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Abstract—An impedance model, based on transmission line
(TL) theory, is introduced for common mode ferrite chokes. The
proposed model takes into account the geometrical properties of
the choke, the distribution of electromagnetic fields within the
core material and the impact of the measurement setup. The
validity of the model was tested through numerical simulations.
As a practical application, the model was applied to estimate the
complex permeability of MnZn and NiZn cores from impedance
measurements, resulting in a range of values compatible with
those reported in other works.

Index Terms—ferrite core modelling, Mn–Zn ferrite, Ni–Zn
ferrite, complex permeability, finite element method, transmission
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I. INTRODUCTION

COMMON mode (CM) chokes are widely used com-
ponents in both industrial and laboratory applications

to filter high-frequency common mode currents [?]. In the
case of semiconductor converters, the conducted and radiated
emissions induced by the high-frequency currents can generate
some harmonics up to 400MHz [?]. From the electromagnetic
immunity perspective, the energy coming from other circuits
or from the outside of the equipment could also have some
ultra-high frequency components that should be filtered as
well. The performance of chokes to filter out these unwanted
high-frequency signals is usually governed by their impedance
characteristics. However, the characterization of CM chokes
can be challenging due to the influence of multiple factors,
such as the core’s material composition, its geometric dimen-
sions, the measurement setup and the operating frequency.
The modelling of the choke’s impedance has to take into
account that ferrites can have, simultaneously, both a large
permeability and a permittivity, leading to an inhomogeneity
of the fields inside the ferrite [?], [?], [?], [?]. This effect has to
be properly modelled to yield precise results. In an analogus
way, the extraction of physical parameters from impedance
measurements has to consider the previous factor, and the
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influence of the measurement setup at high frequencies. Other-
wise, those effects will be included in the frequency depedence
of the ferrite parameters, and one might find different physical
properties for ferrites made of the same material [?].

The most common approach to model the impedance of CM
chokes is to use a circuit composed of a series inductor-resistor
in parallel with a capacitor element [?], [?]. CM chokes
commonly show a high-frequency (HF) peak impedance [?],
which in these models is interpreted as a LC resonance.
From this resonance a capacitance is computed to make it
coincide with the measured peak. Although this approach is
simple and effective in capturing the main features of the
impedance behavior at low frequencies and does predict a peak
in impedance it fails to predict the frequency dependence of
the impedance at HF. Moreover, the capacitance value obtained
to position the peak is difficult to justify from a physical point
of view. This capacitance is typically attributed to the wire
winding [?]. Nevertheless, this explanation does not hold for
chokes with either one turn of wire as typical common mode
chokes or even none at all, as in the case of beads.

In the context of transformers and inductors, some
impedance models account for core losses through a complex
magnetic permeability and a complex electric permittivity,
which are assumed to be known [?], [?]. When the complex
permeability is accounted for, these models are able to predict
the frequency dependence of the impedance and have the merit
of weighting the influence of the winding resistances on the
total impedance. However, these models still cannot predict
the observed impedance peaks from geometric or material
properties, which are still attributed to inter or intra-winding
capacitances.

Other approaches have focused on characterizing the com-
plex permeability of ferrite materials by measuring the
impedance of a solenoid that uses them as a core [?], [?],
[?], [?]. For some types of ferrites, e.g. MnZn, these models
are able to properly predict the frequency dependence of the
impendance. However, for other materials such as NiZn, the
impedance do not match the data well, and there is discrepancy
between different applications of the model: [?], [?], [?]
and [?] report frequency behaviors which are not mutually
compatible. Additionally, these models assume that the field
distribution inside the ferrite is homogeneous, which is not
always the case when the ferrites have air gaps or cracks on
the surface or volume, or when the effect of the skin depth
is taken into account. This assumption also leads to different
permeability values for ferrites of the same material.

The electric conductivity of ferrite materials has also been
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studied, and it has been shown to increase with frequency
in [?], [?], [?], [?], [?], [?]. This can result in a significant
skin effect which causes a non-homogeneous field distribution
inside the material. To avoid these effects, in [?], ferrites
that are only a few millimeters in size were used, where
the skin and wavelength effects are considered negligible.
Although this technique accurately removes the dimensional
effects for the complex permeability measurements, it requires
the capability of manufacturing ferrite cores specifically for
this purpose, thus introducing variability and making it hard
to evaluate commercially available cores.

To mitigate these limitations, we propose a method in Sec. II
to calculate the impedance of the CM ferrite choke, based on
transmission line analysis, which considers the possible inho-
mogeneity of the fields due to skin depth effects, geometrical
characteristics, and the impact of the measurement setup. The
proposed model aims to accurately represent the main features
of the measured impedance, namely the slope variations and
the resonance peaks. The parameters in the model are solely
derived from physical considerations and do not require an
a posteriori capacitance estimation. In Sec. III, we validate
the model by comparing its impedance predictions with FEM-
based simulations and experimental data.

II. IMPEDANCE MODEL DERIVATION USING TL THEORY

A. Modelling of CM Choke as a TL

Let us consider a ferrite choke with an internal radius ri, a
thickness dm, a width of lm, an average internal circumference
w and winded with a single turn of wire having a total length
of 2l + d, as shown in Fig. 1. Our goal is to determine the
impedance Zin which would be measured at the terminals
of the wire. Hence, we will use a transmission line (TL)
analogy for the derivation of impedance model, in which the
conductors of the TL have length l and separated by a distance
d and ending in a short. We assumed that a portion of the TL
is filled with the material which constitutes the choke with the
permittivity, εm, and the permeability, µm and the remaining
space is vacuum with ε0, and µ0.

At any point z of the TL, the voltage between the conductors
V (z) is given by the Heaviside’s equations as [?]

d2V (z)

dz2
− γ2

TLV (z) = 0 (1a)

d2I(z)

dz2
− γ2

TLI(z) = 0 (1b)

where γTL is the complex propagation constant of the TL.
The input impedance Zin presented by a homogeneous TL of
length l, with characteristic impedance ZTL and terminated
with a load ZL is given by

Zin = ZTL
ZL + ZTL tanh(γTLl)

ZTL + ZL tanh(γTLl)
(2)

If the line is not homogeneous, its parameters will depend on
the specific position along the line z, i.e. ZTL(z) and γTL(z).
Discretizing the space in zi points with i = 1, . . . , N , Zin at

Fig. 1. Schematic representation of a ferrite choke winded with a single wire
turn. The TL is formed by the bent wire and terminated in a short circuit.

any point zi = zi+1 −∆z of the TL can be obtained using a
recursive formula,

Zin(zi) = ZTL
Zin(zi+1) + ZTL(zi+1) tanh(γTL(zi+1)∆z)

ZTL(zi+1) + Zin(zi+1) tanh(γTL(zi+1)∆z)
(3)

where ∆z and ZTL(∆z) are, respectively, the length and the
impedance of the slice of material that is being incorporated
into the input impedance, and Zin(zi+1) is the input impedance
computed in the previous step. The end of the line can
be considered short-circuited (ZL = 0) or can include the
load caused by the experimental setup using standard TL
considerations. To utilize (3) for the impedance calculation
of the choke, we need to determine the TL parameters, γTL
and ZTL.

B. Derivation of TL parameters

To obtain the TL parameters γTL and ZTL, we need to
establish a relationship between V and I in the wire. This
relationship can be established by integrating the electric and
magnetic fields (E and H) between the conductors. Therefore,
our first step is to derive the expressions for these fields. Let
us properly define this problem using Maxwell’s equations in
the frequency domain

∇×E = −jωµH (4a)
∇×H = jωεE (4b)

where the effective permittivity has the general form

ε (ω) = ε′ − jε′′ (5)

and the effective permeability

µ(ω) = µ′ − jµ′′ (6)

both being complex-valued and frequency dependent quanti-
ties. Equations (4), (5), and (6) can be combined to derive
Helmholtz’s equation

∇2E = γ2E (7a)

∇2H = γ2H (7b)

where
γ = jk = α+ jβ (7c)

being the complex propagation constant, k = ω
√
εµ the

complex wavenumber, α the attenuation constant and β the
phase constant or wavenumber [?]. The complex propagation
constant γ describes how the fields evolve within the cross-
section of our TL, this is a different quantity to the γTL defined
in (1) which defines how the voltage and currents propagate
along the TL. Moreover, γ is a property of materials which
depends on their specific ε and µ, while γTL depends on the
composition of the cross-section, which may include more than
one material in general.

For our specific problem, (7) can be solved for toroidal
geometries using Bessel’s equation and cylindrical coordinates
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(a)

(b)

Fig. 2. The ferrite choke as a transmission line with the approximations of
field distribution (a) the homogeneous field along the z-axis assumes lm ≫
dm and (b) the inhomogeneous field along the z-axis assumes lm ∼ dm.
Lighter colors represent a higher intensity of E and H fields.

[?], [?]. However, if we assume a large internal radius, (7) can
be formulated in Cartesian coordinates as

(∂2
x + ∂2

z )E = γ2
i E (8a)

(∂2
x + ∂2

z )H = γ2
i H (8b)

with subscripts i = {0,m} for the free space or the ferrite
material, respectively. The contour conditions can also be
derived from the surface current density, Js, and the surface
charge density, ρs, at the conductor surfaces as

E0 · n̂ =
ρs
ε

(9a)

H0 × n̂ = Js (9b)

which is equivalent to the formulation of the problem in
Cartesian coordinates with symmetry along the y-axis (Fig. 2).
Hence, we assume that the current I(z) and charge Q(z)
are distributed uniformly along the y axis on a surface that
embraces the toroid’s upper, lower, and internal faces.

1) Homogeneous Field Along z-axis Approach: To simplify
the problem, let us first assume that the thickness lm of the
ferrite is much longer than its height dm. This approach allows
us to assume a uniform field distribution along the TL as
shown in Fig. 2a, i.e., the fields do not depend on the position
along the z direction. Thus, (8) reduces to

d2xEx = γ2
i Ex (10a)

d2xHy = γ2
i Hy (10b)

Considering d0+ dm = d, with d being the distance between
wires, (10a) can be solved as

Ex(x) =

{
Ex,0 x ∈ x0

Ex,m
cosh(γm(x−d0/2−dm/2))

cosh(γmdm/2) x ∈ xm
(11)

where x0 and xm correspond to the regions along the x axis in
free space and filled the ferrite material, respectively. Here, we
consider γ0 ≪ γm, a valid assumption for typical problems,
and use the continuity equation at the boundary between free
space and the ferrite as

Ex,0 ε0 = Ex,m εm (12)

and relate the charge in the conductor at x = 0 to the normal
electric field as

Ex,0 =
ρs

∆zε0
=

Q

w∆zε0
(13)

where w is the distance along the y-axis in which the ρs
and Js are present. In our case, w = 2πr, with r being the
distance to the toroidal center; therefore, w depends on z, and
we can no longer talk about a homogeneous field. To avoid this
complexity, we will perform the computation using an average

radius which allows us to consider w as constant. We can now
use (11) to compute the voltage between the two conductors
at a specific point z in the line, which can be written as

V =−
∫ 0

d

E · x̂ dx

=Q

(
d0

∆z wε0
+

1

∆z wεm

2 tanh(γmdm/2)

γm

)
=Q

(
∆z C−1

0 +∆z C−1
m

)
=Q∆zC̃−1

(14)

where we denote C̃ as a complex capacitance per unit length
of the line, with separate contributions from the air gap (C0)
and the ferrite material (Cm).

The magnetic field in (10b) has the same formal solution
as (11),

Hy(x) =

{
Hy,0 x ∈ x0

Hy,m
cosh(γm(x−d0/2−dm/2))

cosh(γmdm/2) x ∈ xm
(15)

and
Hy,0 = Hy,m (16)

The current I in the conductor at x = 0 allows us to calculate
the tangential magnetic field as

Hy,0 = Js,z = − I

w
(17)

and the magnetic flux ϕB on xz section S

ϕB =

∫∫
S

B · ŷ dS

= I

(
∆z µ0

d0
w

+∆z µm
1

w

2 tanh(γmdm/2)

γm

)
= I (∆z L0 +∆z Lm)

= I∆zL̃

(18)

where we can identify L̃ as a complex inductance per unit
length, with contributions from the air gap (L0) and from the
ferrite material (Lm). Finally, we can use Faraday’s law on
the same surface to obtain∫

∂S

E · dl = −jωϕB (19)

from which we can deduce, in the limit ∆z → 0,

∂zV (z) = −jωL̃I(z). (20)

Using the charge continuity equation on the upper conductor
volume V and integrating on the boundary of V , we can define∫

∂V

J · dS = −jωQ(z) (21)

which in the same limit allows us to write

∂zI(z) = jωC̃V (z). (22)

By inserting (22) into (20), we can deduce the complex
propagation constant which appears in (1) as

γTL = jω
√

L̃C̃ (23)
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and

ZTL =

√
L̃

C̃
. (24)

It should be noted that these terms are similar to those used
in lossless transmission lines, where Z0 =

√
L/C. However,

the losses and dispersion are present in our scenario since L̃
and C̃ are complex numbers.

2) Inhomogeneous Field Approach: With the insights
gained from the previous approach, we can now aim to solve
the problem posed in (8) for the case in which dm ∼ lm
(Fig. 2b). Outside the ferrite material, for typical dimensions,
the solution of (8) can be considered constant as γ0 ≪ γm.
Inside the ferrite material, a more general analytical solution
for the field can be found in [?],

H(x, z) =H0

[
cosh(γmz)

cosh(γmb)

+
∑
n odd

cn cos
(nπz

2b

)
cosh

(
x

√
γ2
m +

n2π2

4b2

)]
(25)

with

cn =
4γ2

m

nπ sin nπ
2

γ2
m + n2π2

4b2

1

cosh

(
a
√
γ2
m + n2π2

4b2

) (26)

where a = dm/2 and b = lm/2. The main consequence of
this added complexity is that now the complex inductance
Lm depends on the position z. Despite that, we can operate
similarly to obtain

Lm(z) =

∫ a

−a

H(x, z) dx

=
µ

2πrav

[
2 tanh(γmb)

γm

+
∑
n odd

c′n cosh

(
z

√
γ2
m +

(nπ
2b

)2)]
(27)

with

c′n =
16γ2

mb

n2π2

1

γ2
m +

(
nπ
2b

)2 1

cosh

(
a

√
γ2
m +

(
nπ
2b

)2) (28)

From the discussion carried out in Sec. II-B1 we know that
for a typical problem L0 ≪ Lm and C0 ≪ Cm, therefore

L̃ ≃ Lm (29a)

C̃ ≃ C0 (29b)

which allow us to model the ferrite as a distributed component
with the equivalent circuit parameters (L̃ and C̃) as shown in
Fig. 3 and compute γTL, ZTL and Zin from (23), (24) and (3),
respectively.

+

−

V

Llumped

l − lm/2− l0
ZTL,0

γTL,0

l0 + lm/2

ZTL,0

γTL,0

Zin

(a) Lumped element impedance calculation

+

−

V
l − lm − l0

ZTL,0

γTL,0

lm

ZTL(z)

γTL(z)

l0
ZTL,0

γTL,0

Zin

(b) TL impedance model proposed

Fig. 3. Different models employed to obtain input impedance.

III. VALIDATION OF THE MODEL

A. Comparison with Numerical Simulations

In this section, we aim to determine the accuracy of the
proposed TL impedance model. To do this, we will assume a
fictitious ferrite material with effective material constants

µm = µm,rµ0 (30a)
εm = ε0 − jσm/ω (30b)

with µm,r = 620 and σ = 5Sm−1. Two different setups
have been used. The Cartesian setup (Fig. 4a) has translational
symmetry and fits better the assumptions made to derive (27);
thus, we would expect to obtain a better agreement with
this setup. The coaxial setup (Fig. 4b) employs cylindrical
symmetry of the fields around a toroidal ferrite, and is a typical
configuration when the aim is to characterize the properties
of a ferrite [?]. Using (7c) and the values in (30), we can
compute the skin depth and wavelength in the ferrite core
and note that they are comparable to the size of the ferrite
for most of the range of frequency studied, e.g. at 100MHz,
the skin depth is δ = α−1 ∼ 0.9mm and the wavelength
is λ = 2πβ−1 ∼ 5.7mm, comparable to the dimensions of
the setup. Therefore, we can expect to have a significant field
inhomogeneity and the resonant effects reported in [?], [?], a
challenging test for most impedance models.

To evaluate the validity of our approach, we will com-
pare the results obtained with our theoretical models and
the ones obtained with a frequency domain finite element
method (FEM) solver (Ansys©HFSS). To do this, the Cartesian
and coaxial setups were modeled as shown in Fig. 4. We
used perfect electric conductor boundaries (PEC) for all the
metallic surfaces and perfect magnetic conductor boundaries
(PMC) to model symmetry boundary conditions. A current
was introduced between the extremes of the conductors using
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(a)

Carte-
sian
setup

(b)

Coax-
ial
setup

Fig. 4. The geometrical setups used, showing dimensions and boundary
conditions used to perform FEM simulations.

a lumped source. The dimensional parameters of Cartesian
setup in Fig. 4a are dm = 20 mm, d0 = 2 mm, d = 22 mm,
lm = 10 mm, l0 = 1 mm and l = 60 mmm, whereas the
parameters of Coaxial setup in Fig. 4b are dm = 12.75 mm,
d0 = 4 mm, d = 16.75 mm, lm = 20 mm, l0 = 2 mm and
l = 60 mm.

We used two impedance models to compute the impedance,
with equivalent electric circuits shown in Fig. 3. The lumped
element impedance model (Fig. 3a), assumes that the ferrite
can be modeled by a lumped inductance calculated using (27)
as

Llumped =

N∑
i=1

Lm(zi) (31)

with l = N∆z and zi = (i − 1)∆z +∆z/2, with N = 201.
In this model Llumped is put in series with two TL segments
which account for the distances between the source and the
short-circuit load at the end of the setup. The characteristic
impedance and complex propagation constant of these seg-
ments, ZTL,0 and γTL,0 can be obtained by standard procedures
[?] being, for the Cartesian setup

ZTL,0 =

√
µ0

ϵ0

d

w
(32)

with w = 151.6mm. For the Coaxial setup,

ZTL,0 =

√
µ0

ϵ0

log(ro/ri)

2π
(33)

with ri = 17.75mm and ro = 30.5mm, the same dimensions
as one of the cases which will be later addressed in Sec. III-B.
For both cases γTL,0 = jω

√
µ0ϵ0. In the TL impedance

model (Fig. 3b), the lumped impedance is substituted by an
inhomogenous TL with ZTL(z) and γTL(z) given by (23) and
(24) and using (3) to derive the input impedance which would
be measured.

The results for the simulations and the evaluated models are
presented in Fig. 5 for the two geometries studied. Below the
resonance peak, both geometries and both models make almost
identical predictions; below 2MHz both have the 20 dB/dec
slope which characterizes ideal inductors. We can observe a
∼ 10 dB/dec up to 100MHz which is characteristic of the
skin depth effect, because the field is no longer homogeneous
and constant inside the choke. This is a similar result to what
can be obtained with other models such as the ones in [?],
[?]. However, we observe differences between the models at
higher frequencies, there is a second resonance peak which

(a)

(b)

Fig. 5. Impedance results (a) Cartesian and (b) Coaxial with a FEM simulation
(red), the proposed TL model (blue) and a lumped inductance calculation
(orange). The simulation data has been considered as the reference solution.

the lumped model fails to predict. This mode is caused by a
resonance which depends on the specific characteristics of the
setup and the dimensions of the choke and that a pure lumped
model can not reproduce. On the other hand, the TL impedance
model accounts for the speed of the voltage wave as it travels
through the wire, and we can observe that its predictions match
much better the reference solution at high frequencies. It is
also worth noting that both models show good agreement for
the two geometries studied, which used different assumptions
with respect to symmetry. This indicates that neglecting the
radial dependency in Bessel’s equation made in Sec. II was a
good assumption to model these cases.

B. Parameter Extraction

In the previous Section, we assumed that the electromag-
netic properties were known a priori and used them as inputs
for the developed model to make impedance predictions. In
the current Section, as an additional validation and as an
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application example, we will solve the inverse problem i.e. the
deduction of the effective permeability µm and permittivity εm
parameters of a CM choke from its impedance measurements
using different experimental setups. To accomplish this, we
will use an optimization procedure to find the parameters
which produce the best match with the experimental measure-
ments.

The impedance of the TL (24), through its dependence on
L̃ and C̃, is a function of µm and εm. In order to properly
formulate the problem in a way which is compatible with
optimization algorithms, we need express the µm and εm
as frequency-dependent functions which depend only on a
discrete set of parameters. Assuming that the ferrite behaves
as a linear, homogeneous and isotropic material, the effective
permittivity can be expressed as [?]

ε(ω) = εm,rε0 − j
σm

ω
(34)

where we have assumed that, in this range of frequencies, the
contribution from polarization current is a real constant. We
have also included the electric conductivity σm to allow for
the possibility of conduction currents. On the other hand, the
complex permeability can be expressed as

µm(ω) = 1 + χm(ω) = 1 + χ′
m(ω)− jχ′′

m(ω) (35)

with χm being the magnetic susceptibility. The frequency
dependence in ferrite materials is commonly attributed to two
mechanisms: natural spin resonance (χm,s) and domain-wall
relaxation (χm,d) [?]. Hence, the real and imaginary parts of
the permeability spectrum can be expressed as

µ′
m(ω) = 1 + χ′

m,s(ω) + χ′
m,d(ω) (36)

µ′′
m(ω) = χ′′

m,s(ω) + χ′′
m,d(ω) (37)

with

χ′
m,s(ω) =

Ksω
2
s [ω

2
s + ω2(1 + α2)]

[ω2
s − ω2(1 + α2)]2 + 4ω2ω2

sα
2

(38)

χ′′
m,s(ω) =

Ksωωsα[ω
2
s + ω2(1 + α2)]

[ω2
s − ω2(1 + α2)]2 + 4ω2ω2

sα
2

(39)

and

χ′
m,d(ω) =

Kdω
2
d(ω

2
d − ω2)

(ω2
d − ω2)2 + β2ω2

(40)

χ′′
m,d(ω) =

Kdω
2
dβω

(ω2
d − ω2)2 + β2ω2

(41)

where Ks is the static spin susceptibility, Kd is the static
susceptibility of the domain wall motion, ωs is the spin
resonance angular frequency, ωd is the domain wall resonance
angular frequency and α and β are damping factors of the
domain wall and spin motions. We can also note that Ks and
Km are constrained by the permeability value in the static
limit

µm,st = lim
ω→0

µm(ω) = 1 +Ks +Km (42)

Consequently, the problem reduces to finding the parameters
P = {εm,r, σm,Ks, ωs, α,Kd, ωd, β}, which provide a better
fit between the reference measurement and the model. As

Fig. 6. Coaxial line experimental setup developed for the characterization of
ferrite material.

these parameters have numerical values with different orders
of magnitude, e.g. the quotient εm,r/ωs varies from 10−3

to 10−6, a scaling factor of 10−6 was applied to ωd, ωs,
and β. The fitting procedure is carried out using a basin-
hopping global optimization method [?] included in the Python
scientific package SciPy [?] to minimize the following error
metric

1

N

N∑
n

∣∣|Z|measurements,dB(fn)− |Z|TL,dB(fn;P)
∣∣ (43)

where |Z|measurements,dB(fn) and |Z|TL,dB(fn) are the
impedances at frequency fn, expressed in decibels, obtained
from measurements and the TL model, respectively. The al-
gorithm operates by applying a perturbation T of configurable
size, T = 10 in our case, to the scaled parameters P followed
by a local minimization of |Z|TL,dB. The initial values of the
fitted parameters were the same for the different cases studied.
The algorithm iterates until a stable minimum is found having
as stopping criteria that the global minimum remains the same
for a certain number of iterations, which was set to 20 in our
case. Additionally, to explore the influence of permittivity
and conductivity, we carried out three types of fitting: with
permeability only (fixing εm,r = 1 and σm = 0), including
εm,r with no conductivity (fixing σm = 0), and including
both εm,r and σm. In all cases, the constraint (42) was used
to reduce the search space.

1) MnZn CM choke in coaxial setup: To measure the CM
choke impedance, we designed and built the coaxial line
fixture shown in Fig. 6 which fits well the assumptions made
to derive the input impedance in Sec. II. The fixture was made
with a 50Ω coaxial line made of copper, with an internal raidus
ri = 4.35mm, external radius of ro = 10mm and length
l = 215mm. The line was terminated with two 7/8” flanges
commercialized by Spinner; one of the flanges was soldered to
the line, while the other can be opened to introduce the device
under test (DUT). One of the flanges is a 50Ω port connected
to a Rohde & Schwarz ZNL6 vector network analyzer (VNA);
the other flange was terminated in a short. The fixture was
loaded with a 7427729 toroidal ferrite [?] with dimensions
lm = 28.5mm, ri = 4.75mm, and dm = 4mm as labeled in
Fig. 1. The ferrite loaded in the coaxial fixture is equivalent
to a single turn inductor.

In Fig. 7 we show the magnitude of the impedance reported
in the datasheet for this ferrite and the experimental data
obtained with our setup. We can observe that the datasheet
and our measurements present a good match below approxi-
mately 40MHz and diverge above that value. We attribute this
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(b) Phase

Fig. 7. Plot of experimental measurements of the Wurth 7427729 ferrite
in coaxial setup (green) which were the target of the fitting procedure.
Results for the fittings permeability parameters with vacuum permittivity
(blue), with dielectric permittivity (magenta), and with a conductor (cyan). The
manufacturer data (red) is shown for comparison. The observed differences
low frequency differences are attributed to differences in the sample (±25%
tolerance is expected). The differences above 50MHz are likely to be
produced by differences in the experimental setup.

Fig. 8. Permeabilities obtained from the different fittings: vacuum per-
mittivity (blue), with dielectric permittivity (magenta), and with a conductor
(cyan). The fittings for dielectric and conductive-type effective permittivities
are overlapped.

discrepancy to differences in the measurement setup, for which
our setup presented a lower parasitic self-inductance. Besides
that difference, our sample seems to have a larger permeability
at low frequencies, which due to Snoek’s law implies also a
lower resonant frequency. It is also worth noting (Fig. 11)
that the measured values for the low frequency permeability
diverge significantly and are inconsistent with the value of
µst,r = 5000 which is reported in the datasheet. Using our

experimental data as a target for the fitting, we allowed for
different parameter searches: with a free-space permittivity
(εm,r = 1, σm = 0), a non-conductive dielectric (σm = 0),
and a conductor. The obtained material parameters are reported
in Tab. I; these, together with the fixture and choke dimensions
were input in (3) to predict the impedances shown in the
figure. For the magnitude, we can observe that the best fittings
occurred for the two latter cases which produced very similar
results and with a very good match in magnitude with respect
to the experimental data up to approximately 30MHz. Above
that frequency, the CM choke impedance is comparable to the
one presented by the empty experimental setup, which is close
to its self-resonance. While our model is able to qualitatively
predict the existence of these resonances, it fails to reproduce
the exact place in which they happen. Phase fittings did not
produce good results with any of the tested models in the
region between 1MHz to 100MHz, giving qualitatively good
results in the rest of the spectrum. A possible cause is that
the permeability models used have only a very small set of
values in which they present negative values of permeability;
as the optimization algorithm is trying to fit only magnitude, a
good fitting of the phase would have been a secondary effect.
The permeabilities obtained with the different approaches are
shown in Fig. 8, as can be observed, the fittings including
permittivity or conductor properties produced very similar
results for permeability. For the cases which included effective
permittivity, we observe (Tab. I) that even a moderate value of
σm of 0.221 S/m, has a very important effect in the optimal
εm,r, going from ∼ 857 to ∼ 1. This high variability can
be interpreted as that the setup is not adequate to determine
permittivity and highlights that the impedance spectrum is
dominated by the permeability values.

2) NiZn in U-shaped fixture: In this case we applied the
same method to a NiZn ferrite choke (Würth 74270191) with
significantly larger dimensions: lm = 20mm, ri = 17.75mm,
and dm = 12.75mm (Fig. 1). This dimensions make it
impossible to fit the sample into the previous coaxial fixture.
For this reason we designed and built the U-shaped fixture
depicted in Fig. 9. This fixture was made with a bent aluminum
sheet which formed a ground plane with a length of 160mm
at the base, the ports were elevated 50mm from the base, this
distance was use as the external radius re as an approximation
to the formulas described in Sec. II. The left port was
connected to the same VNA described in the previous setup,
and the other was shorted; their live terminals were connected
using a copper wire with an internal radius of ri = 0.4mm.
To allow the introduction of the choke, the wire was cut at
approximately 20mm of the left port, and reattached using a
removable splice tab.

Before performing measurements with the ferrite, measure-
ments of the unloaded fixture were carried out in order to
calibrate the effect of the setup. These measurements were
replicated using the same formulas of the proposed model for
an empty coaxial line terminated in a short and introducing
a shunt-C, series-L network between the feeding port and
the line with values C = 2pF and L = 5nH respectively;
a similar procedure as the one carried out in [?]. After
calibration, the CM choke was situated in the midpoint of
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Fig. 9. U-shaped fixture used for the impedance measurement of NiZn chokes
(Wurth 74270191).

the wire, centered in place using a styrofoam filler with
a dielectric characteristic which was considered negligible.
Fig. 10 shows the impedance values measured with this setup,
together with the data reported in the Wurth datasheet [?].
Contrary to the previous case, the values reported in the
datasheet and the ones that we measured differ significantly
and while the high-frequency differences could be attributed
to the experimental setup, the low-frequency ones are possibly
caused by differences in the measured samples. With respect
to the TL model impedance, the values shown were obtained
following the same procedure as in the previous case obtaining
very good agreements in magnitude and phase between all
models and the measured impedance. Fig. 11 shows the
permeabilities obtained with the different models, and the
parameters obtained are shown in Tab. I.

IV. CONCLUSION

A new model for calculating CM ferrite chokes impedance
has been developed. The proposed model utilizes the trans-
mission line theory taking into account the physical size,
the measurement setup, and field inhomogeneity. The model’s
validity was confirmed through simulations and measurements
compared with datasheets. It has been shown that by treat-
ing the ferrite as a distributed component and incorporating
the impedance of the measurement setup, the variation in
impedance can be precisely explained. As an application, the
model was used to characterize the complex permeability of
two ferrites (MnZn and NiZn) operating at different frequency
regimes. Due to the geometrical and physical assumptions
made, the model is valid only for a single turn of wire. An
approach to the modeling of chokes with multiple turns would
require to introduce the mutual inductance between the turns
into the TL equations, which would result into a set of delay
differential equations; a task which remains pending for future
work.
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Fig. 10. Plot of experimental measurements of the Wurth 74270191 ferrite
in coaxial setup (green) used as a target for the fittings. Results for the
fitted permeability parameters with vacuum permittivity (blue), with dielectric
permittivity (magenta), and with a conductor (cyan). The manufacturer data
(red) is shown for comparison. We observe significant differences at low
frequency which fall out of the tolerance declared by the manufacturer
(±25%). The different position of the peak is attributed to a combination
of different permeability of the sample and differences in the experimental
setup.

Fig. 11. Permeabilities obtained from the different fittings: vacuum permit-
tivity (blue), with dielectric permittivity (magenta), and with a conductor
(cyan). The fittings for dielectric and conductive-type effective permittivities
are overlapped.

the CM ferrite chokes and Rohde & Schwarz España, S.A. for
the ZNL6 VNA used in the experimental measurements.
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TABLE I
MATERIAL PARAMETERS RESULTING FROM THE PARAMETER EXTRACTION PROCEDURE. εm,r , Ks , Km , AND α ARE ADIMENSIONAL QUANTITIES,

ωs ,ωd , AND β ARE EXPRESSED IN Mrad/s; σm IS EXPRESSED IN S/m. HYPHENS STAND FOR VALUES WHICH WERE FIXED AND DURING THE
PROCEDURE: εm,r = 1 AND σm = 0.

εm,r σm Ks ωs α Kd ωd β

7427729 - µ only - - 3845 7.203 1.521 2615 9.501 16.40
7427729 - µ, εm,r 858.0 - 227 82.79 1.528 6233 7.766 15.52
7427729 - µ, εm,r , σm 1.23 0.22 221 86.76 1.581 6239 7.905 15.87
74270191 - µ only - - 462 1352 17.26 68 657 1528
74270191 - µ, εm,r 36.95 - 65 3342 9.335 465 317 1485
74270191 - µ, εm,r , σm 1.003 0.0002 463 1320 17.36 67 655 1527
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