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A B S T R A C T   

Pantoea agglomerans is considered one of the most ubiquitous and versatile organisms that include strains that 
induce diseases in various crops and occasionally cause opportunistic infections in humans. To develop effective 
strategies to mitigate its impact on plant health and agricultural productivity, a comprehensive investigation is 
crucial for better understanding its pathogenicity. One proposed eco-friendly approach involves the enzymatic 
degradation of quorum sensing (QS) signal molecules like N-acylhomoserine lactones (AHLs), known as quorum 
quenching (QQ), offering potential treatment for such bacterial diseases. In this study the production of C4 and 3- 
oxo-C6HSL was identified in the plant pathogenic P. agglomerans CFBP 11141 and correlated to enzymatic ac-
tivities such as amylase and acid phosphatase. Moreover, the heterologous expression of a QQ enzyme in the 
pathogen resulted in lack of AHLs production and the attenuation of the virulence by mean of drastically 
reduction of soft rot disease in carrots and cherry tomatoes. Additionally, the interference with the QS systems of 
P. agglomerans CFBP 11141 by two the plant growth-promoting and AHL-degrading bacteria (PGP-QQ) Pseu-
domonas segetis P6 and Bacillus toyonensis AA1EC1 was evaluated as a potential biocontrol approach for the first 
time. P. segetis P6 and B. toyonensis AA1EC1 demonstrated effectiveness in diminishing soft rot symptoms induced 
by P. agglomerans CFBP 11141 in both carrots and cherry tomatoes. Furthermore, the virulence of pathogen 
notably decreased when co-cultured with strain AA1EC1 on tomato plants.   

1. Introduction 

The continual expansion of the global human population demands 
food production that operates within sustainable and eco-friendly 
frameworks. By 2030, it is crucial to significantly reduce the use of 
chemical plant protection within European Agriculture, recognizing the 
significance of adopting sustainable crop production methods to ensure 
food security and food safety across Europe (Finger and Möhring, 2024; 
Schneider et al., 2023). Considering the significant threat posed by 
phytopathogenic bacteria to both food production and ecosystem sta-
bility on a global scale, innovative alternatives to traditional 
chemical-based agricultural approaches are essential for effectively 
addressing this challenge (FAO, 2023). 

Pantoea agglomerans is a plant-associated Gram-negative enterobac-
terium of the family Erwiniaceae that includes strains belonging to the 
“Erwinia herbicola-Enterobacter agglomerans complex” (Gavini et al., 
1989). This species is considered one of the most ubiquitous organisms 

in nature, but its role is ambiguous (Dutkiewicz et al., 2015). Pantoea 
spp. cause disease in a wide range of plants, resulting important eco-
nomic losses in many countries (Gutiérrez-Barranquero et al., 2019; 
Dutkiewicz et al., 2016a). Typically, these bacteria infiltrate plants 
through wounds or natural openings, manifesting symptoms like leaf 
spots, blights, wilts, and fruit rot. The type III secretion system (T3SS) 
seems to be a crucial factor in the pathogenicity of numerous Pantoea 
species (Coburn et al., 2007; Dutkiewicz et al., 2016a). It facilitates the 
colonization and initiation of disease by injecting bacterial effector 
proteins, which interfere with defense signaling in host cells (Alfano, 
Collmer, 2004). Specific strains of P. agglomerans possess tumorigenic 
traits due to the natural acquisition of pathogenicity plasmid from the 
pPATH family, which harbors genes encoding hrp/hrc type III secretion 
system genes (T3SS), type III effectors and phytohormones (Nissan et al., 
2018; Weinthal et al., 2007). Notably, the best studied gall-forming 
plant pathogens are P. agglomerans pv. gypsophilae which triggers galls 
formation on the ornamental plant gypsophila (Gypsophila paniculate), 
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and P. agglomerans pv. betae, which induces galls on both table beet (Beta 
vulgaris) and gypsophila (Dutkiewicz et al., 2016a). Moreover, this 
versatile bacterium also occurs in animals, water, soil, dust, and air, and 
occasionally in humans where it could be a cause of the opportunistic 
infections (Cruz et al., 2007; Dutkiewicz et al., 2016a). On the contrary, 
this species can be found in the rhizospheres of plants where it sup-
presses the development of fungal and bacterial plant pathogens (Dut-
kiewicz et al., 2016b; Matilla et al., 2023; Walterson and Stavrinides, 
2015), promotes plant growth and appears as a potentially efficient 
bio-fertilizer (Walterson and Stavrinides, 2015; Lorenzi et al., 2022) and 
could be used for the prevention and/or treatment of human and animal 
diseases (Dutkiewicz et al., 2016b). 

In many agriculture pathogens, the production of hydrolytic en-
zymes as well as other phenotypes related to virulence factors are 
controlled by a cell density-dependent gene expression mechanism 
called quorum sensing (QS) (Baltenneck et al., 2021; Von Bodman et al., 
2003; Williams et al., 2000). This sophisticated bacterial communica-
tion system promotes coordinate behavior within a population and im-
plies the production, secretion and recognition of small signal molecules 
known as autoinducers (Fuqua et al., 1994; de Kievit and Iglewski, 
2000). The most studied autoinducers in Gram negative bacteria are 
N-acylhomoserine lactones (AHLs) that are diffused or exported to the 
surrounding medium where they are accumulating as the cell concen-
tration increases. Once the concentration of AHLs reaches a threshold 
level, a coordinate expression of different genes is activated, including 
antibiotic, pigments, exopolysaccharides and exoenzymes production 
and biofilm formation (Abisado et al., 2018; Papenfort and Bassler, 
2016; Whiteley et al., 2017). 

To date, the expression of many important bacterial virulence factors 
is regulated by AHL signal molecules in important phytopathogenic 
bacteria such as Agrobacterium fabrum (Haudecoeur and Faure, 2010; 
Lang and Faure, 2014), Erwinia amylovora (Piqué et al., 2015; Venturi 
et al., 2004), Dickeya solani (Crépin et al., 2012; Potrykus et al., 2018), 
Pectobacterium carotovorum (Moleleki et al., 2017; Pollumaa et al., 
2012), P. atrosepticum (Smadja et al., 2004) and Pseudomonas syringae 
(Cheng et al., 2016; Quinones et al., 2005). Regarding Pantoea species, 
limited information exists concerning QS systems. A phylogenetic 
analysis of P. agglomerans strains’s genomes, including endophytic, plant 
pathogenic, and clinical strains, highlights the presence of conserved 
homologs of the synthase luxI and transcriptional regulator luxR, named 
pagI and pagR, respectively. This suggests an important role of AHL 
signaling in the adaptive survival of the bacterium across various 
ecological niches (Jiang et al., 2014). 

AHL-based QS systems has been identified in the endophytic 
P. agglomerans YS19, which promotes host plant growth. This strain 
produces 3-oxo-C8-HSL to control the formation of symplasmata, a 
multicellular aggregate used in the colonization of host rice plant and 
the endophytic life of the strain (Jiang et al., 2014). 

In relation to the role of QS in the virulence of host plants, in 
P. stewartia subsp. stewartia, a pathogen that primarily infects field and 
sweet corn, causing wilt and leaf blight, QS regulates the production of 
EPS, leading to vascular occlusion. In this species, the main AHL pro-
duced is 3-oxo-C6-HSL (von Bodman and Farrand, 1995; von Bodman 
et al., 1998). In P. agglomerans pv. gypsohilae, the production of C4-HSL 
and C6-HSL were identified as major and minor signal compounds and 
the disruption of the QS system impacts gall tumor formation, dimin-
ishing its size due to the influence on hrp regulatory genes (Chalupowicz 
et al., 2008). Regulatory connections among QS, phytohormones such as 
auxin and cytokinin, and the Hrp regulon are associated with gall for-
mation of P. agglomerans pv. gypsohilae (Chalupowicz et al., 2009). 

The interference of QS systems in plant pathogens has become an 
interesting and promising alternative to fight with bacterial diseases 
instead of the use of antibiotics and chemical pesticides in agriculture 
(Defoirdt, 2018; Sharma et al., 2022; Verma et al., 2021). Indeed, eco-
friendly alternative strategies are necessary to replace the current 
methods and to avoid the increase of emergence antibiotic-resistant 

bacteria (FAO, 2023). In case of QS interruption, this mechanism at-
tenuates pathogen virulence without killing or affecting its growth as 
occurs with antibiotics and consequently, reducing the risk of inducing 
resistances (Munguia and Nizet, 2017; Muras et al., 2018). Two of the 
most studied mechanisms to interfere QS systems are the production of 
AHL antagonist (quorum sensing inhibitor compounds, QSI) and the 
enzymatic degradation or modification of AHLs (quorum quenching, 
QQ) through three main types of enzymes: lactonases, acylases and 
oxidorreductases (Fetzner, 2015; Grandclément et al., 2016; Uroz et al., 
2009). To date, AHL-degrading bacteria is commonly found among 
diverse bacterial taxa, including gram-positive and gram-negative bac-
teria, being more abundant in saline environments (Torres et al., 2019). 

A few of the AHL-degrading or QQ bacteria has also been recognized 
as plant growth-promoting bacteria (PGPB), a well-known and effective 
tool used in agriculture for many decades as biofertilizer and to combat 
bacterial pathogens (Liu et al., 2023; Yu et al., 2022; Vejan et al., 2016; 
Wang et al., 2020; Zhou et al., 2022; Zhu et al., 2023). For instance, 
PGPB are recognized to produce a high number of hydrolytic enzymes, 
siderophores, antibiotics, bacteriocins that interfere with the pathogen 
growth as well as induce plant systemic resistance (Kumari et al., 2019). 
Recently, PGP-QQ bacteria in co-cultivation with important plant 
pathogens have demonstrated to promote plant growth as well as 
attenuate their virulence as the signs of infections reduced (Roca et al., 
2024; Rodriguez et al., 2020; Vega et al., 2020). 

The aim of this study was to analyze AHL production in the plant 
pathogenic strain P. agglomerans CFBP 11141 and deepen our under-
standing of its role in the virulence of this species, given the limited 
information on this aspect. This knowledge was proved crucial to 
demonstrate the potential biocontrol of this phytopathogen using two 
recognized PGP-QQ bacteria, Bacillus toyonensis AA1EC1 (Roca et al., 
2024) and Pseudomonas segetis P6 (Rodríguez et al., 2020), as an inno-
vative and environmentally friendly approach. 

2. Material and methods 

2.1. Bacterial strains, media and growth conditions 

The pythopathogen P. agglomerans CFBP 11141 (CIP 105196 https 
://bacdive.dsmz.de/strain/139406) (Gavini et al., 1989) and the 
PGP-QQ bacteria Pseudomonas segetis P6 (Rodriguez et al., 2020) and 
Bacillus toyonensis AA1EC1 (Roca et al., 2024) were used in this study. 
The biosensor strains used were Agrobacterium tumefaciens NTL4 
(pZLR4) (Shaw et al., 1997), Chromobacterium subtsugae CV026 (Harri-
son and Soby, 2020), formerly C. violaceum CV026 (McClean et al., 
1997) and C. violaceum VIR07 (Morohoshi et al., 2008). All strains were 
routinely grown in Luria-Bertani (LB) medium at 28◦C and at 120 rpm in 
a rotary shaker. In the case of biosensor NTL4, it was grown in LB me-
dium supplemented with 2.5 mM CaCl2 ⋅ 2 H2O and 2.5 mM MgSO4 ⋅ 
7 H2O (LB-MC) or AB medium (Chilton et al., 1974). If necessary, 
kanamycin (Km) and gentamicin (Gm) were used with final concentra-
tions of 50 μg mL− 1 and tetracyclin (Tc) at 10 μg mL-1. 

2.2. Detection of AHL production by well-diffusion agar-plate assay 

The production of AHLs in the bacterial wild-type strain was detected 
by a well-diffusion agar assay as previously reported (Torres et al., 
2013). Briefly, P. agglomerans CFBP 11141 was grown in 5 mL of LB at 
28 oC until the early stationary phase was reached (DO600 2.0). Then, 
100 μL-aliquots of this culture were dispensed in wells made on the 
surface of LB agar plates (for biosensors CV026 or VIR07) and on AB 
agar plates supplemented with 80 μg mL-1 of 5-bromo-4--
chloro-3-indolyl-ß-D-galactopyranoside (X-Gal) (biosensor NTL4). An 
overnight culture of each biosensor was previously spread on the surface 
of the corresponding medium. After 24 h of incubation at 28◦C, the 
appearance of blue and purple halos around the wells was visually 
inspected. LB medium was used as negative control. The assay was 
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repeated three times. 

2.3. AHL identification by ultrahigh performance liquid chromatography 
– triple quadrupole mass spectrometry 

The identification of specific AHLs produced by P. agglomerans CFBP 
11141 was accomplished using ultrahigh performance liquid chroma-
tography – triple quadrupole mass spectrometry (UPLC-MS/MS). To 
obtain the AHL crude extract, the strain was grown in 25 mL of LB until 
stationary phase and the entire culture was extracted twice with equal 
volumes of acidified ethyl acetate, evaporated, and dissolved in 1 mL of 
the mixture of methanol and deionized water (35:65 v/v) (Marketon 
et al., 2002). 

The UPLC-MS/MS analyses were performed with a Acquity UPLC 
System I-Class (Waters) equipped with an Acquity UPLC BEH C18™ 
column (2.1 mm×100 mm, 1.7 µm particle size). Elution of the column 
was carried out with a mixture of methanol-water (Kušar et al., 2016). 
MS experiments were conducted on a low-resolution spectrometer Tri-
ple Cuadrupole XEVO-TQ-XS (Waters) equipped with a Turbolon source 
using positive-ion electrospray (ESI). The MS signals were used to 
generate relative quantification information by comparison a calibration 
curve constructed for pseudomolecular-ion abundance, using the 
appropriate AHL synthetic standards. 

The following synthetic AHLs were tested: C4-HSL (N-butyryl-DL- 
homoserine lactone), C6-HSL (N-hexanoyl-DL-homoserine lactone), 3- 
oxo-C6-HSL (N-3-oxo-hexanoyl-DL-homoserine lactone), C8-HSL (N- 
octanoyl-DL-homoserine lactone), 3-oxo-C8-HSL (N-3-oxo-octanoyl-DL- 
homoserine lactone), 3-OH-C8-HSL (N-3-hydroxyoctanoyl-DL-homo-
serine lactone), C10-HSL (N-decanoyl-DL-homoserine lactone) C12-HSL 
(N-dodecanoyl-DL-homoserine lactone) and 3-oxo-C12-HSL (N-3-oxo- 
dodecanoyl-DL-homoserine lactone) (Sigma-Aldrich). 

2.4. Expression of AHL-lactonase gene in P. agglomerans CFBP 11141 

The strain P. agglomerans CFBP 11141 was transformed by electro-
poration, introducing the recombinant plasmid pME6010::hqiA, con-
taining an AHL-lactonase gene (Torres et al., 2017) as well as the empty 
plasmid pME6010 (TcR) (Heeb et al., 2000). Competent cells were ob-
tained from 25 mL of 24 h culture and washed with sucrose 300 mM 
following the methodology previously described (Torres et al., 2017). 
Then, the transformants were confirmed by PCR amplification of the 
hqiA gene using the following specific primers: hqiA-T forward 
5’-ATGAGTGAAATCACGTTGGC-3’ and hqiA-T reverse 5’- 
CTTTACCCGAAGGATCGTAA-3’. 

To investigate the impact of hqiA expression on AHL production by 
the strain P. agglomerans CFBP 11141, a well-diffusion agar-plate assay 
was conducted following the previously described method, employing 
NTL4 (pZLR4) and CV026 as bioindicator strains. 

To assess the impact of AHL degradation on QS-regulated virulence 
factors, various cellular functions were examined in the confirmed 
transformants (pME6010::hqiA and pME6010) as well as in the wild- 
type strain. Thus, hydrolysis of starch (Barrow and Feltham, 1993), 
gelatin (Pickett et al., 1991), Tween 20 and Tween 80 (Sierra, 1957) as 
well as the production of β-glucosidase (Gong et al., 2012), lecithinase 
(Larpent and Larpent-Gourgand, 1957), alkaline phosphatase (Baird--
Parker, 1963), acid phosphatase (Pikovskaya, 1948), phytase (Hos-
seinkhani and Hosseinkhani, 2009), indole-3-acetic acid (Naik et al., 
2008) and siderophores (Alexander and Zuberer, 1991) were deter-
mined by spotting 10 μL of each culture in the corresponding media. 
Swimming (Ha et al., 2014a) and swarming (Ha et al., 2014b) motility 
were tested by spotting 2 μL of each culture in LB 0.3 and 0.5% (w/v) 
agar respectively. Each assay was repeated three times. 

2.5. Antagonist assay 

The antagonist activity of each PGP-QQ strain (P. segetis P6, 

B. toyonesis AA1EC1) against P. agglomerans CFBP 11141 was assessed 
using the well diffusion method (Balouiri et al., 2016). An overlay of the 
pathogen was spread onto the surface of an LB agar plate, and 100 μL of 
the supernatants of a 5-day culture of each QQ bacterium were poured 
into the pre-made wells. Following 48 h of incubation at 28◦C, the 
presence of growth inhibition zones surrounding the wells was visually 
examined. 

2.6. Co-culture assays 

Co-culture experiments were conducted involving P. agglomerans 
CFBP 11141 and PGP-QQ strains (P. segetis P6 and B. toyonensis AA1EC1) 
employing the previously outlined methodology (Torres et al., 2016; 
Reina et al., 2019). Briefly, 50 μL of 24 h culture of pathogen (109 CFU 
mL-1) was added to 5 mL of a 24 h culture of each PGP-QQ strain (109 

CFU mL-1) in LB medium. Monocultures of each bacterium were grown 
under similar conditions as controls. After 24 h incubation at 28ºC, the 
remaining AHLs from each co-culture and monoculture was detected 
using the well-diffusion agar-plate method previously described, using 
A. tumefaciens NTL4 (pZLR4) and C. subtsugae CV026 as bioindicator 
strains. The abundance of the pathogen and each PGP-QQ bacterium in 
the co-cultures was quantified by serial dilutions and plate counts on LB 
agar, with colonies differentiated by their different colors and mor-
phologies (P. agglomerans CFBP 11141 produces yellow mucoid colonies 
whereas strains P6 and AA1EC1 produce cream colonies). 

To assess how AHL degradation affects the virulence of 
P. agglomerans CFBP 11141, various cellular functions were examined in 
the co-cultures and monocultures as described in 2.4. 

2.7. Virulence assays in cherry tomatoes and carrot 

The interference of PGP-QQ bacteria with the virulence of 
P. agglomerans CFBP 11141 was evaluated in cherry tomatoes and car-
rots according to the methodology previously outlined with modifica-
tions (Torres et al., 2017; Rodríguez et al., 2020). Briefly, cherry 
tomatoes (Solanum lycopersicum L. var. cerasiforme) and carrots (Daucus 
carota L., cv. Amsterdam 2) were surface sterilized. Then, four tomatoes 
were placed in Petri dishes while carrots were cut into slices and four of 
them placed in Petri dishes with a wet filter paper to maintain moisture. 
Six replicates were carried out for the following treatments: sterilized 
distillated water, P. agglomerans CFBP 11141, strain P6, strain AA1EC1, 
pathogen-AAE1C co-culture (ratio 1:100) and pathogen-P6 co-culture 
(ratio 1:100). One milliliter of each culture (109 CFU mL-1) was centri-
fuged at 12,000 rpm for 3 min and the cells were suspended in 1 mL of 
sterilized distillated water. For each culture condition, 15 μL was 
injected into the tomatoes and carrot slices. Sterilized distillated water 
was similarly inoculated on tomatoes and carrots slices as negative 
control. After 5 days of incubation at 28◦C, the maceration areas were 
visually examined and the spatial extent of the damage was calculated 
by image analysis using ImageJ software (Schneider et al., 2012). 

The potential of hqiA to disrupt the patogen’s virulence was evalu-
ated in carrot slices and cherry tomato assays following the same 
procedure. 

2.8. Virulence assay in tomato plants 

The interference of QS-associated virulence factors of P. agglomerans 
CFBP 11141 was examined in tomato plants (Solanum lycopersicum L. 
var. Roma) according to the technique previously described (Yan et al., 
2008; Vega et al., 2020). Briefly, 50 sterilized tomato seeds were sown in 
individual pots containing sterilized vermiculite: perlite (ratio 3:1). The 
pots were incubated for three weeks in an indoor green house during a 
long-day photoperiod (16:8 h light: dark) at 25◦C. Three pots were used 
for each treatment as follows: sterile distilled water, P. agglomerans CFBP 
11141, strain P6, strain AA1EC1, pathogen-P6 co-culture (ratio 1:100) 
and pathogen-AA1EC1 co-culture (ratio 1:100). Previously to the 
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infection, to induce stomatal opening, each pot was exposed to 100% 
humidity for 24 h and then, they were sprayed with 5 mL of each 
treatment (109 CFU mL-1). Relative humidity was maintained at 100% 
for a further 24 h to facilitate pathogen infection under similar 
growth-controlled conditions. After 5 days post-inoculation, leaves were 
examined for the appearance of infection symptoms. Healthy, 
necrotic-chlorotic and dead leaves were counted in each treatment. 

2.9. Statistical analysis 

The results presented in this work were analyzed using the GraphPad 
Prism 9 program. The normality of the data was assessed using the 
Shapiro-Wilk test or the D’Angostino and Pearson test. They were 
analyzed by simple ANOVA using Tukey’s test for the comparison of 
means. In all cases, the confidence interval was set at 95%. 

3. Results 

3.1. Production of AHLs by P. agglomerans CFBP 11141 

The synthesis of AHL signal molecules were firstly examined in 
cultures of the pathogen by using a well-diffusion agar-plate assay. The 
biosensor strains Agrobacterium tumefaciens NTL4 (pZLR4) and Chro-
mobacterium subtsugae CV026 were activated in the presence of the 
pathogen, while no response was seen for C. violaceum VIR07 (Fig. 1). 

To investigate the type of AHLs produced by P. agglomerans CFBP 
11141, culture extracts from 25 mL of an early stationary phase was 
analyzed by UPLC-MS/MS. A wide range of synthetic AHLs were used as 
standards for the identification of these molecules and only C4-HSL and 
3-oxo-C6-HSL were detected in a concentration of 6.7 mg L-1 and 
0.153 mg L-1, respectively (Fig. 1). 

3.2. Cellular functions regulated by AHL-QS system 

The cellular functions controlled by AHLs in P. agglomerans CFBP 
11141 were evaluated by expressing the HqiA enzyme, an AHL lactonase 
which hydrolyzes the lactone ring of AHL signal molecules. The plasmid 
construction pME6010::hqiA as well as the empty plasmid pME6010 
were transformed into the pathogen. Transformants were confirmed by 
the amplification of the expected AHL-lactonase coding gene (750 bp) 
and the lack of the ability to activate the biosensors C. subtsugae CV026 
and A. tumefaciens NTL4 (pZLR4). Transformants containing the empty 
plasmid were used as negative control. 

P. agglomerans CFBP 11141, P. agglomerans (pME6010::hqiA) and 
P. agglomerans (pME6010) were tested for the production of different 
hydrolytic enzymes synthesizes by the pathogen such as amylase, 
gelatinase, lipases (hydrolysis of lecithin, Tween 20 and Tween 80), 
phosphatases (phytase, acid and alkaline phosphatases), protease and 
β-glucosidase, the synthesis of indole-3-acetic acid (IAA) and side-
rophores, swimming and swarming motilities. The phenotypic analyses 
were carried out in triplicate and the results obtained were consistent. 
The lack of the production of AHLs in the pathogen in our assay con-
ditions resulted in the reduction of acid phosphatase and amylase ac-
tivities (Fig. 2). 

To confirm the expression of hqiA gene interfered in the virulence 
and maceration activity of the P. agglomerans CFBP 11141, virulence 
assays in carrot slices and cherry tomatoes were performed. The trans-
formants were inoculated on the surface of carrot and the expression of 
hqiA in the phytopathogen reduced the capacity to cause soft rot (9.85 ±
1.65% maceration), while a maceration area of 21.83 ± 2.92% and 
23.61 ± 2.71% was produced by P. agglomerans (pME6010) and the 
wild-type strain respectively (Fig. 2). Cherry tomatoes inoculated with 
QQ-expressing strain showed no signs of infection, while those inocu-
lated with the wild-type and P. agglomerans (pME6010) strains exhibited 
a distinct maceration area. 

3.3. Interference of bacterial phytopathogen AHL-QS system and impact 
on associated phenotypes by PGP-QQ bacteria 

Once the AHL-QS system has been demonstrated to be involved in 
the virulence of P. agglomerans CFBP 11141, co-cultures of the phyto-
pathogen with two PGP-QQ bacteria, P. segetis P6 and B. toyonensis 
AA1EC1, were conducted to assess the capacity to degrade AHL and 
reduce the expression of QS associated cellular functions in 
P. agglomerans CFBP 11141. Previously, an antagonist experiment to 
discard any inhibitory effect of the PGP-QQ strains with the growth of 
the pathogen was performed (data not shown). The pathogen was grown 
in a co-culture with each of the PGP-QQ strains in a ratio 1:100 for 24 h. 
The concentration of each bacterium remained consistent throughout 
the entire assay (107:109 CFU mL-1). Subsequently, AHL production in 
each co-culture condition was assessed through a well-diffusion agar- 
plate assay employing the biosensor C. subtsugae CV026. The findings 
revealed that both AA1EC1 and P6 strain effectively degraded the AHLs 
produced by P. agglomerans CFBP 11141 in co-culture, as evidenced by 
the absence of signal activation of the biosensor. Under these assay 
conditions, the pathogen control activated the biosensor strain, whereas 

Fig. 1. Well-diffusion agar-plate assay to detect the production of AHLs by P. agglomerans CFBP 11141. 100 μL aliquots of culture was placed in each well. LB 
(negative control). The biosensors strains used were Agrobacterium tumefaciens NTL4 (pZLR4) (a) and Chromobacterium subtsugae CV026 (b). Extracted chromatogram 
by UPLC-MS/MS showing the peaks corresponding 3-oxo-C6-HSL and C4-HSL. 
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no signal was seen in cultures of strains P6 and AA1EC1 (Fig. 3). 
The same pathogen and PGP-QQ co-cultures, as well as the mono-

cultures, were also examined to assess the influence of AHL degradation 
on QS-associated phenotypes of the pathogen. Phenotypes known to be 
produced by the PGP-QQ strains were not included in the analysis. Some 
phenotypes of P. agglomerans CFBP 11141 showed reductions when co- 
cultured with PGP-QQ strains (Fig. S1). Specifically, phytase and acid 
phosphatase production of the pathogen were diminished in the pres-
ence of AA1EC1 (Fig. S2). In the case of co-cultures with P6, amylase 
production and swimming motility of the pathogen were decreased 
(Fig. S3). 

3.4. Interference of bacterial phytopathogen virulence by PGP-QQ strains 

The impact of AHL degradation activity exhibited by the two PGP- 
QQ strains on the virulence of P. agglomerans CFBP 11141 was 
assessed through virulence assays conducted on carrot slices and cherry 
tomatoes. Co-cultures of P. agglomerans CFBP 11141 with P. segetis P6 
and B. toyonensis AA1EC1 were prepared in conditions similar to those 
mentioned previously and inoculated onto both type of vegetables. 
Additionally, P. agglomerans CFBP 11141 and the PGP-QQ strains, along 
with sterile water were individually inoculated in each experiment as 
controls (Fig. 3). As a result, strains AAE1C1 and P6 significantly 
diminished the capacity of the pathogen to induce soft rot in carrots, 
with maceration rates of 0 and 10.37 ± 0.66% respectively, as compared 
to the 23.61 ± 2.71% observed by the pathogen in monoculture. 

Regarding cherry tomatoes, strain P6 decrease the virulence of 
P. agglomerans CFBP 11141, exhibiting mild infection symptoms, while 
no tissue damage was observed in the presence of AA1EC1. In all of 
cases, the inoculation of PGP-QQ strains did not induce any infection 
symptoms (Fig. 3). 

To assess the possible use of PGP-QQ strains as biocontrol agents 
against P. agglomerans CFBP 11141, in vivo assays of tomato plants were 
carried out. Co-cultures and monocultures were inoculated and the 
number of affected (necrotic, chlorotic and dead leaves) and healthy 
leaves were counted after 5 days post-inoculation (Fig. 4). The results 
indicated that strain AA1EC1 reduced the virulence of the pathogen in 
co-culture showing plants with less damaged than those infected with 
the pathogen alone. There was an increase of 17.74% in healthy leaves 
treated with the co-culture with respect to the plants infected with the 
pathogen. Furthermore, there was a notable reduction in the number of 
dead and necrotic-chlorotic with values of 2.62 and 19.56% respec-
tively, compared to plants infected with the pathogen (18.79 and 
21.14% respectively). In the case of the co-cultures with P. segetis P6, the 
effect on the reduction of virulence of P. agglomerans CFBP 11141 was 
not remarkable. Plants treated with sterile water (negative control) and 
strains AA1EC1 and P6 exhibited a few leaves attributed with natural 
senescence (Fig. 4). As evidenced by the photographs of plants in Fig. 4, 
leaves treated with the pathogen alone showed severe symptoms, 
characterized by chlorotic leaves and necrotic lesions. However, the 
reduction of these symptoms was significant in leaves treated with the 
pathogen in the presence of AA1EC1. 

Fig. 2. AHL degradation by the expression of HqiA lactonase in P. agglomerans CFBP 11141 and virulence assays in carrot slices and cherry tomatoes. a. 
Well-diffusion agar-plate assay to detect the production of AHL in the wild-type P. agglomerans CFBP 11141 and its transformants expressing hqiA gene (pME6010:: 
hqiA) and the empty plasmid (pME6010) using the biosensor Agrobacterium tumefaciens NTL4 (pZLR4) and Chromobacterium sutsugae CV026. b. Virulence and 
maceration produced by the wild-type strain and its transformants on the surface of carrot slices and cherry tomatoes after 5 days of incubation. Sterile water was 
used as negative control. 
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4. Discussion 

Crop losses caused by pest and pathogens is continue increasing and 
reach up to 30% of the total agricultural production worldwide (Del-
gado-Baquerizo et al., 2020; Savary et al., 2019). The overuse of 

chemical compounds like fertilizers and pesticides to manage bacterial 
plant diseases in recent decades has an impact in ecosystems and human 
health. These consequences include the emergence of microbial resis-
tance strains, damage to soil health and loss of biodiversity (Tilman 
et al., 2002). Addressing this urgent situation necessitates the 

Fig. 3. Impact of AHL-degrading activity of AA1EC1 and P6 against P. agglomerans CFBP 11141. Assessment of virulence and maceration of monocultures and 
co-cultures of AA1EC1 and P6 with the pathogen inoculated on carrot slices (a) and cherry tomatoes (b) after 5 days of incubation. Sterile water was used as negative 
control. c. Detection of AHLs in the monocultures and co-cultures of AA1EC1 and P6 with the pathogen using C. sutsugae CV026 as biosensor. 

Fig. 4. Infection assay in tomato plants with monocultures and co-cultures of P. agglomerans CFBP 11141 and PGP-QQ strains AA1EC1 and P6. a. Total 
percentage of healthy, dead, necrotic and chlorotic leaves. b. Photographs of the leaves of the plants inoculated with the different treatments. 
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exploration of sustainable methods for crop protection that reduce 
reliance on pesticides (FAO, 2023). Among these methods, numerous 
PGPB have proven effective as biocontrol agents against plant diseases 
due to their ability to produce beneficial compounds (i.e. hormones, 
antibiotics, exopolysaccharides, enzymes and siderophores) and acti-
vate induced indirect systemic resistance in plants (Lyu et al., 2019; 
Santoyo et al., 2012). Likewise, an emerging and promising alternative 
strategy involves the enzymatic degradation of AHLs signal molecules in 
Gram-negative phytopathogens, given their significant role in virulence 
(Torres et al., 2019; Verma et al., 2021). 

P. agglomerans stands out as one of the nature’s most ubiquitous and 
adaptable organisms. While certain strains are known to induce diseases 
in various crops and occasionally cause opportunistic infections in 
humans, others exhibit beneficial properties, serving as efficient bio-
fertilizers (Dutkiewicz et al., 2015; 2016a,; Lorenzi et al., 2022). Given 
the limited understanding of AHL signaling in P. agglomerans, con-
ducting a comprehensive investigation is crucial for better understand-
ing its pathogenicity and develop effective strategies to mitigate its 
impact on plant health and agricultural productivity. Furthermore, 
research in this field will be significant due to its potential implications 
for human health. 

In this study, we utilized a well-diffusion agar-plate assay along with 
three biosensor strains that respond to short- medium- and long-chain 
AHLs. This approach facilitated the straightforward detection of signal 
molecules production in the plant pathogen P. agglomerans CFBP 11141. 
Our results indicated that this strain induces the biosensors 
A. tumefaciens NTL4 (pZLR4) and C. subtsugae CV026 but no activation 
was shown in C. violaceum VIR07. This methodology has proven suc-
cessfully not only in our laboratory but also among other researchers for 
identifying AHL-QS systems in a wide array of Gram-negative bacterial 
species (Kato et al., 2015; Torres et al., 2018; 2019). To characterize the 
signal molecules, organic crude extracts from a 24-h pathogen culture 
were examined by UPLC-MS/MS to detect AHLs, with various com-
mercial AHLs serving as controls. The analysis identified the presence of 
C4-HSL and 3-oxo-C6-HSL in this strain, with the former being more 
predominant. The production of AHL in plant pathogenic strains of this 
species has only been reported in P. agglomerans pv. gypsophilae where 
C4-HSL and C6-HSL were identified as major and minor signal com-
pounds through mass spectral analysis (Chalupowicz et al., 2008). In the 
case of Pantoea stewartia, a species related to P. agglomerans that causes a 
disease known as Stewart’s wilt or bacterial leaf blight in sweet corns 
(Zea mays), the main molecule produced is 3-oxo-C6-HSL (von Bodman 
et al., 1998). 

As the expression of virulence factors and colonization of the plant is 
regulated by AHLs in numerous phytopathogens (Baltenneck et al., 
2021; Torres et al., 2019), and the understanding of AHLs’ role in plant 
pathogenic strains of P. agglomerans is still limited, an AHL-lactonase 
was expressed into strain CFBP 11141. Our results demonstrated a 
marked reduction in AHL production upon hqiA expression, as indicated 
by the lack of activation in the biosensor strains. In addition, certain 
enzymatic activities such amylase and acid phosphatase synthesis were 
also diminished. According to Lin et al. (2021), amylase production 
stands out as a recognized virulence factor in Xanthomonas campestris. 
However, the significance of acid phosphatase in this context remains 
unexplored. Acid phosphatase plays a role in plant colonization by 
phytopatogenic bacteria such Xanthomonas campestris, an enzyme 
involved in the hydrolysis of phosphate ester bonds under acidic con-
ditions, releasing phosphate ions from various organic phosphates in the 
plant environment. In this bacterium, as well as in other plant patho-
genic Gram-negative bacteria, a T2SS secretion system is used to export 
hydrolytic enzymes related to the degradation of different plant sub-
strates such as amylases (Benali et al., 2014). 

Furthermore, the AHL-defective strain P. agglomerans (pME6010:: 
hqiA) did not induce maceration in carrots and cherry tomatoes, sug-
gesting a potential role of AHLs in attenuating its virulence. Similar 
findings have been reported in other plant pathogens such as 

Pectobacterium carotovorum, P. atrosepticum and Dickeya solani, where 
AHL regulate the production of extracellular enzymes necessary for cell 
wall degradation (Cui et al., 1995; Monson et al., 2013; Potrykus et al., 
2018). To our knowledge, little information has been disclosed 
regarding to the role of AHL-based QS in the plant pathogenic Pantoea 
species. In P. agglomerans pv. gypsophilae, AHLs signals control gall for-
mation (Chalupowicz et al., 2008) whereas in P. stewartia subsp. stew-
artii, AHLs regulate the production of the exopolysaccharide, motility, 
and carotenoids pigments, which are virulence factors of this species 
(von Bodman et al., 1998). 

Based on our results showing a correlation between AHLs and the 
virulence of P. agglomerans CFBP 11141, we carried out in vitro and in 
vivo tests to investigate a strategy involving the co-cultivation of the 
pathogen and AHL-degrading bacteria, aiming to develop a potential 
treatment for the disease in the future. This approach has been 
demonstrated to be efficient against other phytopathogens such as 
D. solani, P. carotovorum subsp. carotovorum, P. atrosepticum and 
P. syringae pv. tomato DC3000, where the attenuation of virulence was 
achieved (Fan et al., 2020; Garge and Nerurkar, 2017; Rodríguez et al., 
2020; Vega et al., 2020; Zhang et al., 2020). 

Thus, in this study, P. agglomerans CFBP 11141 was co-cultured with 
the PGP-QQ strains B. toyonensis AA1EC1 and P. segetis P6. Both bacteria 
were chosen for this study due to their previously demonstrated high 
AHL-degradation activity against a broad spectrum of AHLs (Roca et al., 
2024; Rodriguez et al., 2020). The in vitro virulence tests demonstrated 
that both PGP-QQ strains were able to the severity of soft rot disease 
induced by the pathogenic strain CFBP 11141 in carrots and cherry to-
matoes. Particularly remarkable was the effect observed for strain 
AA1EC1 against the virulence of the pathogen as no tissue damage was 
observed. Furthermore, strain AA1EC1 significantly attenuated bacterial 
virulence on tomato plants by notably reducing the number of dead and 
necrotic-chlorotic leaves with respect to the severe symptoms induced 
by the pathogen. 

5. Conclusions 

This study enhances our understanding of AHL signaling and its role 
in the plant pathogenic P. agglomerans. Our findings establish a corre-
lation between AHL and the virulence of the plant pathogenic strain 
CFBP 11141. Moreover, this research enforces the effectiveness of an 
innovative and environmentally friendly strategy involving the utiliza-
tion of PGP bacteria that produce enzymes capable of degrading QS 
signal molecules to control the phytopathogen P. agglomerans. 
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