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In this paper, we deal with non-degenerate translators of the mean curvature flow 
in the well-known Einstein’s static universe. We focus on the rotationally invariant 
translators, that is, those invariant by a natural isometric action of the special 
orthogonal group on the ambient space. In the classification list, there are three 
space-like cases and five time-like cases. All of them, except a totally geodesic 
example, have one or two conic singularities. Also, we show a uniqueness result 
based on the behaviour of the translator on its boundary. As an application, we 
extend an isometry of the sphere to the whole translator under simple conditions. 
This leads to a characterization of a bowl-like example.

© 2024 The Author(s). Published by Elsevier B.V. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Translating solitons or translators are the well-known solutions to the mean curvature flow which are 
invariant by translations of the ambient space. The geometric idea is that the flow is the displacement of 
a specific hypersurface in the direction of a suitable Killing vector field on the ambient space. See [8] for a 
recent survey on translators in Euclidean Space R3, and also [2], [6], [13] and the references therein. The 
basic idea is to reduce the mean curvature flow to the equation

H = v⊥, (1)
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where H is the mean curvature vector of the immersion, v is a Killing vector and v⊥ is the orthogonal 
projection of v into the normal bundle of the hypersurface.

In [12], de Lira and Martín made a generalization for Riemannian products M×R by taking v = ∂t. Some 
other authors simplified equation (1) by considering rotationally invariant hypersurfaces and also, from a 
broader perspective, a cohomogeneity 1-action on M , which is the action by isometries of some Lie group 
in such a way that the orbits are constant mean curvature hypersurfaces except at most two of them (see 
[1] for more details). This is the case of Bueno in [4] and [5], where the product of the real hyperbolic plane 
and a real line H2 ×R is considered. In [11], de Lima and Pipoli classified invariant translators of a family 
of curvature flows (including the classical mean curvature flow), where Hn×R, n ≥ 1, is one of the ambient 
spaces. In [9], Kim studied the action of some groups in Minkowski space only for space-like hypersurfaces. In 
[10], Lawn and the first author dealt with the action of the special orthogonal and the orthocronal groups in 
Minkowski space by studying both space-like and time-like hypersurfaces. In addition, Batista and de Lima 
obtained some rotationally invariant space-like translators in Lorentzian products P ×−1 R in [3] when P
has non-positive sectional curvature, but they did not exhibit a complete classification. On the other hand, 
Pipoli focused on the solvable group Sol3 in [15] and the Heisenberg group in [16].

In this paper, we obtain new translators in the important Lorentzian manifold Sn ×−1 R, n ≥ 2, well-
known as either the Einstein’s (static) universe or the Einstein’s (static) space-time of arbitrary dimension, 
[17], which we denote by ESU . Thus, we pay attention to an important case avoided in [3]. We use a similar 
definition of translator to the one given in [3] and [12]. It can be easily seen that it is a solution to the PDE

H = ∂⊥
t ,

where H is the mean curvature vector, ∂t is the time-like unit vector field in the direction of the real line, 
and ∂⊥

t represents the orthogonal projection of ∂t in the normal bundle of the hypersurface. In order to 
obtain specific solutions, we focus on the rotationally invariant translators. More precisely, we study those 
which are invariant by a natural extension of the action of the Lie group SO(n) on Sn to Sn ×−1 R. Later, 
we characterize a compact piece of one of these examples.

This paper is structured as follows: In Section 2, we remind some basic tools. We point out that a 
graphical translator is determined by a function which satisfies PDE (3). Section 3 is devoted to specifying 
the action of SO(n), its naturally associated projection τ and a few consequences. Indeed, Proposition 3.1
states that any SO(n)-invariant graphical translator is the graph of the composition of a solution to ODE 
(7) with the map τ .

A detailed study of ODE (7) is carried out in Sections 4 and 5. We classify the space-like SO(n)-invariant 
translators in ESU in Theorem 4.1, obtaining a specific bowl-like example A and two families B and C. 
Unsurprisingly, the time-like setting is richer. We classify the time-like SO(n)-invariant translators in ESU 
in Theorem 5.1, obtaining five cases in total, namely, the family D, the examples E and F, the family of 
bi-graphs G and a non-graphical totally geodesic example. Except the totally geodesic one, all of them have 
one or two conic singularities, i.e., they are tangent to the vertices of light-like cones.

In Section 6, we obtain some uniqueness results for space-like translators. Since any of them is graphical, 
we reduce the study to a suitable function u and its domain, which will be the closure of an open and 
connected subset Ω � Sn, namely Ω. In Theorem 6.1, we show that if two space-like translators coincide 
on the boundary ∂Ω, then they are globally equal in Ω. As a first consequence, in Theorem 6.2, when 
the boundary ∂Ω and the function u are invariant by some isometry σ of Sn, then the whole translator is 
invariant by σ × idR, where idR is the identity map of R. As a result, in Corollary 6.2, when the domain is 
a ball without the centre, and the function u is constant on the boundary of the ball, then the translator is 
rotationally invariant. When the map u is also smooth in the whole ball, the translator has to be a compact 
piece of example A.
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2. Setup

Let Rn+1, n ≥ 2, be the standard (n + 1)-dimensional Euclidean space with its usual flat metric 〈, 〉. 
If p, q ∈ Rn+1, then 〈p, q〉 = p qt, where p and q are regarded as row-matrices and qt is the transpose of 
q. We denote by |w|2 = 〈w,w〉 the squared 〈, 〉-norm of any w ∈ Rn+1. The usual round hypersphere is 
Sn = {p ∈ Rn+1 : 〈p, p〉 = 1}.

We consider the Einstein’s static universe (ESU), namely, the product M̂ = Sn × R with Lorentzian 
metric g = 〈, 〉 − dt2 (cf. [14], [17].) Take (p, t) ∈ Sn × R. Given an open subset M of Sn, we consider a 
function u ∈ C2(M, R) and construct its graph map Γ : M → M̂ , where Γ(p) = (p, u(p)). Given the metric 
γ = F ∗ 〈, 〉 on M , we assume that F : (M, γ) → (M̂, g) is a non-degenerate hypersurface. Under the usual 
identifications, for each X ∈ TM , we have

dF (X) = (X, du(X)) = (X, 〈∇u,X〉),

where ∇u is the 〈, 〉-gradient of u. The upward normal vector field is

ν = 1
W

(∇u, 1), W = +
√

ε
(
|∇u|2 − 1

)
, (2)

where ε := sign
(
|∇u|2 − 1

)
= ±1 is a constant function on the whole M . Note that g(ν, ν) = ε. We will use 

the following definitions of the mean curvature vector and the mean curvature function. If IIΓ is the second 
fundamental form of Γ, the mean curvature vector HΓ is

HΓ = trace〈,〉(IIΓ) = εHν,

where H = trace(Aν) is the mean curvature function, i.e., the trace of the shape operator Aν. The following 
proposition is known (see for example [10]):

Proposition 2.1. Under the previous setting, Γ is a graphical translator if, and only if, function u satisfies 
the quasilinear PDE

div

⎛⎝ ∇u√
ε
(
|∇u|2 − 1

)
⎞⎠ = 1√

ε
(
|∇u|2 − 1

) = H. (3)

Remark 2.1. By Corollary 2.1 in [10], since Sn is a closed manifold (compact, orientable without boundary), 
there are no entire translators in our setting. Thus, M can be smooth at most on Sn without a point.

Remark 2.2. It is important to keep in mind that any space-like hypersurface in ESU is the graph of a 
function u over a piece of a slice Sn × {t0}, t0 ∈ R, satisfying |∇u|2 < 1. If necessary, we will write a 
space-like translator as Γu, remarking the map u.

We note that if Γ is a graphical translator, then its image by an isometry is also a translator.

Lemma 2.1. Let Γ be a graphical translator in Sn ×−1 R. Given an isometry F : Sn → Sn, we extend it to 
F : Sn ×−1 R → Sn ×−1 R, (p, t) �→ (F (p), t). Then, F(Γ) is also a graphical translator.

Proof. By Proposition 2.1, Γ is determined by a certain function u : Ω → R that satisfies (3). A straightfor-
ward computation shows that û := u ◦ F−1 : F (Ω) → R also satisfies (3). From this, the associated graph 
to û is also a translator, namely F(Γ). �
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3. The action of the Lie group SO(n)

We recall the Lie group SO(n) = {A ∈ Mn(R) : AAt = In, det(A) = 1}, of orthogonal n × n matrices 
whose determinants are 1, where At is the transpose of A and In is the identity matrix. This group acts by 
isometries on Sn, namely

Ψ : SO(n) × Sn → Sn, (A, p) �→ p

(
A 0
0 1

)
. (4)

This is a well-known cohomogeneity 1-action, whose non-singular orbits are totally umbilical (n − 1)-
dimensional hyperspheres, and its singular orbits are the North pole n = (0, . . . , 0, 1) and the South pole 
s = (0, . . . , 0, −1) of Sn. The orbits of the action Ψ coincide with the level sets of the map

τ : Sn → [−π/2, π/2], τ(p) = arcsin(〈p,n〉). (5)

A straightforward computation shows that the map τ is a Riemannian submersion. Thus, we can use 
−∇τ as a globally defined unit normal vector field to the level sets of τ . Given s ∈ (−π/2, π/2) and 
p ∈ τ−1{s} ⊂ Sn\{n, s}, a simple computation gives the mean curvature function with respect to −∇τ :

trace(A−∇τ )p = (1 − n) tan(s).

Then, we take h : (−π/2, π/2) → R, h(s) = (1 −n) tan(s). However, the action by isometries that we really 
need is the following extension:

SO(n) × M̂ → M̂, (A, (p, t)) �→
(
Ψ(A, p), t

)
. (6)

Assume that a graphical translator Γ is invariant by the action (6). Since Γ is described in terms of an 
open subset M ⊂ Sn and a function u ∈ C2(M, R), both M and u must be also invariant by SO(n). This 
implies that there exists f ∈ C2(I, R) such that I = τ(M) ⊂ [−π/2, π/2], u = f ◦ τ|M . By a straightforward 
application of Theorem 3.5 in [10], we obtain the following result:

Proposition 3.1. Let u ∈ C2(M, R) be an invariant function by action (4) such that u = f ◦ τ . The graph 
map Γ of u is an SO(n)-invariant translator if, and only if, function f satisfies the following ODE:

f ′′(s) =
(
1 − (f ′(s))2

)(
1 + (n− 1) tan(s)f ′(s)

)
, ∀s ∈ I. (7)

Our next target is to study the solutions to (7). For this aim, we take v = f ′ in (7) and deal with the 
following ODE

v′(s) =
(
1 − v(s)2

)(
1 + (n− 1) tan(s)v(s)

)
. (8)

Remark 3.1. In the following sections, we find all solutions to equation (8). We note that for each solution 
v ∈ C1(I), we compute a primitive f =

∫
v. Thus, we obtain an SO(n)-invariant translator according to 

Proposition 3.1. Namely, M = τ−1(I) ⊂ Sn, Γ : M → M̂ , Γ(p) = (p, (f ◦ τ)(p)) for each p ∈ M .

Recall that n ≥ 2 is a natural number. There are two immediate solutions to (8),

v+, v− : R → R, v+(s) = 1, v−(s) = −1.
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These will behave as barrier solutions. We will use well-known tools and results, which can be found in the 
book [18], especially in Section 3.2. We define the function

Θ : R2 → R, (s, x) �→ (1 − x2)
(
cos(s) + (n− 1) sin(s)x

)
,

and the vector field, or rather, the dynamical system

X : R2 → R2, X(s, x) = (cos(s),Θ(s, x)) .

The following two results justify the election of X. First, from almost any integral curve of X, we obtain a 
solution to (8). Second, from a solution, we obtain an integral curve.

Lemma 3.1. Let α : Jo ⊂ R → R2, α(r) = (s(r), x(r)), be an integral curve of X such that s : Jo → Ko ⊂ R

is bijective. Then, v : Ko → R, v := x ◦ s−1, is a solution to (8). In addition, for y ∈ Ko, sign(v′(y)) =
sign(Θ(s−1(y), v(y))).

Proof. Since α is an integral curve of X (that is, X(α(r)) = α′(r)), then

s′(r) = cos(s(r)), x′(r) = (1 − x(r)2)
(
cos(s(r)) + (n− 1) sin(s(r))x(r)

)
.

As s is bijective, then s′(s−1(y)) = cos(y) for any y ∈ Ko. Therefore,

v′(y) =x′(s−1(y))
s′(s−1(y)) =

(
1 − (x(s−1(y)))2

)(
cos(y) + (n− 1) sin(y)x(s−1(y))

)
cos(y)

=
Θ
(
y, v(y)

)
cos(y) = (1 − v(y)2)

(
1 + (n− 1) tan(y)v(y)

)
.

This readily finishes the proof. �
Lemma 3.2. Given a solution v : J ⊂ I → R to (8), there exists a smooth function s = s(r) defined on a 
suitable interval such that α(r) = (s(r), v(s(r))) is an integral curve of X.

Proof. Take the curve α(r) = (s(r), v(s(r))) for some smooth function s (to determine). Since v is a solution 
to (8), we obtain

X(α(r)) =
(
cos(s(r)), (1 − v(s(r))2)(cos(s(r)) + (n− 1) sin(s(r))v(s(r))

)
=
(
cos(s(r)), cos(s(r))v′(s(r))

)
.

Solving the ODE s′(r) = cos(s(r)) provides the desired reparametrization. �
The geometrical interpretation of function τ is the angle or the position vector p ∈ Sn with respect to the 

horizontal hyperplane. Then, we can reduce our study to the subset

S := [−π/2, π/2] ×R.

The zeros of X in [−π/2, π/2] ×R are the points

p0 = (−π/2,−1), p1 = (−π/2, 0), p2 = (−π/2,+1), (9)

q0 = (π/2,−1), q1 = (π/2, 0), q2 = (π/2,+1).
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We denote the differential of X at p by DX(p). We classify the points p0, p1, p2, q0, q1 and q2 according to 
the eigenvalues of DX(p):

DX(p0) =
(

1 0
0 2(n− 1)

)
, DX(p1) =

(
1 0
1 1 − n

)
,

DX(p2) =
(

1 0
0 2(n− 1)

)
, DX(q0) =

(
−1 0
0 −2(n− 1)

)
,

DX(q1) =
(
−1 0
−1 n− 1

)
, DX(q2) =

(
−1 0
0 −2(n− 1)

)
.

Clearly, p0 and p2 are sources because both eigenvalues are positive. q0 and q2 are sinks as both eigenvalues 
are negative. But p1 and q1 are saddle points since two eigenvalues are of different sign for each of these 
points. A straightforward computation proves the following result:

Lemma 3.3. For each solution to ODE x′(r) = ±(n − 1)(1 − x(r)2)x(r), the curves β±(r) = (±π/2, x(r))
are integral curves of X.

We now restrict the function Θ to the set S. The set Z0 = {(s, x) ∈ S : Θ(s, x) = 0} can be written 
in terms of the lines x = ±1 and the disconnected curve C given by the implicit equation cos(s) + (n −
1) sin(s)x = 0, where s ∈ [−π/2, π/2]. We identify the set of points satisfying Θ(s, x) > 0 and Θ(s, x) < 0
as follows:

• A1 = {(s, x) ∈ (−π/2, 0) × [1, +∞) : x > − cot(s)/(n − 1)},
• A2 = {(s, x) ∈ (−π/2, 0) × [1, +∞) : x < − cot(s)/(n − 1)} ∪ ([0, π/2) × (1, +∞)),
• A3 = {(s, x) ∈ (−π/2, 0) × (0, 1) : x > − cot(s)/n − 1},
• A5 = {(s, x) ∈ (0, π/2) × (−1, 0) : x < − cot(s)/(n − 1)},
• A6 = ((−π/2, 0] × (−∞, −1]) ∪ {(s, x) ∈ (0, π/2) × (−∞, −1) : x > − cot(s)/(n − 1)},
• A7 = {(s, x) ∈ (0, π/2) × (−∞, −1) : x < − cot(s)/(n − 1)},
• A4 = ((−π/2, π/2) × (−1, 1))\(A3 ∪A5).

Note that Θ|A1∪A4∪A7 > 0 and Θ|A2∪A3∪A5∪A6 < 0. Also, Z+ = {(s, x) ∈ S : Θ(s, x) > 0} = A1 ∪A4 ∪A7, 
Z− = {(s, x) ∈ S : Θ(s, x) < 0} = A2 ∪ A3 ∪ A5 ∪ A6. According to Lemma 3.1, the monotony of the 
solutions will be indicated by the sign of Θ along their graphs. The following result can be proved by a very 
simple computation.

Proposition 3.2. Given (s0, x0) ∈ (−π/2, π/2) ×R, let v : (a, b) → R be the solution to (8) such that v(s0) =
x0. Then, w : (−b, −a) → R defined by w(s) = −v(−s) is also a solution to (8) satisfying w(−s0) = −x0. 
In particular, their graphs are symmetric with respect to the point (0, 0).

Remark 3.2. Proposition 3.2 simplifies the rest of the computations. Indeed, given an SO(n)-invariant 
translator associated with v, a certain rotation angle π provides another one whose associated solution is 
w(s) = −v(−s). We call them rotated sisters.

4. The space-like case

Space-like graphical translating solitons are those satisfying ε = −1 = sign(|∇u|2 − 1), that is to say, 
|∇u|2 < 1. Since u = f ◦ τ , by Proposition 3.1 and Remark 3.1, it becomes (f ′)2 < 1. Finding all solutions 
to (8) such that v2 < 1 is equivalent to classifying all space-like SO(n)-invariant translators in ESU . To do 
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Fig. 1. Regions for Θ > 0 in grey, and for Θ < 0 in white.

so (recall Fig. 1), we study those solutions whose graphs are contained in [−π/2, π/2] × [−1, 1]. We start by 
showing that any such solution can be globally extended.

Lemma 4.1. Given (s0, x0) ∈ (−π/2, π/2) × (−1, 1), the solution v to (8) with v(s0) = x0 can be extended 
(as solution) to v : (−π/2, π/2) → [−1, 1]. Also, lims→±π/2 v(s) ∈ {−1, 0, 1}.

Proof. We take a local solution v to (8) such that −1 < v(s) < +1, which is bounded by the constant 
solutions v±(s) = ±1. Therefore, v can be extended to v : (−π/2, π/2) → [−1, 1]. By Lemma 3.2, we 
construct an integral curve αv : [−π/2, π/2] → [−1, 1] of X from v. By Lemma 3.3, αv and β± can only 
coincide at some point p such that X(p) = 0. But this only holds when p ∈ {p0, p1, p2, q0, q1, q2}, namely, 
when lims→±π/2 v(s) ∈ {−1, 0, 1}. �
Lemma 4.2. We find the solutions to two boundary problems as follows:

a) There exists a unique w− ∈ C0[−π/2, π/2] ∩ C∞[−π/2, π/2) solution to (8) such that w−(−π/2) = 0. 
Also, w−(π/2) = 1.

b) There exists a unique w+ ∈ C0[−π/2, π/2] ∩ C∞(−π/2, π/2] solution to (8) such that w+(π/2) = 0. 
Also, w+(−π/2) = −1.

Proof. As p1 = (−π/2, 0) is a saddle point, according to Theorem 3.2.1 of [18], there are two 1-dimensional 
submanifolds passing through p1 such that their tangent vectors are the eigenvectors of DX(p1). One of them 
is parallel to (0, 1), so it does not generate a solution as in Lemma 3.1. However, the other 1-dimensional 
submanifold α : [0, δ) → [−π/2, π/2] × R can be parametrized by α(r) = (s(r), x(r)), so that α(0) =
(−π/2, 0) and it provides a solution as in Lemma 3.1, namely, w− : [−π/2, ̂δ) → R, w−(y) = x(s−1(y)). 
In particular, limy→−π/2 w−(y) = 0. This means that w− is a solution to (8) with the boundary condition 
w−(−π/2) = 0. The uniqueness of the (local) integral curves of X implies that w− is unique. Moreover, 
the graph of w− is included in the region A4, so that w′

−(s) > 0 for any s > −π/2 and also w−(−π/2) = 0. 
By Lemma 4.1, we can extend w− : [−π/2, π/2] → R and limy→π/2 w−(y) = 1. Finally, since X is smooth, 
then w− is also smooth on [−π/2, π/2).

Similar computations hold for the point q1, obtaining w+. Also, w+ is the rotated sister of w−, as in 
Remark 3.2. �
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The region (−π/2, π/2) × [−1, 1] is split in three parts by the graphs of w±. In Lemma 4.3, we will 
find the solutions to (8) between the graph of w− and the constant +1. Later, we will study the solutions 
between the graphs of w± in Lemma 4.4. Finally, between w+ and −1, we resort to Proposition 3.2. By 
this way, we find all solutions included in this region.

Lemma 4.3. For each (s0, x0) ∈ (−π/2, π/2) × (−1, 1) such that w−(s0) < x0, the unique solution v to (8)
with initial condition v(s0) = x0, can be extended to v ∈ C0[−π/2, π/2] ∩ C∞(−π/2, π/2), with v(−π/2) =
v(π/2) = 1, |v| ≤ 1. For some (s1, x1) ∈ C, s1 < 0, then v′(s1) = 0. Moreover, v(s1) is its unique absolute 
minimum.

Proof. By Lemma 4.1, the associated solution to (8) can be extended to v : (−π/2, π/2) → [−1, 1]. At one 
point (s1, x1) ∈ C, v(s1) = x1. From (8), v′(s1) = 0. Then, for any s < s1, the graph of v is included in the 
region A3, so that v′(s) < 0. For any s > s0, the graph of v is included in the region A4, so that v′(s) > 0. 
In particular, s1 is the global minimum of v. Since 0 ≤ w−(s0) < v(s0) < 1 and lims→π/2 w−(s) = 1, 
lims→π/2 v(s) = 1. If lims→−π/2 v(s) = 0, then the uniqueness given in Lemma 4.2 implies that for each s, 
v(s) = w−(s) which is a contradiction. Finally, Lemma 4.1 yields v(−π/2) = 1. �
Lemma 4.4. For each (s0, x0) ∈ (−π/2, π/2) × (−1, 1) such that w+(s0) < x0 < w−(s0), the unique solution 
v to (8) with initial condition v(s0) = x0, can be extended to v ∈ C0[−π/2, π/2] ∩ C∞(−π/2, π/2), with 
v(−π/2) = −1, v(π/2) = 1 and v′ > 0.

Proof. By Lemma 4.1, the associated solution to (8) can be extended to v : [−π/2, π/2] → [−1, 1]. But now, 
the graph of v is between the graphs of w±, so that v′(s) > 0 for any s ∈ (−π/2, π/2). Thus, v has no critical 
points. The uniqueness of w± and Lemma 4.1 implies that lims→−π/2 v(s) = −1 and lims→π/2 v(s) = 1. �

Now, from the previous lemmas and Remark 3.1, we construct the corresponding translators. For each 
function v : [−π/2, π/2] → R in Lemmas 4.2, 4.3 and 4.4, we consider a primitive f =

∫
v. One advantage of 

translators is that the integration constants do not matter, so we do not write them down. Each translator 
Γ is the graph map of the composition u = f ◦ τ , u : Sn → R. In all cases, u ∈ C0(Sn) ∩ C∞(Sn\{s, n}). 
We recall that n and s are the North and South poles, respectively. In the following list, we give names and 
study Γ at the points s and n.

(A) Take v = w− of Lemma 4.2. Since w′
−(0) = 0, the tangent plane to the graph of u− at this point is 

orthogonal to the rotation axis. That is, this translator is smooth at the point s. We call this point the 
main point of the translator. On the other hand, since w′

−(π/2) = +1, then the hypersurface hits the 
rotation axis with an angle of π/4, which implies a conic singularity at n. Similarly, we can construct 
u+ from w+. Note that u+ is the rotated sister of u− (Remark 3.2.)

(B) We take a solution v of Lemma 4.3. Since f ′(±π/2) = v(±π/2) = ±1, they hit the rotation axis with 
an angle of ±π/4, so that there are two conic singularities at s and n.

(C) We take a solution v of Lemma 4.4. Similarly to case B, there are two conic singularities at s and n.

With the aid of wxMaxima [19], we show numerical approximations of solutions w− and of Lemmas 4.3
and 4.4 in Fig. 2. Now, we make use of Theorem 3.5 in [10], obtaining the following result.

Theorem 4.1. Up to direct isometries, any space-like SO(n)-invariant translator in Sn ×−1 R, n ≥ 2, is an 
open subset of a translator of case either A, B or C.

Proof. Take an SO(n)-invariant space-like translator Γ : M → Sn ×−1 R, n ≥ 2. Since it is space-like, it is 
the graph of a function u : M → R, Γ(p) = (p, u(p)) with |∇u| < 1. We consider the associated function 



M. Ortega, H. Yıldırım / Differential Geometry and its Applications 95 (2024) 102153 9
Fig. 2. Numerical approximations of the main types of solutions to (8).

Fig. 3. Case A.

Fig. 4. Case B.

Fig. 5. Case C.

f as in Proposition 3.1 such that u = f ◦ τ , and therefore (f ′)2 < 1. Taking v = f ′, then v is one of 
the solutions to (8) among Lemmas 4.2, 4.3 and 4.4. The primitives of such solutions provide the different 
space-like translators, namely cases A, B and C. �

Figs. 3–5 show numerical approximations of functions f in the cases A, B and C, respectively, when 
n = 3. The circle represents Sn, while the vertical line is the time-like axis.

5. The time-like case

We now deal with the case (f ′)2 > 1. By Proposition 3.2, the case f ′ < −1 can be reduced to f ′ > 1. 
Then, we focus on the region R = [−π/2, π/2] × [1, +∞) = A1 ∪A2. We need the curve C given by the 
implicit equation 0 = cos(s) + (n − 1) sin(s)x, where −π/2 ≤ s ≤ π/2.

We summarize how to obtain all solutions to (8) included in A1 ∪A2. First, we show that those touching 
the curve C can be extended to [−π/2, π/2] in Lemma 5.2. Next, for each s0 ∈ (−π/2, π/2), s0 �= 0, there is 
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a solution whose limit at s0 is +∞ in Lemma 5.3. Finally, we will obtain two solutions that are asymptotic 
to each side of the axis s = 0 in Lemmas 5.4 and 5.5. The behaviour of the different primitives will play an 
important role later.

Lemma 5.1.

1. Each solution v to (8) included in region A1 can be extended to v ∈ C0[−π/2, s0) ∩ C∞(−π/2, s0) for 
some s0 ∈ (−π/2, 0). Also, v(−π/2) = 1.

2. Each solution v to (8) included in region A2 can be extended to v ∈ C0(s0, π/2] ∩C∞(s0, π/2) for some 
s0 ∈ (− arctan(1/(n − 1)), π/2). Also, v(π/2) = 1.

Proof. By Lemma 3.2, we take the integral curve α of X associated with v. Then, v′(s) = Θ(s, v(s))/ cos(s) >
0. The constant solution v+(s) = 1 is a lower bound, so that we can extend to v : [−π/2, s0) → R with 
lims→−π/2 v(s) = x0 ∈ [1, +∞). By Lemma 3.3, a reparametrization of the line s = −π/2 is another integral 
curve of X. By uniqueness of integral curves, the curve α and the vertical line can only coincide at a point 
p such that X(p) = 0. Then, p = (−π/2, 1). In particular, v(−π/2) = 1. This shows item a).

A similar reasoning holds for the solutions included in region A2. To do so, remark that Θ|A2 < 0 and 
C ∩ {x = 1} = {(− arctan(1/(n − 1)), 1)}. �

By recalling that Θ|A1 > 0 and Θ|A2 < 0, a straightforward application of Lemma 5.1 readily proves the 
following result:

Lemma 5.2. Each solution v with initial condition (s0, x0) ∈ C, can be extended to v ∈ C0[−π/2, π/2] ∩
C∞(−π/2, π/2). In addition, v(±π/2) = 1, and v′(s0) = 0, where v(s0) is its unique absolute maximum.

Our next target is to look for solutions with finite time blow-ups.

Lemma 5.3.

a) For each (s0, x0) ∈ A1, there exist two solutions f± : (−π/2, s0] → R to (7) such that f±(s0) = x0. In 
addition, v± = f ′

± are solutions to (8), where lims→s0 v±(s) = ±∞, v+(−π/2) = 1 and v−(−π/2) = −1.
b) For each s0 ∈ (0, π/2) and x0 > 1, there exists two solutions f± : [s0, π/2] → R to (7) such that 

f±(s0) = x0. In addition, v± = f ′
± are solutions to (8), where lims→s0 v±(s) = ±∞, v+(π/2) = 1 and 

v−(π/2) = −1.

Proof. First, we study case a). Due to Θ|A1 > 0, we can assume that both f and u = f ′ are injective around 
each point (s0, x0) ∈ A1. Next, we write w = f−1 around (s0, x0). Then, as in the proof of Corollary 3.7 in 
[10], (7) becomes

w′′(x) = (1 − w′(x)2)
(
(n− 1) tan(w(x)) + w′(x)

)
. (10)

Initial conditions w′(x0) = 0 and w(x0) = s0 provide a local solution w : (x0 − δ, x0 + δ) → R. Note 
that w′′(x0) = (n − 1) tan(s0) < 0, so that w is not injective on a neighbourhood of x0. Then, we define 
f+ := (w|(x0−δ,x0))−1 : (s0−δ̂, s0) → R and we can extend v = f ′

+ : [−π/2, s0) → [1, +∞) due to Lemma 5.1. 
Clearly, we can extend f+ : [−π/2, s0) → R, where v(−π/2) = f ′

+(−π/2) = 1. Also, lims→s0 v(s) =
lims→s0 1/α′(f(s)) = +∞. We now consider the other half f− = (w|(x0,x0+δ))−1 : (s0 − δ̂, s0) → R with 
similar properties to f+, although its graph is contained in A6. Thus, we can extend f− : (−π/2, s0) → R

and compute v = f ′
− : (−π/2, s0) → (−∞, −1]. But now, f ′

− < −1 and lims→−π/2 f
′
−(s) = −∞.

Case b) can be checked by Proposition 3.2 and case a). �
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The remaining two solutions are asymptotic to the x-axis.

Lemma 5.4. There exists a solution ξ ∈ C0[−π/2, 0) ∩C∞(−π/2, 0) to (8) such that it is strictly increasing, 
ξ(−π/2) = 1, lims→0 ξ(s) = +∞ and any primitive Ξ =

∫
ξ satisfies lims→0 Ξ(s) = +∞.

Proof. We consider the set

I1 = {x ≥ 1 : ∃v : (−π/2, π/2) → [1,+∞)solution to (8), v(−π/4) = x}.

By Lemma 5.2, I1 is not empty. By Lemma 5.3, I1 is bounded from above. Take x̂1 := supI1. Let ξ :
(s0, s1) → [1, +∞), −π/2 ≤ s0 < −π/4 < s1, be the local solution to (8) such that ξ(−π/4) = x̂1. Note 
that the graph of ξ is included in region A1. By Lemma 5.1, it can be extended to ξ : [−π/2, s1) → [1, +∞)
with ξ(−π/2) = 1.

Assume lims→s2 ξ(s) = +∞, for some s2 ∈ [s1, 0). By Lemma 5.3, given s3 = s2/2, there exists another 
solution v : [−π/2, s3) → [1, +∞) such that lims→s3 v(s) = +∞. Since v(s2) < +∞, then it holds v(s) < ξ(s)
for any s < s2. In particular, x̂1 = ξ(−π/4) > v(−π/4) > 1. This contradicts that x̂1 = supI1.

Next, assume that s1 > 0. Then, for x1 = ξ(0), by Lemma 5.3, ξ is defined on (−π/2, π/2). In particular, 
there exists another solution ξ̂ : (−π/2, π/2) → [1, +∞) such that ξ̂(0) > ξ(0), so that ξ̂(−π/4) > ξ(−π/4) =
x̂1. This is a contradiction.

The conclusion is that ξ : [−π/2, 0) → [1, +∞) has a finite-time blow-up at zero, namely, lims→0 ξ(s) =
+∞.

We consider a primitive Ξ : [−π/2, 0) → R, Ξ =
∫
ξ. Note that Ξ is strictly increasing since ξ > 0. 

By contradiction, we assume that lims→0 Ξ(s) = Ξ0 ∈ R. Then, we call w = Ξ−1 and recall (10). Also, 
w′(Ξ0) = 1/ lims→0 ξ(s) = 0. But the only solution to (10) with w(Ξ0) = 0 and w′(Ξ0) = 0 is the constant 
solution w(x) = 0. This contradicts the injectivity of w. Thus, lims→0 Ξ(s) = +∞. �

Quite similar computations prove the existence of another solution which is asymptotic to s = 0.

Lemma 5.5. There exists a solution ψ ∈ C0(0, π/2] ∩ C∞(0, π/2) to (8) such that it is strictly decreasing, 
ψ(π/2) = 1, lims→0 ψ(s) = +∞ and any primitive Ψ =

∫
ψ satisfies lims→0 Ψ(s) = +∞.

We have obtained all solutions to (8) included in A1 ∪A2. Next, for each solution v of Lemmas 5.2, 5.3, 
5.4 and 5.5, we consider a primitive f =

∫
v (see Fig. 6). Its associated SO(n)-invariant translator is just 

the graph of the function f ◦ τ as in Proposition 3.1 and Remark 3.1. Similarly to the space-like translators, 
when v is defined at −π/2 or π/2, the translator has a conic singularity at s or n. We also recall their 
rotated sisters, according to Remark 3.2.

From now on, we describe them and provide some names:

(D) Given a solution v : [−π/2, π/2] → R of Lemma 5.2, the translator is the graph of u : Sn → R given 
by u = f ◦ τ . Similarly to cases B and C, all these examples have two conic singularities at n and s, 
and they are smooth on Sn\{s, n}.

(E) Constructed from function Ξ in Lemma 5.4, this is a graph over a half-hypersphere with one conic 
singularity at the point s. It explodes to infinity as the graph approaches to the equator.

(F) Constructed from Ψ of Lemma 5.5, its geometrical description is quite similar to case E. If we recall 
function Θ(s, x) = (1 −x2)(cos(s) +(n −1) sin(s)x), it is clear that Θ(−s, x)/ cos(−s) �= Θ(s, x)/ cos(s)
for x /∈ {0, 1, −1} and s �= 0. This justifies that cases E and F are indeed different.

(G) By a careful reading of Lemma 5.3, we can glue two translators, because there are two functions f±
that provide the upper and the lower parts. This union becomes a smooth bi-graph with tangent planes 
parallel to ∂t at the points of contact of both graphs. The whole translator covers less than half of the 
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Fig. 6. Numerical approximations of the solutions to (8) in Lemmas 5.2, 5.3, 5.4 and 5.5.

hypersphere, having two conic singularities. From one conic point, the hypersurface grows gradually to 
a hypersphere of maximum radius, and later it shrinks gradually to the other conic singularity. Both 
singularities are projected to the same point of Sn.

Finally, we construct a family of non-graphical time-like translators from minimal hypersurfaces in Sn.

Example 5.1. Given a minimal or totally geodesic hypersurface σ : Mn−1 → Sn, n ≥ 2, consider M̃n =
Mn−1 ×R and the immersion σ : M̃n → Sn×−1 R given by σ(p, t) = (σ(p), t). A simple computation shows 
that the mean curvature vector field of σ is zero everywhere. As ∂t is tangent to M̃n, then ∂⊥

t = 0. Thus, 
σ is a translator. �

By recalling Proposition 3.2 and Remark 3.2, we obtain the following classification:

Theorem 5.1. Up to direct isometries, any SO(n)-invariant, time-like translator in Sn ×−1 R, n ≥ 2, is 
an open subset of cases D, E, F or G, or it is a non-graphical totally geodesic immersion Sn−1 ×−1 R →
Sn ×−1 R.

Proof. Take an SO(n)-invariant time-like translator Γ : M → Sn ×−1 R, n ≥ 2. We consider two cases:
Case 1: Assume that it is graphical with associated function u : M → R, Γ(p) = (p, u(p)) and |∇u| > 1. 

We consider the associated function f as in Proposition 3.1 such that u = f ◦τ , with (f ′)2 > 1. Take v = f ′. 
By Proposition 3.2, it is enough to consider the solutions v to (8) among Lemmas 5.2, 5.3, 5.4 and 5.5. 
Then, Γ is an open subset of cases D, E, F or G.

Case 2: Assume that ∂t is tangent to the translator on an open subset Ω. This allows the following local 
description. There exist an open subset K ⊂ R, a smooth manifold Mn−1 and a map Γ̂ : Mn−1 → Sn such 
that

Γ : Mn−1 ×K → Sn ×−1 R, Γ(p, t) = (Γ̂(p), t).

As ∂t is tangent to the translator, 0 = ∂t
⊥ = �HΓ. Hence, the mean curvature vector field of Γ̂ is also 0. 

Since Γ is SO(n)-invariant, then Mn−1 has to be a union of orbits. But the only minimal orbit is totally 
geodesic. This finishes the proof. �
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Fig. 7. Case D.

Fig. 8. Case E.

Fig. 9. Case F.

Fig. 10. Case G.

Remark 5.1. Due to the conic singularities, there do not exist any complete graphical examples, either 
space-like or time-like.

We show numerical approximations of function f in cases D, E, F and G when n = 3 (see Figs. 7–10).
The circle represents S3, while the vertical line is the time-like axis.
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6. Uniqueness results

Along all this section, we use the beginning of Chapter 10 of book [7]. We recall that n ≥ 2 is a natural 
number.

Lemma 6.1. When ε = −1, PDE (3) behaves as a quasilinear elliptic operator. Moreover, it is locally 
uniformly bounded.

Proof. We consider the inverse map of the classical stereographical map, namely

Φ : Rn → Sn\{n} ⊂ Rn ×R, Φ(x) =
(

2x
1 + |x|2 ,

|x|2 − 1
1 + |x|2

)
.

It is well-known that this is a conformal map. A straightforward computation shows that the induced metric 
on Rn is

g̃ = 4
(1 + |x|2)2 〈, 〉,

where 〈, 〉 denotes the standard metric on Rn. We use coordinates (x1, . . . , xn) ∈ Rn and the partial deriva-
tives are ∂i = ∂/∂xi, i = 1, . . . , n. Given any function f , we write fi = ∂if . Let Ω be open and connected 
such that Ω � Sn\{n}. We put Λ = Φ−1(Ω), which is open, connected and bounded in Rn. Obviously, 
∂Λ = Φ−1(∂Ω). For simplicity, we identify u ≡ u ◦ Φ : Λ → R. Let ∇ be the Levi-Civita connection of 
(Rn, ̃g). If we put λ : Rn → R, λ(x) = (1 +

∑n
i=1 x

2
i )/2, then g̃ = 〈, 〉/λ2. In addition, ∇u = λ2 ∑n

i=1 ui∂i. 
Taking ε = −1, if we recall W =

√
1 − |∇u|2, we obtain W 2 = 1 − λ2 ∑

k u
2
k. We need the auxiliary func-

tions Γij : Λ → R, Γij = g̃ (∇∂i
∂j , ∂i), i, j ∈ {1, . . . , n} After a straightforward computation, by using this 

coordinate system, the PDE (3) can be written as follows:

0 =W 2divg̃(∇u) −W g̃(∇u,∇W ) −W 2

=
n∑

i,j=1
λ2 (W 2δij + λ2uiuj

)
uij + 2λW 2

n∑
i=1

xiui

+ λ4W 2
n∑

i,j=1
ujΓij + λ3

n∑
i,j=1

xiuiu
2
j −W 2.

As usual, δij is the Kronecker’s delta. By taking (x, z, p) ∈ Rn × R × Rn, we introduce the corresponding 
functions Ŵ : Rn ×Rn → R and aij , b : Rn ×R ×Rn → R given by

λ(x) =(1 + 〈x, x〉)/2, Ŵ (x, p) = 1 − λ(x)2〈p, p〉,

aij(x, z, p) =λ(x)2
(
Ŵ (x, p)δij + pipj

)
,

b(x, z, p) =2λ(x)Ŵ (x, p)〈x, p〉 + λ(x)4Ŵ (x, p)
n∑

i,j=1
pjΓij(x)

+ λ(x)3
n∑

i,j=1
xipip

2
j − Ŵ (x, p).

The associated quasilinear operator is
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Qu =
n∑

i,j=1
aij(x, u,∇u)uij + b(x, u,∇u).

Let us show that the matrix A = (aij) is positive definite on a suitable subset U ⊂ Rn × R × Rn. We 
rewrite A = λ2Ŵ In + λ2ptp, where In is the identity matrix. It is simple to see that for q ⊥ p, we have 
Apt = λ2(Ŵ + |p|2)pt and Aqt = λ2Ŵqt. In particular, the eigenvalues of A are λ1 = λ2(Ŵ + |p|2) and 
λ2 = λ2Ŵ . These two functions are strictly positive on

U =
{

(x, z, p) ∈ Λ ×R×Rn : 1 − λ(x)2
n∑

k=1

pk > 0
}
,

and bounded on compact subsets included in U . The condition defining U can be regarded as |∇u| < 1. �
Theorem 6.1. Let Ω be open, connected and Ω � Sn, n ≥ 2. Let u, ̂u ∈ C0(Ω) ∩C2(Ω) such that Γu and Γû

are space-like translators in Sn ×−1 R, and u = û on ∂Ω. Then, Γu = Γû.

Proof. Up to an isometry, we can assume that Ω ⊂ Sn\{n}. By Lemma 6.1, we use the bounded open 
domain Λ = Φ−1(Ω) ⊂ Rn, and its boundary ∂Λ = Φ−1(∂Ω). Define u := u ◦ Φ and û := û ◦ Φ : Λ → R. 
Both u and û satisfy Qu = 0 = Qû on Λ, they are elliptic in Λ, and u = û on ∂Λ. In addition, the 
coefficients of the operator Q are of class C∞ and independent of the variable z. By Theorem 10.2 in the 
book [7], we conclude that u = û on Λ. �
Theorem 6.2. Let Ω be open, connected and Ω � Sn, n ≥ 2. Let σ : Sn → Sn be an isometry such that 
σ(Ω) = Ω. Consider u ∈ C0(Ω) ∩C2(Ω) such that Γu is a space-like translator in Sn ×−1 R, and u ◦ σ = u

on ∂Ω. Then, Γu is also invariant by σ × idR.

Proof. We take û := u ◦ σ ∈ C0(Ω) ∩ C2(Ω). By hypothesis, û = u on ∂Ω. By Lemma 2.1, Γû is also a 
space-like translator. We use now Theorem 6.1. �
Corollary 6.1. Let Ω be open, connected and Ω � Sn, n ≥ 2. If Ω is invariant by a subgroup Σ of isometries 
of Sn and u ◦ σ = u on ∂Ω for any σ ∈ Σ, then Γu is also invariant by Σ × {idR}.

As usual, we denote by B(p, r) ⊂ Sn the ball centred at p ∈ Sn and radius r ∈ (0, 2π), and by B∗(p, r) =
B(p, r)\{p}.

Corollary 6.2. Let Ω = B∗(p, r), r ∈ (0, 2π) and p ∈ Sn. Assume that u ∈ C0(Ω) ∩ C2(Ω) provides a 
space-like translator Γu, and for some c ∈ R, u ≡ c on ∂B(p, r). Then, up to isometries,

1. Γu is SO(n) invariant;
2. In addition, if Γu is smooth at p, then it is a compact piece of case A.

Proof. Clearly, Ω is SO(n)-invariant. By Corollary 6.1, Γu is SO(n)-invariant. Then, we recall Theorem 4.1. 
In addition, if we can extend Γu smoothly to p, it can only be a smooth compact piece of case A. �
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