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ABSTRACT

Craniofacial Superimposition is a forensic identification technique that supports decision-making when skeletal
remains are involved. It is based on the analysis of the overlapping of a post-mortem skull with ante-
mortem facial photographs. Despite its importance and wide applicability, the process remains complex and
challenging. To address this, computerized methods have been proposed, but subjectivity and qualitative
reporting persist in decision-making. This study introduces an evidence evaluation system proposal based
on Likelihood Ratios, previously used in other forensic fields, such as DNA, voice, fingerprint, and facial
comparison. We present a novel application of this framework to Craniofacial Superimposition. Our work
comprises three experiments in which our LR system is trained and tested under distinct conditions concerning
facial images: the first utilizes frontal facial photographs; the second employs lateral facial photographs; and
the last one integrates both frontal and lateral facial photographs. In the three experiments, the proposed LR
system stands out in terms of calibration and discriminating power, providing practitioners with a quantitative
tool for evidence evaluation and integration. However, the lack of massive actual data obliged us to focus our
study on synthetic data only. Therefore, it should be considered a proof of concept. Nevertheless, the resulting
likelihood-ratio system offers objective decision support in Craniofacial Superimposition. Further studies are
required to validate in a real scenario the conclusions achieved.

1. Introduction

Post-mortem human identification through the analysis of skeletal
remains is a significant challenge in the field of Forensic Anthropol-
ogy [1]. One of the techniques that assist in this identification process is

the surface of the subject’s face. The correspondence between a
cranial and a facial landmark is not exact due to the existence of
soft tissue, which surrounds and protects structures and organs
of the body. Fig. 1 shows the location of the landmarks used in
this study, which are described in Section 4.1.

Craniofacial Superimposition [2]. This technique involves the compari- 2. Skull-Face Overlay, which focuses on achieving the best possible

son of an ante-mortem facial photograph with a recovered post-mortem
skull, by projecting the latter onto the former. This provides forensic
practitioners with information to determine whether the skull and face
correspond to the same individual. Three stages can be distinguished
in the Craniofacial Superimposition process [3,4]:

1. Acquisition and processing of the post-mortem skull and ante-

projection of a skull (or a 3D model of it) onto a single ante-
mortem image of the subject, by matching the corresponding
cranial and facial landmarks. If more than one photograph is
available, several independent Skull-Face Overlay processes will
be applied to obtain different overlays.

3. Decision-making, carried out by the practitioner, who is respon-
sible for determining the degree of anatomical correspondence

mortem facial photographs, together with the localization of
anatomical landmarks that usually guide Craniofacial Superim-
position. There are two types of landmarks: craniometric, which
are specific points of relevance in the morphology of the skull;
and cephalometric, which are homologous points but located on

according to the Skull-Face Overlay(s) obtained in the previ-
ous stage, in order to conclude whether the skull and facial
photograph belong to the same person. A scale for craniofa-
cial matching evaluation was established by leading experts in
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Fig. 1. Localization of the cranial (left) and facial (right) landmarks involved in this
study.

craniofacial identification within the MEPROCS project [5,6].
The final decision is presented in terms of strong, moderate, or
limited support.

Traditionally, Craniofacial Superimposition has lacked a standard-
ized methodology and the MEPROCS' European project represented an
attempt to tackle this issue. [The main achievements and best practice
recommendations of MEPROCS were published in [5]. Furthermore, the
three stages are performed manually in most forensic laboratories. This
is a difficult and time-consuming task, even for a trained professional,
and the results are often considered subjectively biased to a non-
negligible degree. The decision-making process is subject to variability,
hinges on the proficiency of the forensic examiner, and is influenced
by the quality and quantity of the materials used, including the pho-
tographs and the skull. Moreover, it is worth noting that the resultant
decision is communicated in a qualitative manner by assigning one of
the three degrees of support, stated by the practitioner. Therefore, there
is no possibility of statistical interpretation, leading to a subjective
inference process. For these reasons, automatic systems supporting the
Craniofacial Superimposition technique have become relevant during
the last decade.

The computerized systems developed for the first stage of Cranio-
facial Superimposition are mainly related to cephalometric and cran-
iometric landmark location. This problem has been addressed in the
Computer Vision and Deep Learning communities. However, the sets
of landmarks used in Deep-Learning-based works are not the same
as those used in Anthropology. We can only find two publications
that focus on the automatic localization of cephalometric landmarks
in photographs [7,8], and one tackling craniometric landmarks in skull
3D models [9].

Several proposals have been presented in literature to perform the
second stage, the Skull-Face Overlay task. The most natural way to
deal with the Skull-Face Overlay problem is to replicate the original
scenario of the ante-mortem photograph in which the living person
was in a given pose somewhere inside the camera’s field of view.
The first computer-aided approach for the Skull-Face Overlay task was
proposed by Nickerson et al. [10]. In the last decade, most of the works
commonly tackle Skull-Face Overlay automation using evolutionary
algorithms and fuzzy sets [11,12]. These methods solved the projection
problem by an iterative optimization process, where multiple solutions
are evaluated at every step, eventually converging to a high-quality
solution. Unlike these methods, Posest-SFO [13] solves a system of
polynomial equations relating the distances between the points before

1 https://cordis.europa.eu/project/id/285624/es
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and after the projection. This approach solves two problems that arise
during Craniofacial Superimposition: “camera calibration” and “per-
spective from N points”. The former involves estimating the internal
parameters of the camera that captured the input facial photograph(s),
while the latter involves determining the pose of the calibrated camera
given the positions of » 3D points and their corresponding 2D positions
in the photograph(s). This method has been demonstrated to be both
extremely fast and significantly accurate. However, contrary to previ-
ous publications [11,14], it does not address the sources of uncertainty,
i.e., the articulation of the mandible, the estimation of the soft tissue
thickness, and the intra- and inter-error in landmark location. It is clear
then that there is still a large margin for improvement. Nevertheless,
Posest-SFO is the state-of-the-art and thus the one employed in this
work.

Finally, there are just a few works tackling the automation of
the analysis of craniofacial correspondences within the framework of
Craniofacial Superimposition identification [15,16]. Most of the exist-
ing literature was published more than 20 years ago and the works
are extremely basic and limited. Recently, in [17-19], the authors
presented a hierarchical system for the decision-making stage and
Computer Vision algorithms to evaluate the anatomical consistency
of morphological criteria between the face and the skull. This means
that from a series of Skull-Face Overlays of the same individual, the
decision support system provides the forensic expert with a quantitative
output value indicative of the morphological matching consistency of a
given Craniofacial Superimposition problem. However, there are some
limitations concerning the proposed decision support system. The final
degree of craniofacial correspondence is determined by aggregating
multiple matching degrees obtained from various aggregations across
the hierarchical structure’s different levels (criterion evaluation, Skull-
Face Overlay evaluation, and Craniofacial Superimposition evaluation).
Therefore, this output value does not provide direct and interpretable
conclusions about the case under discussion. In addition, a threshold
needs to be selected by the forensic practitioner in order to analyze
the mentioned output value. As a consequence, this process gives rise
to a decision-making stage that is subjective, lacks robustness, and
yields less meaningful outcomes. To address these limitations, it is
imperative to develop a decision support system capable of providing
quantitative, objective, and informative assistance to practitioners in
their assessment of evidence. Furthermore, such a system could facili-
tate the presentation of findings in a court of law in a more robust and
defensible manner.

A commonly accepted manner for conveying the strength of evi-
dence in forensic science and legal proceedings is through Likelihood
Ratios (LRs) [20]. This was recommended by the European Network
of Forensic Science Institutes (ENFSI?) in a guideline for the expres-
sion of conclusions in forensic evaluation reports [21], where an LR
framework is [suggested] for all forensic disciplines and laboratories.
The LR framework has been widely applied and validated in the field
of forensic-voice comparison [22,23], and it has also been employed in
other forensic disciplines, such as facial image comparison [24], finger-
print analysis [25], handwriting [26], glass evidence [27], DNA [28-
30], among others. Even though there was a lack of proposals to apply
LR in Forensic Anthropology, there are recent applications of LR to both
age and sex estimation problems [31-37].

The main contributions of our study are related to the application,
implementation, and validation of the LR framework in the identi-
fication of skeletal remains using the Craniofacial Superimposition
technique. This application involves an innovative methodology and
utilizes a method to simulate Skull-Face Overlay data. In addition, our
work encompasses three distinct experiments, each implies training and
testing the proposed LR system under specific scenarios with facial
images: the first experiment involves frontal facial photographs; the

2 https://enfsi.eu
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second makes use of lateral facial photographs; and the third one
combines both frontal and lateral facial photographs. Consequently,
the LR system is presented as a prototype demonstration since the
data employed to train and validate them were synthetically generated.
The primary goal is to implement a decision-making support system
to provide practitioners with an objective and quantitative means of
drawing conclusions that can be presented in court. Moreover, an LR-
based system may be utilized to evaluate and validate the effectiveness
of the identification method employed (Posest-SFO in this proposal).
This can be accomplished by transforming the information extracted
by the method into corresponding LR values and subjecting them to
evaluation. Through this process, the reliability and accuracy of the
identification method can be assessed, thereby enhancing confidence
in the conclusions drawn from the results obtained.

The paper is organized as follows: the LR fundamentals and the state
of the art are summarized in Section 2, including different methodolo-
gies for applying and validating the LR framework. The application of
the latter into the Craniofacial Superimposition technique is proposed
in Section 3. Section 4 explains the process followed to evaluate the
LR system through three different experiments. For this purpose, the
methodology, performance characteristics and metrics, and dataset
used to do so are detailed. Finally, the conclusions are comprised in
Section 5.

2. LR fundamentals and state of the art

This section provides an overview of the LR framework applica-
tion in forensic sciences (Section 2.1). Finally, different performance
characteristics and metrics to validate an LR system are detailed in
Section 2.2.

2.1. Evidence evaluation using likelihood ratios

An LR is characterized as the ratio of two probabilities,* associated
with the observation of some evidence (E) under competing hypotheses
(H, and H,). Specifically, it represents the probability of E if H, were
true divided by the probability of E if H, were true, both conditioned
on Background Information (I):

p(E | Hy. )

_ /) @
p(E|Hy. 1)

E is defined as the information extracted from the available material
in a legal procedure, which involves the objects of comparison in a
forensic case. Background Information I may include information such
as police investigations, witness testimony of the case, or the analysis
of other forensic evidence, including speech, glass fragments, or finger-
prints, among others [20,38,39]. The forensic practitioner should not,
however, be exposed to task-irrelevant information [40,41]. Note that
I is usually removed from the notation for simplification purposes.

The unobserved variable of interest in a forensic case is the true
hypothesis (H, or H;), which is the information the fact finder wants
to know. H, and H, propositions are mutually exclusive. The LR
enables updating the initial belief about the relative validity of the two
hypotheses based on the observed evidence. This is accomplished using
the odds form of Bayes’ Theorem [42,43]:

p(HylE) p(EIHy) p(H) o)
P(H1|E) P(E|H1) P(Hl)
N—— N——
posterior odds LR prior odds

The prior odds are the province of the fact finder, while the calculation
of the LR is the province of the forensic scientist. The posterior odds are

3 For continuously-valued data, probability-density is assessed.
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then used by the fact finder to make a decision. Note that these state-
ments are purely illustrative, demonstrating the theoretical application
of the LR framework.

Once the LR is calculated, it can be interpreted as follows: if LR > 1,
then the evidence will support Hy; if LR < 1, then the evidence will
support H; and if LR = 1, the evidence will support both hypotheses.
The magnitude of the LR is paramount in the interpretation of evidence.
A larger LR, when it is over 1, indicates stronger support for H,,.
Conversely, when the LR is below 1 and approaches 0, it signifies
stronger support for H,. The closer the LR is to 1, the more limited
the support is for either hypothesis.

2.2. Assessment and validation of an LR system

Aiming at using an LR system in casework, the forensic scientist
should evaluate its performance. Different performance characteristics
and metrics have been proposed in literature to assess the soundness
of an LR system [23], such as the Cy;, (log-likelihood-ratio cost) [44].
This metric is computed as follows:

Nm,

)+— logy(1 4+ LRy ) 3
NHl JZ} 08> Hy;

where Ny and Ny are respectively the number of cases where H
and H, are true in the validation set; and LRy, and LRy, are
the LR values calculated respectively in those cases. The Cllr is a
single value summary of the system performance [45]. The Cj, can be
decomposed into discrimination loss or the average cost due to a lack of
discrimination (Cﬁ;“), and calibration loss or the average cost due to a
lack of calibration (Cl‘l"r" ) [22,44,45]:

Cir = i + 3o @

Thus, the Cy, is the average cost due to the lack of accuracy. For
more detail, the reader is referred to [46-49]. Note that achieving
the aforementioned decomposition is not trivial. The Pool Adjacent
Violators (PAV) algorithm [44,47,50] is often used to address it.

Another metric also used to evaluate an LR system is the Empir-
ical Cross-Entropy (ECE) [38,45,46,51]. The ECE is an information-
theoretical measure proposed for the validation of a set of LR values,
and is stated as follows:

P(HO)
EC It 1
z 0g;( +7 Ron, XO(HO))

(5)

NHI Z{ logy(1 + LRy, | X O(Hy))
where P(H,) and P(H,) are respectively the prior probabilities for H,,
and H,, and O(H,) is the prior odds for H,,. The ECE is interpreted as
the information needed on average to determine the true hypothesis for
a set of LR values. The ECE is a generalization of the Cy,. The C}, value
is the same as the ECE value when both prior probabilities are fixed at
0.5, i.e., uncertainty is maximum. Therefore, the decomposition into
discrimination and calibration also applies to ECE. Moreover, the ECE
has another interesting interpretation in evidence evaluation: the range
of application of the system [46]. This insight refers to the range of prior
odds where the LR system is valid. Hence, the ECE is calculated for a
range of prior odds and represented in an ECE plot, which is further
detailed in Section 4.

For an LR system under evaluation, the ECE values obtained should
desirably be lower than that of a neutral method, which always yields
LR values equal to 1 [46,51]. Otherwise, the LR system performance
will not be better than that of a method that does not extract any rele-
vant information from the evidence. The Cj,, values for well-calibrated
systems range from O to approximately 1 [22].

Both the Cj, and the ECE are crucial performance metrics. How-
ever, it is recommended to complement such indicators with graphical
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Fig. 2. Example of the Skull-Face Overlay data generation process for a specific subject.

representations, such as ECE plots or Tippett plots [22,23,51]. The
Tippett plots are cumulative probability distribution plots expressing
the proportion of LRs greater than a given value for both H,-true and
H,-true cases. In this plot, it can be observed the rate of misleading
evidence that leads to the calculation of LR values that support the
wrong proposition [23,51]. In addition, it can also reveal problems such
as bias in the output: when all the LR values are too large or too small
(shift), or when the LR values are too far from the neutral value (1) or
too close (scale) [22]. For more details on Tippett plots, the interested
reader is referred to [23], where best practice guidelines for case
evaluation and interpretation in forensic automatic and semi-automatic
speaker recognition can be found.

3. Our LR methodological approach

The present section details how the LR framework is applied to
Craniofacial Superimposition by making use of the state-of-the-art
method for automatically solving the Skull-Face Overlay stage, Posest-
SFO [13].

3.1. Materials and skull-face overlay data generation

The materials that our LR system works with are those involved in a
Craniofacial Superimposition case: a 3D model of the skull to be iden-
tified (the trace object) and one or two facial photographs (one frontal
and/or one lateral) of a known individual suspected to be the same of
the trace skull (the reference object). In order to improve the reliability
of the Craniofacial Superimposition technique, multiple photographs
showing different poses were recommended [5,6,52]. However, there
are scenarios where only two photos are available (which is the rec-
ommended minimum to apply Craniofacial Superimposition). It is thus
proposed to improve the reliability of the first two experiments using
more than one photograph but limiting that number to two so that
it can be used in the worst-case scenarios. These two photographs
are supposed to show different poses of the subject of the case under
discussion. However, this is not a mandatory condition.

Unlike several well-established forensic methodologies, the Cran-
iofacial Superimposition technique lacks ground-truth data, that is, a
procedure that could provide a perfect Skull-Face Overlay in an objec-
tive and unquestionable manner [5]. Furthermore, due to its scarcity
and incompleteness, real-world forensic data is not always available to
researchers. As an alternative, controlled environments can be utilized
to acquire data and generate artificial identification scenarios [53].
In [13], a method that simulates Skull-Face Overlay data was proposed,
which replaces real facial photographs with generated ones. This results
in a broader array of possible scenarios due to the possibility of precise

manipulation of the subject’s pose and the camera settings. In addition,
the method allows the reproduction of inter- and intra-expert errors
in the processing of input data, leading to more comprehensive and
rigorous testing under realistic conditions.

The aim of this data generation process is to provide artificial
identification cases that have complete and accurate information for
input and solution. To create a case, the Craniofacial Superimposition
materials needed are: a 3D skull model, the locations of 3D cranial
landmarks, a facial photo, and the locations of the 2D facial landmarks.
To know the ground-truth solution, it is also required the camera’s
location, orientation, and settings, as well as the soft tissue vectors at
each landmark. Such soft tissue vectors are set along the skull’s normal
directions with a length corresponding to the mean soft tissue depth.
This information at each skull landmark enables the location of the 3D
facial landmarks to be known. In order to simulate facial images from
a 3D face, the position, orientation, and camera settings are selected,
and the ground-truth projection is calculated. The 2D facial landmarks
are then computed as the 3D facial landmarks projected onto the
photograph. Once the accurate location of 2D facial landmarks has been
achieved, random noise can be added to simulate errors in pinpointing
the 2D landmarks in the photograph in an actual casework. Fig. 2
illustrates an example of this data generation process for a specific
subject, which would be repeated for each individual involved in a case.

This data generation process is used in the present study to achieve
two objectives: to generate the facial photographs of the subject in-
volved in each Craniofacial Superimposition case using different poses,
and to increase the number of Skull-Face Overlays from which the
scores for training and validating an LR system are drawn. The vari-
ability of such scores is enhanced by simulating inter-expert errors, as
described in Section 3.3.

3.2. Definition of evidence and hypothesis proposal

One of the design decisions that should be made when building an
LR system is to determine the type of evidence to be interpreted [20].
The output of commercial biometric systems, which are commonly
treated as a black box and of commercial secret, may also be used as
evidence [24,26,54-56]. This is our case, with the difference that the
automatic Skull-Face Overlay system generating the biometric scores
in question is publicly available in [13]. Hence, our proposal could be
classified as a similarity-score-based* design. However, unlike typical

4 Note that some deem LRs derived from scores inappropriate when the
scores just reflect the similarity between the measurements on a trace and
a reference object, and lack a measure of typicality [57]. Such scores are in
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Fig. 3. Bounding boxes of the frontal and lateral facial images of Fig. 4.

score-based LR systems, the scores we obtained are not based on
the measurement comparison of the trace and reference objects. They
cannot be directly compared as they are of a different nature (i.e., skull
and face), which is not the usual arrangement in literature. Instead,
a biometric score (our evidence) is computed by overlapping a trace
skull model with one or two reference facial photographs and then
calculating a Root Mean Squared Error (RMSE) value from the resulting
Skull-Face Overlay(s). For the experiment combining frontal and lateral
facial images, the frontal and lateral RMSE values are added together.
The RMSE is defined as follows:

Z?:] (éi - Gi)2

n

RMSE = (6)
where G is the set of 2D facial landmarks calculated in the Skull-Face
Overlay stage by projecting the 3D cranial landmarks onto the facial
image taking into account the soft tissue; G is the original set of 2D
landmarks of the facial image, and » is the number of available 2D facial
landmarks in this image. Furthermore, the biometric scores (RMSE
values) are normalized using the diagonal length of the bounding box
surrounding facial landmarks (see Fig. 3). This adjustment is essential
because the RMSE is calculated based on pixel distances between
actual facial landmarks and those estimated by the Skull-Face Overlay
automatic method. Hence, when subjects are closer to the camera, there
is a greater pixel distance between landmarks, leading to higher RMSE
values. More detail on our biometric score can be found in Fig. 4.

The next decision to be made when building an LR system is re-
lated to the hypotheses proposal. The similarity-score-based hypotheses
defined in our system are the following:

* H,: “The subject of the reference facial photographs and the
subject of the trace 3D skull model are the same”.

* H,: “The subject of the reference facial photographs and the
subject of the trace 3D skull model are different. The trace skull
originates from another source within the relevant population”.

Depending on the specific conditions of the case, the definition of
the relevant population may vary. This population typically consists of
potential sources from which trace and reference objects are drawn,
reflecting the forensic needs dictated by the particular circumstances
of the case.

principle an incomplete representation of the evidence since, given the same
score, both common and rare references may yield the same LR. However, in
the absence of LR systems that model all features (and therefore rarity) well,
score-based LR systems can be a good alternative since, just like feature-based
LR systems, they do help improve decisions on average [20].
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3.3. LR computation process

In our proposal, the LR computation process can be divided into two
stages: training and LR computation. The former is conducted to adjust
the system’s parameters and the latter aims to compute an LR value
from evidence.

Two sets of scores are obtained according to each competing hy-
pothesis in the training stage: the Sy, or same-source score set, which
consists of scores calculated assuming that H, is satisfied; and the
Sy, or different-source score set, which is made up of scores calculated
assuming that H, is satisfied. Both sets should be generated with the
appropriate conditions for further comparisons: Sy, and Sy, should
represent, as far as possible, all the sources of variability in the set
in order to compute representative LR values. The probability density
function (pdf) of the numerator of the LR (see Eq. (1)) would thus
represent the Sy —or same-source distribution, and the pdf of the
denominator represents the Sy, or different-source distribution [54].

The scores of Sy, are calculated from Skull-Face Overlays involving
pairs of facial photographs and skull models originating from the same
source subject; whereas the scores of Sy, are obtained from the over-
lays of facial photographs and skull models originating from different
source subjects. Once the Sy and Sy, sets of scores are obtained,
their corresponding statistical distributions are found. In our case,
10 pairs of Skull-Face Overlays for each subject involved are carried
out to extend the aforementioned sets of scores. This is performed
by applying the Skull-Face Overlay data generation methodology ex-
plained in Section 3.1. Each Skull-Face Overlay process is repeated
using different sets of 2D facial landmarks, which are simulated by
introducing noise in the location of the original ones. In particular,
similarly to the data generation process of [13], the noise over the 2D
facial landmarks was drawn at random between —5 and +5 pixels using
a uniform distribution.® The main purpose for this is that the sample of
scores should have enough variability to represent the most significant
possible number of situations that may occur. It is thus crucial to
consider that the location of the landmarks involved could not be as
precise as desired, and it could vary depending on the method used
to perform it or even the practitioner who addresses it [9,58,59]. This
methodology aims to simulate the inter-dispersion of the localization of
facial landmarks by different practitioners. Note that the performance
of the LR system will be dependent on the added noise.

In the LR computation stage, a biometric score is calculated using
a trace skull model and one or two reference facial photographs. Then,
it is transformed into an LR value. The LR computation method used
in our system is KDE (Kernel Density Estimation) [60], also used
in [24,25]. For more details, refer to [61]. It calculates the LR value by
first modeling the pdfs of Sy, and Sy, . The H,, likelihood (p (E | Hy))
and the H, likelihood (p (E | H, )) are then computed for the evidence
score, and the ratio of both values is the LR. We used Silverman’s rule
of thumb [62] for choosing the bandwidth of a Gaussian KDE.

4. Experiments and results

This section explains how our proposal to apply the LR framework
to Craniofacial Superimposition has been validated. For this purpose,
the methodology, metrics, and dataset used to perform this validation
are detailed, and an analysis of the results is provided.

5 There are publications that study and analyze the dispersion of facial
landmark localization, such as [9,58]. However, there is currently no Cran-
iofacial Superimposition method that takes this into account. Therefore, our
noise modeling then serves as a first approximation to this problem.
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Fig. 4. The biometric scores of the frontal and lateral experiments are computed by overlapping the trace skull model with a reference facial photograph. Then, the RMSE
values are calculated from the resulting Skull-Face Overlays and normalized using the diagonal length of the bounding box surrounding facial landmarks. For the frontal+lateral

experiment, both RMSE values are added together.
4.1. Dataset and experimental methodology

Regarding our similarity-score-based approach, under H,, the trace
and reference objects are drawn from the same source of the relevant
population; whereas, under H,, the trace and reference objects must
come from different sources of the relevant population. For more detail
on the sampling process and the definition of the relevant population,
the interested reader is referred to [20,22,63].

In our work, the relevant population has been defined to build a
similarity-score-based LR system focused on identifying subjects from
a European population. For this reason, the data was directly sourced
from archives of French hospitals and medical centers during the
period of 2008-2009. The subjects are of different ages and sexes,
with a total of 50 males and 28 females aged between 18 and over
80 years. Further details regarding the materials can be found in [64].
Specifically, the database used consists of 78 head CT scans of the same
number of subjects, each featuring no less than 6 visible landmarks.
The craniometric landmarks involved are: Glabella (g), Nasion (n),
Prosthion (pr), Subspinale (ss), Pogonion (pg), Left and Right Alare (al),
Left and Right Dacryon (d), Left and Right Ectoconchion (ec), Left and
Right Frontotemporale (ft), Left and Right Gonion (go), and Left and
Right Zygion (zy). The cephalometric ones are: Glabella (g’), Nasion
(n’), Labiale Superius (Is’), Subnasale (sn’), Pogonion (pg’), Left and
Right Alare (al’), Left and Right Endocanthion (en’), Left and Right
Exocanthion (ex’), Left and Right Frontotemporale (ft’), Left and Right
Gonion (go’), and Left and Right Zygion (zy’). These landmarks are
those represented in Fig. 1.

Our study comprises three experiments, which are focused on dis-
tinct conditions concerning facial images: the first solely utilizes frontal
facial photographs; the second exclusively employs lateral facial pho-
tographs; and the last one integrates both frontal and lateral facial
photographs (referred to as the frontal+lateral experiment). Note that
the images involved in the former two cases are those combined in the
frontal+lateral experiment. The conditions of facial images encompass
several parameters that directly influence the presentation and orien-
tation of the subject’s face within the photograph. These conditions
include:

» Rotation Axis and Angle: The corresponding parameters pertain
to the axis around which the face of the subject is rotated within
the image, along with the corresponding angle of rotation.

» Translation of the Face: The related parameters refer to the
displacement or movement of the subject’s face within the pho-
tograph.

» Focal Length: This parameter determines the magnification level
of the image and the angle of view. Shorter focal lengths provide
a wider angle of view and less magnification, while longer focal
lengths offer a narrower angle of view and greater magnification.

By systematically varying these conditions, a broad spectrum of
facial image scenarios could be captured, simulating real-world vari-
ations. This would allow for a thorough analysis of the performance of
our LR system under diverse image conditions.

Aiming to test the behavior of the LR system proposed in both Hj-
true and H,-true cases, a validation phase was addressed for each one.
Hence, the aforementioned database was divided into training and val-
idation sets using an 80%-20% split (63 and 15 subjects, respectively).
Then, H-true and H,-true Skull-Face Overlays were performed on both
sets. The biometric scores coming from the training set were those
that made up Sy, and Sy, in the training stage, and those from the
validation set were transformed into LR values in the LR computation
stage (see Section 3.3). A validation set of LR values is thus computed.
Note that, similarly to the training stage, 10 pairs of Skull-Face Overlays
for each subject that makes up the validation set are carried out to
extend the aforementioned set of LR values. Consequently, a total of
1,560 Skull-Face Overlays were conducted, utilizing both the training
and validation sets. The general scheme of this process is included in
Fig. 5, similar to the one used in [24]. In order to generate the set of
facial photographs involved in the Skull-Face Overlays, the conditions
were randomly chosen within a controlled range for the first subject
and then reutilized for the rest. Once these parameters were set, they
were employed to generate 10 facial images of the corresponding sub-
ject. Note that only the 2D facial landmarks’ locations change among
them, simulating inter-expert errors (see Section 3.1).

4.2. Frontal experiment: LR system performance evaluation

The results of the experiment in which only facial photographs were
involved are analyzed in the present section. For that aim, the ob-
tained validation set of LR values was assessed employing performance
characteristics and metrics previously described in Section 2.2.

First, the Cy,, Cjl** and C{¢ values are included in Table 1. When
it comes to Cy,, smaller values indicate better performance, whereas
those greater than 1 can be produced by miscalibrated systems. The
value of Cy, resulting from the evaluation of our LR system was 0.619,
which lies within the expected range but closer to the upper bound. The
average cost due to lack of discrimination was 0.282 and the average
cost due to lack of calibration was 0.337. This might be due to the
use of frontal images because the Skull-Face Overlay method behaves
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Table 1
Ciys Cl‘fr"“ and Cﬁ;” resulting from the LR system performance evaluation in the frontal,
lateral, and frontal+lateral experiments.

Experiment Cie Cjlise cel

Frontal 0.619 0.282 0.337
Lateral 0.467 0.209 0.258
Frontal+Lateral 0.187 0.071 0.116

better in frontal cases [13]. It could consequently conduct moderately
suitable overlays even though the case under evaluation satisfies H,.

The ECE plot obtained in the present experiment is included in Fig. 6
(left). The solid line corresponds to the ECE of the validation set of LR
values, and the dashed line is the ECE after the PAV transformation,
denoted as ECEY*. The distance between both lines is due to a lack
of calibration, referred to as EC E<?. Lastly, the dotted line depicts the
performance of a neutral method that consistently yields LR=1. In light
of the data, the system is not constrained in its range of application,
i.e. it is valid across the entire spectrum of prior odds, since all ECE
values are lower than those of the neutral method.

Subsequently, the Tippett plot computed is depicted in Fig. 6 (mid-
dle). At log,o LR = 0 (the neutral value), the cumulative proportion val-
ues for both curves indicate the rates of misleading evidence. This rate
represents the 8% of the values, which is significantly low. Moreover,
the intersect of the curves in the Tippett plot, namely the Equal Pro-
portion Probability (EPP), is significantly close to the aforementioned
neutral value and near a cumulative proportion of 0. The alignment
of this crossing point and the neutral value on the X-axis indicates
that an LR system is calibrated. On the other hand, the nearer the
EPP to a cumulative proportion of zero, the higher the discriminating
power [23]. Additionally, the curves in the Tippett plot are notably
steep, reflecting the behavior of the scores produced by the Skull-Face
Overlay method. This characteristic is illustrated in Fig. 6 (right), which

displays the pdfs for both H,, and H, scores. The steep increase and
abrupt decrease in the pdf for H,-true validation scores indicate that
these scores are concentrated within a narrow range. Consequently, the
LR values under H, are distributed within a limited range. There is a
similar behavior for the H,-true scores, but the increase and decrease
in the pdf are less abrupt. Hence, the curve in the Tippett plot moves
slightly further away from the neutral value.

4.3. Lateral experiment: LR system performance evaluation

Following a similar structure to the previous section, the results of
the experiment in which exclusively lateral photographs were used are
analyzed. The Cy,, Cji* and C; values are included in Table 1. The
value of Cj, resulting from the evaluation of the LR system is 0.467,
which is closer to the lower bound of the expected range [0, 1). In this
case, the average cost due to lack of discrimination was 0.209 and the
average cost due to lack of calibration was 0.258. According to these
values, the system presents adequate behavior in terms of accuracy, and
either calibration or discrimination power. The reason for this could
be due to the use of lateral images. Given that the performance of the
Skull-Face Overlay method diminishes in cases involving lateral images,
conducting suitable overlays becomes more challenging when the case
under evaluation supports H,. Consequently, the scores in such cases
tend to be higher than those in cases where H|, is true.

The ECE plot obtained is included in Fig. 7 (left). It can be observed
that all values lie below those associated with the neutral method.
Hence, it is valid across the full range of prior odds. On the other hand,
the corresponding Tippett plot is represented in Fig. 7 (middle). In this
case, the rate of misleading evidence is higher for the H,-true scores.
The EPP is close to the neutral value but slightly shifted to the right.
This could be due to the number of landmarks involved in the lateral
cases, which is smaller due to the position of the face. Therefore, for the
Skull-Face Overlay method, it could be easier to overlap a skull model
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Fig. 8. ECE plot (left), Tippett plot (middle), and pdfs (right) of the frontal+lateral experiment.

and a facial image if there are fewer landmarks to match, leading to a
higher number of misleading evidence.

Moreover, the behavior observed in the Tippett plot and the pdfs
for both H,, and H, scores (depicted in Fig. 7) is similar to that of the
frontal experiment when it comes to the steepness of the curves and
the variability of the scores, respectively.

4.4. Frontal+lateral experiment: LR system performance evaluation

Ultimately, the results of the experiment in which the combination
of frontal and lateral photographs was used are analyzed. The calcula-
tion of the biometric score when frontal and lateral poses are integrated
is detailed in Section 4.1.

The values for Cy, Cﬂisc, and Cﬁ?l are collected in Table 1. The
evaluation of the LR system in the frontal+lateral experiment yields
a Cy, value of 0.187, which is significantly close to 0. The average cost
due to lack of discrimination was 0.071, whereas the average cost due
to the lack of calibration was 0.116. The reason for this performance
is attributed to the combination of frontal and lateral images, which
leverages the strengths of each image type, as reflected in the resulting
LR values.

The ECE plot obtained is represented in Fig. 8 (left). Notably, all
values are lower than those of the neutral method, confirming its
applicability across the complete spectrum of prior odds. The Tippett
plot is included in Fig. 8 (middle). In this case, the rate of misleading
evidence is insignificant for both the H,-true and the H-true scores
(approximately 3% of the cases). Furthermore, the EPP is almost over
the neutral value, which suggests that the LR system is well-calibrated.
This is due to the advantage of integrating a higher quantity of infor-
mation derived from two facial images showing different perspectives
of the subject’s face. Hence, if the information from one of the Skull-
Face Overlays is misleading, the other one could slightly mitigate the
effects. Moreover, in line with best practice recommendations [5,6,52],
the use of two facial images instead of just one leads to more reliable
identification results.

Additionally, the behavior observed in both the Tippett plot and
the pdfs for H, and H, scores (depicted in Fig. 8) differs from that
of the frontal and lateral experiments. Regarding the Tippett plot, the
sharpness of the curves is less pronounced, indicating that the scores
are distributed over a broader range, and the curves are more deviated
from the neutral value. In the pdfs, the increase and decrease of the
densities are smoother and the variability of the scores is higher. Note
that the scores from the frontal and lateral Skull-Face Overlays are
added in each case.

5. Conclusion

Craniofacial Superimposition is a challenging forensic anthropology
technique to assist in the identification of human remains. However, the
current decision-making process is subjective, error-prone and heavily
reliant on the expertise of the forensic examiner, and the quality and
quantity of materials used. Furthermore, the outcome is conveyed
qualitatively, making statistical interpretation impossible. To address
these issues, a decision-making support system based on Likelihood
Ratios (LRs) has emerged as an appropriate tool, which has been recom-
mended by the ENFSI for other forensic fields. In this paper, we propose
for the first time a methodology to apply this framework to the iden-
tification of skeletal remains using the Craniofacial Superimposition
technique.

Aiming to implement an LR-based system that considers the limi-
tations associated with the materials in a Craniofacial Superimposition
casework scenario, the framework aligns with a similarity-score-based
approach and the evidence is represented by a biometric score. Ad-
ditionally, a Skull-Face Overlay data generation method is employed
to simulate the facial photographs of the subjects of each Craniofa-
cial Superimposition case, using different image conditions. This led
to the proposal of building an LR system and addressing different
experiments: the first employs frontal facial photographs; the second
exclusively uses lateral facial photographs; and the last one integrates
both frontal and lateral facial photographs (frontal+lateral experiment).
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Consequently, our novel proposal for applying the LR framework to the
Craniofacial Superimposition technique is presented as an experimental
validation since the data employed to train and validate were syntheti-
cally generated. This method also serves to increase the number of cases
available for the training and validation of the system. Furthermore, by
simulating inter- and intra-expert errors, the Skull-Face Overlay data
generation method enhances the variability of the scores involved.

The LR system involved in our study has been evaluated using the
Cy, and ECE performance metrics, together with the Tippett and ECE
plots. The ECE plots of the three experiments show that the system is
valid across the full range of prior odds. In the frontal experiment, the
Cy,=0.619 and the curves’ slopes in the Tippett plot are steep, reflecting
the behavior of the scores yielded by the Skull-Face Overlay method,
which are concentrated within a narrow range. On the other hand, in
the lateral experiment, the LR system presents a C};,=0.467. The curves
in the Tippett plot behave similarly to those of the frontal experiment
in terms of steepness. However, a slight shift can be observed. The
variability of the scores is also analogous in this case. Finally, in the
frontal+lateral experiment, the LR system exhibits a C};,=0.187, which
is significantly close to 0. In addition, the Tippett plot indicates that the
system is well-calibrated, since the curves are less steep. The pdfs for
both H, and H, scores show that the variability of the scores is higher
than in the frontal and lateral experiments.

In summary, the results demonstrate that our proposals align with
the functioning of the automatic Skull-Face Overlay system. The LR
system adjusts to what is observed in the overlays and the type of
score which is employed, namely an RMSE. This, in turn, reflects
the proper behavior and effectiveness of the identification method in-
volved, Posest-SFO. In H,-true cases, the error values are more similar
to each other and smaller. Conversely, H,-true cases result in higher
and more variable error values. On the other hand, it should be noted
that the size of our training set is relatively small. Therefore, while our
findings provide valuable insights, they should be considered within
the context of the sample sizes used in our study. Furthermore, this
study should be considered just a proof of concept based on the use
of synthetic data. Actual data should be considered to validate these
conclusions.

There are several aspects that could be further explored. First,
alternative biometric scores could be used and compared. One approach
could be to extract additional information from the Skull-Face Over-
lays and incorporate it with the RMSE value, utilizing other criteria
employed in the decision-making process of the Craniofacial Superim-
position technique, such as anatomical correspondence criteria [18,19].
On the other hand, a feature-based approach could be studied. Fur-
thermore, the proposed methodology could be applied to other forensic
identification techniques, such as dental or radiographic identification.
This could in some cases allow for the fusion of the information drawn
from evidence of diverse nature to yield an overall LR, providing a
more comprehensive assessment of the evidence under the competing
hypotheses. Another interesting area to explore is how factors such
as aging or facial expressions might affect the performance of our LR
system through specific analysis. Additionally, we are committed to ex-
panding our research by applying the proposed methodology to diverse
and geographically distinct relevant populations, including those from
locations such as Mexico, Korea, South Africa, and the USA. This would
extend its applicability and usefulness in the field. Finally, other inter-
esting areas could be explored. While our error modeling incorporates
the addition of random noise, a more realistic distribution of this noise
could be employed to better reflect real-world scenarios. Our current
error modeling thus serves as a pivotal experimental validation in this
regard. When it comes to between-variability concerning soft tissue,
related studies are constrained in their scope [65], typically focusing on
statistical measures such as minimum, maximum, mean, and standard
deviation without fully characterizing the distribution. Moreover, while
assumptions of perpendicularity are common [66,67], the specific di-
rectionality of soft tissue vectors remains unmodeled. Lastly, validation
of our proposal using real facial images under casework conditions
emerges as a future step.
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