
Automatic evolutionary design of Quantum

Rule-Based Systems and applications to Quantum

Reinforcement Learning

Manuel P. Cuéllar1*†, M.C. Pegalajar1† and C. Cano1†

1*Department of Computer Science and Artificial Intelligence,
University of Granada, C/. Periodista Daniel Saucedo Aranda s.n.,

Granada, 18014, Andalućıa, Spain.

*Corresponding author(s). E-mail(s): manupc@decsai.ugr.es;
Contributing authors: mcarmen@decsai.ugr.es; ccano@decsai.ugr.es;

†These authors contributed equally to this work.

Abstract

Explainable Artificial Intelligence is a research topic whose relevance has
increased in recent years, especially with the advent of large machine learning
models. However, very few attempts have been proposed to improve interpretabil-
ity in the case of Quantum Artificial Intelligence, and many existing Quantum
Machine Learning models in the literature can be considered almost as black
boxes. In this article, we argue that an appropriate semantic interpretation of a
given quantum circuit that solves a problem can be of interest to the user not
only to certify the correct behavior of the learned model, but also to obtain a
deeper insight into the problem at hand and its solution. We focus on decision-
making problems that can be formulated as classification tasks and propose a
method for learning Quantum Rule-Based Systems to solve them using evolu-
tionary optimization algorithms. The approach is tested to learn rules that solve
control and decision-making tasks in reinforcement learning environments, to pro-
vide interpretable agent policies that help to understand the internal dynamics
of an unknown environment. Our results conclude that the learned policies are
not only highly explainable, but can also help detect non-relevant features of
problems and produce a minimal set of rules.

Keywords: Quantum Rule-Based System, Quantum Reinforcement Learning,
Quantum Artificial Intelligence, Explainable Artificial Intelligence, Evolutionary
algorithms

1

1 Introduction

Quantum machine learning (QML) [1] lies at the intersection of classical machine
learning (ML) and quantum computing. It attempts to migrate classical ML to a
Quantum Computing paradigm and develop new techniques that take advantage of
quantum mechanisms such as superposition, entanglement, parallelism or tunneling
to solve supervised, unsupervised and reinforcement learning (RL) tasks. Successful
QML models inspired by classical ML are quantum Support Vector Machines (qSVM)
[2], quantum Neural Networks [3, 4], or quantum K-Means and other clustering meth-
ods [5], to mention just a few. On the other hand, other QML techniques that are not
inspired by classical ML have also stood out in tasks such as search and optimiza-
tion, such as the Variational Quantum Eigensolver (VQE), the Quantum Approximate
Optimization Algorithm (QAOA) or the Grover Search method [4]. The advantages
of QML techniques and models range from improved performance over their classical
counterpart [6], to improved efficiency (either in time or space) in solving a particular
task [7].

In this work, our experiments focus on Quantum Reinforcement Learning (QRL)
problems [8]. The most commonly used configuration in QRL encompasses a quan-
tum agent interacting with a classical environment where the agent implements an
action selection policy to return the best possible action to perform in an unknown
environment. Examples of these policies in the literature are the Grover opera-
tor [9], Variational Quantum Circuits (VQC) [10, 11] or the quantum analogue of
the classical Policy Iteration method [12]. In particular, VQC-based proposals are
heavily influenced by classical Deep Reinforcement Learning (DRL) methods using
neural networks, and are trained using DRL ideas such as Deep Q-Learning [13] or
Policy-Gradient algorithms as REINFORCE [10]. Different mechanisms such as data
re-uploading or deep variational layers have been studied in the literature [3, 13] with
outstanding results in performance [14] and space efficiency [15].

Other approaches attempt to use concepts coming from the area of Quantum
Computing to develop classical RL methods, although they cannot be considered in
the QRL field since they are not targeted at providing an implementation in quantum
computers or simulators. In the past decade, the work [16] proposed one of the first
quantum-inspired methods able to perform probabilistic action selection, by means of
using the quantum state formalism to represent a discrete action set together with the
probabilities to choose an action, and then applying amplitude amplification methods
to improve the policy. Other recent work in this category is [17], where a replay buffer
for Deep Q-Networks is built using the Grover operator to select the probabilities to
sample experiences for training. Recently, [18], it is proposed a framework to develop
different quantum-inspired models (Q-Learning, Deep Q-Networks, Policy Gradient
methods, etc.). The proposal is built considering partial observability of states and
probabilistic action selection under the formalism of quantum states and their collapse,
and the application in energy efficiency control tasks shows their superiority with
respect to classical approaches. Our approach lies in the QRL category, since the
proposed method attempts to create implementable quantum circuits able to be run
in quantum hardware.

2

Despite the important advantages in the field of QML (and QRL in particular),
we have detected a gap between the final VQC that solves a problem and the inter-
pretability/explainability of its behavior. Generally, VQCs used in QRL are chosen
due to their high problem generalization ability [10, 13, 14] or efficiency in space [15],
but their final behavior is difficult to interpret or explain. This fact makes it difficult
to certify the correctness of a solution except through the use of extensive data-driven
testing. In classical Artificial Intelligence, eXplainable Artificial Intelligence (XAI)
methods [19] attempt to develop techniques to extract a graphical or natural language
interpretation of the behavior of an ML model. In the particular case of RL, we find
approaches to find interpretable agent policies such as [20], which uses a trained policy
to generate a dataset to extract a decision tree able to explain the policy’behaviour.
Recently, another approach use evolutionary algorithms to evolve RL policies modelled
as CART-type decision trees [21], therefore creating interpretable policies. A different
approach using human-friendly prototypes has been proposed in [22] using a new neu-
ral network model specially designed to wrap the resulting prototypes. Other previous
proposals are also summarized in the review technical report [23]. However, in the case
of QML, the explainability of VQC models has not been studied as thoroughly as in
its classical counterpart, but we can find some recent progress in [24, 25].

Another different approach to improve the explainability of a quantum model con-
sists of designing the model with an internal structure that is highly interpretable, as is
the case of Quantum Decision Trees [26], Quantum Decision Forests [27] or Quantum
Rule-Based Systems [28, 29], all these models aimed at solving classification problems.
These models allow the extraction of rules once the correct behavior is learned, in the
form of ”If condition is true, then conclusion”. Our proposal is inspired by the later
works [28, 29], where an original model is proposed to represent a Rule-Based System
in a Quantum Rule-Based Database, along with the mechanisms to deal with uncer-
tainty. In [28], the structure of a Quantum Rule-Based System (QRBS) is proposed
as a quantum circuit containing rules implemented with CNOT and Toffoli gates to
derive intermediate facts and conclusions, applied to a proof-of-concept classification
task in the field of medicine. The later work [29] explored the benefits of quantum
computing as a representation and inference mechanism for a QRBS under data uncer-
tainty. The authors studied the formulation of a QRBS from the point of view of
knowledge-based systems, so they did not develop a learning process for QRBS in a
data-driven environment.

In this work, we propose a QRBS learning mechanism to solve classification tasks,
with applications in the field of QRL. Unlike classical classification tasks in supervised
learning, where an existing dataset is known in advance, in RL and QRL there is no
prior data and the models learn online through interaction with an unknown environ-
ment. This setup makes the learning problem more difficult than in the supervised
learning approach. Our proposal aims to find a QRBS capable of optimally solving a
reinforcement learning problem. To do so, we formulate the task of learning a QRBS
as a binary optimization problem and solve it using evolutionary computation algo-
rithms [30]. We experimentally demonstrate that the rules in the learned QRBS help
explain the agent’s behavior in solving the action selection task, which is useful not
only to certify the correctness of the learned behavior by a human user, but also to

3

obtain a deeper knowledge about the structure of the problem. The remaining of the
manuscript is structured as follows: Section 2 describes the fundamentals of the meth-
ods used in our approach. After that, Section 3 explains the proposal to represent and
learn a QRBS to solve RL problems. Then, Section 4 shows the results obtained in
state-of-the-art reference RL scenarios, and the 5 section concludes.

2 Methods

2.1 Foundations of Rule-Based Systems for classification

A traditional Rule-Based System (RBS) [31] comprises three components: a) a knowl-
edge base containing a set of rules; b) a working memory that contains known and
inferred information; and c) an inference engine to derive new knowledge from exist-
ing data in the working memory. The early foundations of an RBS come from the field
of logic, where each rule is modeled as an implication A→ C (A is a well-formed for-
mula called antecedent, C the consequent), and an inference mechanism such as Modus
Ponendo Ponens is used to infer the fact C once A is in the working memory. Some
RBS representation models, such as decision trees [32], include additional constraints
on the antecedent, such as A must be in conjunctive normal form of atoms. On the
other hand, contemporary inference engines must take into account not only classi-
cal inference tools, but also mechanisms to address imperfect knowledge and conflict
resolution, e.g., contradictory derivations.

A classification problem contains two types of data: a set of input features F =
{F i} where each feature F i can contain a value of the set {vij}, and an output class C
that contains a discrete set of labels {cl}. An RBS for classification contains rules of the
manner shown in Equation 1. The inference process begins with the input features of
an observation in the working memory and evaluates each rule to distinguish a possible
set of outputs to label observation in one class or another, considering the conflict
resolution mechanisms and the treatment of uncertainty of the inference engine.

F i1 = vi1j1 ∧ ... ∧ F
in = vinjn → C = cl (1)

The proposal of this work creates a Quantum Rule-Based System that contains
rules inspired by the structure shown in the equation 1, where the antecedent is in
conjunctive normal form and the consequent contains a single derivation. As in [28], we
rely heavily on Controlled-NOT (CX) and Toffoli gates, although we extend the model
to Multiple Controlled-NOT (MCX) gates to implement each rule. Thus, the mapping
from a classical RBS to a QRBS will be designed as follows: a) the knowledge base of
the QRBS will be implemented in a quantum circuit that contains a sequence of MCX
gates, one for each rule of the system; b) the working memory will be the quantum
state of the system; and c) the inference engine will be implemented as the natural
evolution of an initial quantum state through the circuit. A detailed description of the
proposal is provided in Section 3.

4

2.2 Reinforcement Learning

Reinforcement learning [33] is one of the main types of learning in Machine Learning.
Unlike supervised and unsupervised machine learning, in RL there is no prior dataset
to learn from. Instead, the learning process takes place dynamically over time, through
the interaction between the learner (agent) and an unknown environment. Figure 1
shows the main cycle of an RL task: At each time instant t, the agent perceives the state
of the environment st as input. It then selects an action at from an available action
set and performs the action in the environment. Finally, the environment evolves from
state st to state st+1 based on its current state and the agent’s action, and returns
an immediate reward rt+1 to inform the agent about the action’s suitability in the
context of st. This reward may depend on the initial state st, the final state st+1, the
agent’s action at or a combination of the three and is represented as rt(st, at, st+1).
Generally, the environment is stochastic and its behavior is assumed to be governed by
an underlying unknown Markov Decision Process [34] of the environment. Therefore,
it holds the First-Order Markov assumption, and the agent’s goal is to find a correct
policy for action selection π(at|st) that maximizes the cumulative reward Rt over time
as it is shown in equation 2, where γ ∈ [0, 1] is called discount factor to prevent the
cumulative reward from going to infinity while training the agent.

Fig. 1: Cycle of Reinforcement Learning

Rt = rt(st, at, st+1) + γRt+1 (2)

In this work, we learn a Quantum Rule-Based System as a suitable agent’s pol-
icy capable of providing optimal performance in a given RL environment. In our
experiments, we assume a Quantum Reinforcement Learning setup where the agent
implements a quantum policy and the environment is classical.

2.3 Evolutionary computation and the CHC algorithm

Evolutionary Algorithms [35] are a subset of gradient-free metaheuristic optimiza-
tion methods whose behavior is inspired by natural phenomena; for example Genetic
Algorithms (GA) whose principles follow the simulation of Darwinian evolution. In
summary, a GA comprises a set of candidate solutions (called population) uniquely

5

determined by their genes (free parameters to optimize). In each iteration of a GA
(called generation), some members of the population are selected and grouped gener-
ally in pairs to form the parents set. These parents are usually chosen using a selection
operator that follows the principle of survival of the fittest, i.e. those individuals that
are best adapted to their environment (that is, those that best solve the optimization
problem) are more likely to transmit their genetic information to future generations.
The parents are then combined using a recombination/crossover operator to create
a new population (offspring) containing genetic information from their parents and,
additionally, possible mutations introduced by a mutation operator with certain prob-
ability. After that, the offspring replace the initial population and a new evolutionary
cycle begins. Being inspired by evolutionary principles, the population is expected to
increase its quality every generation to solve the optimization problem and eventually
provide an optimal solution. Evolutionary algorithms, and especially GAs, are consid-
ered a type of global search methods and have been successfully used in a wide variety
of problems over the last two decades [30].

The CHC evolutionary algorithm [36] is a type of GA with special focus on finding
a balance in exploration of the solution space and exploitation to achieve convergence.
It was initially designed to solve binary optimization problems, although it has been
adapted to other types of encoding in [37, 38]. CHC achieves a balance in population
diversity and convergence through the design of four components: a) Elitist selection
to create the population of the next generation using the best individuals from both
the parent and offspring populations; b) The use of the HUX uniform crossover to
generate two children from two parents as different as possible to improve exploration;
c) An incest prevention mechanism to prevent two genetically similar parents from
recombining; and d) Reinitialization to restart the population once it has converged
to a local optimum.

Figure 2 shows the main flow of the CHC algorithm, where N is a positive even
integer hyperparameter containing the population size, L if the length of the solutions
(i.e., the number of free variables to be optimized), d is the recombination thresh-
old for the incest prevention mechanism, M is a positive integer hyperparameter to
control the selective pressure in the reinitialization mechanism, and r ∈ (0, 1) is the
last hyperparameter that controls elitism and the recombination threshold after diver-
gence. The difference(x,y) method implements a distance measurement to evaluate
how much the solutions x, y differ. In the case of binary optimization, the method is
usually the Hamming distance which returns the number of pairwise variables/genes
with different values in x and y. Finally, the procedure HUX(x,y) is the recombination
method for solutions x, y. It creates a copy of each solution c1 = x, c2 = y, and swaps
exactly half of the differing genes between both solutions c1, c2 at random.

In this work, we use the classical binary evolutionary algorithm CHC as an opti-
mization method to learn optimal Quantum Rule-Based Systems in RL problems, as
a suitable procedure that maintains a balance in the exploration and exploitation of
the solution space. The main idea is to design a binary encoding mechanism capable of
representing a QRBS into a solution, and to use the algorithm to evolve a population
of QRBS solutions evaluated in RL environments to assess their performance.

6

Fig. 2: Flow diagram of the Binary CHC optimization algorithm

3 Description of the proposal

Our proposal focuses on the automatic learning of a QRBS that solves a given clas-
sification problem. To do so, the structure of a Quantum Rule and a QRBS used in
this work are first described in Subsection 3.1. After that, Subsection 3.2 explains the
representation of QRBS to be optimized using evolutionary binary optimization algo-
rithms, and finally Subsection 3.3 particularizes the approach to solve reinforcement
learning problems.

3.1 Rule design

The article [28] proposed a model to represent a general Quantum Rule-Based System
in a quantum circuit based on the extensive use of CNOT and Toffoli gates, along with
intermediate variables implemented as additional qubits for the inference process. In
our proposal, we simplify the process to define the set of rules that provides the final
result, since our goal is to solve data-driven classification tasks with no intermediate
facts to derive. We also constrain the QRBS rules to have the form described in
Equation 1, to reduce the search space to find a QRBS that solves a problem. Taking
these considerations into account, our approach defines a quantum rule as a single
multiple controlled NOT gate (MCX) with variable control states with values 0 or 1.
To use an MCX gate as a quantum rule, we distinguish two types of qubits:

� Input qubits encoding classical input data, that can be used as control qubits. The
number of input qubits depends on the nature of the encoded classical data: for
continuous values or binary information, a single qubit will be used. On the other
hand, discrete values will be enumerated and transformed into a binary number. In

7

this case, the number of qubits will be equal to the number of bits needed to encode
the discrete value.

� Output qubits, whose number is equal to the number of class labels in the classifi-
cation task. Therefore, an MCX targets to a specific output qubit (class label) that
is controlled by several input qubits.

qSize0

qSize1

qIntensity

qLow

qHigh

1cLow
1cHigh

π*x_0
RX

π*x_1
RX

π*x_2
RX

0

0

Fig. 3: Example of classical data encoding and two quantum rules

The quantum embedding mechanisms considered in this work to transfer classi-
cal data to quantum states are basis encoding for discrete/binarized data or angle
encoding for continuous values, although other embedding techniques such as ampli-
tude encoding or Q-Sample [39] could also have been selected. We implement both
encoding techniques as rotation gates Rx(θπ), where θ ∈ [0, 1]. An arbitrary example
of quantum encoding and two possible rules is shown in figure 3, considering a dis-
crete input characteristic Size with four possible values {Small 7→ |00⟩ ,Medium 7→
|01⟩ , Large 7→ |10⟩ , Extra−Large 7→ |11⟩}, a continuous input value Intensity∈ [0, 1],
and two possible outcomes Danger∈{Low,High}. The first MCX gate implements the
rule If |Size0⟩ = |1⟩ and |Intensity⟩ = |0⟩ then |Low⟩ = |1⟩, and the second MCX can
be read as If |Size0Size1⟩ = |10⟩ and |Intensity⟩ = |1⟩ then |High⟩ = |1⟩. We can see
that both rules fit into the structure of Equation 1. However, if translated into natural
language by interpreting the quantum embedding mechanism, we get If (Size=Large or
Size=Extra-Large) and Intensity=0 Then Danger=Low for Rule 1, and If Size=Large
and Intensity=1 Then Danger=High for Rule 2. Therefore, even with the restrictions
introduced by Equation 1, the natural interpretation of the rules in the QRBS could
contain a richer set of operators in the antecedents to form more complex rules.

According to the example, the complete Quantum Rule-Based System will be com-
posed of an initial subcircuit containing the quantum embedding mechanism and the
antsatz as a sequence of MCX operations where each MCX implements a rule. The
inference of the possible outcomes is governed by the effect of each MCX on the cor-
responding output qubits of the quantum state, which will be measured as a final
step.

8

3.2 QRBS optimization using evolutionary algorithms

We propose to use gradient-free binary optimization algorithms to learn a suitable
QRBS that solves a given classification problem. In particular, we use the CHC binary
evolutionary algorithm in this work because it is a global search procedure that main-
tains a balance in solution space exploration and convergence. The CHC algorithm is
intended to evolve a population where each solution is a binary-encoded QRBS that
is evaluated according to its performance in solving the classification task.

The key problem to solve here is to find a compact and necessarily injective map-
ping from a sequence of binary digits (solution in the population) to a quantum circuit
that implements the antsatz of the encoded QRBS: Compact to reduce the search
space as much as possible, and injective so that each solution can be translated into
a unique QRBS. However, we are constrained by the limitation that the length of
the solutions in a typical population-based optimization algorithm is fixed (parameter
L of the CHC algorithm), so that all candidate solutions contain the same number
of parameters to optimize. Since we do not know in advance the optimal number of
rules of the target QRBS, we are forced to set a value NR for the maximum number
of rules allowed for a QRBS as a hyperparameter, and to introduce a mechanism to
activate/deactivate rules in the binary representation. A similar procedure must be
established to select which input qubits will be used for the antecedent of each rule
and its control value. With these considerations, our proposal covers the following
design to encode a QRBS in a solution in the population, assuming NI input qubits
and NO possible class labels:

� A QRBS is implemented as a concatenated sequence of NR rules. It contains a fixed
structure with NR ∗ (2 ∗NI + ⌈log2No⌉+ 1) bits.

� Each rule i in a QRBS is encoded as a concatenated sequence of binary digits [AiCi],
where Ai encodes the antecedent and Ci the consequent. The length of a sequence
that implements a rule is set to 2 ∗NI + ⌈log2No⌉+ 1 binary values.

� The antecedent Ai of the i-th rule contains 2 ∗ NI bits with the structure
([ai1, c

i
1], [a

i
2, c

i
2], ..., [a

i
NI
, ciNI

]), where aij has the value 1 if the j-th input qubit is

active in the rule and the value 0 otherwise , and cij is the control value in case the
qubit is used.

� The consequent Ci of the i-th rule is encoded as a bit sequence [ai, ti1, t
i
2, ..., t

i
⌈log2No⌉],

where ai contains the value 1 if the i-th rule is active and therefore a member of the
QRBS, and the value 0 otherwise. The remaining bits from ti1 to ti⌈log2No⌉ contain
the binary representation of the position of the output qubit that is used as a target
in the MCX gate in case the rule is active, in the range {0, ..., No − 1}.

This design is compact considering the limitations regarding the fixed length of
all solutions in the population, and it is also injective. Furthermore, it allows the
representation of any possible QRBS containing a maximum number of rules NR.
However, if the number of class labels is not a power of two, encoding the target qubit
in a solution could result in invalid targets. In these cases we solve this situation by
considering the rule as not active. As an example, the following sequence is a possible
representation of Rule 1 in the QRBS in Figure 3: [[1, 1], [0, 1], [1, 0], [1, 0]]. The first
pair [1, 1] means that the first input qubit Size0 is active with the control value 1.

9

The second pair [0, 1] translates to the fact that the qubit Size1 is not used in the
rule (the control value is unused in this case), and the third pair [1, 0] activates the
qubit Intensity with control value 0. The consequent is encoded with the last pair
[1, 0], which means that the rule is active and targets to the qubit Low. This sequence
could be concatenated with [[1, 1], [1, 0], [1, 1], [1, 1]] as the representation of Rule 2 to
define the full QRBS with NR = 2 rules in the figure.

3.3 Evaluation of a Quantum Rule-Based System for
Reinforcement Learning

In our experiments, the CHC evolutionary algorithm is used to evolve a population of
QRBS containing the structure defined in the previous section as a sequence of binary
digits. Evaluating each QRBS in a reinforcement learning environment is similar to
a classification task. In RL, the QRBS implements the agent policy and must return
a selected action at to be executed if state st is perceived at time t. In this work,
we assume a deterministic policy where the action whose output qubit contains the
maximum expected probability of returning |1⟩ is selected. We achieve this by using the
σz observable in the range [−1, 1] over the output qubits. We name |ψt

o⟩ = |qt1qt2...qtNo
⟩

to the partial quantum state corresponding to the output qubits in a t-th arbitrary
time instant. We measure the output qubits and calculate the expectation of each
action as shown in Equation 3. After that, the action chosen by the agent is obtained
using Equation 4, that is, the action with the closest value to -1 is selected and, if two
or more actions have the same expectation, the first action with such value is selected.

ActionSet = (⟨ψt
o|σzINo−1 |ψt

o⟩ , ⟨ψt
o| IσzINo−2 |ψt

o⟩ , ..., ⟨ψt
o| INo−1σz |ψt

o⟩) (3)

action = min{argmin{ActionSet}} (4)

Since an RL environment is stochastic, multiple QRBS runs and tests are required
to evaluate the true performance of a given policy. A series of predefined T episodes are
executed between the agent’s QRBS and the environment to calculate the suitability
of a solution. The performance of the final agent is calculated as the average of the
cumulative reward obtained for each episode as shown in Equation 5, where sjt is the
perceived environment state at time t of the j-th episode, and πQRBS(a

j
t |s

j
t) is the

action selected by the QRBS under evaluation in each state perception.

fitness(QRBS) =
1

T

T∑
j=1

∑
t=0

rjt (s
j
t , πQRBS(a

j
t |s

j
t), s

j
t+1) (5)

Each QRBS in the population is evaluated based on its fitness value. In a RL
problem, it is desirable to obtain policies that provide the maximum return, so the
objective of the proposed CHC method is to maximize the fitness of the solutions.

10

4 Experiments

We test the proposal in simulated RL and quantum environments. The goal of the
simulations is to experimentally show the capabilities of our approach to learn inter-
pretable optimal policies in quantum reinforcement learning scenarios, provided as a
Quantum Rule-Based System. To that end, the binary CHC evolutionary optimization
algorithm was implemented in Python as an agent policy learning mechanism using the
representation model shown in Section 3.2, and the policy evaluation was performed
in a quantum simulation software using Tensorflow Quantum v0.7.2. The experiments
were run on a desktop computer with Intel(R) Core(TM) i5-9600K CPU at 3.70 GHz
with 32 GB of RAM equipped with an NVIDIA GeForce RTX 2060 GPU to accelerate
the quantum circuit simulation. The RL environments selected for experimentation
are described in Subsection 4.1. Then, Subsection 4.2 shows the experimental setup.
Subsection 4.3 analyzes and discusses the results, and finally Subsection 4.4 provides
a comparison with classical (non-quantum) RL interpretability models.

4.1 Description of Reinforcement Learning environments and
preprocessing

We tested the proposal in RL simulation environments of the software Gymnasium
from the Farama Foundation (formerly Gym from OpenAI), since it is an extended
testbed widely used for research and training in RL. The software is freely available
online at https://gymnasium.farama.org for the Python programming language. The
data reported in the OpenAI’s Gym Leaderboard at https://github.com/openai/gym/
wiki/Leaderboard to solve the environments is used as the main baseline to assess the
suitability of our approach. We selected five environments with discrete action sets
to test our approach as an action classification task, although the structure of the
environment states varies from discrete to continuous features:

� The FrozenLake environment (Figure 4a) simulates a discrete 4x4 grid world con-
taining traversable cells and holes where the agent could fall (16 possible states).
The agent starts at the top left cell (0,0) and the goal is to reach the bottom right
cell (3,3) without falling into the holes. A simulation ends if the agent reaches the
goal or falls into a hole. The agent receives a reward of +1 if it succeeds in its
task and 0 otherwise. The perception at each time step is the cell where the agent
is located, and it can decide between four actions to move up, down, left or right.
There are two versions of the environment: Slippery, where the agent could end
up in a different cell than the desired one if it slips, and Non-Slippery, where the
next cell is completely determined from the current cell and the agent’s action. In
our simulations, we use the non-slippery version for illustrative purposes. Therefore,
the environment is considered solved if the agent can reach the target cell with the
policy learned in one simulation of a given policy.

� The BlackJack environment (Figure 4b) simulates a simplified version of the clas-
sic casino game Black Jack. The value of face cards (Jacks, Queens, Kings) is 10,
numerical cards from 2 to 9 have a value equal to their number and Aces can count
as 11 or 1. A game begins with the dealer’s card visible. The agent can hit a new

11

https://gymnasium.farama.org
https://github.com/openai/gym/wiki/Leaderboard
https://github.com/openai/gym/wiki/Leaderboard

card until the sum exceeds 21 or stop (2 actions). The dealer then draws cards until
reaching a total value of 17 or more. The winner is the one whose sum is closest to
21 without exceeding this value and, if both exceed, there is a tie. During the game,
the agent perceives the state as a tuple (player’s sum, dealer’s value, ace) where ace
contains 1 if the player has a usable ace and 0 otherwise (704 possible states). The
reward is provided to the agent at the end of a game and contains a value of +1
for a win, -1 for a loss, and 0 for a tie. We consider the environment is solved if the
agent obtains an average cumulative reward of -0.05 or higher over 1000 simulated
games with the same policy.

� The CartPole environment (Figure 4c) is a classic control problem in which the
end of a pole is connected to a 2-D cart. The agent controls the cart by pushing left
or right at each time instant with a constant force (2 actions). At each time step,
the agent’s perception contains the position of the cart on the screen in the range
[-4.8, 4.8], the pole angle in the range [-0.418, 0.418] rads, and the speed of the cart
and the angular velocity of the pole in the range (−∞,∞). Therefore, the state
space contains four features with continuous values. The goal is to keep the pole on
top without falling (absolute value of the pole angle less than 0.21 rads) for as long
as possible. The agent receives a reward +1 every time instant the pole is up, and
0 if the pole falls or the cart leaves the screen. The simulation ends when the pole
falls, the cart leaves the screen, or 500 time steps are simulated. The environment
is considered solved if the agent can maintain the pole for an average of 500 time
steps over 100 simulations using the same policy.

� The MountainCar environment (Figure 4d) is another classic control problem.
A 2-D car is stochastically located in a valley between two hills. It can take one
of three actions to move left with constant acceleration, move right with constant
acceleration, and do not accelerate. The car’s goal is to plan accelerations to reach
the top of the right hill in the minimum time, taking into account the car’s position
along the x-axis in the range [-1.2, 0.6] and the speed of the car in the range [-
0.07, 0.07]. Therefore, the state space contains two continuous features. The reward
obtained by the agent is -1 for each time step that the car is not in the target state,
and the simulation ends either if the target state is reached, or after 200 time steps.
The environment is considered solved if the agent obtains an average cumulative
reward of -110 in 100 simulations with the same policy.

� The Acrobot environment (Figure 4e) is another control problem. Here, two links
are connected by a joint. One end of one of the links is in a fixed position but
can rotate. The joint between both links can be controlled by an agent applying
a torque of -1 N m, +1 N m or 0 N m (3 actions), making the links to swing.
The objective of the environment is to plan a sequence of torques to be applied so
that the links reach a certain height. If θ1, θ2 are the relative angles of the links,
the agent perceives cos(θ1), sin(θ1), cos(θ2), sin(θ2), ωθ1 , ωθ2 at each time instant,
where ωθ1 ∈ [−4π, 4π] and ωθ2 ∈ [−9π, 9π] are the angular velocities of both joints.
Thus, the agent’s perception contains 6 features with continuous values. For each
instant in which the system does not reach a target state, the agent receives a
reward of -1. The simulation terminates if a target state is not reached after 500
time steps, or if a target height is achieved, defined as −cos(θ1)−cos(θ2+θ1) > 1.0.

12

(a) FrozenLake (b) BlackJack (c) CartPole (d) MountainCar (e) Acrobot

Fig. 4: Snapshots of environment’s rendering using Farama Foundation’s Gymnasium
software

Unlike previous environments, there is no specific criteria to indicate when the
environment is considered resolved for Acrobot. However, in this work we established
the criterion to obtain a minimum average cumulative reward of -80 in 10 simulations
with the same policy, as a balance between the computational time required to
run our experiments and the best solutions reported in the Open AI Gym’s online
leaderboard.

The agent’s state perception requires preprocessing for all environments, so that
it can be fed as input to the QRBS policy under evaluation. To that end, quantum
embedding is designed in our experiments using angle encoding with gates Rx(θπ)
with θ ∈ [0, 1]. The table 1 shows the preprocessing applied to each state component
for the environments studied, along with the number of qubits needed to represent
the information. We consider three types of preprocessing: a) Binarization, which
transforms a non-negative integer to its binary representation; b) Scaling, which scales
data in a range [l, u] to the interval [0, 1], and c) Arctan, which calculates the arctan of
a value and performs a rescaling from [−π/2, π/2] to [0, 1]. With these considerations
in mind, the number x in parentheses in the cells of the Type column means the
number of different values that the feature in column 2 can contain, from 0..x−1, and
the number in parentheses in the Preprocessing column represents the number of bits
required to binarize the state characteristic value.

Each preprocessed feature is encoded into a quantum state using the number of
qubits shown in the Required Qubits column. The total number of qubits used in each
policy is equal to the sum of the number of qubits for each environment’s feature plus
the number of possible actions in the environment, since we establish a single qubit
to determine whether each action is executed or not. Therefore, the total number of
qubits required for a policy to solve FrozenLake is 8, for BlackJack is 12, it is 6 for
CartPole, 5 for MountainCar, and 9 for Acrobot .

4.2 Experimental settings

Before running the final experiments, we performed a pre-experimentation to find
suitable hyperparameters capable of solving each problem, using a classic trial-and-
error procedure. The final hyperparameters used to learn each environment are shown
in Table 2, where column 1 describes the environment, column 2 shows the population
size of the CHC algorithm, column 3 sets the number of copies of the best solution

13

Table 1: Environment’s states preprocessing for quantum embedding

Environment Feature Type Proprocessing Required qubits

FrozenLake Cell Discrete(16) Binarization(4) 4
BlackJack Player sum Discrete(32) Binarization(5) 5

Dealer Value Discrete(11) Binarization(4) 4
Ace Discrete(2) Binarization(1) 1

CartPole Position [−4.8, 4.8] Scale 1
Velocity (−∞,∞) Arctan 1
Angle [−0.418, 0.418] Scale 1
Ang. Velocity (−∞,∞) Arctan 1

MountainCar Position [−1.2, 0.6] Scale 1
Velocity [−0.07, 0.07] Scale 1

Acrobot cos(θ1) [−1, 1] Scale 1
sin(θ1) [−1, 1] Scale 1
cos(θ2) [−1, 1] Scale 1
sin(θ2) [−1, 1] Scale 1
ωθ1 [−4π, 4π] Scale 1
ωθ2 [−9π, 9π] Scale 1

to reinitialize the population after the divergence of the CHC algorithm, column 4
prints the percentage of random changes in the copies of the best solution after the
divergence in CHC, column 5 indicates the maximum number of rules allowed in
a QRBS and column 6 remarks the number of policy evaluations to calculate the
average performance of the solutions. We performed 30 runs of the CHC algorithm to
learn each environment and to be able to analyze the results statistically. Each run
was stopped if a QRBS in the population solved the environment, or if a maximum
of 1000 iterations of the CHC algorithm was reached (except for the MountainCar
environment, which was set to 500 iterations to reduce execution time).

Table 2: Experimental settings to solve each environment

Environment Population size Elitism (M) Elitism (r) QRBS rules Policy tests

FrozenLake 50 1 0.5 4 1
BlackJack 100 5 0.5 10 1000
CartPole 50 5 0.5 6 100
MountainCar 20 10 0.35 8 100
Acrobot 50 5 0.5 6 10

4.3 Results

The table 3 shows a summary of the results obtained to learn a QRBS implementing
a quantum agent policy to solve each environment. We analyze the average cumula-
tive reward obtained in the 30 runs and its standard deviation (rows 2-3) considering
a discount factor γ = 1.0, the best and worst cumulative rewards obtained in each
problem (rows 4-5), the average, standard deviation and the minimum number of rules
of the QRBS learned in all experiments (rows 6-8), the average number of iterations

14

Table 3: Summary of results to solve each environment

FrozenLake BlackJack CartPole MountainCar Acrobot

Mean Rt 0.70021 −0.03630 500.0030 −111.83820 −77.90330
S.d. Rt 0.458 0.014 0.00 4.226 1.680
Best Rt 121 0.0081 500.0030 −107.5101 −73.5001
Worst Rt 09 −0.0501 500.0030 −118.2301 −80.0002
Mean #rules 3.333 4.333 3.467 4.818 3.700
S.d. #rules 0.471 1.600 0.921 0.716 1.130
Minimum #rules 3 2 2 4 2
Mean #iterations 504.000 16.967 3.867 274.250 48.367
S.d. #iterations 359.975 9.628 3.658 166.142 39.265
Mean time (s.) 5155.947 340.486 75.616 10044.265 4038.083
S.d. time (s.) 3674.817 169.372 62.100 6196.867 1892.480

qRow0

qRow1

qColumn0

qColumn1

qLeft

qDown

qRight

qUp

1cLeft
1cDown
1cRight
1cUp

π*x_0
RX

π*x_1
RX

π*x_2
RX

π*x_3
RX

X

0

0

0

0

Fig. 5: QRBS obtained for the FrozenLake environment with best performance and
minimum number of rules

required by the CHC algorithm to obtain the optimal solution and its standard devi-
ation (rows 9- 10), and the average and s.d. calculation time in seconds required for
a single execution on rows 11-12. The subscripts in rows 2,4,5 indicate the number of
runs that provided a QRBS that solves the environment, and the number of times the
best and worst performance were obtained, respectively.

The first thing we may notice in Table 3 is that all the runs were able to solve
the environments, except for the cases of FrozenLake and MountainCar. This might
be expected as they are the least informed environments about the performance of
a given policy, and an extensive exploration is required to find a solution. However,

15

Algorithm 1 Interpretation of rules of the FrozenLake QRBS in Figure 5

1: if Row = 2 and Column ≥ 2 then (Rule 2)
2: Go Down
3: end if
4: if Row < 2 and Column = 2 then (Rule 3)
5: Go Down
6: end if
7: By default, Go to the Right (Rule 1)

qAce

qDealerValue0

qDealerValue1

qDealerValue2

qDealerValue3

qPlayerSum0

qPlayerSum1

qPlayerSum2

qPlayerSum3

qPlayerSum4

qHit

qStop

1cHit

1cStop

π*x_0
RX

π*x_1
RX

π*x_2
RX

π*x_3
RX

π*x_4
RX

π*x_5
RX

π*x_6
RX

π*x_7
RX

π*x_8
RX

π*x_9
RX

X

0

0

Fig. 6: QRBS obtained for the BlackJack environment with best performance and
minimum number of rules

all environments were solved in at least 20 separate experiments of 30. We remark
that CartPole was solved optimally in all runs with very few CHC iterations. We can
also verify an increase in the average number of CHC iterations and the execution
time required to solve each environment, according to its complexity and the number
of times the environment was solved. For this reason, FrozenLake and MountainCar
hold the maximum number of average iterations and computational time required for
a single CHC execution. It is also striking that the average and minimum number of
rules used by the best QRBS found in each run is usually low, which means that the

16

Algorithm 2 Interpretation of rules of the BlackJack QRBS in Figure 6

1: if Ace = 0 and PlayerSum < 16 then (Rule 2)
2: Do Hit
3: end if
4: if DealerV alue = 9 and PlayerSum = 10 then (Rule 3)
5: Do Hit
6: end if
7: By default, Do Stop (Rule 1)

Algorithm 3 Interpretation of rules of the CartPole QRBS in Figure 7

1: if AngleV elocity = 0 then (Rule 1)
2: Push to the Left
3: end if
4: if Angle = 1 then (Rule 2)
5: Push to the Right
6: end if

Algorithm 4 Interpretation of rules of the MountainCar QRBS in Figure 8

1: if V elocity = 1 then (Rule 1)
2: Accelerate to Right
3: end if
4: if V elocity = 0 then (Rule 2)
5: Do not accelerate
6: end if
7: if Position = 1 then (Rule 3)
8: Do not accelerate
9: end if

10: if V elocity = 0 then (Rule 4)
11: Accelerate to Left
12: end if

Algorithm 5 Interpretation of rules of the Acrobot QRBS in Figure 9

1: if ωθ2 = 0 then (Rule 1)
2: Apply Negative Torque
3: end if
4: if sin(θ1) = 0 and sin(θ2) = 0 then (Rule 2)
5: Apply Positive Torque
6: end if
7: if ωθ2 = 1 then (Rule 3)
8: Apply Positive Torque
9: end if

17

qPosition

qVelocity

qAngle

qAng.Velocity

qLeft

qRight

1cLeft
1cRight

π*x_0
RX

π*x_1
RX

π*x_2
RX

π*x_3
RX

0

0

Fig. 7: QRBS obtained for the CartPole environment with best performance and
minimum number of rules

qPosition

qVelocity

qLeft

qNoAcceleration

qRight

1cLeft
1cNoAcceleration
1cRight

π*x_0
RX

π*x_1
RX

0

0

0

Fig. 8: QRBS obtained for the MountainCar environment with best performance and
minimum number of rules

strategy designed to activate/deactivate rules in a QRBS during the learning process
is effective and can provide simple solutions with minimum size. It is especially notable
in the cases of BlackJack , CartPole and Acrobot, where only two rules can be used to
solve the environments. However, the solution with two rules in the latter environment
is not the one that provides the best Rt.

Figure 10 provides the evolution of Rt in all problems studied to give support to the
previous analysis. The X axis contains the number of the current CHC iteration, and

18

qCos_1

qSin_1

qCos_2

qSin_2

qAngleVel_1

qAngleVel_2

qNegTorque

qNoTorque

qPosTorque

1cNegTorque
1cNoTorque
1cPosTorque

π*x_0
RX

π*x_1
RX

π*x_2
RX

π*x_3
RX

π*x_4
RX

π*x_5
RX

0

0

0

Fig. 9: QRBS obtained for the Acrobot environment with best performance and
minimum number of rules

the Y axis the Rt value. We remark in blue the average of the mean return of solutions
in the CHC population at each iteration, considering the unfinished experiments only.
Also, we highlight in orange the average return of the best solutions found in all
executions at each iteration. Subfigures 10b and 10c correspond to the BlackJack
and CartPole environments, which were solved in fewer iterations with our approach.
As it is expected, the populations increase their quality over time, and so it does
the better solution returned. The case of FrozenLake in Figure 10a should also be
mentioned due to the high variability in the value of the best return and the almost
constant population Rt value. This problem was unsolved in 9 of 30 executions, which
justifies the high variability in the best return. Also, since the return is binary (Rt =
0 or Rt = 1), the population return remains constant until a solution that solves
the environment is found. The most interesting behaviour to us is provided by the
problems MountainCar and Acrobot in Subfigures 10d and 10e. Although the Rt

values of the best solution have a regular behaviour and increase with the number
of iterations, we observe a high variability in the average Rt with regards to the
population. This behaviour is a direct consequence of the CHC algorithm components
and, in particular, the reinitialization step after divergence in Figure 2. When the

19

(a) FrozenLake (b) BlackJack

(c) CartPole (d) MountainCar

(e) Acrobot

Fig. 10: Evolution of the average Return (Rt) and its standard deviation in all experi-
ments (Blue: Average return for the whole CHC’s populations; Orange: Average return
for the best solution in the populations).

20

CHC algorithm converges to a local optimum, the elements in the population are
reinitialized to random solutions. This fact decreases substantially the quality of the
solutions in the population until a few iterations are executed.

To deepen into the analysis of the best solutions found, Figures 5-9 plot the QRBS
obtained for each problem with best Rt and minimum number of rules (if two or more
QRBS obtained the same performance). A possible interpretation for these QRBS is
provided in the rule sets in Algorithms 1-5. These rules must be interpreted after apply-
ing preprocessing. Additionally, the supplementary material for this article includes
five videos containing five rendered runs for each environment using these QRBS as
agent policies, to evaluate each QRBS visually in practice.

The first thing that catches our attention in Figure 5 corresponding to the QRBS
of FrozenLake is Rule 1, which activates the action Right without antecedent. This was
an unexpected behavior for us, because we designed the QRBS model with Equation
1 in mind for the structure of rules. However, the type of rules like Rule 1 have a place
in classical RBS and are called default rules. Default rules fire when no other rules do,
to provide an output decision by default. The representation proposed in Section 3.2
allows the emergence of default rules during evolutionary learning of the optimal QRBS
if all input qubits are deactivated for a rule, and this fact enabled the QRBS in Figure
5 to have a minimum number of possible rules to learn the FrozenLake environment.
As can be seen in the supplementary material, this policy implements the Right action
by default, except when the agent is in the third column and first, second or third rows
(Rules 2-3 in the diagram in Figure 5), which activate the action Down. In this case,
even if both actions Right and Down are activated with the same probability, Down is
selected due to the deterministic action selection mechanism imposed in Equation 4.
Finally, it can also be verified that the output qubits for the actions Left and Up are
not used, which means that the agent can dispense with these actions to implement its
behavior and therefore reduce the size of the quantum circuit implementing the policy.

A similar situation arose in the best solution found for the BlackJack environment
in Figure 6, where the action Stop is selected by default except when Rules 2 or 3
are activated, which cause the agent to select the action Hit. Furthermore, the QRBS
obtained for BlackJack is a clear example that the rules obtained in the QRBS should
not be interpreted alone, but in the context of the complete QRBS due to the inference
process performed by the evolution of the quantum state. In fact, the action Hit is
selected only when either Rule 2 or Rule 3 is activated, but not both, since the input
values are discrete and both rules can be activated with probability 0 or 1. Thus, the
interpretation provided in the Algorithm 2 would be more readable from the point of
view of human reasoning if Rules 2 and 3 are replaced by ”If the antecedent of Rule 2
is True and the antecedent of Rule 3 is False, or the antecedent of Rule 2 is False and
the antecedent of Rule 3 is True, then Hit”. As it was the case in the example shown
in Section 3.1, designing a quantum rule structure as indicated in Equation 1 could
lead to more complex rule structures after interpretation. In this case, the proposed
rule to replace Rules 2 and 3 in the BlackJack environment contains logical NOT,
AND, and XOR operations in the antecedent.

The circuit in Figure 7 corresponds to the QRBS obtained to solve the CartPole
environment. In this case, the learned QRBS is capable of solving the environment

21

optimally according to the criteria existing in the literature, disregarding the two input
features Cart Position and Cart Velocity. It uses a minimum set of 2 rules that depend
on the Pole Angular Velocity and Pole Angle features separately. Since both features
can have continuous values, activating Rules 1 and 2 could produce a probability of
selecting Left or Right actions in the range [0, 1]. If both actions can be selected with
equal probability, then Left is chosen due to the criteria implemented in Equation
4. The degree of activation of each rule varies depending on the values of the Pole
angular velocity for Rule 2, and the Pole angle for Rule 3. Thus, the inference process
plays a very important role in this problem to control the cart by switching between
degrees of rule activation. This behavior is clearly visualized in the video of the QRBS
CartPole included in the supplementary material.

The circuit in Figure 8 for MountainCar solves the environment with four rules,
and it is another example to show that the rules should not be analyzed separately, but
in the context of the entire QRBS. The main rules that produce acceleration are Rule
1 and Rule 4, both depending on the input feature Velocity. They are complementary:
Rule 1 accelerates to the right when the car goes up the slope on the right and rule 4
accelerates to the left when it goes up the slope on the left. In this QRBS we can also
find contradictory rules such as Rules 2 and 4, which activate actions No acceleration
and Accelerate to the left with equal probabilities. In this case, Rule 3 resolves the
conflict as it changes the probability of not accelerating when the car is on the hill on
the right. The effect of rules 2 and 3 cancel each other when the velocity is negative
on the right side of the environment (i.e., the car moves toward the valley from the
right), where it accelerates to the left. Combining the outputs of these rules produces
appropriate behavior as shown in the video in the supplementary material.

Finally, Figure 9 plots the circuit that obtained the best performance in the
Acrobot environment. It contains a set of 3 rules and shows that the input features
cos(θ1), cos(θ2), ωθ1 are not necessary to solve the environment with a minimum aver-
age performance of Rt = −80 in 10 tests, as well as the action Do not apply torque.
The first thing we notice is that Rules 1 and 3 are complementary, since they apply a
negative torque when ωθ2 has a negative value (before preprocessing), and a positive
torque when ωθ2 is positive. Rule 2 forces the agent to also apply a positive torque,
when the sin of both joints is negative. As it can be seen in the video for Acrobot
supplementary material, these 3 rules are enough to solve the environment correctly.

To conclude the discussion of the results, we can summarize the outcomes of the
proposed procedure for learning QRBS in QRL environments as successful, since it
has been experimentally shown that the approach is capable of providing adequate
solutions in all tested RL environments, including the learning of default rules to
reduce the set of rules. Furthermore, it has been proven that a reduced set of rules
can be achieved to solve most of the problems thanks to the designed mechanism to
activate/deactivate rules. All inferred Quantum Rule-Based Systems contain a set of
highly interpretable rules, which helped to not only explain optimal behavior, but also
determine which input features and actions could be discarded in some of the problems
studied. For this reason, we believe that the QRBS design developed in this work, and
also the use of gradient-free binary optimization methods to learn QRBS, could be

22

powerful tools to obtain explainable quantum circuits that solve classification tasks,
and especially in reinforcement learning setups.

4.4 Comparison with classic approaches

In this section we compare the quality of the QRBS obtained in our work with state-
of-the-art methods. We perform the comparison with classical (non-quantum) models,
since there are no similar interpretable approaches in the QML research area, and QRL
in particular. We selected Decision Trees as the target classical model for comparison
for two reasons: First, Decision Trees are one of the classical Machine Learning models
with the highest interpretability and inference efficiency; and secondly, the rules that
can be extracted from a decision tree follow the same structure of Equation 1 as
our proposal. Although the comparison between such different classical and quantum
methods is difficult, this choice could make the comparison fairer.

In terms of theoretical efficiency, the proposed QRBS evaluates a rule in O(1) oper-
ations, since these are implemented as a single MCX gate where all antecedent inputs
and consequent are evaluated simultaneously. In a classical decision tree, evaluating
a single rule is O(d) where d stands for the tree depth, i.e. the number of nodes that
must be evaluated in the path from the root to the target leaf node. However, if we
focus in the number of rules NR, the QRBS needs to evaluate all rules to provide an
output, so that QRBSs can be executed in O(NR). On the contrary, a classical non-
probabilistic inference engine for Decision Trees provides an output in O(log(NR)),
since a single path from the root to a target leaf node is evaluated. This improvement
in the classical decision tree could be worse in we consider inference with a probabilis-
tic inference engine. In probabilistic inference, all nodes in the tree are evaluated in the
worst case, so that the efficiency falls to O(NR). In such probabilistic case, an upper
bound of the number of operations required to provide an output can be calculated
with the number of nodes in the tree as

∑d
i=0 w

i, where w stands for the maximum
number of children a node could have. However, the quantum approach considering
QRBS performs a maximum of NR = wd operations only because each path from the
root to a leaf is evaluated in O(1). Therefore, the QRBS outperforms classical proba-
bilistic inference in Decision Trees in terms of theoretical efficiency, although it is less
competitive when it is compared with the crisp (non-probabilistic) case.

Regarding the experimental comparison, we followed the proposed methodology in
[20] for classical RL to extract interpretable policies as Decision Trees from learned
black-box models. The procedure is straightforward: First, a neural network model
implementing a policy is trained with a classical RL algorithm to solve an environment.
After that, the learned model is used in the environment to generate a large enough
dataset containing environment states as input, and the action selection decision of
the learned policy as output. As a final step, a Decision Tree is used to learn the policy
from the dataset.

In our experiments, we created different network policies for the environments
described in Section 4.1 with a classic Multi-Layer Perceptron (MLP) feedforward
neural network. Each MLP is fed with the same preprocessed data used to train the
QRBS, in order to establish an experimental setting as similar as possible to the one
used in our approach. The MLPs provide a Q-value as output for each possible action

23

Table 4: Experimental settings to solve each environment

Environment Hidden Layers Replay Buffer Batch Size ϵ-Greedy Episodes

FrozenLake 50, ReLU 50000 128 ϵ0 = 0.8 50000
50, ReLU ϵf = 0.05

BlackJack 50, ReLU 50000 128 ϵ0 = 0.8 50000
50, ReLU ϵf = 0.05

CartPole 100, ReLU 5000 128 ϵ0 = 0.5 5000
100, ReLU ϵf = 0.05

MountainCar 100, ReLU 10000 128 ϵ0 = 0.5 5000
100, ReLU ϵf = 0.05

Acrobot 50, ReLU 5000 128 ϵ0 = 0.8 50000
50, ReLU ϵf = 0.05

in the corresponding environment. They were trained with the classic Double Deep
Q-Network (DDQN) algorithm [40] using the hyperparameters described in Table 4.
In addition, the DDQN target policy was modified at every iteration of the DDQN
method using a soft update strategy with α = 0.1 [41]. Finally, the discount factor
was set to γ = 0.99 for the training stage in all experiments.

In all cases, the policies were tested every 10 trained episodes. An additional stop-
ping criterion was set for early stopping if the trained policy solved each environment
in test under the same conditions than in the QRBS. Both MLPs and DDQN were
implemented in Tensoflow and Python and were executed for 30 times in the same
hardware than the QRBS under simulation. After these experiments were finished, we
selected the learned policies with the best Rt in test to generate a supervised learning
classification dataset containing 100.000 patterns (policy network-environment inter-
actions) for each problem. The decision tree model selected to learn these datasets
was CART, since CART can handle input features with continuous data and there is
a standard implementation of this type of decision tree in the Scikit-Learn library for
Python. During Decision Tree learning, we limited the maximum tree depth to the
number of input features/qubits for QRBS, so that the maximum number of atoms
in the antecedent of each generated rule equals the maximum number of atoms in the
antecedent of the learned QRBSs in the previous section. This choice helps to miti-
gate the differences between the experimental settings in both quantum and classical
approaches, so that all models possess rules with the same input structure.

Table 5: Summary of results to solve each environment with classical MLPs

FrozenLake BlackJack CartPole MountainCar Acrobot

Mean Rt 1.00030 −0.03930 500.0030 −105.59230 −79.07730
S.d. Rt 0.000 0.011 0.00 2.851 0.674
Best Rt 130 −0.0111 500.0030 −99.3001 −78.1001
Worst Rt 130 −0.0503 500.0030 −109.5301 −79.9801
Mean #iterations 887.433 212.633 9470.033 160080.533 330181.467
S.d. #iterations 925.536 200.130 5057.169 72874.023 159756.810
Mean time (s.) 21.952 13.927 199.651 2931.885 7169.618
S.d. time (s.) 22.809 12.673 105.323 1334.821 3552.639

24

Table 5 shows the results after learning the MLPs for each problem, containing
the mean Rt and its standard deviation, the best and worst Rt found, and the mean
number of iterations and time required for the learning, together with their standard
deviation. It is noticeable that, despite the QRBSs were learned under simulation,
the training time for CartPole and Acrobot of QRBS was substantially lower than
for the MLPs. However, in the remaining problems the training time of the MLPs is
much better than the time of the quantum approach, which is the behaviour one could
expect. Other remarkable result relates to th fact that MLPs solved all environments
in all runs, including MountainCar and FrozenLake where the QRBS was unable to
solve in 10 and 9 executions of 30, respectively. Also, MLPs were able to achieve
solutions with better best Rt in BlackJack and MountainCar.

As we mentioned previously, we used the MLPs with best Rt to create a supervised
learning dataset containing 100.000 experiences where the input features are the state
perceptions, and the target output is the action selected by the MLP. The input
features were also preprocessed with the settings of Table 1 except for binarization,
since Decision Trees can handle numberical values. Then we used these datasets to
create interpretable RL policies as CART decision trees with the information entropy
as node splitting criterion. Results regarding Decision Tree extraction are shown in
Table 6, where Column Problem describes the environment, Column Maximum Tree
Depth sets the tree depth constraint for each problem, Training Accuracy shows the
percentage of correct classification rate of decision tree prediction for each dataset,
and Column #Rules prints the number of leaf nodes in the generated tree, that equals
the number of rules that model the solution’s behaviour.

Table 6: Results for Decision Tree extraction

Problem Maximum Tree depth Training accuracy (%) #Rules

FrozenLake 4 100.000 3
BlackJack 10 98.447 47
CartPole 4 88.689 16
MountainCar 2 92.812 4
Acrobot 6 97.183 60

In Table 6, we may verify that the decision trees were unable to learn the complete
datasets except for the FrozenLake problem. This is a direct consequence of the max-
imum tree depth imposed for each problem, which limits the size of the antecedent in
the generated rules. Of course, removing this constraint solves this situation but with
the added cost of increasing the number of rules and antecedent complexity. Being
compared with our approach, which is studied in this article as a QML model with
inherent interpretability that learns from data directly, the interpretation of MLP poli-
cies with Decision Trees show relevant limitations regarding accuracy with respect to
the QRBS. Moreover, if we focus in the number of generated rules, the generated deci-
sion trees have provided a significantly higher number of rules in general, except for
the FrozenLake and MountainCar environments where the number of rules equal the
results of our approach with QRBS. Figure 11 plot these generated trees, which serve

25

as a sample to show their general structure. In general, they are very populated trees
with maximum number of nodes up to their maximum depth, except for the cases of
FrozenLake and BlackJack. Due to the large size of some of these trees and the page
size limitation, it is difficult to assess the true behaviour of each tree except for Figure
11a, which inferred an equivalent set of rules to the QRBS in the FrozenLake problem.

To end up the comparison with classical interpretable methods, we can summarize
the findings of this section in two main outcomes: First, theoretical efficiency improve-
ments of a quantum model such as QRBS could be achieved against classical Decision
Trees with probabilistic inference mechanisms, while this is not the case for the crisp
classical model. Secondly, the proposed method was able to learn policies from data,
while the interpretability of a policy neural network with decision trees could lead to
incomplete modelling of the network policy if the size of the antecedent is constrained.
In any case, the QRBS model could be useful to reduce the number of rules extracted.
This could be a desirable property of an interpretable model in many cases, which
makes the QRBS competitive in the QML research area, but also being compared with
classical models.

5 Conclusion

In this article, we have proposed Quantum Rule-Based Systems as interpretable meth-
ods for Quantum Machine Learning classification in reinforcement learning tasks. The
proposal includes a simple definition of rules whose antecedent is in conjunctive nor-
mal form and the consequent provides a target class label. The QRBS model is based
on a sequence of multiple controlled NOT gates to facilitate the construction and
explainability of the rules.

The contribution of the manuscript also addresses the learning of a QRBS suitable
for classification, formalized as a binary optimization problem. The CHC evolution-
ary method was proposed to perform the learning task. The proposal was tested in
reinforcement learning scenarios and the results suggest that our approach is capa-
ble of not only optimally solving the studied environments, but also returning QRBS
with minimal sets of rules, including default rules, that can help to identify relevant
and irrelevant input features and actions to solve an RL problem. We also found that
the inference engine, considered as the evolution of an initial quantum state in the
QRBS quantum circuit, could affect the interpretability of the rules separately and
therefore a contextual analysis that considers the entire QRBS is required to unravel
the correct behavior of the extracted rules. We believe that our approach could be an
important step forward in achieving explainable and interpretable Quantum Machine
Learning models, but also that it can serve as a tool to gain deeper knowledge about
the problem to be solved and its solution. Although this manuscript has focused on
classification tasks for RL, future works will be conducted to extend the approach to
other problem statements such as regression or clustering.

Declarations

� Funding: This article was funded by the project QUANERGY (Ref. TED2021-
129360B-I00), Ecological and Digital Transition R&D projects call 2022

26

(a) FrozenLake (b) BlackJack

(c) CartPole (d) MountainCar

(e) Acrobot

Fig. 11: Decision Trees generated from the MLP policies for each problem

27

by MCIN/AEI/10.13039/501100011033 and European Union NextGeneration
EU/PRTR.

� Conflict of interest/Competing interests: The authors declare no conflict or com-
peting interests.

� Data availability: The environments used for simulation are available at the Farama
Foundation’s Gymnasium software at https://gymnasium.farama.org.

� Code availability: The source code used in the simulations is available at https:
//github.com/manupc/QRBS4RL.

� Author contribution: All authors contributed equally to this work.

Supplementary information. This article contains five videos in MP4 format as
supplementary material, containing visual rendered tests of the learned QRBSs to
solve the studied environments in the experimentation: FrozenLake(.mp4), Black-
Jack(.mp4),CartPole(.mp4),MountainCar(.mp4), andAcrobot(.mp4). Each
file includes fives different tests in its respective environment.

Acknowledgements. This article was funded by the project QUANERGY
(Ref. TED2021-129360B-I00), Ecological and Digital Transition R&D projects call
2022 by MCIN/AEI/10.13039/501100011033 and European Union NextGeneration
EU/PRTR.

References

[1] Ganguly, S.: Quantum Machine Learning: An Applied Approach. Apress, New
York (2021)

[2] Innan, N., Khan, M.A.Z., Panda, B., Bennai, M.: Enhancing quantum sup-
port vector machines through variational kernel training. Quantum Information
Processing 22, 18 (2023) https://doi.org/10.1007/s11128-023-04138-3

[3] Beer, K., Bondarenko, D., Farrelly, T., Osborne, T.J., Salzmann, R., Scheiermann,
D., Wolf, R.: Training deep quantum neural networks. Nature Communications
11, 1–6 (2020) https://doi.org/10.1038/s41467-020-14454-2

[4] Combarro, E.F., Gonzalez-Castillo, S.: A Practical Guide to Quantum Machine
Learning and Quantum Optimization. Packt, Birmingham, United Kingdom
(2023)

[5] DiAdamo, S., O’Meara, C., Cortiana, G., Bernabe-Moreno, J.: Practical quan-
tum k-means clustering: Performance analysis and applications in energy grid
classification. IEEE Transactions on Quantum Engineering 3, 1–16 (2022) https:
//doi.org/10.1109/tqe.2022.3185505

[6] Umer, M.J., Sharif, M.I.: A comprehensive survey on quantum machine learn-
ing and possible applications. International Journal of E-Health and Medical
Communications 13(5), 1–17 (2022) https://doi.org/10.4018/IJEHMC.315730

28

https://gymnasium.farama.org
https://github.com/manupc/QRBS4RL
https://github.com/manupc/QRBS4RL
https://doi.org/10.1007/s11128-023-04138-3
https://doi.org/10.1038/s41467-020-14454-2
https://doi.org/10.1109/tqe.2022.3185505
https://doi.org/10.1109/tqe.2022.3185505
https://doi.org/10.4018/IJEHMC.315730

[7] Wittek, P.: Quantum Machine Learning: What Quantum Computing Means to
Data Mining. Elsevier, Amsterdam, The Netherlands (2014)

[8] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.:
A Survey on Quantum Reinforcement Learning (2022)

[9] Dong, D., Chen, C., Li, H., Tarn, T.-J.: Quantum reinforcement learning. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 38(5),
1207–1220 (2008) https://doi.org/10.1109/TSMCB.2008.925743

[10] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Parametrized
quantum policies for reinforcement learning. In: Neural Information Processing
Systems (2021). https://api.semanticscholar.org/CorpusID:244843259

[11] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Vari-
ational quantum circuits for deep reinforcement learning. IEEE Access 8,
141007–141024 (2020) https://doi.org/10.1109/ACCESS.2020.3010470

[12] Cherrat, E.A., Kerenidis, I., Prakash, A.: Quantum reinforcement learning via
policy iteration. Quantum Machine Intelligence 5, 1–18 (2023) https://doi.org/
10.1007/s42484-023-00116-1

[13] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quan-
tum algorithm for deep q-learning. Quantum 6, 720 (2022) https://doi.org/10.
22331/q-2022-05-24-720

[14] Andres, E., Cuellar, M.P., Navarro, G.: On the use of quantum reinforcement
learning in energy-efficiency scenarios. Energies 15(16) (2022) https://doi.org/
10.3390/en15166034

[15] Andres, E., Cuellar, M.P., Navarro, G.: Efficient dimensionality reduction strate-
gies for quantum reinforcement learning. IEEE Access 11, 104534–104553 (2023)
https://doi.org/10.1109/ACCESS.2023.3318173

[16] Dong, D., Chen, C.: Quantum-inspired reinforcement learning for decision-making
of markovian state transition. In: 2010 IEEE International Conference on Intelli-
gent Systems and Knowledge Engineering, pp. 21–26 (2010). https://doi.org/10.
1109/ISKE.2010.5680787

[17] Wei, Q., Ma, H., Chen, C., Dong, D.: Deep reinforcement learning with quantum-
inspired experience replay. IEEE Transactions on Cybernetics 52, 9326–9338
(2021)

[18] Liu, D., Wu, Y., Kang, Y., Yin, L., Ji, X., Cao, X., Li, C.: Multi-agent
quantum-inspired deep reinforcement learning for real-time distributed generation
control of 100% renewable energy systems. Engineering Applications of Artificial
Intelligence 119, 105787 (2023) https://doi.org/10.1016/j.engappai.2022.105787

29

https://doi.org/10.1109/TSMCB.2008.925743
https://api.semanticscholar.org/CorpusID:244843259
https://doi.org/10.1109/ACCESS.2020.3010470
https://doi.org/10.1007/s42484-023-00116-1
https://doi.org/10.1007/s42484-023-00116-1
https://doi.org/10.22331/q-2022-05-24-720
https://doi.org/10.22331/q-2022-05-24-720
https://doi.org/10.3390/en15166034
https://doi.org/10.3390/en15166034
https://doi.org/10.1109/ACCESS.2023.3318173
https://doi.org/10.1109/ISKE.2010.5680787
https://doi.org/10.1109/ISKE.2010.5680787
https://doi.org/10.1016/j.engappai.2022.105787

[19] Saeed, W., Omlin, C.: Explainable ai (xai): A systematic meta-survey of cur-
rent challenges and future opportunities. Knowledge-Based Systems 263, 110273
(2023) https://doi.org/10.1016/j.knosys.2023.110273

[20] Zhu, Y., Yin, X., Chen, C.: Extracting decision tree from trained deep rein-
forcement learning in traffic signal control. IEEE Transactions on Computational
Social Systems 10(4), 1997–2007 (2023) https://doi.org/10.1109/TCSS.2022.
3225362

[21] Costa, V.G., Pérez-Aracil, J., Salcedo-Sanz, S., Pedreira, C.E.: Evolving inter-
pretable decision trees for reinforcement learning. Artificial Intelligence 327,
104057 (2024) https://doi.org/10.1016/j.artint.2023.104057

[22] Kenny, E.M., Tucker, M., Shah, J.: Towards interpretable deep reinforcement
learning with human-friendly prototypes. In: The Eleventh International Con-
ference on Learning Representations (2023). https://openreview.net/forum?id=
hWwY Jq0xsN

[23] Glanois, C., Weng, P., Zimmer, M., Li, D., Yang, T., Hao, J., Liu, W.: A Survey
on Interpretable Reinforcement Learning (2022)

[24] Heese, R., Gerlach, T., Mucke, S., Muller, S., Jakobs, M., Piatkowski, N.: Explain-
ing Quantum Circuits with Shapley Values: Towards Explainable Quantum
Machine Learning (2023). https://doi.org/10.48550/arXiv.2301.09138

[25] Steinmuller, P., Schulz, T., Graf, F., Herr, D.: eXplainable AI for Quantum
Machine Learning (2022). https://doi.org/10.48550/arXiv.2211.01441

[26] Lu, S., Braunstein, S.L.: Quantum decision tree classifier. Quantum Information
Processing 13, 757–770 (2014) https://doi.org/10.1007/s11128-013-0687-5

[27] Khadiev, L. Kamil andSafina: The quantum version of random forest model
for binary classification problem. In: Mecella, M., Fensel, A., Lapina, M. (eds.)
Proceedings of the International Workshop on Data Mining and Knowledge Engi-
neering, pp. 1–6. Universitá di Roma, Rome, Italy (2020). https://ceur-ws.org/
Vol-2842/paper 3.pdf

[28] Moret-Bonillo, V.: Emerging technologies in artificial intelligence: quantum rule-
based systems. Progress in Artificial Intelligence 7 (2018) https://doi.org/10.
1007/s13748-017-0140-6

[29] Moret-Bonillo, V., Fernández-Varela, I., Álvarez-Estévez, D.: Uncertainty in
quantum rule-based systems. Archives of Clinical and Biomedical Research 05,
42–60 (2021) https://doi.org/10.26502/acbr.50170149

[30] Devi, R., Barlaskar, E., Devi, O., Medhi, S., Shimray, R.: Survey on evolutionary
computation tech techniques and its application in different fields. International

30

https://doi.org/10.1016/j.knosys.2023.110273
https://doi.org/10.1109/TCSS.2022.3225362
https://doi.org/10.1109/TCSS.2022.3225362
https://doi.org/10.1016/j.artint.2023.104057
https://openreview.net/forum?id=hWwY_Jq0xsN
https://openreview.net/forum?id=hWwY_Jq0xsN
https://doi.org/10.48550/arXiv.2301.09138
https://doi.org/10.48550/arXiv.2211.01441
https://doi.org/10.1007/s11128-013-0687-5
https://ceur-ws.org/Vol-2842/paper_3.pdf
https://ceur-ws.org/Vol-2842/paper_3.pdf
https://doi.org/10.1007/s13748-017-0140-6
https://doi.org/10.1007/s13748-017-0140-6
https://doi.org/10.26502/acbr.50170149

Journal on Information Theory 3, 73–82 (2014) https://doi.org/10.5121/ijit.2014.
3308

[31] Mukundan, S., Ramani, S., Raman, S., Anjaneyulu, K., Chandrasekar, R.: A
Practical Introduction to Rule Based Expert Systems. Narosa Publishing House,
New Delhi (2007)

[32] Kotsiantis, S.: Decision trees: A recent overview. Artificial Intelligence Review,
1–23 (2013) https://doi.org/10.1007/s10462-011-9272-4

[33] Dong, H., Ding, Z., Zhang, S., Yuan, H., Zhang, H., Zhang, J., Huang,
Y., Yu, T., Zhang, H., Huang, R.: Deep Reinforcement Learning: Funda-
mentals, Research, and Applications. Springer, Singapore (2020). http://www.
deepreinforcementlearningbook.org

[34] Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming, 1st edn. John Wiley & Sons, Inc., USA (1994)

[35] Back, T., Fogel, D.B., Michalewicz, Z.: Handbook of Evolutionary Computation,
1st edn. IOP Publishing Ltd., GBR (1997)

[36] Eshelman, L.J.: The chc adaptive search algorithm: How to have safe search when
engaging in nontraditional genetic recombination. Foundations of Genetic Algo-
rithms 1, 265–283 (1991) https://doi.org/10.1016/B978-0-08-050684-5.50020-3

[37] Marin, J., Molina, D., Herrera, F.: Modeling dynamics of a real-coded chc
algorithm in terms of dynamical probability distributions. Soft Computing 16,
331–351 (2012) https://doi.org/10.1007/s00500-011-0745-9

[38] Cuellar, M.P., Lobillo, F.J., Navarro, G.: Fast parallel computation of reduced
row echelon form to find the minimum distance of linear codes. Expert Systems
with Applications 224 (2023) https://doi.org/10.1016/j.eswa.2023.119955

[39] Rath, M., Date, H.: Quantum Data Encoding: A Comparative Analysis of
Classical-to-Quantum Mapping Techniques and Their Impact on Machine Learn-
ing Accuracy (2023). https://doi.org/10.48550/arXiv.2311.10375

[40] Hasselt, H.v., Guez, A., Silver, D.: Deep reinforcement learning with dou-
ble q-learning. In: Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence. AAAI’16, pp. 2094–2100. AAAI Press, ??? (2016)

[41] Lapan, M.: Deep Reinforcement Learning Hands-On. Packt Publishing, Birming-
ham, UK (2018)

31

https://doi.org/10.5121/ijit.2014.3308
https://doi.org/10.5121/ijit.2014.3308
https://doi.org/10.1007/s10462-011-9272-4
http://www.deepreinforcementlearningbook.org
http://www.deepreinforcementlearningbook.org
https://doi.org/10.1016/B978-0-08-050684-5.50020-3
https://doi.org/10.1007/s00500-011-0745-9
https://doi.org/10.1016/j.eswa.2023.119955
https://doi.org/10.48550/arXiv.2311.10375

	Introduction
	Methods
	Foundations of Rule-Based Systems for classification
	Reinforcement Learning
	Evolutionary computation and the CHC algorithm

	Description of the proposal
	Rule design
	QRBS optimization using evolutionary algorithms
	Evaluation of a Quantum Rule-Based System for Reinforcement Learning

	Experiments
	Description of Reinforcement Learning environments and preprocessing
	Experimental settings
	redResults
	redComparison with classic approaches

	Conclusion
	Supplementary information
	Acknowledgements

