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A R T I C L E I N F O A B S T R A C T

Editor: B. Grinstein We present a systematic method for determining the two-loop effective Lagrangian resulting from integrating 
out a set of heavy particles in an ultraviolet scalar theory. We prove that the matching coefficients are entirely 
determined from the (double-)hard region of the loop integrals and present a master formula for matching, 
applicable to both diagrammatic and functional approaches. We further employ functional methods to determine 
compact expressions for the effective Lagrangian that do not rely on any previous knowledge of its structure or 
symmetries. The same methods are also applicable to the computation of renormalization group equations. We 
demonstrate the application of the functional approach by computing the two-loop matching coefficients and 
renormalization group equations in a scalar toy model.
1. Introduction

The use of Effective Field Theories (EFTs) in beyond the Standard 
Model (BSM) searches is ubiquitous. Given the current experimental 
bounds, it seems increasingly likely that there is a large gap between the 
electroweak scale and the next energy threshold. In this event, EFTs are 
the ideal tool to capture the possible low-energy effects of new physics 
(NP), whatever it might be. With them, we can look for subtle NP ef-

fects, opening the door to the exploration of energy scales orders of 
magnitude beyond what can be reached on-shell at the LHC.

There is an ongoing community effort to automate the steps that go 
into EFT computations [1,2]. Starting with [3] (see also [4–11]) and 
further refined in [12,13], functional methods have been put forward 
as a handy way to organize one-loop EFT matching and Renormal-

ization Group (RG) computations in BSM physics. They are used in 
the development of the so-called Universal One-Loop Effective Action 
(UOLEA) [14–25], and have seen continual development [26–30]. It 
is only recently that the first fairly general tools for automated one-

loop matching were introduced, one following diagrammatic amplitude 
matching [31] and the other based on functional methods [32]. Both 
approaches rely on a master formula for matching that identifies the 
one-loop EFT action with the hard momenta region of the one-loop 
contributions in the underlying theory [12,13].

* Corresponding author.

It is now a decade since the computation of the one-loop RG equa-

tions in the Standard Model Effective Theory (SMEFT) [33–35], and we 
wonder if one-loop corrections are sufficient for the current precision 
requirements. Indeed, certain low-energy effects are generated only at 
two-loop order [36]. Furthermore, both the strong and the top Yukawa 
couplings are large enough that they might generate considerable run-

ning contributions, such as in [37,38]. On top of this, the inclusion 
of two-loop RG effects becomes mandatory if one wants to restore the 
scheme independence in one-loop matching calculations [39,40], mak-

ing them an important ingredient in the automated one-loop matching 
endeavor.

With this letter, we take the first step towards efficient, functional 
two-loop RG and matching calculations. It should come as no surprise 
that such a step is possible, as other variations of functional methods 
have been used for the calculation of the quantum effective poten-

tial [41,42] and the counterterms of chiral perturbation theory [43]

with heat-kernel methods. Both of these calculations have also been per-

formed at two-loop order [44,45]. What is perhaps more remarkable is 
that the functional formalism lets us prove a generic master formula for 
two-loop matching, where we directly identify the two-loop EFT action 
with the hard part of the ultraviolet (UV) quantum effective action. 
With this formula, there is no need to identify cancellations between 
EFT and UV contributions on a case-by-case basis. It also opens up the 
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future possibility of automating (functional) matching beyond one-loop 
order.

In this letter, we outline the extension of functional methods to two-

loop order in the simpler case of scalar theories. In Section 2, we present 
our functional method, with a proof to the generic matching formula 
supplied in Appendix A. Next, in Section 3, we demonstrate the practical 
application of the method by calculating the two-loop matching of a 
scalar toy model to its low-energy EFT and the two-loop RG equations 
of the resulting theory. We leave further details of the method along 
with extensions to fermionic degrees of freedom and gauge theories to 
a forthcoming paper.

2. Functional methods

Through path-integral manipulations in a UV theory, one can deter-

mine the EFT Lagrangian describing the dynamics of the light particles 
at low energies compared to the heavy-particles masses. We discuss here 
how this can be done at the two-loop level.

2.1. The vacuum functional and quantum effective action

The vacuum functional, [𝐽 ], is the generating functional of all 
connected Green’s functions of a theory and, therefore, contains all 
physical information. If we take the fields (including their conjugates) 
to be collectively denoted by 𝜂𝑎(𝑥) and the action by 𝑆[𝜂], the vacuum 
functional is defined by the path integral:

𝑒𝑖ℏ
−1[𝐽 ] = ∫ 𝜂 𝑒𝑖ℏ−1(𝑆[𝜂]+𝐽𝐼 𝜂𝐼 ) , (1)

where the subindices with capital Latin letters 𝐼, 𝐽, … correspond to 
DeWitt notation, where the spacetime dependence is included as part 
of the label, e.g. 𝐼 = (𝑥, 𝑎). Thus, the contraction of repeated indices 
denotes not only an implicit summation in the field labels but also an 
integration over spacetime.1

The path integral can be evaluated perturbatively, using a saddle-

point approximation around the classical background-field configura-

tion 𝜂, which is the solution to the tree-level equations of motion 
(EOMs), that is

𝛿𝑆(0)

𝛿𝜂𝐼
[𝜂] + 𝐽𝐼 = 0 , (2)

where the superindex denotes loop order, with (0) indicating tree level. 
We parameterize the expansion of the action around the background-

field configuration as

𝑆[𝜂 + 𝜂] =
∞∑
𝓁=0

ℏ𝓁
[
𝑆
(𝓁)

+(𝓁)
𝐼 𝜂𝐼 +(𝓁)

𝐼𝐽

𝜂𝐼 𝜂𝐽
2

+ (𝓁)
𝐼𝐽𝐾

𝜂𝐼𝜂𝐽 𝜂𝐾
3!

+(𝓁)
𝐼𝐽𝐾𝐿

𝜂𝐼𝜂𝐽 𝜂𝐾𝜂𝐿
4!

+(𝜂5)] , (3)

with (0)
𝐼 = −𝐽𝐼 , and the bar being shorthand for exclusive dependence 

on 𝜂, e.g. 𝑆 ≡ 𝑆[𝜂]. It is convention to denote the inverse dressed prop-

agator of the quantum field (also known as the fluctuation operator) 
by 𝐼𝐽 ≡ (0)

𝐼𝐽
. For renormalizable theories, all higher-loop vertices 

(𝓁)
𝐼
, (𝓁)

𝐼𝐽
, … for 𝓁 ≥ 1 stem from the counterterms of the renormal-

ized action; however, this could be different if our UV theory is itself an 
EFT.

Using the defining relation of the vacuum functional given by (1)

together with the expansion of the action around the background field, 
the vacuum functional can be written in the form

[𝐽 ] = 𝑆
(0)

+ 𝐽𝐼𝜂𝐼 + ℏ𝑆
(1)

+ 𝑖ℏ

2
(
log)

𝐼𝐼
+ ℏ2 𝑆

(2)
2

1 In the case at hand, 𝐽𝐼 𝜂𝐼 = ∫
𝑥
𝐽𝑎(𝑥)𝜂𝑎(𝑥) with ∫

𝑥
≡ ∫d𝑑𝑥.
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+ 𝑖ℏ2

2
−1
𝐼𝐽(1)

𝐽𝐼 +
ℏ2

12
(0)
𝐼𝐽𝐾−1

𝐼𝐿−1
𝐽𝑀−1

𝐾𝑁(0)
𝐿𝑀𝑁

− ℏ2

8
−1
𝐼𝐽 (0)

𝐼𝐽𝐾𝐿−1
𝐾𝐿

− ℏ2

2

((1)
𝐾 + 𝑖

2
−1
𝐼𝐽(0)

𝐼𝐽𝐾

)−1
𝐾𝐿

((1)
𝐿 + 𝑖

2
(0)
𝐿𝑀𝑁𝑀𝑁

)
+(ℏ3) . (4)

The expansion of the vacuum functional reproduces the usual loop ex-

pansion (formally in ℏ). Therefore, the terms of (ℏ2) in (4) correspond 
to the two-loop topologies, while the terms of higher order are dropped.

It is convenient to relate this functional to the quantum effective ac-

tion, Γ, as we will ultimately relate Γ to the EFT action. The quantum ef-

fective action is the generating functional of all one-particle-irreducible 
(1PI) Green’s functions of the theory and is defined by the Legendre 
transform of  :

Γ[𝜂̂] =[𝐽 ] − 𝐽𝐼 𝜂̂𝐼 , 𝜂̂𝐼 ≡ 𝛿
𝛿𝐽𝐼

. (5)

The background field 𝜂̂ and the sources then satisfy the quantum EOM

𝛿Γ
𝛿𝜂𝐼

[𝜂̂] + 𝐽𝐼 = 0 . (6)

Plugging this back into definition (5) along with the saddle-point ap-

proximation of  , we obtain

Γ[𝜂̂] = 𝑆(0) + ℏ𝑆(1) + 𝑖ℏ

2
(
log ̂)

𝐼𝐼
+ ℏ2𝑆(2)

+ 𝑖ℏ2

2
̂−1
𝐼𝐽
̂(1)
𝐽𝐼

− ℏ2

8
̂−1
𝐼𝐽

̂(0)
𝐼𝐽𝐾𝐿

̂−1
𝐾𝐿

+ ℏ2

12
̂(0)
𝐼𝐽𝐾

̂−1
𝐼𝐿

̂−1
𝐽𝑀

̂−1
𝐾𝑁

̂(0)
𝐿𝑀𝑁

+(ℏ3) , (7)

where, analogously to the bar notation, the hat is used as shorthand 
for exclusive dependence on 𝜂̂, e.g. ̂𝐼𝐽 ≡ 𝐼𝐽 [𝜂̂]. This is an exten-

sion of the well-known expression for the effective action at one-loop 
order, where all one-loop contributions are contained in a functional 
(super)trace. Interestingly, the terms in the expression above can be 
understood as vacuum graphs with ̂−1 acting as a quantum-field prop-

agator, dressed with arbitrary insertions of the background fields 𝜂̂, and 
(1), (0) and (0) corresponding to two-, three-, and four-point quan-

tum field interactions (again in the presence of background fields). This 
is represented in Fig. 1. Each closed loop in these dressed graphs can be 
associated to an integration over a loop momentum, in a similar manner 
to traditional Feynman graphs.

In general, evaluating the effective action (7) can be very compli-

cated because of the need for inverting ̂ and evaluating ̂ at different 
spacetime points. Nonetheless, when all loop momenta are restricted to 
a hard region,2 these quantities can be evaluated directly in terms of 
an operator-product expansion around the hard scale. As we will now 
discuss, the hard-momenta region of Γ is all that is needed for EFT 
matching and RG evolution, also at two-loop order.

2.2. Master formula for EFT matching

Let us consider a weakly-coupled UV theory, 𝑆UV[𝜂], where 𝜂𝐼 =
(Φ𝛼, 𝜙𝑖) denotes the collection of all fields, heavy and light, respec-

tively. We seek to determine an EFT action 𝑆EFT[𝜙] that reproduces 
the physics of the full theory at energies much below the masses of the 
heavy fields, which we assume to lie around a generic scale Λ.

2 The method of regions [46,47] describes how loop integrals in dimensional 
regularization can be decomposed in momentum regions by expanding the in-

tegrand according to each region and integrating over the full domain (see 
Appendix A.2). The relevant regions for this discussion are hard and soft, with 
the loop momentum 𝑘 satisfying 𝑘 ≳Λ (with Λ being a heavy scale) and 𝑘 ≪Λ, 

respectively.



Physics Letters B 851 (2024) 138557J. Fuentes-Martín, A. Palavrić and A.E. Thomsen

Fig. 1. Graphical representation of the (ℏ2) terms appearing in the effective action in (7).
In off-shell matching computations, we begin with an even stronger 
requirement for the EFT matching condition: the EFT should reproduce 
all low-energy Green’s functions of the full theory. This stronger re-

quirement lets us consider the generating functional of the theories 
rather than the 𝑆-matrix. Thus, our aim is to determine 𝑆EFT[𝜙] such 
that

EFT[𝐽𝜙] =UV
[
𝐽Φ = 0, 𝐽𝜙

]
. (8)

That is, we enforce equality of all connected Green’s functions involving 
the light fields. Each side of (8) is to be understood in terms of power 
series in 1∕Λ.

To make matters simpler, we proceed with a Legendre transforma-

tion of the light-field sources in order to frame the matching condition 
in terms of the quantum effective actions:

ΓEFT[𝜙̂] = ΓUV
[
Φ̂[𝜙̂], 𝜙̂

]
,

𝛿ΓUV
𝛿Φ𝛼

[
Φ̂[𝜙̂], 𝜙̂

]
= 0 . (9)

The heavy fields Φ̂[𝜙̂] are solutions to the quantum EOMs in the 
presence of the light background fields. In diagrammatic terms, con-

dition (9) equates all one-light-particle-irreducible (1LPI) Green’s func-

tions of the UV theory with the 1PI Green’s functions of the EFT. It 
was demonstrated in [12,13] that, at one-loop order, there is a cancel-

lation between the loop contributions in the EFT and the soft-region of 
the loops in the UV theory. This enables a very direct computation of 
𝑆
(1)
EFT[𝜙] in terms of the hard region of the UV quantum effective action.

We are now ready to generalize these considerations and present a 
master formula for perturbative EFT matching at multi-loop order: the 
off-shell EFT action is determined by

𝑆EFT = ΓUV
[
Φ̂[𝜙̂], 𝜙̂

]|||hard , 𝛿ΓUV
|||hard

𝛿Φ𝛼

[
Φ̂[𝜙̂], 𝜙̂

]
= 0 . (10)

Here the ‘hard’ part is taken to include all contributions without any

soft loops. It includes tree-level contributions as well as loops where 
all loop momenta are hard. In many ways, this is an intuitive leap: the 
hard, local part of the UV theory is identified with the EFT action, while 
the long-distance physics is captured by loops in the EFT. Nevertheless, 
we have never seen an explicit formulation of this notion, much less 
a matching formula applicable to practical computations. A construc-

tive proof of the matching formula (10) at two-loop order is provided 
in Appendix A, where we show that there is a one-to-one correspon-

dence between (partially) soft loops in the UV and loops in the EFT. We 
postpone the discussion on a possible extension of this proof to higher-

loop orders to a more comprehensive follow-up paper. The end result is 
that all loop integrals needed to perform the EFT matching (i.e. those 
in the hard limit) reduce to vacuum integrals, for which expressions are 
known up to three loops [48].

The matching formula (10) is a 𝑑-dimensional off-shell relation. A 
complication associated to this kind of matching is that it does not pro-

duce the EFT Lagrangian directly in a four-dimensional on-shell basis. 
Rather, one has to apply field redefinitions to reduce the output to an 
on-shell basis. Likewise, the matching result may also produce EFT op-

erators that are not present in a four-dimensional basis. As a result, 
one has to separate out evanescent operators and, preferably, convert 
3

the EFT action to an evanescence-free scheme [49–55]. A related con-
sideration to be aware of beyond one-loop order is that lower-order 
matching coefficients may contain (𝜖) contributions. These cannot be 
ignored, as their insertion in an EFT loop can lead to finite contribu-

tions. Therefore, one has to carefully remove the (𝜖) terms and absorb 
them into finite coefficients at higher-loop order, similarly to what is 
done for evanescent contributions [52].

2.3. Functional approach for RG evolution

The MS (or MS) counterterms of a theory, 𝑆[𝜂], can also be deter-

mined from the effective action from the observation that it must be free 
of UV divergences. If we use dimensional regularization to regularize 
the loop integrals, finiteness of the renormalized generating functional 
translates to the condition

𝐾𝜖 Γ[𝜂̂] = 0 , (11)

where 𝐾𝜖 is an operator that extracts all 1∕𝜖 poles of UV origin. This 
equation establishes a relation between the MS counterterms of the the-

ory, identified with the UV poles of 𝑆(𝓁), and the other terms in the 
effective action. Denoting the MS counterterms by 𝛿𝑆(𝓁)

MS, we have

𝛿𝑆
(𝓁)
MS =𝐾𝜖 𝑆

(𝓁) , (12)

which, together with the expression of Γ and condition (11), establishes 
a direct relation to determine 𝛿𝑆(𝓁)

MS functionally. Other renormalization 
schemes of the subtraction family can also be obtained by appropriately 
adapting the definitions of the counterterms in the expression above.

Restricting to the two-loop expression of the effective action in (7), 
we obtain the following MS counterterms up to two-loop order:

𝛿𝑆
(1)
MS = − 𝑖

2
𝐾𝜖

(
log ̂)

𝐼𝐼
,

𝛿𝑆
(2)
MS =𝐾𝜖

[
− 𝑖

2
̂−1
𝐼𝐽
̂(1)
𝐽𝐼

+ 1
8
̂−1
𝐼𝐽
̂(0)
𝐼𝐽𝐾𝐿

̂−1
𝐾𝐿

− 1
12

̂(0)
𝐼𝐽𝐾

̂−1
𝐼𝐿

̂−1
𝐽𝑀

̂−1
𝐾𝑁

̂(0)
𝐿𝑀𝑁

]
. (13)

A convenient prescription for extracting the UV poles in theories with 
massless states consists in introducing a common mass, Λ, in all propa-

gators of the loop integrals. This mass acts as a hard scale (assumed to 
be much larger than any other scales in the loop integrals) and serves 
as an infrared regulator. The overall UV divergence of a loop integral 
is identified with the part where all loop momenta are large. Hence, 
it is easy to show that the UV divergences can be extracted from the 
hard-region (defined by all loop momenta being of order Λ) of the 
loop integrals [56]. This effectively establishes a power-counting on 
Λ, around which ̂−1 can be expanded. As in the matching case, the 
resulting loop integrals are just vacuum integrals (in this case with a 
single mass Λ) for which results are known up to three loops [48]. 
The only drawback of this method for UV-pole extraction is that one 
also needs to consider spurious counterterms with positive powers of 
Λ. These spurious counterterms can break the symmetries of the origi-

nal Lagrangian and are needed for the cancellation of subdivergences. 
After the counterterms have been determined, the RG equations can be 

readily obtained via standard techniques.
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2.4. Functional evaluation of the effective action

The functional evaluation of the effective action requires manip-

ulating the inverse dressed propagator, ̂, which can be generically 
parametrized by

̂𝐼𝐽 ≡ ̂𝑎𝑏(𝑥, 𝑦) =𝑄𝑎𝑏(𝑥, 𝑃𝑥)𝛿(𝑥− 𝑦) , (14)

with 𝑃𝜇𝑥 = 𝑖𝜕𝜇𝑥 denoting the momentum operator. Since the action is lo-

cal, it is always possible to factor out a delta function. This is also the 
case when dealing with more complicated functional forms involving 
̂, such as ln ̂ or ̂−1. It is well-known that the one-loop contribu-

tion to the quantum effective action, cf. (7), is given by the functional 
(super)trace

Γ̂(1) = 𝑆(1) + 𝑖

2
(ln ̂)𝐼𝐼

= 𝑆(1) + 𝑖

2 ∫
𝑥,𝑘

[ln𝑄(𝑥,𝑃𝑥 − 𝑘)]𝑎𝑎 , (15)

with ∫
𝑥,𝑘

≡ ∫ d𝑑𝑥 ∫ d𝑑𝑘∕(2𝜋)𝑑 . This expression is a non-local function 
of 𝑄 and is difficult to evaluate in general. However, as we are only 
interested in the hard region, where the loop momentum is taken to be 
of the order of the heavy scales, we can perform an operator-product 
expansion. For scalar theories, the inverse dressed propagator takes the 
generic form

𝑄𝑎𝑏(𝑥, 𝑃𝑥) = (𝑃 2
𝑥 −𝑀2

𝑎 )𝛿𝑎𝑏 −𝑈𝑎𝑏(𝑥,𝑃𝑥) , (16)

with 𝑀𝑎 being a possible (hard) mass, and 𝑈𝑎𝑏 a generic interaction 
term which, as we make explicit in its argument, may involve deriva-

tives. Denoting

Δ−1
𝑎𝑏
(𝑃𝑥, 𝑘) ≡ (𝑘2 −𝑀2

𝑎 + 𝑃
2
𝑥 − 2𝑘 ⋅ 𝑃𝑥)𝛿𝑎𝑏 ,

𝑋𝑎𝑏(𝑥,𝑃𝑥, 𝑘) ≡𝑈𝑎𝑏(𝑥,𝑃𝑥 − 𝑘) , (17)

the operator-product expansion of the logarithm reads

∫
𝑥,𝑘

ln𝑄(𝑥,𝑃𝑥 − 𝑘) = ∫
𝑥,𝑘

lnΔ−1 − ∫
𝑥,𝑘

∞∑
𝑛=1

1
𝑛
(Δ𝑋)𝑛 , (18)

where (lnΔ−1)𝑎𝑏 = 𝛿𝑎𝑏 ln(𝑘2−𝑀2
𝑎 ) contributes to an unphysical constant 

that is subtracted when normalizing the path integral and the expansion 
for Δ takes the form

Δ𝑎𝑏(𝑃𝑥, 𝑘) = 𝛿𝑎𝑏
∞∑
𝑛=0

(−𝑃 2
𝑥 + 2𝑘 ⋅ 𝑃𝑥)𝑛

(𝑘2 −𝑀2
𝑎 )𝑛+1

. (19)

Likewise, the dressed propagator, necessary for evaluating the two-loop 
contributions, admits the expansion

𝑄−1(𝑥,𝑃𝑥 − 𝑘) =
∞∑
𝑛=0

(Δ𝑋)𝑛Δ . (20)

The hard-region evaluation guarantees that subsequent terms in all 
these series are further suppressed, so only a finite number of terms 
need to be retained to a given order in the EFT expansion. A manifestly 
local result is obtained only in the hard-region limit.

Locality of the action likewise ensures that delta functions can be 
factored out of the remaining functional objects. We write the quantum-

field interactions as series in the momenta operator3:

̂(1)
𝐼𝐽

= ̂(1)
𝑎𝑏
(𝑥, 𝑦) =

∞∑
𝑚=0

𝐵
(1)𝑚
𝑎𝑏

(𝑥)𝑃𝑚𝑥 𝛿(𝑥− 𝑦) ,

3 For compactness, we employ a power-like notation with underlined 
superscripts for the Lorentz indices, that is, we denote 𝐵(1)𝑚

𝑎𝑏
𝑃
𝑚
𝑥 ≡
4

𝐵
(1)𝜇1…𝜇𝑚
𝑎𝑏

𝑃
𝜇1
𝑥 ⋯ 𝑃𝜇𝑚𝑥 .
Physics Letters B 851 (2024) 138557

̂(0)
𝐼𝐽𝐾

= ̂(0)
𝑎𝑏𝑐

(𝑥, 𝑦, 𝑧)

=
∞∑

𝑚,𝑛=0
𝐶
𝑚,𝑛

𝑎𝑏𝑐
(𝑧)𝑃𝑚𝑥 𝑃

𝑛
𝑦 𝛿(𝑥− 𝑧)𝛿(𝑦− 𝑧) ,

̂(0)
𝐼𝐽𝐾𝐿

= ̂(0)
𝑎𝑏𝑐𝑑

(𝑥, 𝑦, 𝑧,𝑤) =
∞∑

𝑚,𝑛,𝑟=0
𝐷
𝑚,𝑛,𝑟

𝑎𝑏𝑐𝑑
(𝑤)

× 𝑃𝑚𝑥 𝑃
𝑛
𝑦 𝑃

𝑟
𝑧 𝛿(𝑥−𝑤)𝛿(𝑦−𝑤)𝛿(𝑧−𝑤) . (21)

In most practical applications, only a small number of terms from this 
momentum operator expansions are present. In fact, for renormalizable 
theories, only the terms with at most two momenta in ̂, one in ̂, and 
none in ̂ are nonzero.

Having made these definitions, we can now evaluate the two-loop 
contributions to the effective action in (7). We parameterize them as

Γ̂(2) = 𝑆(2) + 𝑖

2
𝐺ct −

1
8
𝐺f8 +

1
12
𝐺ss , (22)

where the loop contributions 𝐺𝑖 are identified with the counterterm, 
figure-8, and sunset topologies, respectively (as depicted in Fig. 1). The 
main subtlety in the functional evaluation of the two-loop effective ac-

tion is related to the sunset topology, where it is necessary to power 
expand one of the two vertices around the location of the other. We 
then obtain integral formulas for the functional contractions and, using 
a momentum-space representation for the delta functions, we find the 
expressions

𝐺ct =
∑
𝑚

∫
𝑥,𝑘

𝐵
(1)𝑚
𝑎𝑏

(𝑥)
[
(𝑃𝑥 − 𝑘)𝑚 𝑄−1

𝑏𝑎
(𝑥, 𝑃𝑥 − 𝑘)

]
,

𝐺f8 =
∑
𝑚,𝑛,𝑟

(−1)𝑚+𝑛+𝑟 ∫
𝑥,𝑘,𝓁

𝐷
𝑚,𝑛,𝑟

𝑎𝑏𝑐𝑑
(𝑥)𝑘𝑚 𝓁𝑟

×
[
(𝑃𝑥 − 𝑘)𝑛 𝑄−1

𝑏𝑎
(𝑥, 𝑃𝑥 − 𝑘)

][
𝑄−1
𝑑𝑐
(𝑥, 𝑃𝑥 − 𝓁)

]
,

𝐺ss =
∑

𝑚(′), 𝑛(′) , 𝑠

(−1)𝑚+𝑛+𝑚′+𝑛′ 𝑖
𝑠

𝑠! ∫
𝑥,𝑘,𝑙

𝐶
𝑚,𝑛

𝑎𝑏𝑐
(𝑥)𝜕𝑠𝑥 𝐶

𝑚′ ,𝑛′

𝑑𝑒𝑓
(𝑥)

×
[
𝜕
𝑠

𝑘
𝑄−1
𝑐𝑓
(𝑥, 𝑃𝑥 + 𝑘+ 𝓁)

]
𝑘𝑚

′
𝓁𝑛

′

×
[
(𝑃𝑥 − 𝑘)𝑚 𝑄−1

𝑎𝑑
(𝑥, 𝑃𝑥 − 𝑘)

]
×
[
(𝑃𝑥 − 𝓁)𝑛 𝑄−1

𝑏𝑒
(𝑥, 𝑃𝑥 − 𝓁)

]
, (23)

with ∫
𝑥,𝑘,𝓁≡ ∫ d𝑑𝑥 ∫ d𝑑𝑘∕(2𝜋)𝑑 ∫ d𝑑𝓁∕(2𝜋)𝑑 . In the equations above, any 

𝑃𝑥 acting to the rightmost of a bracket yields a null contribution. This 
would not be the case anymore in the gauge non-singlet scenario, where 
the derivative in 𝑃𝑥 would be promoted to a covariant derivative. A 
manifestly covariant generalization of these expressions will be pre-

sented in a follow-up paper. While the sum in 𝑠 in the last expression 
runs to infinity, only a finite number of terms need to be retained at a 
given order in the EFT counting when considering the hard-momentum 
limit. In particular, only terms up to 𝑠 = 4 contributes at EFT dimension 
six.

3. A toy-model example

We illustrate the functional method described in the previous section 
with a concrete example: a toy-model, consisting of one heavy and one 
light real scalar fields, Φ and 𝜙, respectively. For simplicity, we assume 
that the theory possesses a ℤ𝜙2 ×ℤΦ

2 symmetry, with ℤΦ
2 softly-broken 

by a trilinear term with coupling 𝜅 ≪ 𝑀 . This soft-breaking term is 
included to allow for a non-trivial quantum EOM of the heavy-field, 
cf. (10). The UV Lagrangian of this theory is given by

UV = 1
2
(𝜕𝜇𝜙)2 +

1
2
(𝜕𝜇Φ)2 − 1

2
𝑚2
𝜙
𝜙2 − 1

2
𝑀2Φ2 −

𝜆𝜙

4!
𝜙4

−
𝜆Φ Φ4 −

𝜆Φ𝜙Φ2𝜙2 − 𝜅 Φ3 +ct , (24)

4! 4 3! UV
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with the corresponding UV counterterms ct
UV defined as

ct
UV =

𝛿𝜙

2
(𝜕𝜇𝜙)2 +

𝛿Φ
2
(𝜕𝜇Φ)2 −

𝛿𝑚𝜙

2
𝜙2 −

𝛿𝑀
2

Φ2 −
𝛿𝜆𝜙

4!
𝜙4

−
𝛿𝜆Φ
4!

Φ4 −
𝛿𝜆Φ𝜙

4
Φ2𝜙2 −

𝛿𝜅
3!

Φ3 −
𝛿𝜅′

2
Φ𝜙2 − 𝛿𝜅𝑇Φ , (25)

where we anticipate that new ℤΦ
2 -breaking interactions are generated 

radiatively and need to be renormalized.4

3.1. One-loop UV counterterms

Our calculations are done in a tadpole-free MS scheme (for both UV 
theory and the EFT), such that the Φ tadpole is removed with a finite 
counterterm. Given this scheme choice, the determination of the finite 
parts of the two-loop matching conditions requires only the calculation 
of the one-loop counterterms. From (13) and with the functional evalu-

ation described in Section 2.4, it follows that5

ct (1)
UV = 𝑖

2
𝐾𝜖 ∫

𝑘

∞∑
𝑛=1

1
𝑛
[(Δ𝑋)𝑛]𝑎𝑎 , (26)

where 𝑎 = Φ, 𝜙. The functional objects relevant for this calculation are 
given by

𝑋ΦΦ(𝑥,𝑃𝑥, 𝑘) =
𝜆Φ
2
Φ2 +

𝜆Φ𝜙

2
𝜙2 + 𝜅Φ ,

𝑋𝜙𝜙(𝑥,𝑃𝑥, 𝑘) =
𝜆𝜙

2
𝜙2 +

𝜆Φ𝜙

2
Φ2 ,

𝑋Φ𝜙(𝑥,𝑃𝑥, 𝑘) =𝑋𝜙Φ(𝑥,𝑃𝑥, 𝑘) = 𝜆Φ𝜙Φ𝜙 , (27)

and the expansion of Δ in (19). As the UV theory in our example 
contains no massless states, no IR divergences appear and the UV di-

vergences are readily obtained. Only the terms with 𝑛 ≤ 2 in the sum 
above contribute to the UV divergences. Denoting 𝛿𝑖 ≡ ℏ

16𝜋2 𝛿
(1)
𝑖

+(ℏ2), 
we find

𝛿
(1)
𝜙

= 𝛿(1)Φ = 0 , 𝛿(1)𝜅 =
3𝜆Φ𝜅
2𝜖

,

𝛿(1)𝑚𝜙
=
𝜆𝜙𝑚

2
𝜙
+ 𝜆Φ𝜙𝑀2

2𝜖
, 𝛿

(1)
𝜆Φ

=
3𝜆2Φ + 3𝜆2Φ𝜙

2𝜖
,

𝛿
(1)
𝑀

=
𝜆Φ𝑀

2 + 𝜆Φ𝜙𝑚2
𝜙
+ 𝜅2

2𝜖
, 𝛿

(1)
𝜆𝜙

=
3𝜆2
𝜙
+ 3𝜆2Φ𝜙
2𝜖

,

𝛿
(1)
𝜆𝜙Φ

=
𝜆𝜙𝜆Φ𝜙 + 𝜆Φ𝜆Φ𝜙 + 4𝜆2Φ𝜙

2𝜖
, 𝛿

(1)
𝜅′

=
𝜆Φ𝜙𝜅

2𝜖
,

𝛿(1)𝜅𝑇
= 𝑀2𝜅

2

(1
𝜖
− ln𝑀2 + 1

)
, (28)

where ln𝑀2 ≡ ln𝑀2∕𝜇̄2 and 𝜇̄ is the MS renormalization scale. The 
value of these counterterms has been cross-checked against the RG func-

tions obtained with RGBeta [57].

3.2. EFT matching at two-loop order

For the present example, it is easy to see that there is no tree-level 
contribution to the EFT action, as the Lagrangian has no linear depen-

dence on the heavy field Φ. The one-loop part of the EFT Lagrangian is 
calculated as usual from the hard region of the functional (super)trace 
which, after doing the expansion (18), yields

4 The trilinear coupling Φ𝜙2 is generated radiatively in the RG and should 
properly be included. As we are not attempting to build a realistic model, we 
simply ignore it.

5 Not only the 1∕𝜖UV pole but also the finite pieces are retained for Φ tad-

pole counterterms. Functional techniques are still appropriate for evaluating the 
5

finite tadpole, as it is independent of external momenta.
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(1)
EFT = − 𝑖

2 ∫
𝑘

∞∑
𝑛=1

1
𝑛
[(Δ𝑋)𝑛]𝑎𝑎

||||hard , (29)

with Δ and 𝑋 provided in (19) and (27), respectively. In contrast 
with the counterterm evaluation, we are now interested in the hard-

momentum region defined by the relation 𝑘 ≳𝑀 ≫ 𝑚𝜙, with 𝑘 being 
the loop momentum. In practice, this implies that, for this calculation, 
the mass term in Δ−1

𝜙𝜙
needs to be power-expanded before loop integra-

tion. That is,

Δ−1
𝜙𝜙

(𝑃𝑥, 𝑘)
|||hard = ∞∑

𝑛=0

(−𝑃 2
𝑥 + 2𝑘 ⋅ 𝑃𝑥 +𝑚2

𝜙
)𝑛

𝑘2(𝑛+1)
. (30)

One difference to keep in mind with respect to the usual one-loop 
matching evaluations is the need to retain (𝜖) terms. As described 
in Section 2.2, these terms can be shifted into the two-loop matching 
coefficients with an appropriate modification of the renormalization 
conditions. The one-loop EFT Lagrangian resulting from the functional 
trace is a function of both heavy and light fields. The former are re-

moved by means of the heavy-field EOMs defined in (10). In our case, 
we find that

Φ=− ℏ

16𝜋2
𝜆Φ𝜙𝜅

2𝑀2 ln𝑀2 𝜙
2

2
+(𝑀−4, ℏ2) . (31)

The contributions from replacing Φ by its EOM yield two-loop effects 
when inserted back into the one-loop (and tree-level) EFT Lagrangian. 
No terms of two-loop order are needed in our toy-model calculation, as 
these would start contributing only at the three-loop level.

The two-loop EFT Lagrangian follows directly from the evaluation of 
expressions (23) in the double-hard region, defined by 𝑘, 𝓁 ≳𝑀 ≫𝑚. In 
this example, only terms without powers of 𝑃𝑥,𝑦,𝑧 appear in ̂(1), ̂, and 
̂, and thus, only the terms with 𝑚(′) = 𝑛(′) = 𝑟 = 0 in (23) contribute. 
We have

𝐵
(1)
ΦΦ = −𝛿(1)

𝑀
−
𝛿
(1)
𝜆Φ𝜙

2
𝜙2 , 𝐵

(1)
𝜙𝜙

= −𝛿(1)𝑚𝜙 −
𝛿
(1)
𝜆𝜙

2
𝜙2 ,

𝐵
(1)
Φ𝜙 = −𝛿(1)𝜅Φ𝜙𝜙 ,

𝐶ΦΦΦ = −𝜅 , 𝐶𝜙𝜙𝜙 = −𝜆𝜙𝜙 ,

𝐶ΦΦ𝜙 = −𝜆Φ𝜙𝜙 , 𝐶Φ𝜙𝜙 = 0 ,

𝐷ΦΦΦΦ = −𝜆Φ , 𝐷𝜙𝜙𝜙𝜙 = −𝜆𝜙 ,

𝐷ΦΦ𝜙𝜙 = −𝜆Φ𝜙 , 𝐷ΦΦΦ𝜙 =𝐷Φ𝜙𝜙𝜙 = 0 , (32)

where we dropped terms containing Φ, as these contribute only at 
higher loop orders. The final (off-shell) EFT Lagrangian is obtained by 
combining the results from (23) with the contributions from the Φ-field 
EOM and the two-loop shift from removing the one-loop (𝜖) terms. 
The resulting EFT Lagrangian can be written in terms of an on-shell op-

erator basis via appropriate 𝜙-field redefinitions. For concreteness, we 
present here this final on-shell result:

EFT = 1
2
(𝜕𝜇𝜙)2 −

1
2
𝑚2𝜙2 − 𝜆

4!
𝜙4 −

𝑐6
6!
𝜙6 +ct

EFT , (33)

with the two-loop matching conditions between the EFT and UV La-

grangians taking the form

𝑚2 =𝑚2
𝜙
−
𝜆Φ𝜙

32𝜋2
(
1 − ln𝑀2

)
𝑀2

+ 1
(16𝜋2)2

[(
5 − 4 ln𝑀2 + ln

2
𝑀2

) 𝜆2Φ𝜙
2
𝑀2

−
(
ln𝑀2 − ln

2
𝑀2

) 𝜆Φ𝜆Φ𝜙
4

𝑀2

( √ 2 ) 𝜆Φ𝜙
+ 1 − 2 3Cl2 − 2 ln𝑀2 + ln 𝑀2
8
𝜅2
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−
(11
4

+ ln𝑀2 + ln
2
𝑀2

) 𝜆2Φ𝜙
4
𝑚2
𝜙
+
(
5 + 6 ln𝑀2

) 𝜆2Φ𝜙𝑚4
𝜙

36𝑀2

]
,

𝜆 = 𝜆𝜙 +
1

16𝜋2

[
3𝜆2Φ𝜙
2

ln𝑀2 −
𝜆2Φ𝜙𝑚

2
𝜙

3𝑀2

]

+ 1
(16𝜋2)2

[(
19 − 37 ln𝑀2 + 18 ln

2
𝑀2

) 𝜆3Φ𝜙
6

−
(
11 + 26 ln𝑀2

) 𝜆3Φ𝜙𝑚2
𝜙

6𝑀2

−
(
35 + 20 ln𝑀2 + 12 ln

2
𝑀2

) 𝜆2Φ𝜙𝜆𝜙
8

+
(
1 + ln𝑀2

) 4𝜆2Φ𝜙𝜆𝜙𝑚
2
𝜙

3𝑀2 −
(
1 − ln𝑀2 − ln

2
𝑀2

) 3𝜆Φ𝜆2Φ𝜙
4

−
(
1 + ln𝑀2

) 𝜆Φ𝜆2Φ𝜙𝑚2
𝜙

6𝑀2 −
(
1 − ln𝑀2 + ln

2
𝑀2

) 3𝜅2𝜆2Φ𝜙
4𝑀2

]
,

𝑐6 =
1

16𝜋2

[
15𝜆3Φ𝜙
2𝑀2 −

5𝜆2Φ𝜙𝜆𝜙
3𝑀2

]

+ 1
(16𝜋2)2

[
−
(
18 − 17 ln𝑀2

)5𝜆4Φ𝜙
2𝑀2

−
(
47 + 62 ln𝑀2

)5𝜆3Φ𝜙𝜆𝜙
6𝑀2 +

(
13 + 10 ln𝑀2

)5𝜆2Φ𝜙𝜆
2
𝜙

6𝑀2

+
(
1 + 2 ln𝑀2

) 15𝜆Φ𝜆3Φ𝜙
4𝑀2 −

(
1 + ln𝑀2

) 5𝜆Φ𝜆2Φ𝜙𝜆𝜙
6𝑀2

]
, (34)

where Cl2(𝑥) is the Clausen function of order 2 with Cl2 ≡ Cl2(2𝜋∕3) ≈
0.6766277. To our knowledge, this is the first two-loop matching com-

putation performed with functional methods. As a crosscheck of our 
result, we verified that all single- and double-logarithmic contributions 
are consistent with the RG functions in both the UV theory6 and the 
EFT such as to ensure matching scale independence. The determination 
of the RG functions in the EFT using functional methods is discussed in 
the next section.

3.3. Renormalization group functions at two-loop order

The EFT counterterms are calculated functionally using expres-

sions (13). Analogously to the UV counterterms, the EFT counterterms 
at one-loop order are given by

ct (1)
EFT = 𝑖

2
𝐾𝜖 ∫

𝑘

∞∑
𝑛=1

1
𝑛
[(ΔEFT𝑋EFT)𝑛]𝑎𝑎 , (35)

with ΔEFT as in (19) and 𝑋EFT being

𝑋EFT(𝑥,𝑃𝑥, 𝑘) =
𝜆

2
𝜙2 +

𝑐6
4!
𝜙4 . (36)

The counterterm Lagrangian from the expression above is obtained in 
an off-shelf basis, and can be reduced to an on-shell Lagrangian by 
appropriate field redefinitions. Parameterizing the on-shell EFT coun-

terterms by

ct
EFT = 1

2
𝛿𝜙(𝜕𝜇𝜙)2 −

1
2
𝛿𝑚2𝜙2 −

𝛿𝜆
4!
𝜙4 −

𝛿𝑐6
6!
𝜙6 , (37)

and separating the couplings by loop order and power of the 𝜖-pole as

6 The two-loop RG functions in the UV theory necessary for this crosscheck 
6

can easily be determined using RGBeta [57].
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𝛿𝑖 =
ℏ

16𝜋2
𝛿
(1)
𝑖

𝜖
+ ℏ2

(16𝜋2)2

⎡⎢⎢⎣
𝛿
(2)
𝑖,1

𝜖
+
𝛿
(2)
𝑖,2

𝜖2

⎤⎥⎥⎦+(ℏ3) , (38)

we find

𝛿
(1)
𝜙

= 0 , 𝛿
(1)
𝑚2 =

𝑚2𝜆

2
,

𝛿
(1)
𝜆

=
3𝜆2 +𝑚2𝑐6

2
, 𝛿(1)𝑐6

=
15𝜆𝑐6
2

, (39)

at one-loop order.

The two-loop part of the counterterms is then obtained from the 
second line of (13). Once more, only terms with no powers of 𝑃𝑥,𝑦,𝑧 in 
̂(1)
EFT, ̂EFT, and ̂EFT are present, and we have that

𝐵
(1)
EFT = − 1

16𝜋2
1
𝜖

[
𝛿
(1)
𝑚2 +

𝛿
(1)
𝜆

2
𝜙2 +

𝛿
(1)
𝑐6

4!
𝜙4

]
,

𝐶EFT = −𝜆𝜙−
𝑐6
3!
𝜙3 , 𝐷EFT = −𝜆−

𝑐6
2
𝜙2 , (40)

where we used that 𝛿(1)
𝜙

= 0 in this example. Inserting these operators 
into the expressions in (23) (where, again, only the terms with 𝑚(′) =
𝑛(′) = 𝑟 = 0 contribute) together with the expansion of 𝑄−1 in (20) and 
evaluating the loop integrals, we find the two-loop contributions to the 
counterterms. As before, those are obtained in an off-shell basis, which 
reduces to the on-shell result

𝛿
(2)
𝑚2 ,1

= −𝜆
2𝑚2

4
, 𝛿

(2)
𝑚2 ,2

=
4𝑚2𝜆2 +𝑚4𝑐6

8
,

𝛿
(2)
𝜆,1 = −

9𝜆3 + 5𝑚2𝜆𝑐6
6

, 𝛿
(2)
𝜆,2 =

9𝜆3 + 11𝑚2𝜆𝑐6
4

,

𝛿
(2)
𝑐6 ,1

= −
215𝜆2𝑐6

12
, 𝛿

(2)
𝑐6 ,2

=
135𝜆2𝑐6

4
,

𝛿
(2)
𝜙,1 = −𝜆

2

24
, 𝛿

(2)
𝜙,2 = 0 , (41)

after appropriate field redefinitions. As a cross-check, we have veri-

fied that these counterterms satisfy the consistency conditions on the 
double-poles necessary for finite RG functions (see, e.g. [58]).

Having obtained the two-loop counterterms, we readily determine 
the anomalous dimension 𝛾𝜙 of the field 𝜙 along with the beta functions 
for 𝑚2, 𝜆 and 𝑐6 couplings:

𝛾𝜙 =
1
2
d ln(1 + 𝛿𝜙)

d ln𝜇
= −

𝜕𝛿
(2)
𝜙,1

𝜕𝜆
= 1

(16𝜋2)2
𝜆2

12
,

𝛽𝑚2 = 𝑚2𝜆

16𝜋2
− 5

6
𝑚2𝜆2

(16𝜋2)2
,

𝛽𝜆 =
3𝜆2 +𝑚2𝑐6

16𝜋2
− 1

3
17𝜆3 + 10𝜆𝑚2𝑐6

(16𝜋2)2
,

𝛽𝑐6 =
15𝜆𝑐6
16𝜋2

− 427
6

𝜆2𝑐6

(16𝜋2)2
. (42)

Those terms of the beta functions that involve only renormalizable 
couplings have been cross-checked with RGBeta [57] while the con-

tributions with the 𝑐6 coupling are found in agreement with [59–61].

4. Conclusions and outlook

The discovery of physics beyond the SM is proving more challenging 
than initially anticipated. Given the precision increase associated with 
upcoming experimental searches and the absence of clear indications 
of the possible shape of NP, the use of novel and more precise EFT 
approaches becomes more important than ever.

In this letter, we have presented the initial steps toward functional 
EFT matching and RG evolution at two-loop order, so far restricted to 

the case of scalar theories. We have explicitly demonstrated that the 
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hard part of the UV effective action is all that is needed for such cal-

culations. To our knowledge, this is the first time that an explicit proof 
of this statement has been presented. While this result is applicable for 
both diagrammatic and functional approaches, it becomes particularly 
useful for the latter since it enables a power counting around which to 
perform an operator-product expansion of the functional results. Build-

ing on this, we have provided closed-form expressions for the evaluation 
of the two-loop effective action in the hard limit. In this way, and analo-

gously to the one-loop functional result, our calculation of the two-loop 
EFT Lagrangian does not require the determination of the target EFT 
basis and essentially amounts to simple algebraic manipulations, mak-

ing it particularly suitable for automation. We have also presented a 
toy-model example that illustrates the main rationale behind the appli-

cation of our functional approach and, as a byproduct, we have verified 
recent literature results concerning the determination of two-loop RG 
equations in the geometric approach [61].

The extension of these methods to the more general case, including 
theories with fermions and/or gauge bosons, remains non-trivial and 
will be discussed in a forthcoming publication. In particular, we ob-

serve that the standard techniques to make the functional evaluations 
manifestly covariant [9,10] are no longer applicable at two-loop order, 
and new strategies are required. Likewise, the generalization of these 
results to higher-loop orders will also be explored in the future.
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Appendix A. Matching formula at two-loop order

In this appendix, we use the functional expansion of the effective ac-

tion to demonstrate the explicit cancellation between soft-region loops 
in the UV and loops in the EFT and prove the master formula for EFT 
matching (10) up to two-loop order.

Our starting point is the off-shell matching condition (9). On the UV 
side, we are dealing with the generating functional

Γ𝜙UV[𝜙̂] ≡ ΓUV
[
Φ̂[𝜙̂], 𝜙̂

]
,

𝛿ΓUV
𝛿Φ𝛼

[
Φ̂[𝜙̂], 𝜙̂

]
= 0 , (A.1)

which generates all 1LPI Green’s functions. We need an explicit expres-

sion for Γ𝜙UV order-by-order in the loop expansion, and, so, we have 
7

to explicitly isolate each loop contribution in the heavy-field EOMs. To 
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this end, let 𝜂̃𝐼 =
(
Φ𝛼[𝜙̂], 𝜙̂𝑖

)
solve the tree-level heavy field EOMs in 

the presence of 𝜙̂, that is

𝛿𝑆
(0)
UV

𝛿Φ𝛼
[𝜂̃] = 0 . (A.2)

Up to one-loop order, the quantum-EOM solution reads

Φ̂𝛼[𝜙̂] = Φ𝛼[𝜙̂] − ℏ ̃−1
𝛼𝛽

(̃(1)
𝛽

+ 𝑖

2
̃ (0)
𝛽𝐼𝐽

̃−1
𝐽𝐼

)
+(ℏ2) , (A.3)

where we employ the same compact notation as in the main text, i.e. 
̃𝐼𝐽 =𝐼𝐽 [𝜂̃] and likewise for other functions exclusively dependent of 
𝜂𝐼 . Explicitly, the UV generating functional is then

Γ𝜙UV[𝜙̂] = 𝑆
(0)
UV + ℏ𝑆(1)

UV + 𝑖ℏ

2
(
log ̃)

𝐼𝐼
+ ℏ2 𝑆(2)

UV + 𝑖ℏ2

2
̃−1
𝐼𝐽
̃(1)
𝐽𝐼

+ ℏ2

12
̃𝐼𝐽𝐾 ̃−1

𝐼𝐿
̃−1
𝐽𝑀

̃−1
𝐾𝑁

̃𝐿𝑀𝑁

− ℏ2

8
̃−1
𝐼𝐽

̃𝐼𝐽𝐾𝐿̃−1
𝐾𝐿

− ℏ2

2

(
̃(1)
𝛼 + 𝑖

2
̃−1
𝐼𝐽

̃(0)
𝐼𝐽𝛼

)
̃−1
𝛼𝛽

(
̃(1)
𝛽

+ 𝑖

2
̃(0)
𝛽𝐾𝐿

̃−1
𝐾𝐿

)
+(ℏ3) . (A.4)

This expression is the same we would have gotten directly from (4) by 
setting 𝐽Φ = 0 and performing the Legendre transform on the light fields 
only. We will also need the expression

𝛿Φ𝛼[𝜙̂]
𝛿𝜙̂𝑖

= −̃𝑖𝛽̃−1
𝛽𝛼
, (A.5)

for our proof, which is obtained by taking a functional derivative of the 
light classical fields in (A.2). Finally, it is useful to define the upper-

triangular transformation 𝑉𝐼𝐽 that diagonalizes the inverse dressed 
propagator . It takes the form

𝑉𝐼𝐽 =
(
𝛿𝛼𝛽 −−1

𝛼𝛾𝛾𝑗
0 𝛿𝑖𝑗

)
, (A.6)

such that

Q𝐼𝐽 ≡ 𝑉 ⊺
𝐼𝐾

𝐾𝐿𝑉𝐿𝐽 =
(𝛼𝛽 0

0 𝑖𝑗 −𝑖𝛼−1
𝛼𝛽
𝛽𝑗

)
. (A.7)

In the next sections, we proceed to establish the matching formula order 
by order in the loop expansion.

A.1. Tree level

It is important to discriminate between non-local objects such as 
−1 and their EFT operator-product expansions, as they have vastly 
different behaviors when performing the loop integrals. We denote the 
finite-order expansion of the heavy-field EOM solution by

Φs = Φ[𝜙̂] +(1∕Λ𝑁+1) , (A.8)

which is sufficient to determine the 𝑁 -order matching. In what follows, 
the superscript ‘s’ in any other quantities will be used to denote the 
dependence on Φs[𝜙̂], e.g. s =[𝜂s] =[Φs[𝜙̂], 𝜙̂

]
.

The tree-level matching criteria follows directly from the matching 
condition (9), understood as a series in Λ. At leading order, we simply 
find

𝑆
(0)
EFT[𝜙̂] = 𝑆

(0)
UV[𝜂

s] = 𝑆(0)s
UV . (A.9)

This is a familiar result: the tree-level EFT is obtained by substituting 
in the UV theory the classic EOMs of all heavy fields expanded in the 

heavy masses.



Physics Letters B 851 (2024) 138557J. Fuentes-Martín, A. Palavrić and A.E. Thomsen

Fig. 2. Region decomposition of the sunset graph, with red and violet lines denoting soft and hard momenta, respectively.
A.2. Expansion by regions

Loop integrals in dimensional regularization can, under certain con-

ditions, be written as a sum over different momentum regions [46,47]. 
This decomposition is known as expansion by regions, and in each re-

gion the propagators are series-expanded according to the magnitude 
of the loop momenta in that region. Working as we are, with a generic 
heavy scale set by Λ, we discriminate only between whether (Euclidean) 
loop momenta are soft (≪ Λ) or hard (≳ Λ). Given a topology 𝐺, we 
can decompose it in regions as

𝐺 =
∑
𝛾⊆𝐺
loops

𝑅
(𝛾)
hard(𝐺) . (A.10)

The sum runs over all (sub)loops 𝛾 of 𝐺 and the operator 𝑅(𝛾)
hard sets 

the corresponding loop momenta hard, while the remaining ones are 
taken to be soft. For instance, 𝛾 runs over 5 subloops in the case of the 
sunset topology: no loops, 3 distinct one-loop graphs, and the full two-

loop graph (see Fig. 2). We have verified that this region decomposition 
is valid up to two-loop order, following the criteria in [47]. To keep 
track of the regions in DeWitt notation, we introduce colored indices to 
distinguish soft and hard momentum modes:

𝐼, 𝛼, 𝑖 ∶ 𝑝𝐼 , 𝑝𝛼, 𝑝𝑖 ≪Λ ,

𝐼, 𝛼, 𝑖 ∶ 𝑝𝐼 , 𝑝𝛼, 𝑝𝑖 ≳Λ . (A.11)

All dressed propagators are understood as being expanded according to 
the color of their indices, cf. (23).

In the EFT, there are no propagators with heavy masses, so all hard-

momenta loops are scaleless and vanish in dimensional regularization. 
As a result, all indices in the EFT are soft type. The series expansion in 
Φs[𝜙̂] and in the soft regions are identical, so in general

𝛿Φs
𝛼[𝜙̂]

𝛿𝜙̂𝑖
=
𝛿Φ

(0)
𝛼 [𝜙̂]

𝛿𝜙̂𝑖

||||||Φ(0)
=Φs

, (A.12)

which, however, is not the case in the hard region (or for generic in-

dices). Having defined this new notation, we turn to the one-loop case.

A.3. One-loop level

We use expansion by regions to decompose the one-loop UV effec-

tive action as

Γ𝜙(1)UV [𝜙̂] = 𝑆(1)s
UV + 𝑖

2
(
logs)

𝐼𝐼
+ 𝑖

2
(
logQs)

𝑖𝑖
. (A.13)

This follows from using the identity

Tr log = logDet , (A.14)

and block-diagonalizing the inverse dressed propagator with 𝑉 s satis-

fying Det 𝑉 = 1. The equality is then due to (logQs)𝛼𝛼 being a scaleless 
loop, as can be seen from Qs

𝛼𝛽
=s

𝛼𝛽
, indicating that heavy masses are 

present in all propagators.

Next, we determine the inverse dressed propagator in the EFT, as 
we need it for the EFT loop contributions. Using (A.12) and (A.5), one 
8

can show that
EFT
𝑖𝑗 [𝜙̂] =

𝛿2𝑆(0)
UV[𝜂

s]

𝛿𝜙̂𝑖𝛿𝜙̂𝑗
=Qs

𝑖𝑗 . (A.15)

We can now determine the one-loop EFT action by inserting (A.15)

and (A.13) into matching condition (9):

𝑆
(1)
EFT[𝜙̂] = Γ𝜙(1)UV [𝜙̂] − 𝑖

2
(
logEFT)

𝑖𝑖

= 𝑆(1)s
UV + 𝑖

2
(
logs)

𝐼𝐼
. (A.16)

This reproduces the well-known one-loop matching formula [12,13], 
and we can finally proceed to generalize it at the two-loop order.

A.4. Two-loop level

It will be useful to work in the basis where the inverse dressed propa-

gator is block-diagonal also at two-loop order. To this end, we introduce 
the notation

A
(𝓁)
𝐼

=(𝓁)
𝐽
𝑉𝐽𝐼 ,

B
(𝓁)
𝐼𝐽

=(𝓁)
𝐾𝐿
𝑉𝐾𝐼𝑉𝐿𝐽 ,

C
(𝓁)
𝐼𝐽𝐾

= (𝓁)
𝐿𝑀𝑁

𝑉𝐿𝐼𝑉𝑀𝐽𝑉𝑁𝐾 ,

D
(𝓁)
𝐼𝐽𝐾𝐿

=(𝓁)
𝑀𝑁𝑂𝑃

𝑉𝑀𝐼𝑉𝑁𝐽𝑉𝑂𝐾𝑉𝑃𝐿 . (A.17)

Applying the expansion by regions (A.10) to the 1LPI UV effective ac-

tion (A.4) yields

Γ𝜙(2)UV [𝜙̂] =𝑆(2)s
UV + 𝑖

2
−1s
𝐼𝐽

(1)s
𝐽𝐼

+ 𝑖

2
Q−1s
𝐼𝐽

B
(1)s
𝐽𝐼

− 1
8
−1s
𝐼𝐽

(0)s
𝐼𝐽𝐾𝐿

−1s
𝐾𝐿

− 1
4
Q−1s
𝐼𝐽

D
(0)s
𝐼𝐽𝐾𝐿

Q−1s
𝐾𝐿

− 1
8
Q−1s
𝐼𝐽

D
(0)s
𝐼𝐽𝐾𝐿

Q−1s
𝐾𝐿

+ 1
12

(0)s
𝐼𝐽𝐾

−1s
𝐼𝐿

−1s
𝐽𝑀

−1s
𝐾𝑁

(0)s
𝐿𝑀𝑁

+ 1
4
C
(0)s
𝐼𝐾𝐿

Q−1s
𝐼𝐽

Q−1s
𝐾𝑀

Q−1s
𝐿𝑁

C
(0)s
𝐽𝑀𝑁

+ 1
12

C
(0)s
𝐼𝐽𝐾

Q−1s
𝐼𝐿

Q−1s
𝐽𝑀

Q−1s
𝐾𝑁

C
(0)s
𝐿𝑀𝑁

− 1
2

(
(1)s
𝛼 + 𝑖

2
−1s
𝐼𝐽

(0)s
𝐽𝐼𝛼

)
−1s
𝛼𝛽

(
(1)s
𝛽

+ 𝑖

2
(0)s
𝛽𝐾𝐿

−1s
𝐿𝐾

)
− 𝑖

2

(
A(1)s
𝛼 + 𝑖

2
Q−1s
𝐼𝐽

C
(0)s
𝐽𝐼𝛼

)
Q−1s
𝛼𝛽

C
(0)s
𝛽𝐾𝐿

Q−1s
𝐿𝐾

+ 1
8
Q−1s
𝐼𝐽

C
(0)s
𝐽𝐼𝛼

Q−1s
𝛼𝛽

C
(0)s
𝛽𝐾𝐿

Q−1s
𝐿𝐾

. (A.18)

Consistently with the low-energy expansion, we have taken the soft 
limit in all tree-level propagators (present in the last three terms of the 
expression above). Building on the tree-level and one-loop EFT match-

ing results, we can now construct the genuine loop contributions to the 
two-loop EFT effective action. EFT vertices are determined by the ap-

plication of consecutive derivatives to the dressed propagator (A.15)

together with (A.5):

(0)EFT
𝑖𝑗𝑘

[𝜙̂] =C
(0)s
𝑖𝑗𝑘
,

(0)EFT
𝑖𝑗𝑘𝓁 [𝜙̂] =D

(0)s
𝑖𝑗𝑘𝓁 −C

(0)s
𝑖𝑗𝛼

Q−1s
𝛼𝛽

C
(0)s
𝛽𝑘𝓁 −C

(0)s
𝑖𝑘𝛼

Q−1s
𝛼𝛽

C
(0)s
𝛽𝑗𝓁

(0)s −1 s (0)s
−C
𝑖𝓁𝛼Q𝛼𝛽

C
𝛽𝑗𝑘
. (A.19)
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Hence, the EFT 4-point vertex is the 4-point function of the UV theory, 
with the heavy legs put on-shell with EOMs, supplemented by tree-

level connected 4-point functions from a propagating heavy state in 
the UV. There are also contributions from the insertion of the one-loop 
EFT action in a one-loop topology. We find that

̂(1)EFT
𝑖𝑗

=B
(1)s
𝑖𝑗

−
(
A(1)s
𝛼 + 𝑖

2
Q−1s
𝐼𝐽

C
(0)s
𝐽𝐼𝛼

)
Q−1 𝑠
𝛼𝛽

C
(0)s
𝛽𝑖𝑗

+ 𝑖

2
Q−1s
𝐼𝐽

D
(0)s
𝐽𝐼𝑖𝑗

− 𝑖

2
C
(0)s
𝑖𝐾𝐿

Q−1s
𝐾𝑀

Q−1s
𝐿𝑁

C
(0)s
𝑀𝑁𝑗

, (A.20)

based on the matching result (A.16). Inserting these results into the ex-

pression for the two-loop effective action (7) and, by extending sums 
over light indices to run over all indices (recognizing that scaleless loop 
integrals vanish), we find the following result for the EFT effective ac-

tion:

Γ(2)EFT[𝜙̂] = 𝑆
(2)
EFT +

𝑖

2
B

(1)s
𝐼𝐽

Q−1s
𝐽𝐼

− 𝑖

2

(
A(1)s
𝛼 + 𝑖

2
Q−1s
𝐼𝐽

C
(0)s
𝐽𝐼𝛼

)
Q−1 𝑠
𝛼𝛽

C
(0)s
𝛽𝐼𝐽

Q−1s
𝐽𝐼

− 1
4
Q−1s
𝐼𝐽

D
(0)s
𝐽𝐼𝐾𝐿

Q−1s
𝐿𝐾

+ 1
4
C
(0)s
𝐼𝐾𝐿

Q−1s
𝐼𝐽

Q−1s
𝐾𝑀

Q−1s
𝐿𝑁

C
(0)s
𝐽𝑀𝑁

− 1
8
Q−1s
𝐼𝐽

D
(0)s
𝐼𝐽𝐾𝐿

Q−1s
𝐾𝐿

+ 1
8
Q−1s
𝐼𝐽

C
(0)s
𝐼𝐽𝛼

Q−1s
𝛼𝛽

C
(0)s
𝛽𝐾𝐿

Q−1s
𝐾𝐿

+ 1
12

C
(0)s
𝐼𝐽𝐾

Q−1s
𝐼𝐿

Q−1s
𝐽𝑀

Q−1s
𝐾𝑁

C
(0)s
𝐿𝑀𝑁

. (A.21)

We can now determine the master formula for two-loop matching 
directly from the matching condition (9) by canceling terms be-

tween (A.18) and (A.21):

𝑆
(2)
EFT[𝜙̂]

= Γ𝜙(2)UV [𝜙̂] −
(
Γ(2)EFT[𝜙̂] −𝑆

(2)
EFT

)
= 𝑆(2)s

UV + 𝑖

2
−1s
𝐼𝐽

(1) s
𝐽𝐼

− 1
8
(0)s
𝐼𝐽𝐾𝐿

−1s
𝐼𝐽

−1s
𝐾𝐿

+ 1
12

(0)s
𝐼𝐽𝐾

−1s
𝐼𝐿

−1s
𝐽𝑀

−1s
𝐾𝑁

(0)s
𝐿𝑀𝑁

− 1
2

(
(1)s
𝛼 + 𝑖

2
−1s
𝐼𝐽

(0)s
𝐽𝐼𝛼

)
−1s
𝛼𝛽

(
(1)s
𝛽

+ 𝑖

2
(0)s
𝛽𝐾𝐿

−1s
𝐿𝐾

)
. (A.22)

We identify the master formula for two-loop matching (A.22) as the 
two-loop case of the generic master formula (10). The first line of (A.22)

is the pure hard part of the two-loop 1PI topologies, whereas the second 
line comes from two insertion of the hard one-loop contribution to the 
heavy-field EOM.
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