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A HIE S-FDTD method to account for geometrical
and material uncertainties in lossy thin panels
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Abstract—This paper introduces an extended Stochastic Finite-
Difference Time-Domain (S-FDTD) method tailored to analyze
thin panel structures. It aims to predict the standard devia-
tion and probability density function (PDF) of electromagnetic
magnitudes (fields and currents), assuming their uncertainties
in geometrical and material parameters are both known. The
method to account for the sub-cell nature of the thin panel
method used is based on the broadly tested subgridding boundary
condition (SGBC) approach. This method employs an implicit-
explicit hybrid (HIE) scheme in an unconditional Crank-Nicolson
(CN) formulation (CN-SGBC), ensuring that it does not introduce
any extra limitations to the standard stability criterion of
the FDTD method. In the article, classical models of explicit
formulations of S-FDTD are extended to the FD-CNTD HIE
formulation.

Index Terms—FDTD, Montecarlo, stochastic methods, lossy
thin panel modeling

I. INTRODUCTION

THE finite difference time domain (FDTD) method [1]
is probably the most widely used one in electromagnetic

analysis. It replaces the space and time derivatives in Maxwell
curl equations with second-order accurate finite differences [2]
to find a method capable of finding the wideband response of
complex systems, including their whole material and geomet-
rical complexity.

Modern materials in aeronautical and automotive industries
often consist of multilayered carbon-fiber composite (CFC)
thin panels with lower electrical conductivity than most metals.
FDTD cannot simulate these thin structures in a computer-
affordable manner because they require tiny mesh sizes to
resolve their thickness and skin depth correctly. Instead, equiv-
alent sub-cell models are employed, like the classical network
impedance boundary conditions (NIBC) method [3], [4]. NIBC
assumes a 1D wave propagation along the thin panel thickness
to find the fields at its outer faces in a convolutional manner,
thanks to the quasi-TEM nature of fields propagating into the
lossy slab after refraction for whatever incidence [5].

Late-time instabilities reported for the NIBC method led the
authors to present an alternative approach based on the SGBC
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in [5] also used in [6]. SGBC, instead, uses an explicit wave
propagator to find the fields at the thin panel’s outer faces by
using a 1D fine mesh inside it. A convenient FDTD scheme
to find the fields inside the thin panel is the unconditionally
stable 1D Crank-Nicolson time-domain (CNTD) method. It
can be hybridized naturally to the usual 3D Yee-FDTD, kept
for the more coarsely meshed 3D region, by utilizing a hybrid
implicit-explicit (HIE) algorithm. The unconditional stability
of the resulting scheme safeguards the computer affordability
of the whole algorithm by using the same time-step both inside
and outside it, at the small cost of requiring the solution of
a tridiagonal implicit algorithm at each time step only inside
the thin panel.

The so-called stochastic FDTD methods [7] are an extension
of FDTD to predict uncertainties in the fields due to material
uncertainties. These are becoming a powerful alternative to
replace the costly multidimensional parameter-sweeping typ-
ical approaches, usually resorting to brute-force Montecarlo
(MC) random simulations. S-FDTD simultaneously finds the
expected value and standard deviation on the fields as a
function of those of the material constitutive parameters,
roughly with twice the time of a single FDTD run. In [8],
we have been extended to the thin wire sub-cell Holland’s
technique [9], giving a simple implementation in existing
FDTD codes, assuming they are already programmed with the
usual message passing interface (MPI) parallel paradigm. Most
S-FDTD works put forth the argument that a single S-FDTD
simulation can provide reasonable predictions for MC-FDTD
results under the assumption of a unity correlation between
material properties across spatial points and a probability
density function (PDF) with a small standard deviation for
the material uncertainties. In [8], the authors showed that the
standard deviation for media (non-correlated) could also be
determined by performing one S-FDTD simulation per each
material with non-null standard deviation and combining the
results, which is less computationally intense than a brute-
force MC approach.

FDTD method was also extended to include the measure-
ment of geometric uncertainties in fields and currents, referred
to as the geometrical S-FDTD (GS-FDTD). The concept of
GS-FDTD was first introduced in [10]. In a subsequent study
[11], a method was proposed that accounted for both geometry
and media uncertainties. However, it is essential to note that
both works only addressed problems in one or two dimensions.

In this paper, we extend the classical explicit formulation
of S-FDTD from [7], [11], and [8] to an HIE formulation,
allowing us to predict the impact on the electromagnetic

salva
Texto escrito a máquina
Accepted with major revisions in IEEE Trans. Antennas and Propagation, 2024 



2

magnitudes of geometrical and material uncertainties of lossy
thin panels. We utilize the CN-SGBC method proposed in [5]
to achieve this.

It has been validated with analytical planar test cases and
with a simple representative model of a composite fuselage,
including some wiring inside. This situation is of critical
importance for the aeronautical industry since the current
coupled to cables connecting equipment on a modern aircraft
poses a significant hazard in the context of Lightning Indirect
Effects (LIE) assessment.

II. CN-SGBC FUNDAMENTALS

CN-SGBC (as NIBC) starts by assuming that waves inside a
lossy thin panel propagate perpendicularly to its faces, regard-
less of the actual angle of incidence and thin panel thickness.
This assumption proved [5] to be a good approximation for
most lossy materials of aeronautical interest in their typical
frequencies of interest. CN-SGBC employs a 1D CN-FDTD
wave propagator inside the thin panel to find the tangential E-
fields at each face. Its thickness d is meshed into N fine cells,
with a ∆fine = d/N , accordingly chosen to the wavelength and
skin depth at the maximum frequency. CN-SGBC combines
the 1D scheme with the usual 3D one outside the thin panel see
fig. 1, for which a coarse grid of size ∆coarse, typically much
larger than ∆fine, is taken using the classical space resolution
criterion [2].

Fig. 1. Cross section of an FDTD cell with an SGBC boundary.

The main difference between CN-FDTD and the classical
Yee-FDTD is that the E- and H-field components are co-
located in time (e.g., at an integer multiple of the time step).
In contrast, the space locations are the staggered integer
and semi-integer Yee typical ones. We can summarize the
algorithm as follows. Let us assume that the thin panel is
homogeneous with constant permittivity ε, permeability µ,
and electric conductivity σe (see also [12] for a dispersive
formulation), and let us denote the electric and magnetic 1D
field components inside the thin panel by Ei and Hi. A
tridiagonal system of equations is solved at each time step
by a back-substitution inversion algorithm to find the Ei field
components inside the thin panel (for i = 0, . . . , N + 1)

bEn+1
1 + cEn+1

2 = dn1
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i + cEn+1
i+1 = dni

aEn+1
N + bEn+1

N+1 = dnN+1

(1)

and, the magnetic field components (for i = 1, . . . , N ) are
found from them in an explicit manner by
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with i, n denoting the space and time locations where the
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with Ca, Cb, Da, Db functions of the thin panel properties:

Ca =
2ε−∆tσe

2ε+∆tσe
, Cb =

2∆t

(2ε+∆tσe)d/N

Da = 1 , Db =
∆t

µd/N

(5)

The HIE scheme, as described in [5], utilizes the mag-
netic fields HS1 and HS2 from the conventional Yee-scheme,
where HS1 corresponds to HL,3/2 and HS2 corresponds to
HL,N+3/2. The magnetic fields HS1 and HS2 are updated
using the electric fields ES1 and ES2 respectively. Specifically,
ES1 corresponds to E1 and ES2 corresponds to EN+1. The
values of E1 and EN+1 are determined by solving Equation
(1).

The classical 3D Yee FDTD scheme finds the rest of E-
H fields outside the thin panel. Both regions communicate
naturally through these components, which play the role of
external source terms for CNTD. As a result, the unconditional
stability of the CNTD algorithm is preserved, and the same
time-step can be used both inside and outside the thin panel.

III. S-FDTD FOR CN-SGBC EQUATIONS

The impact of the uncertainty of the material properties on
their shielding effectiveness can be predicted by extending the
S-FDTD method of [7] to the CN-SGBC equations, using
the same methodology first introduced in [8] for thin wire
Holland’s equations.



3

The mean values of the fields are proven to be advanced by
S-FDTD also with Eqs. (1)(2). Their standard deviation σ {}
is found1 by using the Delta method, which states in general

σ2 {f(x1, ..., xN )} ≃
∑
∀i

(
∂f

∂xi

∣∣∣∣
µ{x1},...

)2

σ2 {xi}+

∑
∀i,j,i ̸=j

2

(
∂f

∂xj

∂f

∂xi

)∣∣∣∣
µ{x1},...

σ {xi}σ {xj} ρxi,xj
(6)

with ρxi,xj
denoting the usual Pearson correlation coefficient

and µ {} denote de mean value.
Applying the Delta method to all the additive and mul-

tiplicative terms in the CNTD scheme, we find a set of
advancing equations for the fields inside and at the thin panel
boundaries formally identical to (1) (2). The only difference
is found in the addition of a set of independent sources,
which in turn depend on the mean values previously found by
Eqs. (1)(2), only at locations with some material uncertainty.
Hence, the advancing equation for the deviation in the internal
1D E-field employs a tridiagonal system of equations, the
counterpart of (1), but modified to take into account the non-
null deviation in ε, σe,

σ
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which leads, after some algebra, to
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The deviation in the H-field (assuming null deviation in
the permeability σ{µ} = 0 for simplicity) is found by the
following equation, the counterpart of (2)

σ{Hn+1
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Da
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1We will employ the usual notation of σ{u} to denote the standard
deviation of any variable u, not to be confused with the electric conductivity
noted by σe.

The standard deviation in the updating constants in
(8)(9)(10) and (11) are found formally using the usual chain
rule for the derivative of a multi-variate function [8]. Just note
that all the updating coefficients Ca, Cb, Da, Db are generic
functions u(ε, σe, d). Hence, we can write

σ {u(ε, σe, d)} ≡ ∂u

∂ε
σ {ε}+ ∂u

∂σe
σ {σe}+

∂u

∂d
σ {d} (12)

where Pearson cross-correlation coefficients have been as-
sumed to be unity (see [8], [13] for a deeper discussion).
The partial derivatives in (12) can be performed either analyt-
ically or numerically (e.g., by a second-order finite-centered
formula).

The modifications on the rest of the HIE algorithm of [5], as
well as the external Yee 3D FDTD scheme, are also performed
following the same idea (the usual S-FDTD equations of [7]
are yielded outside the thin panel).

Let us stress again that Eqs. (8)(11) are a counterpart of
Eqs. (1)(2), respectively, just adding the mean values (of
present and past fields) found by (1)(2) as source independent
terms. Hence, the computer implementation of this method
into an existing FDTD program is straightforward since S-
FDTD only uses FDTD values as independent sources at each
time step, thanks to the MPI paradigm described in [8], that
can be extended here in an entirely similar fashion. This S-
FDTD implementation typically multiplies by roughly a factor
2 both the memory and the CPU time. Hence, the computa-
tional savings become apparent, considering that typical MC
populations require several thousands of simulations.

IV. VALIDATION IN A CANONICAL PROBLEM

As a first proof-of-context, let us consider a canonical test
case consisting of an indefinite panel with losses. The panel
is illuminated with a normal plane wave and a sinusoidal
profile with amplitude unit and frequency 1Ghz. The panel
has a constant conductivity of 103 S/m, the mean value of
the thickness is 10−4 m and we assume that the thickness
has an uncertainty with a Gaussian PDF. We evaluate the
amplitude and its uncertainty of the transmitted electric field,
using MC-FDTD, and S-FDTD, for two different uncertainties
in panel thickness: σ {d} = 0.1µ {d} and σ {d} = 0.25µ {d}.
For the MC-FDTD and S-FDTD simulations, we have used a
3D-FDTD with a cubic grid of 5 mm and CFLN of 0.99.
The panel is modeled using the thin panel technique based
on the CN-SGBC method. The FDTD domain is truncated
with proper boundary conditions: PMLs at the termination
planes in the propagation direction and PEC/PMC in the E-
H plane, according to the polarization, to preserve a TEM
plane-wave propagation. The simulation results are compared
in Table I with MC-theoretical used as a reference. The
MC-theoretical are obtained using MC and the theoretical
transmission coefficient with the usual analytical formula:

T =
2η0η sinh (γd)

(η0 sinh (γd) + η cosh (γd))2 − η2
(13)

Fig 2 and Fig 3 depict the results obtained by assuming
a relative standard deviation of thickness σ {d} = 0.1µ {d}



4

TABLE I
MEAN AND STANDARD DEVIATION RESULTS OF THE AMPLITUDE FOR A

GAUSSIAN PDF.

µ {Amplitude}; σ {Amplitude}
σ {d} MC-Theoetical MC-FDTD S-FDTD

0.1µ {d} 0.0513; 0.0052 0.0519; 0.0052 0.0504; 0.0048

0.25µ {d} 0.0664; 0.0453 0.0667; 0.0423 0.0504; 0.0120
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Fig. 2. PDF of the amplitude of the transmitted electric field at 1GHz
under normal incidence, through a panel with σe = 1 kS/m, and thickness of
Gaussian distribution with µ {d} = 0.1mm, σ {d} = 0.1µ {d}
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Fig. 3. PDF of the amplitude of the transmitted electric field at 1GHz
under normal incidence, through a panel with σe = 1 kS/m, and thickness of
gaussian distribution with µ {d} = 0.1mm, σ {d} = 0.25µ {d}

and σ {d} = 0.25µ {d}, respectively. Additionally, Table I
presents the mean and standard deviation values for the
amplitude based on a Gaussian PDF. From Fig.2, we notice,
as expected, that the S-FDTD method does not preserve the
Gaussian shape for the PDF assumed for the PDF of the
independent variables, which becomes apparent in Fig 3 where
the deviation of them if much larger than for Fig 2. The
reason for this lies in the Delta method, which assumes a
series truncated in the second-order terms

µ {g(R)} = g (µ {R}) +O
[
(R− µ {R})2

]
,

σ {g(R)} = g′ (µ {R})σ {R}+O
[
(R− µ {R})2

] (14)

where g represents a generic function. However, we can
reasonably assume that the Gaussian distribution is preserved
with a good approximation when the standard deviation is
sufficiently small.

V. APPLICATION TO A REALISTIC PROBLEM

We finally illustrate the application of this method to a more
complex case of aeronautical interest: a typical LIE assessment
test case. To verify the ability to predict the variability of the
induced current in wires due to intrinsic uncertainty of the
CFC conductivity and thickness, we have studied the case in
Fig. 4, which is a single-wire version of a test case used in
[14]. It consists of a simplified scaled fuselage model with all
the surfaces made of CFC panels and with a wire inside loaded
with 50Ω in both ends. For the LIE assessment, we used a
direct current injection (DCI) source in the time domain with
a waveform-A profile [15]. We denote this current as IDCI,
which is injected at one end of the simplified fuselage, and
taken out by an exit point, consisting of a PEC line connected
to the absorbing boundary conditions at the other end.

Fig. 4. Simplified fuselage model. The size of this object is 1.75m x 0.35 m
x 0.35m. The wire inside is 1m long and is centered along the structure. It is
situated at a height of 0.09 m over the cylinder and grounded through 50Ω
resistances to its lateral face at its ends [14].

For the simulation (MC-FDTD and S-FDTD), the model
was meshed with a cubic grid with 10mm of cell size.
The wire is treated employing the usual Holland thin wire
approximation [9] and the CFC using the CN-SGBC method.
A CPU time of 240 minutes in an Intel Xeon 48-core node
was required for each FDTD simulation2.

In this test case, we evaluate the uncertainties in the intensity
of the wire σ {Iw} due to the uncertainties in the thickness
and conductivity of the CFC material. The values of CFC
conductivity are assumed to have a mean value σe = 1 kS/m,
and a standard deviation of σ{σe} = 0.1σe. For the CFC
thickness, a mean value of d = 10−4 m and a standard
deviation of σ {d} = 0.1·d are used. The following expression
combines the variability of both parameters

σ {Iw} =

√√√√√√ σ2{I}|σ{d}̸=0,
σ{σe}=0

+ σ2{I}|σ{d}=0,
σ{σe}̸=0

+

+2σ{I}|σ{d}̸=0,
σ{σe}=0

σ{I}|σ{d}=0,
σ{σe}̸=0

ρ {d, σe}
(15)

In our case, it has been considered that both parameters are
independent (non-correlated) ρ {d, σe} = 0, and σ {Iw} of the

2This CPU time was achieved thanks to a permittivity scaling algorithm to
accelerate the low-frequency convergence [16], starting from an initial time
step of 10 ps, to achieve in 106 time steps a total physical time of 24µs.
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combined distribution is obtained as the square root of the
addition of the square of each separate σ {} ,

σ {Iw} =
√

σ2{I}|σ{d}̸=0,
σ{σe}=0

+ σ2{I}|σ{d}=0,
σ{σe}̸=0

(16)

(see [8] for a discussion on this).
As a guess, we can employ an equivalent circuit model

to corroborate the findings obtained from MC-FDTD and S-
FDTD methods, given that the LIE test case operates at a
very low frequency. This model consists of three resistances
(Fig. 5): Rs and Rp are the series and parallel resistances,
respectively, from the perspective of the thin wire. Rw repre-
sents the resistance of the thin wire, which is the sum of the
two loads at its ends, equal to 100Ω. The resistance Rp can

Fig. 5. Low-frequency circuit model of the fuselage.

be expressed analytically in terms of d and σ, and it takes the
following form:

Rp(σe, d) =
1

σe (A d +B)
(17)

where A and B are geometrical factors determined heuris-
tically, yielding in our case values of A = 1.258 and
B = 1.794 · 10−5 respectively. Finally, we can determine the
current passing through the thin wire, denoted as Iw, as a
function of the injected current IDCI,

Iw(σe, d) = IDCI
Rp(σe, d)

Rp(σe, d) +Rw
=

= IDCI
1

1 + 100σe (A d +B)

(18)

The results in the time domain of the mean and standard
deviation of Iw obtained with MC-FDTD, S-FDTD, and the
circuit model are cross-compared in Fig. 6, for the MC method
(MC-FDTD and MC-Circuit) we used 20,000 iterations. Fig.7
shows the PDF normalized of the Iw normalized in time
to IDCI, as a reference, we include the PDF for the MC-
circuit with 107 iterations. It should be noted that the S-
FDTD method does not involve any PDF. For the results in
Fig.7, we have assumed that it follows a Gaussian propagation,
and the validity of this assumption depends on how good the
approximation (14) is. Finally, the table II shows a comparison
of the mean and standard deviation of the PDFs.

VI. CONCLUSIONS

In this work, we employ the classical S-FDTD explicit
algorithm and extend it to an HIE algorithm. Specifically, we
present a method for analyzing thin panel structures using the
S-FDTD method in conjunction with the CN-SGBC subcell
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Fig. 6. Comparison of current coupled to the wire considering CFC conduc-
tivity and thickness as uncorrelated variables.
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Fig. 7. Comparison of current coupled to the wire considering CFC conduc-
tivity and thickness as uncorrelated variables.

TABLE II
MEAN AND STANDARD DEVIATION RESULTS OF THE CURRENT IN THE

WIRE FOR A GAUSSIAN PDF.

µ {Iw(1)/IDCI(t)}; σ {Iw(1)/IDCI(t)}

MC-Circuit
107 its

MC-Circuit
20 · 103 its

MC-FDTD
20 · 103 its S-FDTD

0.0661; 0.0841 0.0660; 0.0083 0.066; 0.0081 0.0646; 0.0074

method. A simple methodology to build stochastic versions of
other FDTD or HIE-FDTD methods can be inferred from the
approach described in this paper, indicating how to implement
them into existing codes. The implementation of the S-FDTD
for thin wires of [8] are also prone to be combined with the
CN-SGBC one for thin panels shown in this paper to find the
currents induced at each end of the wire, including the wire
radii and loads uncertainties.

Validations for a simple thin panel with uncertainties in its
thickness, using MC analysis, have been presented. Finally, we
have also shown that the presented method allows us to esti-
mate correctly the stochastic behavior of the induced currents
in wires due to LIE on composite aircraft, employing a simple
yet representative example of an aeronautical situation. The
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presented method also demonstrates no additional constraints
to the usual stability criterion.

The provided PDF results show comprehensive statistical
information on the uncertainties obtained in the electromag-
netic magnitudes. Similar to other extensions of the S-FDTD
method, bearing in mind that the accuracy of the mean and
standard deviation determined by the S-FDTD method, can
only be interpreted within a linear regime when the standard
deviation of the input parameters is small.
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