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Abstract. Hematoxylin and Eosin (H&E) color variation between his-
tological images from different laboratories degrades the performance of
Computer-Aided Diagnosis systems. Histology-specific models to solve
color variation are designed taking into account the staining procedure,
where most color variations are introduced. In particular, Blind Color
Deconvolution (BCD) methods aim to identify the real underlying colors
in the image and to separate the tissue structure from the color informa-
tion. A commonly used assumption is that images are stained with and
only with the pure staining colors (e.g., blue and pink for H&E). However,
this assumption does not hold true in the presence of common artifacts
such as blood, where the blood cells need a third color component to be
represented. Blood usually hampers the ability of color standardization
algorithms to correctly identify the stains in the image, producing unex-
pected outputs. In this work, we propose a robust Bayesian K-Singular
Value Decomposition (BKSVD) model to simultaneously detect blood
and separate color from structure in histological images. Our method
was tested on synthetic and real images containing different amounts of
blood pixels.
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1 Introduction

The development of Computer-Aided Diagnosis (CAD) systems for the analysis
of Whole Slide Images (WSIs) is not exempt from challenges [9]. Just using data
from different hospitals can hamper their performance [11], mostly due to color
variation and artifacts in the image [6]. Therefore, preprocessing is often a key
step [6] for reliable CAD systems.

Blind Color Deconvolution (BCD) methods [12] estimate the image-specific
stain colors and structure (concentration). The separation itself can reduce the
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impact of color variation [14] and it is often included as a step for other ap-
proaches such as color normalization [19] or color augmentation [18]. See [6]
for a complete survey. However, the assumption that the image contains only
the expected stains (e.g. Blue for nuclei and pink for cytoplasm and connective
tissue in H&E images), is not true when artifacts are present. Artifacts such as
blood, degrade the quality and diagnosis value of a WSI and introduce additional
sources of color variation [6]. Blood artifacts react differently to H&E staining
and get stained in a completely different color [3] (usually red), which is often
used to detect them [3] but also hampers the performance of BCD methods [2].

Despite the relationship between artifacts and color, artifact detection and
color variation have hardly been explored together. The presence of blood and
other artifacts is often ignored by BCD methods. Similarly, it is hard to find
works that use BCD to detect artifacts. Our work brings together the fields of
artifact detection and color variation by focusing on blood, and how its presence
affects BCD methods on H&E images. We propose the use of BCD for blood
detection using its difference in color with the H&E stains. For this goal, we use
the recently proposed Bayesian K-Singular Value Decomposition (BKSVD) [12]
for BCD, which is able to identify the colors of the stains in the image but is
affected by blood. We extend it to acknowledge the presence of blood, making it
possible to perform blood detection and then obtain an estimation of the H&E
stains.

The paper is organized as follows. Section 1.1 describes related works on
BCD and blood detection. Section 2 provides an overview of the BKSVD method
in [12], discusses the limitations, and provides the necessary improvements for
its application to robust blood detection and BCD. In section 3 experimentally
evaluate the proposed method. Finally, section 4 concludes the paper.

1.1 Related Work

Blind Color Deconvolution Most BCD methods use the Beer-Lambert law [15],
which establishes a linear combination between the stains in the optical density
(OD) space. Let I be a RGB image I € R3*%, where each value i, € I correspond
to pixel ¢ and channel ¢ € RGB. Then, the OD is defined as y.q = — log(icq/igq),
where i, = 255 denotes the incident light. Then, a WSI'Y stained with S stains
follows the equation

Y=MC+N, (1)

where M = [my,--- ,mg] € R3* is the normalized stains’ specific color-vector
matrix; C € R9*? is the stain concentration matrix, its ¢-th column, cy =
[C1,gs---s cs’q]T, represents the contribution of each stain to the g-th pixel value
in Y; and, finally, N € R3*@Q is a Gaussian noise matrix with independent
components of variance S71.

The goal of BCD is to estimate C and M from Y. Here we summarize the
most relevant approaches in the literature. See [6] for a complete survey. Ruifrok
et al. [15] use a given color-vector matrix to separate the stains, which is widely
used as a standard. However, the actual color is usually considered to be unknown
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due to color variation. In the work by Macenko et al. [8] the H&E channels are
estimated using Singular Value Decomposition (SVD). Vahadane et al. [19] es-
timate the color-vector matrix using Non-Negative Matrix Factorization (NMF)
and the assumption that most pixels in the image are stained by a single stain.
Alsubaie et al. [1] apply Independent Component Analysis (ICA) in the wavelet
domain, under the assumption that stains might not be independent. Few works
consider the effect of noise and artifacts. The use of the method by Macenko et
al. [8] is widely extended, although it is known to be affected by noise and arti-
facts [2]. To speed up the method, Vahadane et al. [19] perform a patch sampling
of the WSI. They take advantage of their patch-wise stain estimation to calculate
the median color-vector and provide a more robust estimation against artifacts.
Alsubaie et al. [1] included a linear filtering to reduce the noise contamination
when estimating stain matrix, but did not consider large artifacts. The presence
of artifacts and their effect on color estimation is acknowledged in [2]. The es-
timation of the color-vector and the robust maximum (99th percentile) of the
H&E concentrations were used to identify low-quality images, substituting the
color-vector matrix with average estimates from other images when poor quality
is detected.

A Bayesian approach is followed in [5] by defining a smoothness prior on
the concentrations and a similarity prior on the color-vectors. To improve the
quality of the concentration obtained, this work was extended in [13] by using
a Total Variation (TV) prior and in [14] with general super-Gaussian priors.
These Bayesian methods share a need for a reference color-vector matrix for the
similarity prior. The use of a prior on the color [13,14] can reduce the effect of
noise and artifacts, but limits the adaptability to different color distributions. To
solve this issue, the work in [12] proposes the use of Bayesian K-SVD (BKSVD)
to find the color-vector matrix as a dictionary learning problem.

Blood Detection Detection of blood is frequently formulated as a color-related
problem. In [3] the authors classify blood segmentation techniques into (i) RGB
segmentation, (ii) segmentation using other color space (such as HSV, Lab and
LUV) and additional techniques, (iii) segmentation using one or two channels
of a non-RGB color space. In [7] the detection of blood is approached with
a combination of staining protocol and image processing, using mathematical
morphology and thresholding the RGB channels of the image. Sertel et al. [16]
use the color to distinguish five major components in the H&E images (i.e. nuclei,
cytoplasm, background, blood, and extracellular material). First they threshold
the RGB channels to remove blood and background, and then use k-means in the
L*a*b color space. A Maximum Likelihood Estimation is implemented in [10] to
classify the pixels into four classes (blood, cytoplasm, nuclei, and background)
in the RGB color space. In [17] the magenta channel of the CMYK space is used
to detect blood areas that are later classified into hemorrhages or vessels using
mathematical morphology and a decision tree. Hue and saturation are used in
[4] to detect intracerebral hemorrhage.
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More complex approaches combine the choice of color space with clustering,
mathematical morphology, classification, or DL [20]. See [6] for details.

2 Material and Methods

2.1 Bayesian k-SVD for Blind Color Deconvolution

Although the color in the slide is a combination of both H&E stains, each biolog-
ical structure will present structure-specific color properties [19,12]. This allows
pathologists to distinguish structures based on their color. In [12] a Bayesian
framework is used to approach the problem as a dictionary learning problem,
with sparse concentrations [19], which encourages the framework to find the
color-vector matrix M that better represents the differential staining of the
structures in the image.

Following (1), the OD observed image Y is modeled with a Gaussian distribu-
tion p(Y|C, M, ), where § controls the noise precision. That is, p(Y|C, M, 3) =
H?:I N(y,|Mc,, 87 1543). The sparsity of the solution is promoted by a zero-

mean Laplace prior on the concentrations, that is p(cy) o exp ((— /Aqlleqll1),
with Ay > 0 the scale parameter. A flat prior p(M) on the color-vector ma-
trix is used, and unit norm for each column my is assumed on their posterior
estimation.

The true posterior p(@|Y) = p(Y, @) /p(Y), where @ = {3, M, C} is the set
of unknowns, is approximated with variational inference [12]. WSIs are usually
very large, rendering their processing computationally expensive. The number
of pixels necessary to estimate the color-vector matrix M is reduced by using
a uniform random sampling of the WSI. The estimations M and C are then
initialized to M and C = MTY, where M is the Ruifrok’s standard matrix [15]
and M™ the Moore-Penrose pseudo-inverse of M. After iteratively optimizing
the model parameters, estimations for M and C are provided. Notice that the
method in [12] did not consider the presence of blood. When the image contains
blood artifacts M will be wrongly estimated because it will be forced to have
two color vectors (H&E). Here we extend the method and propose its use for
robust blood detection and BCD estimation.

2.2 Robust Blind Color Deconvolution and Blood Detection

Blood and other artifacts hamper the estimation of the color-vector matrix and
the separation of the stains. Obtaining a robust method to detect blood and
perform BCD estimation is closely related to correctly identifying these elements.

BKSVD [12] uses two channels to separate H&E images, but it can be ex-
tended to include more channels. A third channel is often used by BCD [15,8,13],
which content is considered to be residual when there are only two stains in the
image and is often referred to as "background" channel. As blood gets stained in
a different color, often used for its detection [3], it can be seen as an additional
effective stain, that can be detected using the third channel. However, including
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a third channel when not necessary, hampers the quality of the H&E estimated
color-vectors my, me, and the corresponding concentrations [13]. Assuming
blood or other elements might appear in the image, we split the BCD process
into two stages. The first stage uses three channels to represent all elements in
the image. The second stage uses two and focuses on the H&E channels only.

The first stage starts from the H&E vectors from M [15] and a third color-
vector m, which is orthogonal to m, and m, [13]. After estimating M and C,
it is critical to keep the right order of the stam channels. Thus, we calculate
the correlation between the columns of M and the initial m,;, m_, and choose
my, m, as those with maximum correlation to their respective references. The
remaining channel is selected as the third (blood) channel, and the order of C
is modified accordingly.

We utilize the values in the third concentration channel C. 3 to detect anoma-
lies. Since, as explained in [12], the dictionary learning approach of BKSVD aims
at finding a representation of the image where each pixel is assigned to only one
channel whenever possible, pixels assigned or having a higher value in the third
channel are not correctly represented by the H&E channels and can be consid-
ered an anomaly. Pixels with a blood channel component above a threshold are
marked and discarded. The value for the threshold is experimentally determined
in section 3.

Finally, utilizing only the blood-free pixels and starting from M, the second
stage re-estimates the color-vector matrix and concentrations for the remaining
pixels. The procedure is summarized in Algorithm 1. 3

Algorithm 1 Robust BKSVD for blood detection

Require: Observed image I, initial normalized M, batch size B, threshold thr.
Ensure: Estimated stain color-vector matrix, M concentrations, C blood mask.
Obtain the OD image Y from I

First stage: set S = 3. Estimate M and C using BKSVD [12]

Sort M and C using the correlation of the columns of M and M

Create blood mask using C;,g > thr

Remove blood-positive pixels.

Second stage: set S = 2. Re-estimate M and C on remaining pixels using BKSVD
return M, C = MTY and the blood mask.

2.3 Databases

— Synthetic Blood Dataset (SBD) We use the Warwick Stain Separation
Benchmark (WSSB) [1], which contains 24 H&E images of different tissues
from different laboratories for which their ground truth color-vector matrix
Mgy is known. WSSB images are free from artifacts, therefore we synthet-
ically combine them with blood pixels obtained in the Stavanger University

3 The code will be made available at https://github.com/vipgugr/
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Hospital, incrementally added as columns to each image. This allows us to
control the amount of blood in the image, which makes it possible to mea-
sure the effect of blood on the estimation of the color-vector matrix. The
amounts of blood considered are {0,0.1,0.2,...,0.9} times the size of the
original images, creating a dataset of 240 images.

— TCGA Blood dataset In order to test the method on real images con-
taining blood, we used 8 breast biopsies from The Cancer Genome Atlas
(TCGA). Breast biopsies often contain blood due to the biopsy procedure
[6] and it is also possible to find blood vessels in the tissue. We selected 16
2000 x 2000 H&E image patches where blood was manually labeled.

3 Experiments

We have designed a set of experiments to assess our method. First, we examine
its blood detection capability and then, its robustness using BCD.

3.1 Blood Detection

In this experiment, we assess the performance of the proposed method to identify
blood in the image. We evaluate the most appropriate value for thresholding
the third channel [13] and compare the results with other approaches for blood
detection.

The concentration channels take values € [0, —log(1/255)]. We have evaluated
thresholds for the blood component thr in the whole range with a 0.1 step. Pixels
with a value above the thr are marked as blood, and the mask is then compared
with the ground truth label in the SBD and TCGA datasets. We use the Jaccard
index (intersection over union) and the F1l-score.

Table 1 shows the performance of the method on the SBD images for different
values of the threshold. Low values of the threshold are able to correctly separate
the blood in the image without including an excessive number of false positives.
The best results in mean are obtained using thr = 0.3. Values of th > 1 were
experimentally found to be irrelevant for blood detection.

Table 1. Jaccard index and F1l-score for the blood mask obtained with the proposed
method and different threshold values on SBD images.

Jaccard index F1l-score
Amount Threshold value Threshold value
of blood 0.2 0.3 0.4 0.5 0.6 0.7]] 0.2 0.3 0.4 0.5 0.6 0.7

0.1 0.615 0.715 0.797 0.814 0.798 0.861 || 0.722 0.791 0.860 0.871 0.850 0.913
0.2 0.729 0.794 0.874 0.789 0.778 0.839|| 0.823 0.859 0.923 0.845 0.834 0.896
0.3 0.759 0.804 0.786 0.797 0.749 0.720|| 0.849 0.868 0.845 0.865 0.818 0.794
0.4 0.741 0.808 0.802 0.858 0.786 0.808|| 0.828 0.872 0.867 0.909 0.852 0.870
0.5 0.791 0.818 0.825 0.830 0.731 0.748 || 0.871 0.885 0.881 0.888 0.801 0.825
0.6 0.780 0.865 0.774 0.803 0.759 0.764 || 0.863 0.920 0.843 0.866 0.828 0.845
0.7 0.795 0.853 0.794 0.863 0.727 0.721|| 0.873 0.912 0.856 0.919 0.808 0.798
0.8 0.794 0.839 0.834 0.757 0.759 0.784|| 0.870 0.902 0.894 0.829 0.833 0.864
0.9 0.833 0.808 0.809 0.714 0.728 0.655|| 0.901 0.878 0.876 0.797 0.803 0.738

Mean 0.760 0.811 0.810 0.803 0.757 0‘767H 0.844 0.876 0.871 0.865 0.825 0.838
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Using a value of thr = 0.3 we compare the proposed method with the blood
detection approaches in [16,4,17] by thresholding the red RGB, the saturation
HSV and the magenta CMYK channels, respectively. Results are summarized
in table 2. RGB and CMYK do not obtain a close mask, while HSV obtains a
fair estimation. Our approach obtains the best Jaccard index and Fl-score in
most cases and also has the best mean value. The proposed method obtains the
best mean value in both SBD and TCGA datasets. Figure 1 depicts an example
using a TCGA image.

Table 2. Jaccard index and Fl-score for different approaches to blood detection on
the SBD images. The proposed method uses thr = 0.3.

SBD images
Amount Jaccard index Fl-score

of blood R-RGB S-HSV M-CMYK ProposedHR—RGB S-HSV M-CMYK Proposed

0.1 0.0078 0.6984  0.5369 0.7152 || 0.0154 0.8010 0.6814 0.7911
0.2 0.0125 0.7484 0.5964 0.7936 || 0.0247 0.8447 0.7381 0.8588
0.3 0.0157 0.7605 0.6156 0.8037 || 0.0309 0.8569 0.7566 0.8677
0.4 0.0165 0.7819  0.6385 0.8078 || 0.0324 0.8727 0.7756 0.8720
0.5 0.0173 0.7914  0.6498 0.8181 || 0.0340 0.8800 0.7850 0.8850
0.6 0.0179 0.7978 0.6577 0.8646 || 0.0352 0.8848 0.7914 0.9204
0.7 0.0184 0.8041 0.6650 0.8531 || 0.0360 0.8893 0.7972 0.9121
0.8 0.0186 0.8087 0.6700 0.8391 || 0.0365 0.8925 0.8011 0.9023
0.9 0.0187 0.8104 0.6730 0.8076 || 0.0368 0.8938 0.8034 0.8777
Mean 0.0159 0.7780 0.6337  0.8114 || 0.0313 0.8684 0.7700 0.8763

TCGA images
Jaccard index Fl-score

Mean 0.0402 0.3299 0.1245  0.4342 || 0.0723 0.4667 0.2065 0.5648

a) Observed b) GT mask c¢) R-RGB d) S-HSV e) M-CMYK f) Proposed

Fig. 1. Blood detection comparison on a TCGA image. a) Observed image. b) Ground
truth manual mask. c-f) Blood mask obtained by thresholding different channels and
with the proposed method.

3.2 Effect of Blood in the Estimation of the Color-Vector Matrix

All the images in SBD were deconvolved and the obtained color-vector matrix
M for H&E was compared with the expected Mg using the euclidean distance.
Table 3 summarizes the results obtained according to the amount of blood in
the image for different values of thr. When the amount of blood in the image
is none or small, removing excessive pixels from the image is not beneficial, and
therefore the optimal thr is higher. However, in concordance with the previous
experiment, a value of thr = 0.3 obtains the best result for a realistic range of
the amount of blood.
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Table 3. Mean Euclidean distance between ground truth Mg and obtained M color-
vector matrix using the proposed method and different threshold values.

Amount Threshold value
of blood 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 0.1386  0.1248 0.0927 0.0826 0.0726 0.0775 0.0748 0.0653

0.1 0.0790 0.0852 0.0971 0.0699 0.0704 0.0699 0.0920 0.0893
0.2 0.0910 0.0768 0.0683 0.0661 0.1038 0.0994 0.1391 0.1500
0.3 0.0984 0.0760 0.0942 0.0826 0.1020 0.1498 0.1607 0.1720
0.4 0.0843 0.0966 0.0934 0.0992 0.1296 0.1489 0.1775 0.1881
0.5 0.1019 0.0985 0.1214 0.1264 0.1427 0.1663 0.1814 0.1903
0.6 0.1145 0.1210 0.1001 0.1342 0.1558 0.1724 0.1817 0.1953
0.7 0.1228 0.1016 0.1229 0.1294 0.1505 0.1842 0.1908 0.2034
0.8 0.1201 0.1165 0.1365 0.1391 0.1676 0.1862 0.1949 0.2009
0.9 0.1338 0.1287 0.1294 0.1588 0.1710 0.1844 0.1939 0.2110

Mean  0.1084 0.1026 0.1056 0.1088 0.1266 0.1439 0.1587 0.1666

Original

Ground
Truth M (H&E)

More permissive threshold

w
(2]
2
(%]
<
o
»
o
z=]

I N .
1 I . .
S -
S .
5 I ..
I I .
S I I .
a)

More blood in the image

Fig. 2. Qualitative comparison of color-matrices on an SBD image. a) Obtained color-
vector matrix M for different thresholds and amounts of blood in the image. The first
row corresponds to the clean image and the amount of blood increases with the row
number. The columns fix the threshold value, with zero being the most restrictive. The
grey dashed box indicates the column with a closer euclidean distance to the ground
truth. b) Obtained M for different state-of-the-art methods.

A visual example is depicted in figure 2.a. We represent the color-vector
matrix M as a tuple where each square shows the normalized color vector for
each stain, H and E, respectively. The effect of blood is most appreciated in the
E channel, which becomes reddish as the blood increases, and a higher thr is
chosen. The E channel changes to represent blood rather than eosin, and the H
channel shifts to represent the mix of H&E which are closer in color between
them than with blood.

Table 4 compares the results of the proposed method with thr = 0.3 with
state-of-the-art methods in terms of euclidean distance to the ground truth color-
vector matrix. Specifically, we compare our method with the methods by Ma-
cenko et al.[8] (MAC), the robust method by Vahadane et al.[19] (VAH), Alsub-
aie et al.[1] (ALS), the reference-prior based Bayesian methods using Simultane-
ous AutoRegressive (SAR) [5], Total Variation (TV) [13], and Super Gaussian
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Table 4. Mean Euclidean distance between ground truth Mgt and obtained M color-
vector matrix for different BCD methods. The proposed method uses thr = 0.3.

Amount Method
of blood MAC VAH ALS SAR TV SG BKSVD Proposed

0 0.2428 0.1019 0.3059 0.3118 0.3328 0.3119 0.0838 0.1248
0.1 0.3004 0.0972 0.3291 0.3118 0.3783 0.3119 0.2427 0.0852
0.2 0.3074 0.1116 0.3983 0.3118 0.3889 0.3119 0.2484 0.0768
0.3 0.3090 0.1227 0.3824 0.3118 0.3971 0.3119 0.2487 0.0760
0.4 0.3099 0.1340 0.4116 0.3118 0.4061 0.3119 0.2515 0.0966
0.5 0.3101 0.1398 0.4305 0.3118 0.4141 0.3119 0.2510 0.0985
0.6  0.3096 0.1893 0.4272 0.3118 0.4244 0.3119 0.2525 0.1210
0.7  0.3091 0.2494 0.4012 0.3118 0.4321 0.3119 0.2489 0.1016
0.8  0.3089 0.2710 0.5008 0.3118 0.4417 0.3119 0.2481 0.1165
0.9  0.3090 0.3002 0.5228 0.3118 0.4503 0.3119 0.2492 0.1287

Mean 0.3016 0.1717 0.4110 0.3118 0.4066 0.3119 0.2325 0.1026

(SG) [14], and the previous non-robust BKSVD [12]. The proposed method out-
performs previous methods, showing that the current state-of-the-art for stain
separation is not well adapted when there is blood on the image.

In figure 2.b, we present a qualitative comparison of the color-vector matrix
obtained by the different methods. Small amounts of blood affect most of the
methods. VAH works relatively well when there are small amounts of blood. The
Bayesian methods SAR, TV, and SG that use a reference prior are not strongly
affected by blood, but the estimated color-vector matrix remains close to the
prior. The proposed method solves the limitations of the base BKSVD and is
able to correctly estimate the stains in the image even with the presence of a
large amount of blood.

4 Conclusions

In this work, we have extended the BKSVD method for stain separation to
acknowledge the presence of blood on the images, obtaining a robust estimation
of the stains and making it possible to detect blood. This work proposed, for the
first time, the use of BCD techniques for blood detection, connecting the fields
of color-preprocessing and artifact detection, which benefits both fields. On the
one hand, the presence of blood hampers the estimation of the stains in the
images and the correct separation of the stains. On the other hand, considering
the appearance of the stains provides a framework that facilitates the detection
of blood.

The proposed approach has been tested on synthetic and real images con-
taining blood, showing promising performance. The method is able to accurately
estimate the color-vector matrix and separate the stains when there is blood in
the image, and correctly identify blood pixels.

We believe that our work remarks on an important issue of stain separation
techniques that are the basis for the color-preprocessing of histopathological
images. In future research, we plan to extend these results and assess how blood
impacts the color normalization and augmentation of histological images for
cancer classification.
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