of determination
is R2 > 0.99. Looking at µ(λ) in (22), we can obtain
an estimation of the critical HgTe thickness at which the
topological phase transition occurs as

µ = 0 ⇒ λc = 6.17 nm. (23)

In Figure 2 we plot the low energy spectra given by
(16) and (17) as a function of the HgTe layer thick-
ness λ, where we have extrapolated the linear fit (22)
to the interval [4 nm, 8 nm]. When neglecting Zeeman
coupling, the band inversion for edge states (21) occurs
for B = ℏµ/(eβ) which, using the linear fit (22), provides
a relation

λinv(B) =
368.31− 2.05B

59.7−B
(24)

between the applied magnetic field B (in Tesla) and the
HgTe layer thickness λinv(B) (in nanometers) at which
the band inversion E+

0 = E−
0 takes place. Note that

λinv(B) ≃ λc = 6.17 nm for low B ≪ 1 T, and that
E+

0 = E−
0 ≃ 0 meV at this point as shows Figure 2.

C. Phosphorene as an anisotropic material

The physics of phosphorene has been extensively stud-
ied [53–67]. There are several approaches to the low
energy Hamiltonian of phosphorene in the literature.
Rudenko et al. [68] and Ezawa [69] propose a four-band
and five-neighbors tight-binding model later simplified to

s=1

s=-1

4 5 6 7 8

-40

-20

0

20

40

HgTe layer thickness λ (nm)

E
ne
rg
y
E
ns
(m
eV

)

λinv

E0
+

E0
-

FIG. 2. Low-energy spectra Esn of a HgTe/CdTe quantum well
as a function of the HgTe layer thickness λ for B = 0.5 T.
Landau levels n = ±1,±2,±3 [valence (−) and conduction
(+)] are represented by thin solid lines, blue for spin s = −1
and red for s = 1. Edge states (n = 0) are represented by
thick lines. A vertical dashed black line indicates the HgTe
thickness λinv(0.5) = 6.20 nm ≃ λc where the band inversion
for edge states occurs for B = 0.5 T according to (24).

two-bands [69]. Several approximations of this two-band
model have been used in [13, 70–72]. We shall choose for
our study the Hamiltonian

H =

(
Ec + αxk

2
x + αyk

2
y γkx

γkx Ev − βxk
2
x − βyk

2
y

)
. (25)

proposed by Zhou and collaborators [13]. This corre-
sponds to a Bloch Hamiltonian (1) with

ϵ0(k) =
Ec + Ev + (αx − βx)k

2
x + (αy − βy)k

2
y

2
, (26)

d(k) =

(
γkx, 0,

Ec − Ev + (αx + βx)k
2
x + (αy + βy)k

2
y

2

)
,

The Hamiltonian (25) provides a trivial Chern number
(2), even in the presence of a tunable perpendicular con-
stant electric field (see below), which means that mono-
layer phosphorene does not have a topological phase per
se. It has been shown that topological transitions can be
induced in phosphorene when rapidly driven by in-plane
time-periodic laser fields [73]; these are called in general
“Floquet topological insulators” (see e.g. [74–76]), but we
shall not consider this possibility here. Although phos-
phorene is not a topological material, we will see in Sec.
III C that the critical magneto-optical properties (e.g.,
minimum transmittance) observed for silicene and HgTe



6

QWs are still valid in phosphorene when closing the en-
ergy gap through an external electric field. Another pos-
sibility to modify the energy gap could be by applying
strain [60, 70] (see later in Sec. III C).

The material parameters of phosphorene can be writ-
ten in terms of conduction (c) and valence (v) effective
masses as (see [13] for more information)

αx,y =
ℏ2

2mcx,cy
, βx,y =

ℏ2

2mvx,vy
, (27)

with

mcx = 0.793me, mcy = 0.848me,

mvx = 1.363me, mvy = 1.142me,
(28)

and me is the free electron mass. Conduction and valence
band edge energies are Ec = 0.34 eV and Ev = −1.18 eV,
so that the energy gap is Eg = Ec − Ev = 1.52 eV. The
interband coupling parameter is γ = −0.523 eV·nm.

When coupling to an external perpendicular magnetic
field, the anisotropic character of phosphorene slightly
modifies Peierls’ substitution (3), which now adopts the
following form

kx → Px
ℏ

=
a† + a√
2αyxℓB

, ky → Py
ℏ

=
αyx(a

† − a)

i
√
2ℓB

, (29)

with αyx =
(
mcy

mcx

)1/4
. Therefore, applying this prescrip-

tion to (25), the final Hamiltonian can be written as

H = ℏωγ(a+ a†)τx +
[
Ec + ℏωc(a

†a+ 1/2)
] τ0 + τz

2
(30)

+
[
Ev − ℏωv(a

†a+ 1/2)− ℏω′(a2 + a†2)
] τ0 − τz

2
,

in terms of the annihilation (and creation a†) operator

a =

√
mcyωc
2ℏ

(
y − y0 + i

p̂y
mcyωc

)
, (31)

in analogy to (4), where some effective frequencies have
been defined as

ωc =
eB√

mcxmcy
, ωγ = γ√

2ℏαyxℓB
,

ωv = (rx + ry)ωc, ω
′ = (rx − ry)ωc/2,

(32)

with

rx =
mcx

2mvx
, ry =

mcy

2mvy
.

As we did for silicene, we shall also consider here the ap-
plication of a perpendicular electric field to the phospho-
rene sheet in the usual form [77] Ĥ∆ = ∆zτz, with ∆z the
on-site electric potential. Unlike for silicene and HgTe
QWs, the diagonalization of the phosphorene Hamilto-
nian (30) has to be done numerically [30].

Note that the Hamiltonian (30) preserves the parity
π(n, s) = eiπns of the state |n⟩s, with ns = n+ (s+1)/2
(see e.g. [30]). This means that the matrix elements
s⟨n|H|n′⟩s′ ∝ δπ(n,s),π(n′,s′) are zero between states of
different parity. Therefore, this parity symmetry helps
in the diagonalization process and any (non-degenerate)
eigenstate of H has a definite parity. The Hamiltonian
eigenstates can now be written as

|ψl⟩ =
∑

n,s

c(l)n,s|n⟩s, (33)

where l ∈ Z denotes the LL index (l > 0 for conduction
and l ≤ 0 for valence band). The sum

∑
n,s is constrained

to π(n, s) = ±1, depending on the even (+) and odd (−)

parity of k. The coefficients c(k)n,s are obtained by numer-
ical diagonalization of the Hamiltonian matrix, which is
truncated to n ≤ N , with N large enough to achieve con-
vergent results for given values of the magnetic and elec-
tric fields. In particular, we have used Fock states with
N ≤ 1000 to achieve convergence (with error tolerance
≤ 10−15 eV) for B = 0.5 T in the six first Hamiltonian
eigenvalues in the range −1.55 ≤ ∆z ≤ −1.49 eV. The
resulting spectrum, as a function of the electric field po-
tential ∆z, can be seen in Figure 3 for a magnetic field of
B = 0.5 T (higher magnetic fields need less Fock states
to achieve convergence). The vertical dashed line gives
the point ∆z = −1.520 eV at which the electric potential
equals minus the energy gap Eg = Ec − Ev = 1.52 eV
of phosphorene. This is not really a critical point in the
same sense as ∆

(0)
z = ∆so = 4.2 meV for silicene and

λc = 6.17 nm for HgTe QWs, since phosphorene as such
(as already said) does not display a topological phase.
However, we will see in Section III C that the phospho-
rene transmittance still presents a minimum at ∆

(0)
z =

−1.523 eV, which closes the energy gap Eg = 1.52 eV at
low magnetic fields.

It is also interesting to note that the LLs of phospho-
rene are degenerated in pairs for an electric potential be-
low ∆z ≃ −1.53 eV. Namely, we obtain numerically that
|Eeven
l − Eodd

l+1 | ≤ 10−4 eV for all ∆z < −1.53 eV and
l = −6,−4,−2, 0, 2, 4 as it shows the left hand side of
Figure 3. This energy degeneracy will influence the con-
ductivity as well.

III. MAGNETO-OPTICAL CONDUCTIVITY

The magneto-optical conductivity tensor σ of a 2D
electron system in a perpendicular magnetic field B and
an oscillating electric field of frequency Ω, can be ob-
tained from Kubo-Greenwood formula [32, 78, 79] in the
Landau-level representation:

σij(Ω, B) =
iℏ

2πℓ2B

∑

n,m

fm − fn
En − Em

⟨m|ji|n⟩⟨n|jj |m >

ℏΩ+ Em − En + iη
,

(34)
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Even

Odd

-1.55 -1.54 -1.53 -1.52 -1.51 -1.50 -1.49

-0.44

-0.43

-0.42

-0.41

-0.40

Electric field Δz (eV)

E
ne
rg
y
E
n
(e
V
)

-Eg

E0
even

E1
odd

FIG. 3. Low energy spectra El of phosphorene as func-
tion of the electric field potential ∆z for thirteen Hamilto-
nian eigenstates l = −6, . . . , 0, . . . , 6 and a magnetic field
B = 0.5 T. Valence and conduction band states of even (odd)
parity l = ±2,±4,±6 (n = ±1,±3,±5) are represented in
red (blue) color. The edge state Eeven

0 is represented by a
thick black line. The vertical dashed black line is the point
∆z = −Eg = −1.520 eV at which the electric potential equals
the energy gap of phosphorene.

where

j =
ie

ℏ
[H, r] =

e

ℏ
∇kH (35)

is the current operator, with r = (x, y) and ∇k =
(∂kx , ∂ky ) [the minimal coupling prescription (3) is un-
derstood under external electromagnetic fields], and fn =
1/(1 + exp[(En − µF)/(kBT )]) is the Fermi distribution
function at temperature T and chemical potential µF.
In the zero temperature limit, the Fermi function fn
is replaced by the Heaviside step function Θ(µF − En),
which enforces the Pauli exclusion principle for optical
transitions (they are allowed between occupied and un-
occupied states). The parameter η is a small residual
scattering rate of charge carriers and, although the exact
shape of σij would depend on the details of the scatter-
ing mechanisms, using a constant η gives a good, qual-
itative description of the essential mechanisms relevant
for magneto-optical experiments. In

∑
n of eq. (34) it

is also implicit the sum over spin s and valley ξ, besides
the LL index n (for graphene, there is a twofold spin and
valley degeneracy, so that the extra sum just contributes
with a degeneracy factor g = 4). We shall measure σij in
units of the conductance quantum σ0 = e2/h = 38.8 µS
[78] and renormalize the currents as j̄ = j/(e/ℏ) = ∇kH,

so that

σij(Ω, B)

σ0
=

i

ℓ2B

∑

n,m

fm − fn
En − Em

⟨m|j̄i|n⟩⟨n|j̄j |m >

ℏΩ+ Em − En + iη
,

(36)
We shall analyze the transmittance and Faraday rota-

tion of linearly polarized light of frequency Ω for normal
incidence on the 2D material, where the electric fields
of incident (Ei) and transmitted (Et) waves are related
through the conductivity tensor σ by the formula [80–82]

Et =
(
I + 1

2Z0σ
)−1 ·Ei, (37)

where Z0 = 2α/σ0 is the vacuum impedance (α = 1/137
is the fine-structure constant) and I denotes the 2 × 2
identity matrix. We also assume that the incident field
is linearly polarized in the x axis, that is Ei = (Eix, 0).
From here, the transmittance T and the Faraday rotation
angle ΘF (in degrees) are [2, 82]

T =
1

2
(|t+|2 + |t−|2) ≃ 1− Z0Re(σxx) , (38)

ΘF =
1

2
(arg(t+) + arg(t−)) ≃

180

2π
Z0Re(σxy) , (39)

where t± = Et±/|Ei| are the transmission amplitudes in
the circular polarization basis [83, 84] or chiral basis [85],
Et

± = Etx ± iEty. Re(σij) means the real part of σij
and arg(t±) the complex argument. We have also pro-
vided the approximate expressions in the limit of weak
absorption for isotropic materials. Note that, in this case,
according to (39), the absorption peaks of Re[σxx(Ω)]
shown in Figure 6, correspond to dips of the transmit-
tance T . Silicene and HgTe QWs have both longitudi-
nal conductivities equal σxx = σyy, but this symmetry is
broken for anisotropic materials like phosphorene [10, 85]
(see later on Section III C). Therefore, in phosphorene, we
cannot apply the approximation in eq.(39) and we have
to use the strict equality.

In the circular polarization (right- and left-handed ±)
basis, the conductivity is given by σ± = σxx ± iσxy, and
the absorptive part is therefore Re(σ±) = Re(σxx) ∓
Im(σxy). In the Supplemental Material [52] we provide
extra plots for the silicene conductivity under circular
polarization which reproduce the results of [9].

A. Magneto-optical properties of graphene
analogues

The current operator (35) for this case is j = (jx, jy) =
ev(ξτx, τy). The matrix elements

⟨m|τx|n⟩sξ = AsξmB
sξ
n δ|m|−ξ,|n| +Asξn B

sξ
m δ|m|+ξ,|n|,

⟨m|τy|n⟩sξ = −iAsξmB
sξ
n δ|m|−ξ,|n| + iAsξn B

sξ
m δ|m|+ξ,|n|,

(40)
provide the familiar selection rules |n| = |m| ± 1 for
LL transitions. Plugging (40) into the general expres-
sion (36) we obtain the magneto-optical conductivity for
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graphene analogues. In Figure 4 we plot the real and
imaginary parts of the conductivity tensor components
σij (in σ0 = e2/h units) of silicene as a function of
the polarized light frequency Ω at three different elec-
tric potentials ∆z = 0.5∆so,∆so, 1.5∆so around the crit-
ical point ∆

(0)
z = ∆so, for a magnetic field B = 0.05 T

and some representative values of the chemical potential
µF = 2.1 meV, temperature T = 1 K and scattering rate
η = 0.1 meV. For ℏΩ ∈ [0, 20] meV, we achieve conver-
gence with 100 LLs, that is, restricting the sum in (36)
as
∑∞
n=−∞ →∑100

n=−100. More explicitly, for the param-
eters mentioned above,

∣∣∣∣∣
n=100∑

n=−100

σij −
n=99∑

n=−99

σij

∣∣∣∣∣ /σ0 ≤





10−5 if σij = Re(σxx) ,

10−15 if σij = Re(σxy) ,

10−3 if σij = Im(σxx) ,

10−14 if σij = Im(σxy) .

(41)
Each peak on the plot of the conductivity Re(σxx)

against ℏΩ represents an electron transition between two
LLs n,m connected by the selection rules |n| = |m| ± 1
and generally arranged above and below the Fermi level
µF; this latter constrain comes from the Fermi functions
factor (fm−fn) of the Kubo formula (34), which becomes
a step function at low temperatures. For more informa-
tion, see the Supplemental Material [52] where we illus-
trate these electron transitions by arrows in the energy
spectrum in an animated gif. The value of ℏΩ where a
peak of the conductivity occurs coincides with the energy
difference (En − Em) of the LL transition n → m. This
is clear by looking at the denominator of the Kubo for-
mula. For example, the two main peaks of Re(σxx) at
low frequencies ℏΩ ∈ [2, 6] meV in Figure 4 correspond
to the transitions 0 → 1 for spin and valley s = ξ = 1
and s = ξ = −1 (purple and green arrows in the ani-
mated gif of [52]). The other conductivity peaks located
at higher frequencies correspond to electron transitions
between higher LLs and different spin/valley combina-
tions according to (40). When the external electric field
∆z is such that the energy differences of the two main
peaks are the same, that is, when E++

1 −E++
0 is equal to

E−−
1 −E−−

0 , both peaks merge into a bigger one. Using
the silicene spectrum energy equation (7), we find that
this condition is fulfilled at the critical point ∆z = ∆so
for any value of the magnetic field B. This result implies
that we can extract information of the TPT occurring at
∆

(0)
z = ∆so by looking at the conductivity Re(σxx) plot

for different values of ∆z.
To be more specific, in Figure 5 we represent the be-

havior of the two observables given in (39), that is, the
Faraday angle ΘF and the transmittance T , as a func-
tion of the polarized light frequency Ω around the critical
point ∆

(0)
z = ∆so = 4.2 meV. We focus on the frequency

interval ℏΩ ∈ [2, 6] meV where the main peaks (transi-
tion 0 → 1) in Figure 4 are located. We find an absolute
minimum of the transmittance T0 = 0.704 at the criti-
cal point ∆

(0)
z = ∆so and ℏΩ = 4.06 meV. This “mini-

-10
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-20
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5 Δz=1.5Δso

C
on
du
ct
iv
it
y
σ
ij
(Ω

)/
σ
0

ℏΩ (meV)

μF=2.1 meV

B=0.05 T

T=1 K

η=0.1 meV

Re[σxx(Ω)] 

Re[σxy(Ω)]

FIG. 4. Real and imaginary parts of the longitudinal σxx
and transverse Hall σxy magneto-optical conductivities in a
silicene monolayer under three different electric potentials
∆z = 0.5∆so,∆so, 1.5∆so, as a function of the polarized light
frequency Ω and in σ0 = e2/h units. We set the conductiv-
ity parameters as µF = 2.1 meV, B = 0.05 T, T = 1 K and
η = 0.1 meV.

mal” behavior does not depend on the particular values
of magnetic field, chemical potential and temperature,
which only change the actual value of T0 and ℏΩ of the
peak. Actually, the minimum peaks in the transmittance
plot are related to the maximum peaks of the absortance
Re(σxx), according to equation (39). The Faraday angle
at the critical point (black curve in Figure 5) changes sign
at the minimum transmittance point ℏΩ = 4.06 meV, a
behavior that can also be extrapolated to other 2D mate-
rials (se later for HgTe QWs and phosphorene). In fact,
each peak of the transmittance in Figure 5 coincides in
frequency with an inflection point of the Faraday angle,
where it attains a value of 0 degrees.

Changing the chemical potential µF locks/unlocks
other electronic transitions, so we would see different
peaks in the conductivity and transmittance plots (see
e.g., [10]). Increasing the scattering rate η smoothes the
peaks in the transmittance, so it would be more diffi-
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cult to distinguish when they overlap. We have choosen
values of η approximately an order of magnitude below
the frequency of the conductivity peaks, for which the
resolution is fine.

Δz (meV)

2.6
3.2
3.7
4.2=Δz

(0)
4.7
5.3
5.8
6.3

0.7
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1.0
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Θ
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η=0.1 meV

FIG. 5. Transmittance T and Faraday angle ΘF (in degrees)
in a silicene monolayer as a function of the incident polarized
light frequency Ω, and for different electric fields below and
above the critical (black line) electric field ∆

(0)
z = ∆so =

4.2 meV. T and ΘF are symmetric about ∆
(0)
z . We set the

conductivity parameters as µF = 2.1 meV, B = 0.05 T, T =
1 K and η = 0.1 meV.

For completeness, in the Supplemental Material [52] we
show several contour plots of the Faraday angle using dif-
ferent cross sections in the {ℏΩ,∆z, B, T, µF} parameter
space.

B. Magneto-optical properties of zincblende
heterostructures

From the Hamiltonian (10), the current operator (35)
for zincblende heterostructures is

jsx =
e

ℏ
(sατx − 2kx(βτz + δτ0)) ,

jsy =
e

ℏ
(ατy − 2ky(βτz + δτ0)) , (42)

which, after minimal coupling according to the general
prescription (3), results in

jsx =
e

ℏ

(
sατx −

√
2
a† + a

ℓB
(βτz + δτ0)

)
,

jsy =
e

ℏ

(
ατy + i

√
2
a† − a

ℓB
(βτz + δτ0)

)
. (43)

Note that, in fact, jsy does not depend on s. The current
matrix elements for this case are

⟨m|jsx|n⟩s =
esα

ℏ
Ξs,+m,n −

√
2e

ℏℓB
Φs,+m,n ,

⟨m|jsy|n⟩s = − i
eα

ℏ
Ξs,−m,n + i

√
2e

ℏℓB
Φs,−m,n , (44)

where

Ξs,±m,n =(AsmB
s
nδ|m|−s,|n| ±AsnB

s
mδ|m|+s,|n|) , (45)

Φs,±m,n =((δ + β)AsmA
s
n + (δ − β)BsmB

s
n)

×
(√

|n|+1+
s−1
2 δ|m|−1,|n| ±

√
|n|− s+1

2 δ|m|+1,|n|

)
.

Despite the more involved structure of the current than
for silicene, the corresponding matrix elements maintain
the same familiar selection rules |n| = |m| ± 1 for LL
transitions.

Inserting the matrix elements (40) into the general ex-
pression (36) we obtain the magneto-optical conductiv-
ity for general zincblende heterostructures. In Figure 6
we plot the real and imaginary parts of the conductivity
tensor components σij (in σ0 = e2/h units) of a HgTe
QW as a function of the polarized light frequency Ω at
three different HgTe layer thicknesses λ = 5.50 nm < λc,
λ = 6.17 nm = λc, and λ = 7.00 nm > λc, a magnetic
field B = 0.5 T and some representative values of the
chemical potential µF = 12.5 meV, temperature T = 1 K
and scattering rate η = 0.5 meV. For ℏΩ ∈ [0, 60] meV,
we achieve convergence with 100 LLs, that is, restricting
the sum in (36) as

∑∞
n=−∞ →∑100

n=−100. More explicitly,
for the parameters mentioned above,

∣∣∣∣∣
n=100∑

n=−100

σij −
n=99∑

n=−99

σij

∣∣∣∣∣ /σ0 ≤





10−5 if σij = Re(σxx) ,

10−4 if σij = Re(σxy) ,

10−3 if σij = Im(σxx) ,

10−7 if σij = Im(σxy) .

(46)
Similar to silicene, we can see in Figure 6 that there are

multiple peaks in the absorptive components Re(σxx) and
Im(σxy), corresponding to transitions between occupied
and unoccupied LLs obeying the selection rules |n| =
|m|±1. At lower frequencies ℏΩ ∈ [0, 30] meV, inside each
curve of Figure 6, we find the main peaks corresponding
to the transitions 0 → 1 for spin s = 1 and s = −1. Both
peaks merge approximately at λ ≃ λc = 6.17 nm. This
is because the energy differences E+

1 −E+
0 and E−

1 −E−
0

are similar when λ ≃ λc for low magnetic fields B ≪ 1 T,
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FIG. 6. Real and imaginary parts of the longitudinal σxx and
transverse Hall σxy magneto-optical conductivities in a bulk
HgTe QW of thickness λ = 5.50, 6.17, 7.00 nm, as a function
of the polarized light frequency Ω and in σ0 = e2/h units. We
set the conductivity parameters as µF = 12.5 meV, B = 0.5 T,
T = 1 K and η = 0.5 meV.

according to equations (16,17). In order to extend this
result to higher values of the magnetic field, we insert the
parameter fits (22) into the equation E+

1 − E+
0 = E−

1 −
E−

0 , and solve it numerically for λ∗ = λ∗(B), obtaining
the values represented by blue dots in Figure 7. These
values fit the equation

λ∗fit(B) =
218.4− 17.3B

35.4− 2.8B
, (47)

which is represented as an orange curve in Figure 7.
Consequently, only for small magnetic fields, we can in-
fer the critical thickness λc where the TPT in HgTe
QW occurs from the conductivity Re(σxx) plot, that is,
λ∗ ≃ λc = 6.17 nm for B ≪ 1 T.

The behavior of the Faraday angle and the transmit-
tance as a function of the polarized light frequency Ω
around the critical HgTe layer thickness λc = 6.17 nm
(at which the material parameter µ changes sign/Chern
number) is shown in Figure 8. As for silicene, we focus

0 1 2 3 4 5

6.12

6.13

6.14

6.15

6.16

6.17

B (T)

λ
*
(n
m
)

Estimate Standard Error t-Statistic
a1 218.447 0.012 18 000
a2 17.30 0.15 110
a3 35.4004 0.0017 20 000
a4 2.770 0.025 110

λfit
*(B)= a1-a2 B

a3-a4 B

R2=0.9999999951

Numerical Non-linear fit

FIG. 7. Numerical solutions λ∗ (in nm, blue dots) of the
equation E+

1 − E+
0 = E−

1 − E−
0 (energies (16,17) of HgTe

QW) for 50 different values of the external magnetic field B.
In orange, non-linear fit (47) of the numerical values.

on the lower frequencies ℏΩ ∈ [0, 30] meV where the main
peaks are located, and find again a minimum of the trans-
mittance, this time T0 = 0.78, at the critical point λc and
ℏΩ = 15.0 meV. For this material, the “minimal” behav-
ior does depend on the particular values of magnetic field,
as we saw in equation (47). However, for small magnetic
fields like B = 0.5 T in Figure 8, the minimum of the
transmittance still takes place at λ∗ ≃ λc = 6.17 nm.
The Faraday angle at the critical point (black curve in
Figure 8) changes sign at the minimum transmittance
frequency ℏΩ = 15.0 meV, a behavior shared with sil-
icene.

For completeness, in the Supplemental Material [52]
we show several contour plots of the Faraday angle using
different cross sections in the {ℏΩ, λ,B, T, µF} parameter
space.

C. Magneto-optical properties of phosphorene and
effect of anisotropies

From the phosphorene Hamiltonian (25), the current
operator (35) is

jsx =
e

ℏ
(γτx + kx(τ0(αx − βx) + τz(αx + βx))) ,

jsy =
e

ℏ
ky (τ0(αy − βy) + τz(αy + βy)) , (48)

which, after minimal coupling, according to prescription
(29), results in
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FIG. 8. Transmittance T and Faraday angle ΘF (in degrees)
in a bulk HgTe QW as a function of the polarized light fre-
quency Ω, and for thickness λ < λc, λ = λc and λ > λc, with
λc = 6.17 nm (black line). We set the conductivity parame-
ters as µF = 12.5 meV, B = 0.5 T, T = 1 K and η = 0.5 meV.

jsx =
e

ℏ

(
γτx +

a† + a√
2αyxℓB

(τ0(αx − βx) + τz(αx + βx))

)
,

jsy =
e

ℏ
αyx(a

† − a)

i
√
2ℓB

(τ0(αy − βy) + τz(αy + βy)) . (49)

Plugging these matrix elements into the general expres-
sion (36) we obtain the magneto-optical conductivity for
phosphorene. Note that, unlike silicene and HgTe QW,
there is now a large asymmetry between σxx and σyy
(about one order of magnitude difference), as evidenced
by Figure 9. This asymmetry was already highlighted
by [71], where tunable optical properties of multilayer
black phosphorus thin films were studied for B = 0.
In Figure 9 we plot the real and imaginary parts of
the conductivity tensor components σij (in σ0 = e2/h
units) of phosphorene as a function of the polarized light
frequency Ω, for some values of the electric potential
around ∆

(0)
z = −Eg = −1.52 eV (closing the energy

gap), a magnetic field of B = 0.5 T, like in Figure 3,
and some representative values of the chemical potential
µF = −0.417 eV, temperature T = 1 K and scattering
rate η = 0.2 meV. We are using the same threshold of

N = 1000 Fock states that we used to find convergence
in the first 6 Hamiltonian eigenstates of the numerical
diagonalization in Figure 3. This convergence is ensured
for ℏΩ ∈ [0, 20] meV. The anisotropic character of phos-
phorene also implies that the current jsy is significantly
lower than jsx [the Hamiltonian (25) is of second order in
ky]. This makes transversal components of the conduc-
tivity significantly lower than longitudinal components.
This is why we have disposed Figure 9 in a slightly dif-
ferent manner from Figures 4 for silicene and 6 for HgTe
QW, which display a more isotropic structure.

Due to the parity symmetry of the Hamiltonian (30),
only the electronic transitions between LLs of different
parities are allowed [30]. The main peak (smaller fre-
quency) of the conductivity Re(σxx) in Figure 9 corre-
sponds to the electronic transitions Eeven

0 → Eodd
3 and

Eodd
1 → Eeven

2 , which have approximately the same en-
ergy difference for all ∆z < −1.53 eV with a tolerance
≤ 10−14 eV. That is, Eeven

0 and Eodd
1 , and Eeven

2 and
Eodd

3 , are degenerate for all ∆z < −1.53 eV as the spec-
trum in Figure 3 shows. When the degeneration is broken
around the electric potential ∆z ≃ −1.53 eV, the main
conductivity Re(σxx) peak splits into two as we can see
in Figure 9.

The anisotropic character of phosphorene also affects
the Faraday angle, which attains much lower values (in
absolute value) than for silicene or HgTe QWs. Indeed,
in Figure 10 we plot Faraday angle and transmittance as
a function of the polarized light frequency Ω for different
electric field potentials −1.535 ≤ ∆z ≤ −1.519 eV. Like
for silicene and HgTe QWs, we find a minimal behav-
ior in the transmittance of phosphorene T0 = 0.50 for a
polarized light frequency ℏΩ = 2.6 meV at electric field
potential ∆(0)

z = −1.523 eV, which is close to minus the
energy gap −Eg = −1.52 eV. Note that this value of the
minimal transmittance of phosphorene is much smaller
than for silicene and HgTe QWs; actually, the assump-
tion of low absortance in formula (39) is no longer valid
here and we have used the exact expressions for T and
ΘF in (39). Moreover, unlike for graphene analogues and
HgTe QWs, this minimum of the transmittance does not
seem to be related to the union of two conductivity peaks
into a bigger one; rather, it is simply related to the en-
ergy gap closure. Actually, the critical electric potential
∆

(0)
z where the transmittance of phosphorene reaches a

minimum depends on the magnetic field B chosen, as
Figure 11 shows. We perform a non-linear fit of the nu-
merical values of ∆(0)

z (B) and obtain the equation (B in
dimensionless units)

(
∆(0)
z

)
fit
(B) =

−77.4− 3.5B

50.9 + 2.2B
eV , (50)

which is represented as a orange curve in Figure 11. For
small magnetic fields, we can deduce that the critical
electric field potential is similar to minus the energy gap
−Eg of phosphorene, that is ∆(0)

z (B) ≃ −Eg = −1.52 eV
for B ≪ 1 T. We have also checked numerically that
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FIG. 9. Real and imaginary parts of the longitudinal σxx, σyy
and transverse Hall σxy magneto-optical conductivities in a
phosphorene monolayer, as a function of the polarized light
frequency Ω and in σ0 = e2/h units. Phosphorene is under a
perpendicular electric field potential ∆

(0)
z = −Eg = −1.52 eV

closing the energy gap in Figure 3. The y-axis ticks have
different values in each subplot as the conductivities σxy and
σyy attain smaller values than σxx (phosphorene anisotropy).
We set the conductivity parameters as µF = −0.417 meV,
B = 0.5 T, T = 1 K and η = 0.2 meV.

the critical electric potentials ∆
(0)
z (B) are independent

of the parameters µF and η for a fixed magnetic field B.
However, we set different values of µF for small fields B ≤
2 T (see caption of Figure 11), in order to avoid blocking
the electric transition Eodd

1 → Eeven
2 of the main peak of

the transmittance. We also increment N as B decreases
in order to achieve convergence in the diagonalization.

Additionally, Figure 10 shows how one peak of the
transmittance splits into two around ∆z ≃ −1.53 eV
(blue lines), since the LL Eeven

0 breaks its degeneration
approximately for ∆z > −1.53 eV (see Figure 3). For
∆z = ∆

(0)
z = −1.523 eV (thick black line), the big peak

on the left in Figure 10 corresponds to the electronic
transition Eodd

1 → Eeven
2 , and moves toward smaller val-

ues of ℏΩ when increasing ∆z. The other small peak
in the black line corresponds to the electronic transition

Eeven
0 → Eodd

3 , which moves toward bigger values of ℏΩ
when increasing ∆z. The Faraday angle also presents in-
flection points at the frequencies where the peaks of the
transmittance are located.
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FIG. 10. Transmittance T and Faraday angle ΘF (in de-
grees) in a phosphorene monolayer as a function of the polar-
ized light frequency Ω, and for electric fields −1.535 < ∆z <
−1.519 eV around the minus energy gap −Eg = −1.52 eV.
The black line corresponds to the electric potential ∆

(0)
z =

−1.523 eV≃ −Eg where the transmittance attains a mini-
mum of T0 = 0.5 at ℏΩ = 2.5 meV. We set the conductivity
parameters as µF = −0.417 meV, B = 0.5 T, T = 1 K and
η = 0.2 meV.

Therefore, we see that anisotropies affect the values
of the Faraday angle and transmittance. There are me-
chanical ways of introducing anisotropies in 2D materi-
als by subjecting them to strain (like for strained [86]
or rippled [87] graphene). This kind of anisotropies
can be treated by replacing the scalar Fermi veloc-
ity v by a 2 × 2 symmetric tensor v (see e.g. [82]).
Namely, for graphene, the Hamiltonian (1) vector d com-
ponents dj = ℏvkj are replaced by dj = ℏkivij , i =
1, 2, d3 = 0. Actually, for uniformly strained graphene
with strain tensor ε, the Fermi velocity tensor is (up
to first order) v = v(τ0 − βε) (see e.g. [82, 88]),
where β ∼ 2. The relation between the isotropic σ0

and the anisotropic σ magneto-optical conductivity ten-
sors is simply σ(Ω, B) = vσ0(Ω,B)v/ det(v), with B =
B det(v)/v2 an effective magnetic field. Interesting dis-
cussions on how measurements of dichroism and trans-
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FIG. 11. Electric field potential at which phosphorene trans-
mittance reaches a minimum, as a function of different mag-
netic fields. In orange, non-linear fit (50) of the numeri-
cal values. In general, we set the conductivity parameters
µF = −0.41 eV, T = 1 K, η = 1 meV, and use N = 300
Fock state in the numerical diagonalization, for all B ≥ 3 T.
For smaller magnetic fields B = 0.1, 0.5, 1, 2 T, we set µF =
−0.419,−0.418,−0.416,−0.416 eV respectively. In the case
of B = 0.1 T we also set η = 1 meV and N = 500 Fock states
to achieve energy diagonalization convergence.

parency for two different light polarization directions can
be used to determine the magnitude and direction of
strain can be found in [81]. Also, photoelastic effects in
graphene [86], strain-modulated anisotropies in silicene
[89, 90], etc. The band gap Eg = Ev − Ec of phospho-
rene can be furthermore modulated by strain and by the
number of layers in a stack [60, 70].

IV. CONCLUSIONS

We have studied magneto-optical properties of differ-
ent 2D materials, focusing on transmittance and Faraday
rotation near the critical point of the topological phase
transition for topological insulators like silicene and HgTe

quantum wells. We have seen that, in all topological
2D materials analyzed, transmittance attains an abso-
lute minimum T0 at the critical TPT point for a certain
value Ω0 of the normal incident polarized light frequency.
This is a universal behavior for graphene analogues, that
is, the minimal behavior of the transmittance does not
depend on the chosen values of magnetic field, chemical
potential and temperature, although the location of Ω0

varies with them. In addition, we have found that each
peak of the transmittance coincides in frequency with an
inflection point of the Faraday angle, for a fixed selection
of the electric field, magnetic field, chemical potential
and temperature parameters.

This extremal universal behavior is shared with other
topological 2D materials like HgTe quantum wells as long
as the applied magnetic field remains small enough B ≪
1 T. In HgTe quantum wells we have verified that there is
a minimum of the transmittance T0 at the critical HgTe
layer thickness at a given frequency Ω′

0 (for this material
this minimal behavior depends on the magnetic field) and
the Faraday angle at the critical point changes sign at the
minimum transmittance frequency Ω′

0.
For other non-topological anisotropic materials like

phosphorene, this minimal behavior of the transmittance
still remains when the energy gap is closed, the Faraday
angle being much smaller (in absolute value) than in sil-
icene and HgTe QWs. In this case the critical electric
potential where the transmittance reaches a minimum
depends on the magnetic field.

Therefore, these extremal properties of transmit-
tance/absortance and chirality change of Faraday angle
at the critical point turn out to provide sharp markers of
either the topological phase transition or the energy gap
closure.
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I. LANDAU LEVELS PLOT VERSUS EXTERNAL MAGNETIC FIELD

We provide an additional plot of the Landau levels of the three different materials as a function of the external
magnetic field B. Critical values of the electric field and layer thickness are selected, that is, in the case of the silicene
∆z = ∆so = 4.2 meV, for the HgTe QW λ = λc = 6.17 nm, and for the phosphorene ∆z = −Eg = −1.52 eV.

II. SILICENE CONDUCTIVITY IN THE CIRCULARLY POLARIZATION BASIS

We complete the analysis of magneto-optical properties of graphene analogues by discussing the case of circularly
polarized light. In this case, the conductivity is σ±(Ω) = σxx(Ω) ± iσxy(Ω) for right-handed (+) and left-handed
(-) polarization [1]. Therefore, the absorptive part is Re(σ±) = Re(σxx) ∓ Im(σxy). In Figure 2, we present both
absorptive parts Re(σ±) for a silicene monolayer under an electric potential ∆z = 0.5∆so as a function of the frequency
of the incident light Ω. The conductivity parameters are specifically chosen to reproduce the results in [2], that is,
µF = 3.0∆so, B/∆2

so = 657 G/meV2, T = 0 K and η = 0.05∆so. Note that we have defined the conductance quantum
as σ0 = e2/h = 38.8µS, whereas the authors in reference [2] take σ0 = e2/(4ℏ).

III. HGTE QUANTUM WELL CONDUCTIVITY WITH ZEEMAN EFFECT

We recalculate the conductivity of the HgTe quantum well with and without Zeeman coupling to support the
argument that the results are qualitatively equivalent, the quantitative differences being small. A layer thickness of
λ = 7.0 nm is selected, so the material parameters are α = 365 meV·nm, β = −686 meV·nm2, δ = −512 meV·nm2, and
µ = −10 meV, as taken from Ref. [3]. In Figure 3, we plot the real and imaginary parts of the longitudinal σxx and
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FIG. 1: Energies (Landau levels) of (a) Silicene, (b) HgTe QW, and (c) Phosphorene as a function of the external
magnetic field B. Critical values of the electric field and layer thickness are selected, that is, in the case of the

silicene ∆z = ∆so = 4.2 meV, for the HgTe QW λ = λc = 6.17 nm, and for the phosphorene ∆z = −Eg = −1.52 eV.

transverse σxy conductivities as a function of the polarized light frequency Ω. The conductivity parameters are chosen
to reproduce the results in [4] with Zeeman coupling, that is, µF = 8 meV, B = 5 T, T = 1 K and η = 1 meV. The
conductance quantum used here is again σ0 = e2/h = 38.8µS, whereas the authors in reference [4] take σ0 = e2/ℏ.

IV. ANIMATIONS OF THE ENERGY SPECTRUM AND CONDUCTIVITIES

Attached in the supplementary material is a series of animations called

-Silicene_Conductivity_and_Energy_VS_Omega.gif,
-HgTe_Conductivity_and_Energy_VS_Omega.gif,
-Phosphorene_Conductivity_and_Energy_VS_Omega.gif,
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FIG. 2: Conductivity absorptive parts Re(σ±) = Re(σxx)∓ Im(σxy) for right-handed (+) and left-handed (-)
polarization in a silicene monolayer under an electric potential ∆z = 0.5∆so, as a function of the polarized light

frequency Ω (in σ0 = e2/h units). We set the conductivity parameters µF = 3.0∆so, B/∆2
so = 657 G/meV2, T = 0 K

and η = 0.05∆so as in Ref. [2].
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FIG. 3: Real and imaginary parts of the longitudinal σxx and transverse Hall σxy (magneto-)optical conductivities
in a bulk HgTe QW of a thicknesses λ = 7.0 nm, as a function of the polarized light frequency Ω (in σ0 = e2/h

units) with and without Zeeman coupling. We set the conductivity parameters µF = 8 meV, B = 5 T, T = 1 K and
η = 1 meV, as in Ref. [4].

where we plot the energy spectrum at right, and the real part Re[σxx(Ω)] and Re[σxy(Ω)] of the conductivity com-
ponents at left, for three different materials studied in the main text: silicene, HgTe QW, and phosphorene. The
external electric field ∆z in the case of the silicene and phosphorene, and the layer thickness λ of the HgTe QW, are
used as “time coordinate” on the animations, so each frame corresponds to one value of these control parameters.

The conductivities are plotted as a function of the polarized light frequency Ω, and they change in each frame
according to the values of ∆z or λ. Therefore, we can observe how the main peaks of the longitudinal conductivity
Re(σxx) merge for the critical values ∆

(0)
z = ∆so = 4.12 meV (silicene) or λ = λc = 6.17 nm (HgTe QW), where the
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topological phase transition occurs in these 2D materials.
In the case of the phosphorene, we only observe the degeneration of Landau levels n = 0 and n = 1 in the

conductivity around the electric potential ∆z ≃ −1.53 eV. That is, the electronic transitions Eodd
1 → Eeven

2 and
Eeven

0 → Eodd
3 have a similar energy and share a longitudinal conductivity peak (main peak at left in the gif), until

the degeneration breaks for electric fields approximately higher than −1.53 eV, when both electronic transitions will
have different energies so the main peak will split into two.

On the other hand, the energy spectrum is static on the animation, as it is plotted as a function of all the values that
∆z or λ take. However, we plot a moving vertical dashed line on it, representing the value of ∆z or λ in the conductivity
frame. On top of this vertical line, we also draw arrows representing the electronic transitions allowed between Landau
levels (LLs) for the specific value ∆z or λ, where the Fermi energy µF is represented by an horizontal dashed line.
The color of the arrows is the same as the color of the points plotted on the top of the longitudinal conductivity
main peaks. The length of the arrows represents the energy difference |En −Em| between the corresponding Landau
levels in this particular electronic transition n ↔ m, which also coincides with the frequency ℏΩ of the longitudinal
conductivity peak associated with this transition. Therefore, when two arrows have the same length, we can observe
two longitudinal conductivity peaks merging at the critical point. We have only drawn the arrows of the main peaks
or lower Landau level electronic transitions for the sake of simplicity.

V. FARADAY ANGLE CONTOUR PLOTS

For completeness, in Figure 4 we show the variability of the Faraday angle for silicene across the parameter space:
polarized light frequency ℏΩ, electric field potential ∆z, magnetic field B, temperature T and chemical potential µF},
using several contour plots corresponding to different cross sections. Also, in Figure 5 we do the same for the Faraday
angle in HgTE quantum wells using different cross sections in the {ℏΩ, λ,B, T, µF} parameter space, where the critical
thickness λc ≃ 6.17 nm is marked with a vertical magenta grid line. The variability of the Faraday angle with those
parameters is shown with a color code (in degrees), going from the most negative value (blue) to the most positive
(red).

In the case of the silicene, we have also repeated the contour plot of the parameters {ℏΩ,∆z} for different values
of the temperature T = 1, 10, 100, 200 K in Figure 6. The shape of the contour lines is almost the same when varying
the temperature, but oscillation amplitude in the Faraday angle diminish when increasing T , as the colors of the plots
tend to be more flat and yellow (ΘF ≃ 0 according to the legend).

[1] A. Pound, J. P. Carbotte, and E. J. Nicol, Magneto-optical conductivity in graphene including electron-phonon coupling,
Phys. Rev. B 85, 125422 (2012).

[2] C. J. Tabert and E. J. Nicol, Magneto-optical conductivity of silicene and other buckled honeycomb lattices, Phys. Rev. B
88, 085434 (2013).

[3] X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011).
[4] B. Scharf, A. Matos-Abiague, I. Žutić, and J. Fabian, Probing topological transitions in HgTe/CdTe quantum wells by

magneto-optical measurements, Phys. Rev. B 91, 235433 (2015).
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FIG. 4: Faraday rotation angle ΘF (in degrees) in a silicene monolayer for η = 1 meV (all) and µF = 8 meV,
T = 1 K, ℏΩ = 50 meV, B = 5 T and ∆z = ∆so, when they are not varying.
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FIG. 5: Faraday rotation angle ΘF (in degrees) in a bulk HgTe QW for η = 1 meV (all) and µF = 8 meV, T = 1 K,
ℏΩ = 50 meV, B = 5 T and λ = 6.55 nm, when they are not varying. The critical point λc ≃ 6.17 nm is marked

with a vertical magenta grid line.
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FIG. 6: Faraday rotation angle ΘF (in degrees) in a silicene monolayer in the parameter space {ℏΩ,∆z}, and for
different values of the temperature T = 1, 10, 100, 200 K. We set the other parameters as η = 1 meV, µF = 8 meV,

and B = 5 T.



Fear does not work as long as there is hope

— President Snow - The Hunger Games

5
Conclusions

In the LMG U(3) model, we propose a more general scheme where the particles
belong to a variety of permutation symmetry sectors labeled by µ [1]. We prove
that the ground state belongs to the totally symmetric sector µ = 1, as it is often
claimed without justification in the literature [105–109]. We also observe that
the QPT can be extended to MSQPT, since every lowest-energy state of a given
symmetry sector µ displays a QPT at a certain value of the control parameter
λ(µ) as a function of the symmetry sector. We would like to mention that this
permutation symmetry can be used in quantum technological applications, such
as the thermodynamic advantages of bosonic over fermionic symmetry [110] and
in the study of the quantum Gibbs paradox [111, 112].

In Chapter 2, we have also made an extensive study of the totally symmetric
sector of the LMG model, containing the ground state that is modeled with parity
adapted coherent states or DCATs. Their QPTs can be detected using entanglement
measures such as the linear and von Neumann entropies, which give good results
in the variational approach (using DSCS) compared to the numerical (matrix
representation of the Hamiltonian and diagonalization). In addition, we prove that
spin squeezing is connected to pairwise D-level atom entanglement and is useful
in the QPT detection [2]. The information diagrams and the rank of the RDMs
also serve as QPT markers in [3]. For further research, we propose to extend these
entanglement measures to mixed symmetry sectors of U(D), allowing the study of
excited states in the LMG model and even in more complex many-body systems.

After an intensive study of the LMG ground state using even parity DCATs, we
define the c-DCAT states as DSCS adapted to more general representations of the
discrete parity symmetry ZD−1

2 . They turn out to be variational states modeling the
first excited states of the LMG model, capable to detect QPT through the Husimi
function, its moments, and the Wehrl entropy of them. The discrete parity symmetry
Z
D−1
2 is partially broken in the non trivial (highly interacting) phase due to the

GS degeneration, transforming a c-DCAT into a cK-DCAT with lower Zk2 parity

151
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times a Fock state with ZD−1−k
2 parity [4]. Furthermore, the Schmidt decomposition

theorem applies to the c-DCAT of N particles, which can be decomposed in terms
of superpositions of tensor products of DCATs of M and N −M particles [5]. This
result makes possible to compute RDM and consequently particle entanglement
measures for the c-DCATs. These states could become crucial in the QPT modeling
of other many-body systems with a discrete parity symmetry like Dicke [25, 28, 113]
or vibron [12, 114, 115] models. A possible generalization of this work is to compute
level entanglement instead of particle entanglement, decomposing the c-DCAT into
parity adapted CS of U(D −K) and U(K). The Wigner function of these states is
also an interesting topic for further research due to a lack of clear definition and
its interesting properties as a quasi-distribution function in phase space.

The extension of the coherent state formalism, its adaptation to parity (DCATs),
the entanglement measures, and the phase space functions to D-level systems (U(D)
symmetry) has become a crucial pathway in this thesis, making it possible to study
more complex systems than the well known 2- and 3-level [17, 21, 28, 34, 113,
116–119]. Moreover, the formalism studied in Chapter 3 allows us to study any kind
of mixed permutation symmetry in a D-level system, so it is possible to characterize
any particle mixture different from bosons and fermions [6].

Connecting with the first paragraph, mixed symmetry sectors are connected to
fractionary parastatistics, which are useful to classify quasiparticles and help to
understand complex phenomena in condensed matter physics [120]. In particular,
we show how particle mixtures in multicomponent quantum Hall systems can be
described by rectangular Young diagrams [121–123], a diagrammatic representation
of the mixed symmetry sectors. Lieb-Mattis theorem indicates the dominant
sector where the ground state lies on, thus we can restrict to it in practice and
reduce the computational complexity of the problem, a usual barrier in quantum
many-body systems [6]. This could shed light on more complex problems such
as multilayer quantum Hall arrangements, which use larger U(D) symmetries.
One example is the case of superconducting properties of twisted bilayer (and
trilayer) graphene [124, 125].

Lastly, we have shown that the transmittance and the Faraday angle are universal
markers of TPT in different 2D materials, ranging from graphene (and other Dirac
materials) to HgTe quantum wells and even anisotropic materials such as the
phosphorene [7]. These magneto-optical properties become crucial to characterize
2D materials in condensed matter physics, and to find new topological insulators as
hopeful candidates for next generation optoelectronic devices [79, 126]. Furthermore,
the path to take in future research is to apply our results to other anisotropic 2D
materials, which are promising building blocks for future photonic and optoelectronic
devices, as they present low structural symmetry and in-plane optical anisotropy
compared to isotropic materials [127, 128].



If I have seen further than others,
it is by standing upon the shoulders of giants.

— Isaac Newton
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