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Abstract
To measure the degree of agreement between R observers who independently classify
n subjects within K categories, various kappa-type coefficients are often used. When
R � 2, it is common to use the Cohen’ kappa, Scott’s pi, Gwet’s AC1/2, and Krippen-
dorf’s alpha coefficients (weighted or not). When R > 2, some pairwise version based
on the aforementioned coefficients is normally used; with the same order as above:
Hubert’s kappa, Fleiss’s kappa, Gwet’s AC1/2, and Krippendorf’s alpha. However,
all these statistics are based on biased estimators of the expected index of agreements,
since they estimate the product of two population proportions through the product
of their sample estimators. The aims of this article are three. First, to provide statis-
tics based on unbiased estimators of the expected index of agreements and determine
their variance based on the variance of the original statistic. Second, to make pairwise
extensions of some measures. And third, to show that the old and new estimators of
the Cohen’s kappa and Hubert’s kappa coefficients match the well-known estimators
of concordance and intraclass correlation coefficients, if the former are defined by
assuming quadratic weights. The article shows that the new estimators are always
greater than or equal the classic ones, except for the case of Gwet where it is the other
way around, although these differences are only relevant with small sample sizes (e.g.
n ≤ 30).

Keywords Agreement · Cohen’s kappa · Concordance and intraclass correlation
coefficients · Conger’s kappa · Fleiss’ kappa · Gwet’s AC1/2 · Hubert’s kappa ·
Krippendorf’s alpha · Pairwise multi-rater kappa · Scott’s pi

B A. Martín Andrés
amartina@ugr.es

1 Biostatistics, Faculty of Medicine, C8-01, University of Granada, 18071 Granada, Spain

2 CITMAga, 15782 Santiago de Compostela, Spain

3 Defense University Center, Spanish Naval Academy, Marín, Pontevedra, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11634-024-00581-x&domain=pdf
http://orcid.org/0000-0002-2548-2638


A. Martín Andrés, M. Álvarez Hernández

Mathematics Subject Classification 62F10 · 62F12 · 62H99 · 62P15

1 Introduction

It is often necessary to assess the degree of concordance or agreement betweenR raters
which independently classify n subjects within K ≥ 2 categories (Fleiss 1971; Landis
and Koch 1975a, b; Warrens 2010; Schuster and Smith 2005).

Let this be the case for only two raters (R � 2) and nominal categories. As some
of the observed agreements may be due to chance, it is most common to eliminate
the effect of chance by defining a kappa-type coefficient of the form κ � (Io −
Ie)/(1 − Ie). In that expression Io is the observed index of agreements (the sum
of the observed proportions of agreements),Ie is the expected index of agreements
(the sum of the proportions of agreements that would happen if the two raters acted
independently) and κ is the population value of the proposed agreement measure. Note
that the previous indexes only consider the agreements obtained. When the categories
are ordinal, the indexes defined are similar to the previous ones, but also considering
the disagreements obtained, to which certain weights are assigned (see Sect. 2.1); this
leads to a weighted kappa coefficient. From now on, κ will allude to one or the other
indistinctly. According to the definition adopted for Ie, the different kappa coefficients
are obtained: κS (Scott 1955), κC (Cohen 1960, 1968), and κG (Gwet 2008). The

estimation of these coefficients has the general form of κ̂ �
(
Îo − Îe

)/(
1 − Îe

)
,

where the values κ̂ , Îo and Îe are the sample estimators of the previous population
parameters. It can be seen thatκ and κ̂ are decreasing functions of Ie and Îe respectively.
Additionally, Krippendorf (1970, 2004) provides an estimator κ̂K of κS that differs
slightly from the more classical κ̂S because of its new definition of Îo.

Let this be the case formulti-raters (R≥ 2). The different coefficients κ of the caseR
� 2 can be generalized for the case of multi-raters in several ways, depending on how
thephrase “an agreement has occurred” is interpreted.Themost common interpretation
is that of Fleiss (1971) and Hubert (1977) "an agreement occurs if and only if two
raters categorize an object consistently" or pairwise definition of agreement. This is
the definition in this article. Hubert (1977) also makes the following interpretation "an
agreement occurs if and only if all raters agree on the categorization of an object",
or R-wise definition (Conger 1980). The extension R-wise κHR of κC can be seen in
Conger (1980), Shuster and Smith (2005) and Martín Andrés and Álvarez Hernández
(2020). The best-known pairwise extensions of the coefficients κS , κC and κG are the
coefficients κF (Fleiss 1971), κH (Hubert 1977; Conger 1980) and κG (Gwet 2008)
respectively. All of them are defined under the same format as in the case of R � 2.
Additionally, Krippendorf (1970, 2004) provides an estimator κ̂K of κF that differs
slightly from the more classical κ̂F , again because of the definition of Îo. An overview
of all of the above can be seen in Gwet’s book (2021).

However, all κ̂X expressions are based on biased estimators (X refers to any of the
letters used above), since they estimate the product of two population proportions -a
term that is present in Ie- through the product of their sample estimators. The first
objective of this article is to correct this bias by proposing unbiased estimators ÎeU of
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Ie − so the new estimator of κX will be κ̂XU �
(
Îo − ÎeU

)/(
1 − ÎeU

)
− , as well

as to determine the variance of κ̂XU . This methodology is easy to apply to any other
kappa coefficient studied. A second objective is to make pairwise extensions of some
measures, but in a different way to traditional pairwise extensions.

The previous description is very general since it is necessary to specify who are the
“subject population” and the “rater population”. Regarding the population of subjects,
the n subjects may be: (a) a random sample of an infinite population of subjects, which
is what is assumed in the rest of the sections; (b) a random sample of a finite population
of subjects, in which case a finite population correction (Gwet 2021a, b) must be made
to the formulas of the variance; and (c) the only subjects of interest, in which case
only κ̂X makes sense, there is no κX parameter to estimate and it makes no sense to
define κ̂XU .

Regarding the population of raters, the R raters may be (Shrout and Fleiss 1979):
(1) different for the same subject -even with a different number- and extracted from an
infinite population of raters; (2) the same for all of the subjects and extracted from an
infinite population of raters; and (3) the same for all of the subjects and they are the only
raters of interest, which is what is assumed in the rest of the sections. When the replies
of the raters are quantitative, a traditional way of measuring the degree of agreement
between them is through the intraclass correlation coefficients (ICC) ρI1, ρI2, and ρI3

which are obtained from the corresponding one-way randommodel, two-way random
model, or two-way mixed model, respectively. In the last two cases it is assumed that
there is no interaction. Nevertheless, in this context of measures of agreement, Shrout
and Fleiss (1979) and Carrasco and Jover (2003) point out that in case (3) it is also
necessary to include the variability between raters in the total variability, so that in
cases (2) and (3) we should use ρI2. Additionally, and for case (3), Lin (1989, 2000)
and Barnhart et al. (2002) propose using as a measure of agreement the concordance
correlation coefficient (CCC) ρL .

As is logical, different researchers have shown interest in searching for relations
between the coefficients κX , ρIi, and ρL , as well as between their estimators κ̂X , ρ̂I i ,
and ρ̂L . Landis and Koch (1977) demonstrated that κ̂F is asymptotically equivalent to
ρI1 when the replies are binary. Furthermore, Barnhart et al. (2002) and Carrasco and
Jover (2003) demonstrated that ρL � ρI2. Since in the case ofR� 2Martín Andrés and
Álvarez Hernández (2020) demonstrated that ρL � κC—assuming, as from now on,
that theweights of the disagreements are quadratic—, then the satisfactory property κC

� ρL � ρI2 is obtained when R � 2. The equivalences between the estimators of these
parameters are more complex, since their values depend on the method of estimating
their components. For example, Fleiss and Cohen (1973) demonstrated that κ̂C is
asymptotically equivalent to ρI2, King and Chinchilli (2001) and Martín Andrés and
Álvarez Hernández (2020) demonstrated that κ̂C � ρ̂L when direct (biased) estimators
are used, and Davis and Fleiss (1982) verified that κ̂H is asymptotically equivalent to
ρI2 when the replies are binary. The third objective of this article is to relate κH to ρL ,
as well as estimators κ̂CU and κ̂HU with estimators ρ̂I2 and ρ̂LU , which is based on
the unbiased estimators of the components of ρI2 and ρL , respectively.

From the aforementioned reasons, we can see that in this article it is assumed that
n subjects, extracted randomly from an infinite population, are given a score a single
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time by R fixed raters (who are the only ones of interest). It is also assumed that there
are no missing data, i.e. that all of the raters give a reply in all of the subjects.

2 Case of two raters

Let be two raters (R � 2) that independently classify n subjects within K categories.
Let Oij be the number of subjects whom observer 1 classifies as type i (i � 1, 2, …,
K) and observer 2 as type j (j � 1, 2, …, K). This gives rise to a table of absolute
frequencies Oij like those in Tables 1 and 2, with observed proportions p̂i j � Oij/n,
where �i�jOij � n and �i�j p̂i j � 1. The notation for row totals (Oi· and p̂i ·), of
column (O·j and p̂· j ) or general (O·· � n and p̂·· � 1) is the usual; for example p̂i · �
�j p̂i j . If the subjects have been chosen randomly and both raters classify all of the
subjects, then the observed dataset {Oij} comes from a multinomial distribution of
parameters n and {pij}, where pij is the probability that a subject will be classified in
cell (i, j). Additionally {pi·} and {p·j} will be the marginal distributions of the row and
column observers respectively. Obviously, p̂i j , p̂i · and p̂· j are themaximum likelihood
estimators of pij, pi· and p·j respectively. At the end of “Appendix 2”, another type of
sampling is mentioned in detail.

2.1 Weighted and unweighted kappa and observed index of agreements

It has already been indicated that κ depends on the indexes of agreement Io (observed)
and Ie (expected). To evaluate anyof them it is necessary to previously define theweight
or degree of agreement wij that is assigned to the answer (i, j), with 0 ≤ wij ≤ 1, wii

Table 1 Diagnosis of n � 100 subjects by R � 2 raters in K � 3 categories (Fleiss et al. 2003)

Rater 1 Rater 2 Totals (Oi·)

Psychotic Neurotic Organic

(a) Observed frequencies (Oij)

Psychotic 75 1 4 80

Neurotic 5 4 1 10

Organic 0 0 10 10

Totals (O·j) 80 5 15 100 (O··)

Coefficients Classic New

(b) Estimated kappa coefficients

Cohen’s kappa κ̂C � 0.676 κ̂CU � 0.679

Scott’s pi κ̂S � 0.675 κ̂SU � 0.678

Krippendorf’s alpha κ̂K � 0.677 κ̂KU � 0.680

Gwet’s AC1 κ̂G � 0.868 κ̂GU � 0.867
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Table 2 Classification of n � 8 subjects by R � 2 raters in K � 3 categories (Gwet 2021b, p 109)

Rater 1 Rater 2 Totals (Oi·)

A B C

(a) Observed frequencies (Oij)

A 1 1 0 2

B 0 3 1 4

C 0 0 2 2

Totals (O·j) 1 4 3 8 (O··)

Coefficients Classic New

(b) Estimated kappa coefficients

Cohen’s kappa κ̂C � 0.600 κ̂CU � 0.632

Scott’s pi κ̂S � 0.595 κ̂SU � 0.636

Krippendorf’s alpha κ̂K � 0.620 κ̂KU � 0.659

Gwet’s AC1 κ̂G � 0.638 κ̂GU � 0.619

� 1, and generally wij � wji < 1 (i �� j). When categories are ordinal, there are many
ways to assign values to wij (Schuster and Smith 2005). If we assume that categories
1, 2, …, K are ordered from the lowest to highest, it is usual that wij is related to
the value of (i − j). A classic definition, to which we will refer later, is the quadratic
weighting wij � 1 − [(i − j)/(K − 1)]2 of Fleiss and Cohen (1973). When categories
are nominal, it is traditional to assign the weights wii � 1 and wij � 0 (i �� j), that is,
it only considers the actual agreements. Historically, the different coefficients κ are
defined first in the unweighted case, later extending it to the weighted case. However
this article will be developed for the general weighted case, since the unweighted is a
particular case of that: wij � δij with δij are the Kronecker deltas.

All coefficients κ are defined based on the same value of the index of agreements
observed. Therefore, it is appropriate to indicate their definition (Io) and their estimate
( Îo) as general reference for all this Sect. 2:

Io �
∑
i

∑
j

wi j pi j and Îo �
∑
i

∑
j

wi j p̂i j �
∑
i

∑
j

wi j Oi j

/
n,

where Îo is an unbiased estimator of Io.
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2.2 Cohen’s kappa and the intraclass and concordance correlation coefficients

Cohen (1960, 1968) defines the classical measure of agreement

kC � (Io − Ie)/(1 − Ie) where Ie �
∑
i

∑
j

wi j pi · p· j , (1)

and proposes to estimate it by,

κ̂C �
(
Îo − Îe

)/(
1 − Îe

)
where

Îe �
∑
i

∑
j

wi j p̂i · p̂· j �
∑
i

∑
j

wi j Oi ·O· j

/
n2.

As indicated in “Appendix 1”, p̂i · p̂· j is not an unbiased estimator of pi·p·j since

E
(
p̂i · p̂· j

) � (n − 1)pi · p· j + pi j
n

, (2)

although it is asymptotically unbiased, as happens in the other cases that follow.

Therefore E
(
Îe
)

� ∑
i
∑

j E
(
p̂i · p̂· j

) �{(n − 1)Ie + Io}/n and Îe is also not an

unbiased estimator of Ie. From expression (2) it follows that the unbiased estimators
of pi·p·j and Ie are

p̂i · p· j � n p̂i · p̂· j − p̂i j
n − 1

and ÎeU �
∑
i

wi j p̂i · p· j � n Îe − Îo
n − 1

, (3)

respectively. Thus, the new estimator κ̂CU of κC will be

κ̂CU � Îo − ÎeU

1 − ÎeU
� nκ̂C

(n − 1) + κ̂C
, (4)

and its variance, which is deduced in “Appendix 2”, is

V
(
κ̂CU

) � (n − κC )4

{n(n − 1)}2 V
(
κ̂C

)
, (5)

where V
(
κ̂C

)
refers to the formula of Fleiss et al. (1969), which can be seen in the

book by Gwet (2021b); this book also contains all of the variances that are needed
in what follows. This type of correction is similar to the one used by Miettinen and
Nurminen (1985) for the score statistics in 2 × 2 tables. Because of expression (3),

ÎeU − Îe is proportional to −
(
Îo − Îe

)
≤ 0 if and only if κ̂C ≥ 0. As κ̂C decreases

with Îe, then κ̂CU ≥ κ̂C in the case of positive agreement (κ̂C ≥ 0, which is the case of
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greatest interest). It is easy to see that V
(
κ̂CU

) ≤ V
(
κ̂C

)
if and only if κC ≥ n0.5/{n0.5

+ (n − 1)0.5}. Something similar happens with the other variances obtained below.
Let there now be two raters with quantitative answers x1 and x2 with means μ1

and μ2, variances σ 2
1 and σ 2

2 , and covariance σ 12. Lin (1989, 2000) established the
following measure of quantitative agreement ρL (known as CCC) and its estimation
ρ̂L

ρL � 2σ12
σ 2
1 + σ 2

2 + (μ1 − μ2)
2 and ρ̂L � 2S12

S21 + S22 + (x1 − x2)2
, (6)

where S2i and S12 are the biased estimators of the variances and covariances respec-
tively (both with denominator n) and xi are the sample means. As mentioned in the
Introduction, the quadratic weighting has the advantage of achieving that κC � ρL

� ρI2 and that ρ̂L � κ̂C . On the other hand, Carrasco and Jover (2003) replaced the
values of σ 2

i , σ 12 and (μ1 − μ2)2 for their unbiased estimators s2i , s12 (their sample

variances and covariances with denominator n − 1) and ̂(μ1 − μ2)
2 � (x1 − x2)2 −

(s21 + s22 − 2s12)/n in the first expression (6), which led to the following estimator ρ̂LU

of ρL ,

(7)

ρ̂LU � 2ns12(
s21 + s22

)
(n − 1) + n (x1 − x2)2 + 2s12

� 2nS12
(n − 1)

{
S21 + S22 + (x1 − x2)2

}
+ 2S12

,

Note that ρ̂LU � n ρ̂L /{(n − 1) + ρ̂L}, which is the same function of expression (4)
that relates κ̂CU with κ̂C . Therefore, as κ̂C � ρ̂L , then κ̂CU � ρ̂LU and the two new
estimators of ρL and κC (quadratic weights) are the same. Additionally, ρ̂LU ≥ ρ̂L if
ρ̂L ≥ 0. In the “Appendix 3” it is proved that ρ̂LU � ρ̂I2, thus κ̂CU � ρ̂LU � ρ̂I2.

2.3 Scott’s pi

Scott (1955) defines the following measure of agreement

kS � (Io − Ie)/(1 − Ie) where Ie �
∑
i

∑
j

wi jπiπ j , with πi � (pi · + p·i )/2,

(8)

and proposes to estimate it by

κ̂S � Îo − Îe

1 − Îe
where Îe �

∑
i

∑
j

wi j π̂i π̂ j with π̂i � p̂i · + p̂·i
2

� Oi · + O·i
2n

,

(9)
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As indicated in “Appendix 1”, π̂i π̂ j is not an unbiased estimator of π iπ j since

E(π̂i π̂ j ) � (n − 1)πiπ j +
{
δi j

(
pi · + p· j

)
+
(
pi j + p ji

)}/
4

n
. (10)

Therefore, E( Îe) � ∑
i
∑

j E
(
π̂i π̂ j

) � {(n − 1)Ie + (1 + Io)/2}/n, assuming that

wij � wji, and Îe is not an unbiased estimator of Ie. From expression (10) it is deduced
that the unbiased estimators of π iπ j and Ie are

π̂iπ j � nπ̂i π̂ j − {(
p̂i · + p̂· j

)
δi j +

(
p̂i j + p̂ j i

)}/
4

n − 1
and

ÎeU �
∑
i

wi j π̂iπ j �
n Îe −

(
1 + Îo

)/
2

n − 1
, (11)

respectively. Therefore, the new estimator κ̂SU of κS will be

κ̂SU � Îo − ÎeU

1 − ÎeU
� (2n − 1)κ̂S + 1

(2n − 1) + κ̂S
, (12)

and its variance, as followed in “Appendix 2”, is

V
(
κ̂SU

) � (2n − 1 − κS)
4

{4n(n − 1)}2 V
(
κ̂S
)
. (13)

Because of expression (11), ÎeU − Îe is proportional to −
{(

1 − Îe
)
+
(
Îo − Îe

)}

which is also proportional to −{
1 + κ̂S

} ≤ 0 if and only if κ̂S ≥ − 1. As κ̂S decreases

with Îe, then κ̂SU ≥ κ̂S in the case of a positive agreement.

2.4 Krippendorf’s alpha

Krippendorf (1970, 2004) proposed to estimate κS as in expression (9), but with a
small-sample correction for Îo, though Gwet (2021b, p. 65) considers that “The need
for such an adjustment and its potential benefits have not been documented”. The new
estimator is,

κ̂K � ÎoC − Îe

1 − Îe
where ÎoC � (2n − 1) Îo + 1

2n
and Îe �

∑
i

∑
j

wi j π̂i π̂ j ,

(14)
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where ÎoC � Îo +
(
1 − Îo

)/
2n; therefore,

κ̂K � (2n − 1)κ̂S + 1

2n
and

κ̂KU � (2n − 1)κ̂SU + 1

2n
� (n − 1) + {2n(n − 1) + 1}κ̂K

2n(n − 1) + nκ̂K
. (15)

The first expression follows from expressions (9) and (14); the second is obtained
by replacing Îe for the value of ÎeU in expression (11). From expressions (15) it is
deduces that κ̂K ≥ κ̂S and κ̂KU ≥ κ̂SU . Also, as for positive degrees of agreement it
occurs that κ̂SU ≥ κ̂S then, due to expressions (15), κ̂KU ≥ κ̂K . Finally, if in the first
expression of Eq. (15) κ̂S is replaced by {(2n − 1)κ̂SU − 1}/{(2n − 1) − κ̂SU} −
which is deduced from expression (12) − then κ̂K � 2(n − 1) κ̂SU /{(2n − 1) − κ̂SU}
and κ̂SU ≥ κ̂K if κ̂SU ≥ 0. The overall conclusion is that κ̂S ≤ κ̂K ≤ κ̂SU ≤ κ̂KU for
positive degrees of agreement.

Regarding the variance, it is sufficient to use the first part of the second expression
(15) and then replacing V(κ̂SU ) with the value in expression (13); thus

V
(
κ̂KU

) �
(
2n − 1

2n

)2

× (2n − 1 − κS)
4

{4n(n − 1)}2 V
(
κ̂S
)
.

2.5 Gwet’s AC1/2

Gwet (2008) defines the next measure regarding AC2 (AC1 refers to the non-weighted
case),

kG � (Io − Ie)/(1 − Ie) where Ie � W ×
∑
i

πi (1 − πi ), /{K (K − 1)}

and W �
∑
i

∑
j

wi j , (16)

and proposes to estimate it by

κ̂G � Îo − Îe

1 − Îe
where Îe � W

K (K − 1)

∑
i

π̂i
(
1 − π̂i

)
, (17)

where π i and π̂i are obtained as in expressions (8) and (9). Once again it happens
that Îe is not an unbiased estimator of Ie, because π̂2

i is not an estimator of π2
i either.

Using the first expression (11) to estimate π2
i in an unbiased way, we obtain that the

unbiased estimators of π2
i and Ie are, respectively

π̂2
i � nπ̂2

i − {(
p̂i · + p̂·i

)
+ 2 p̂i i

}/
4

n − 1
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and ÎeU � 1

n − 1

{
n Îe − X

}
, where X �

W

(
1 − ∑

i
p̂i i

)

2K (K − 1)
. (18)

Therefore, the new estimator κ̂GU of κG will be

κ̂GU � Îo − ÎeU

1 − ÎeU
� (n − 1)κ̂G + Y

(n − 1) + Y
where Y � X − Îe

1 − Îe
. (19)

In “Appendix 1” it is proved that ÎeU − Îe ≥ 0, so it always happens that κ̂GU ≤
κ̂G . It can be observed that it is not feasible to determine V(κ̂GU ) directly from the
value of V(κ̂G).

3 Case of multi-raters

Let there be n subjects (s � 1, 2, …, n) classified by R raters (r � 1, 2, …, R) in K
types (i � 1, 2,…,K). Let xsr � 1, 2,…,K be the answer of rater r in subject s, values
that are usually presented in a two-dimensional table in which the subjects are in rows
and the raters in columns. For each row (subject), let Ris be the number of raters that
answer i in subject s; obviously Ri+ � �sRis is the total number of i answers (for every
rater), R+s � �iRis � R and R++ � �i�sRis � nR. For each column (rater), let nir
be the number of subjects classified as i by rater r; obviously n+r � �inir � n, ni+ �
�rnir � Ri+ is the total number of i answers and n++ � �i�rnir � nR � R++. The
results of Ris and nir are usually presented as in Table 3(a) and (b) respectively.

3.1 Pairwisemethods and the observed index of agreement

To define and estimate the measures regarding the R > 2 case, the pairwise methods
will be used. These methods in some way offer an average for what happens in the
R(R− 1) possible pairs of raters (r, r’), with r, r’� 1, 2,…, R and r �� r’. This obliges
us to change the notation used in Sect. 2, since it is necessary to indicate for each
parameter from which pair (r, r’) does its value come from. Parameters pij, pi· and
p·j of Sect. 2 will now be notated as pir,jr’, pir and pjr’ respectively. Additionally, we
define the new parameter pi+ � �rpir � �r’pir’, which is the proportion of i answers
of every raters. A similar thing occurs with the estimated values p̂i j and p̂ir , jr ′ etc.
Note that the estimators p̂ir of pir and p̂i+ of pi+ are

p̂ir � nir
n

and p̂i+ �
∑

r
p̂ir � ni+

n
� Ri+

n
, (20)

respectively, where �i p̂ir � 1 and �r�i p̂ir � R. Parameters κ , Io and Ie of Sect. 2
will be denoted as κ(r, r’), Io(r, r’) and Ie (r, r’) respectively; therefore

k
(
r , r ′) � {Io

(
r , r ′) − Ie

(
r , r ′)}/{1 − Ie

(
r , r ′)}, (21)
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Table 3 Results of the classification of n � 29 fish by R � 4 raters in K � 5 colorations (Gwet 2021b, p
341)

Fish (s) Coloration (i)

1 2 3 4 5 R+s

(a) Number of raters Ris that classify the fish s in category i (Gwet 2021b, p. 342)

1 0 0 0 0 4 4

2 2 0 2 0 0 4

3 0 0 0 0 4 4

4 2 0 2 0 0 4

5 0 0 0 1 3 4

6 1 1 2 0 0 4

7 3 0 1 0 0 4

8 3 0 1 0 0 4

9 0 0 2 2 0 4

10 3 0 1 0 0 4

11 0 0 0 0 4 4

12 4 0 0 0 0 4

13 4 0 0 0 0 4

14 4 0 0 0 0 4

15 0 0 3 1 0 4

16 1 0 2 1 0 4

17 0 0 0 2 2 4

18 0 0 0 0 4 4

19 0 0 3 0 1 4

20 0 1 3 0 0 4

21 0 0 1 0 3 4

22 0 0 3 1 0 4

23 4 0 0 0 0 4

24 4 0 0 0 0 4

25 2 0 2 0 0 4

26 1 0 3 0 0 4

27 2 0 2 0 0 4

28 2 0 2 0 0 4

and the same for the estimated values κ̂
(
r , r ′) etc.

With pairwise methods there are several ways to average the results of every pair
of raters (r, r’), but all procedures of interest define the global value of Io as

Io �
∑
r

∑
r ′ ��r

Io
(
r , r ′)/{R(R − 1)}, (22)
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Table 3 (continued)

Fish (s) Coloration (i)

1 2 3 4 5 R+s

29 0 1 2 0 1 4

Ri+ 42 3 37 8 26 R++ � 116

Rater (r) Coloration (i) n+r

1 2 3 4 5

(b) Values of nir or number of replies i of the rater r (Gwet 2021b, p 75)

1 10 0 11 1 7 29

2 10 2 11 1 5 29

3 10 1 9 3 6 29

4 12 0 6 3 8 29

ni+ 42 3 37 8 26 n++ � 116

Coefficients Classic New

(c) Estimated kappa coefficients

Hubert’s kappa κ̂H � 0.413 κ̂HU � 0.421

Fleiss’s kappa κ̂F � 0.410 κ̂FU � 0.422

Fleiss’s kappa two-pairwise κ̂F2 � 0.408 κ̂F2U � 0.422

Krippendorf’s alpha κ̂K � 0.421 κ̂KU � 0.432

Krippendorf’s alpha two-pairwise κ̂K2 � 0.418 κ̂K2U � 0.432

Gwet’s AC1 κ̂G � 0.445 κ̂GU � 0.441

Gwet’s AC1 two-pairwise κ̂G2 � 0.490 κ̂G2U � 0.487

thus Io � �r�r’��r�i�jwijpir,jr’/{R(R − 1)}. As is traditional, the measure of global
agreement will be κ � (Io − Ie)/(1 − Ie), where Ie is yet to be defined. If Ie is defined
in a similar way to Io

Ie �
∑
r

∑
r ′ ��r

Ie
(
r , r ′)/{R(R − 1)}, (23)

we say that the procedure that defines global κ is a “two-pairwise” procedure and the
population coefficient thereby obtained will be,

k2 �
⎧
⎨
⎩
∑
r

∑
r ′ ��r

Io
(
r , r ′) −

∑
r

∑
r ′ ��r

Ie
(
r , r ′)

⎫
⎬
⎭/

⎧
⎨
⎩R(R − 1) −

∑
r

∑
r ′ ��r

Ie
(
r , r ′)

⎫
⎬
⎭.
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It can be noticed that κ2 is also obtained by dividing the sum of all the possible
numerators (�r�r’��r) from expression (21), by the sum of all possible denominators,
which indicates that κ2 if the weighted average of R(R − 1) values of κ(r, r’) − the
weights are the denominators − . This procedure is the one recommended by Janson
and Olsson (2001), Conger (1980) and Gwet (2021b). Notice that �r�r’��rIo(r, r’) �
2�r�r’>rIo(r, r’) and similarly with Ie. We have preferred to use the first expression
because it facilitates some proofs, but regarding calculations the second expressions
seems preferable. All of the above also applies to the case of estimated values.

As the base values of Io and Îo are the same in every κ measures, it should be
specified since its values are (see “Appendix 1”),

Io �

∑
r

∑
r ′ ��r

∑
i

∑
j

wi j pir , jr ′

R(R − 1)
,

Îo �

∑
r

∑
r ′ ��r

∑
i

∑
j

wi j p̂ir , jr ′

R(R − 1)
�

∑
i

∑
j

wi j
∑
s
Ris R js − nR

nR(R − 1)
, (24)

3.2 Hubert’s kappa pairwise and the intraclass and concordance correlation
coefficients

The κH coefficient ofHubert (Hubert 1977;Conger 1980) is a two-pairwise coefficient,
and that iswhy the expression (23) canbe applied for value Ie(r, r’) ofCohen.Adjusting
expression (1) to the current format, Ie(r, r’) � �i�jwijpirpjr’ and, due to “Appendix
1”

kH � (Io − Ie)/(1 − Ie)

where Ie �
∑
i

∑
j

wi j

(
pi+ p j+ −

∑
r

pir p jr

)
/{R(R − 1)}. (25)

Using expressions (20) the following estimation is obtained

κ̂H � Îo − Îe

1 − Îe
where Îe � 1

n2R(R − 1)

∑
i

∑
j

wi j

{
ni+n j+ −

∑
r

nir n jr

}
.

It can be observed that for R � 2 it occurs that κC � κH and
κ̂C � κ̂H . In order to obtain an unbiased estimator of Ie, the sec-
ond expression of (3), applied with the current notation, indicates that

ÎeU
(
r , r ′) �

{
n Îe

(
r , r ′) − Îo

(
r , r ′)}/ (n − 1); therefore R(R − 1) ÎeU �

∑
r
∑

r ′ ��r ÎeU
(
r , r ′) �

{
n
∑

r
∑

r ′ Îe
(
r , r ′) − ∑

r
∑

r ′ Îo
(
r , r ′)}/ (n − 1) and so

ÎeU � (n Îe − Îo)/ (n − 1). As this expression is the same as the second expres-
sion of (3), then the conclusions in Sect. 2.2 are still valid, changing the letter C with
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the letter H. Thus,

κ̂HU � Îo − ÎeU

1 − ÎeU
� nκ̂H

(n − 1) + κ̂H
, (26)

and κ̂HU ≥ κ̂H in the case of positive agreement.
Generalizing the first expression of (6) in the case of two raters r and r’ of answers xr

and xr’, meansμr andμr’, variances σ 2
r and σ 2

r ′ , and covariances σ rr’, we obtain ρL
(
r ,

r ′)� 2σrr ′
/{

σ 2
r + σ 2

r ′ + (μr − μr ′)2
}
. If we apply to this expression the two-pairwise

criterion which consists of adding �r�r ��r’ in the numerator and in the denominator,
the CCC ρL of Lin (1989, 2000) and Barnhart et al. (2002) is obtained for the case
of multi-raters; its estimated ρ̂L value is obtained in the same way as the second
expression of (6). In this way,

ρL �
2
∑
r

∑
r ′>r

σrr ′

(R − 1)
∑
r

σ 2
r +

∑
r

∑
r ′>r

(μr − μr ′)2
,

ρ̂L �
2
∑
r

∑
r ′>r

Srr ′

(R − 1)
∑
r
S2r +

∑
r

∑
r ′>r

(xr − xr ′)2
. (27)

Carrasco and Jover (2003) justified that ρ̂L is based on biased estimators and they
proposed the following estimator, which is based on unbiased estimators (srr´ and s2r )

ρ̂LU �
2n

∑
r

∑
r ′>r

srr ′

(R − 1)(n − 1)
∑
r
s2r + n

∑
r

∑
r ′>r

(xr − xr ′)2 + 2
∑
r

∑
r ′>r

srr ′
. (28)

It is easy to see that the same thing can be obtained applying the two-pairwise
method to the first expression (7). As for R � 2 it occurred that κC � ρL and κ̂C � ρ̂L

when the weights were quadratic, and in both cases the value for R > 2 is obtained in
the same way − the sum of the numerators divided by the sum of the denominators
− , then also κH � ρL and κ̂H � ρ̂L in the case of R > 2. Additionally, κHR �
κH � ρL � ρI2 since ρL � ρI2 (Carrasco and Jover 2003) and κHR � ρL (Martín
Andrés and Álvarez Hernández 2020). Furthermore, as ρ̂LU � nρ̂L

/{
(n − 1) + ρ̂L

}
-an expression which has the same form as (26)- then also

κ̂HU � ρ̂LU � ρ̂I2 � n
∑

s x
2
s· +

∑
r x

2·r − n
∑

s
∑

r x
2
sr − x2··∑

s x
2
s· +

∑
r x

2·r + (nR − n − R)
∑

s
∑

r x
2
sr − x2··

, (29)

where the last two equalities are demonstrated in the “Appendix 3”. In the last expres-
sion, which is simpler for the calculation, it is understood that xs· � ∑

r xsr , x·r �∑
s xsr , and x·· � ∑

s
∑

r xsr . Something similar happens with the estimators based
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on the biased estimation of their components (see “Appendix 3”),

κ̂H � ρ̂L � n
∑

s x
2
s· +

∑
r x

2·r − n
∑

s
∑

r x
2
sr − x2··∑

r x
2·r + n(R − 1)

∑
s
∑

r x
2
sr − x2··

. (30)

3.3 Fleiss’ kappa pairwise

Fleiss (1971) extended κS to the case of R > 2 defining in the following value of Ie,
which is not a two-pairwise type,

kF � (Io − Ie)/(1 − Ie) where Ie �
∑
i

∑
j

wi jπiπ j

and πi �
∑
r

pir/R � pi+/R, (31)

and proposes the following estimators

κ̂F � Îo − Îe

1 − Îe
where Îe �

∑
i

∑
j

wi j π̂i π̂ j � 1

n2R2

∑
i

∑
j

wi j Ri+R j+

and π̂i � p̂i+
R

, (32)

since pi+ is estimated as the second expression of Eq. (20). As indicated in “Appendix
1”, Îe is not an unbiased estimator of Ie since nE( Îe) � (n − 1)Ie + R−1{1 + (R −
1)Io}. This is why the unbiased estimator ÎeU of Ie and the new estimator κ̂FU of κF

will be

ÎeU �
n Îe −

{
1 + (R − 1) Îo

}/
R

n − 1

and κ̂FU � Îo − ÎeU

1 − ÎeU
� (Rn − 1)κ̂F + 1

(R − 1)κ̂F + {R(n − 1) + 1} . (33)

Its variance, as deduced in “Appendix 2”, is

V
(
κ̂FU

) � {(nR − 1) − (R − 1)κF }4{
R2n(n − 1)

}2 V
(
κ̂F

)
. (34)

Through the first expression of Eq. (33), ÎeU − Îe is proportional to Îe − R−1{1 +
(R − 1) Îo}, which is also proportional to − {1 + (R − 1)κ̂F} ≤ 0 if and only if κ̂F ≥
− (R − 1)−1. Therefore, κ̂FU ≥ κ̂F in the case of positive agreement.
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Another way of extending κS is to use the two-pairwise method. In this case, in
“Appendix 1” it is demonstrated that

kF2 � (Io − Ie)/(1 − Ie)

where Ie �
⎡
⎣∑

i

∑
j

wi j

{
(R − 2)

∑
r

pir p jr + pi+ p j+

}⎤
⎦/2R(R − 1), (35)

and therefore its estimated values in a traditional way would be

κ̂F2 � Îo − Îe

1 − Îe
where Îe � 1

2n2R(R − 1)

∑
i

∑
j

wi j

{
(R − 2)

∑
r

nir n jr+ni+n j+

}
.

In order to obtain the unbiased estimator of Ie, the second expression of Eq. (11) is,
in the current terms, ÎeU

(
r , r ′) � [n Îe

(
r , r ′) − {1 + Îo

(
r , r ′)/2}]/(n − 1). Applying

expressions (22) and (23) it is obtained that the second expression of Eq. (11) is also
applied to the current case, in such a way that the conclusions obtained in the case of
Scott’s Pi are valid, changing the letter S with F2. In this way

κ̂F2U � (2n − 1)κ̂F2 + 1

(2n − 1) + κ̂F2
,

where ÎeU �
n Îe −

(
1 + Îo

)/
2

n − 1
, V

(
κ̂F2U

) � (2n − 1 − κF2)
4

{4n(n − 1)}2 V
(
κ̂F2

)
,

and κ̂F2U ≥ κ̂F2 when κ̂F2 ≥ 0. Nevertheless, to the best of our knowledge, now the
value of V(κ̂F2) is not known.

3.4 Krippendorf’s multi-rater alpha

Now the objective is similar to that of Sect. 2.4: to estimate κF as in expression (32),
but changing the value of Îo for a value ÎoC defined as expression (14). In this way

κ̂K � ÎoC − Îe

1 − Îe
where ÎoC � (2n − 1) Îo + 1

2n
and Îe � 1

n2R2

∑
i

∑
j
wi j Ri+R j+.

Given the formal equality of the expressions, all of the previous conclusions can
be accepted, with the necessary changes. In particular,

κ̂K � (2n − 1)κ̂F + 1

2n
and κ̂KU � (2n − 1)κ̂FU + 1

2n
� (n − 1) + {2n(n − 1) + 1}κ̂K

2n(n − 1) + nκ̂K
,

(36)

κ̂F ≤ κ̂K ≤ κ̂FU ≤ κ̂KU , (37)
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V
(
κ̂KU

) �
(
2n − 1

2n

)2

× (2n − 1 − κS)
4

{4n(n − 1)}2 V
(
κ̂F

)
. (38)

In a similar way for the two-pairwise method, where now

κ̂K2 � ÎoC − Îe

1 − Îe
, where ÎoC � (2n − 1) Îo + 1

2n
,

and Îe �
∑

i
∑

j wi j
{
(R − 2)

∑
r nir n jr+ni+n j+

}

2n2R(R − 1)
.

Therefore, expressions (36) to (38) are also valid putting number “2” after the letters
K or F in the sub-indexes of these expressions.

3.5 Gwet’s multi-rater AC1/2

For the case of multi-raters, Gwet (2008) defined the same measures of agreement
AC1/2 κG and κ̂G of expressions (16) and (17) respectively, but withπ i and π̂i alluding
to the Fleiss values of expressions (31) and (32) respectively. Therefore, Ie � W(
1 − ∑

i π
2
i

)
/ {K(K − 1)} � W

(
1 − ∑

i p
2
i+

/
R2

)
/{K(K − 1)} and

(39)

Îe � W

K (K − 1)

{
1 −

∑
i

π̂2
i

}
� W

K (K − 1)

{
1 −

∑
i p̂

2
i+

R2

}

� W

K (K − 1)

{
1 −

∑
i R

2
i+

n2R2

}
.

"Appendix 1" demonstrates that π̂2
i is not an unbiased estimator ofπ2

i − see expres-

sion (48) − , so that Îe is also not an unbiased estimator of Ie, which is justified in this
same Appendix as the unbiased estimator ÎeU of Ie is

ÎeU � n Îe − A

n − 1
, where A �

W (R − 1)
(
1 − ÎoN

)

RK (K − 1)
and ÎoN �

∑
i R

2
is − nR

nR(R − 1)
.

(40)

Therefore, the new estimator κ̂GU of κG will be,

κ̂GU � Îo − ÎeU

1 − ÎeU
� (n − 1)κ̂G + B

(n − 1) + B
where B � A − Îe

1 − Îe
. (41)

It can be observed that now it is not viable to determine V(κ̂GU ) directly from the
value of V(κ̂G). “Appendix 1” demonstrates that ÎeU − Îe ≥ 0, so that now we also
find that κ̂GU ≤ κ̂G .
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An alternative is to use the two-pairwisemethod. In this case, “Appendix 1” demon-
strates that

κG2 � Io − Ie
1 − Ie

where Ie � W

K (K − 1)

[
1 − 1

2R(R − 1)

{
(R − 2)

∑
i

∑
r
p2ir +

∑
i
p2i+

}]
,

(42)

and therefore its estimated (biased) values are, because of expression (20)

κ̂G2 � Îo − Îe

1 − Îe
where Îe � W

K (K − 1)

[
1 − 1

2R(R − 1)n2

{
(R − 2)

∑
i

∑
r
n2ir +

∑
i
n2i+

}]
.

(43)

To obtain unbiased estimator of Ie, expression (18) is, in current terms, ÎeU
(
r , r ′)

� [n Îe
(
r , r ′) − W{1 − ∑

i p̂ir , ir ′}/{2K(K − 1)}]/(n − 1). Applying expression (23)

we obtain the value for the current ÎeU , which provides the value of κ̂G2U ; i.e.

κ̂G2U � Îo − ÎeU

1 − ÎeU
where ÎeU � n Îe − XN

n − 1
, XN �

W
(
1 − ÎoN

)

2K (K − 1)
, (44)

and ÎoN as in expression (40). Note that in this expression ÎeU has the same form as
in expression (18), so that κ̂G2U can be put as a function of κ̂G2 in a similar way to in
expression (19):

κ̂G2U � Îo − ÎeU

1 − ÎeU
� (n − 1)κ̂G2 + YN

(n − 1) + YN
where YN � XN − Îe

1 − Îe
.

As in case R � 2 it occurred that ÎeU
(
r , r ′) ≥ Îe

(
r , r ′), through expression (23)

it is deduced that in the actual case ÎeU ≥ Îe; therefore κ̂G2U ≤ κ̂G2. “Appendix 1”
provides a more direct demonstration of the previous statement. To the best of our
knowledge, the value of V(κ̂G2) is not known.

4 Examples

Table 1(a) contains the data from a classic example by Fleiss et al. (2003) in which R
� 2 raters diagnose n � 100 individuals in K � 3 categories (Psychotic, Neurotic, and
Organic). Its part (b) specifies the values of the eight kappa coefficients mentioned
in Sect. 2, all of which are calculated for the non-weighted case (wij � δij). It can
be observed that the eight coefficients verify the properties mentioned in Sect. 2; for
example, all of the new estimators have a value greater than or equal to that of the
classic ones, except in the case of the coefficient of Gwet in which case the opposite
happens. Nevertheless, the first are only slightly different from the latter. This is due
to the fact that the current sample size (n � 100) is too large to show the differences
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between the estimators.When the sample size is small (n� 8), as occurs in the example
of Gwet 2021b (p 109) in Table 2(a) (R � 2, K � 3), the differences are more evident,
as shown by the results in Table 2(b).

For the case of more than two raters, Table 3(a) and (b) show the values of Ris and
nir , respectively, values which are obtained from the data xsr in an example by Gwet
2021b (p 341) related to the change in the coloring of Stickleback fish (R � 4, K � 5,
n � 50). Table 3(c) shows the values of the fourteen kappa coefficients mentioned in
Sect. 3, all of which are also calculated for the non-weighted case (wij � δij). It can
be observed that the fourteen coefficients verify the properties mentioned in Sect. 3.
It is also observed that although the values of n and κ̂ are moderate, all of the new
coefficients are greater than the classic ones in at least one unit of the second decimal.
The exception is the case of the two coefficients of Gwet, in which the differences
obtained are very small.

5 Simulation

This section has two objectives. Firstly, to assess the bias of the two estimators of κX

(κ̂X and κ̂XU ) in the case of R � 2, where X refers to C, S, K orG. Secondly, to assess
the behaviour of the estimator of the variance V̂

(
κ̂CU

)
, in order to exemplify that the

new variances act coherently in relation to the classic ones.
To assess the two estimators, the procedure is as follows. Let us consider that the

observed frequencies in Table 1(a), divided by n� 100, are the true probabilities pij of
the problemmentioned, in which R� 2 andK � 3; for example, p11 � 75/100� 0.75.
In that case the value κ̂C � 0.676 of the Table 1(b) becomes the population value κC �
0.676of theCohen kappa coefficient, since the values Îo and Îe of κ̂C become the values
Io and Ie of κC . If we now extract N � 10,000 random samples of the multinomial
distribution of parameters {pij, n� 100}, each sample will provide two estimators κ̂Ch

and κ̂CUh of κC . The means κ̂C � �h κ̂Ch
/
N and κ̂CU � �h κ̂CUh

/
N of the values

κ̂Ch and κ̂CUh should be approximately equal to κC � 0.676 if the estimators were
unbiased. The results of this simulation are provided on the sixteenth line of results
in Table 4. The rest of the lines, where other values of K , n, and κC are used, were
obtained in a similar way. It can be seen that in general κC � κ̂CU ≥ κ̂C , except in
two case in which κC > κ̂C ≥ κ̂CU . Therefore, κ̂CU is less biased than κ̂C and, for the
accuracy used, is generally unbiased. Nevertheless, κ̂C is only unbiased for values n
≥ 50 or 100, depending on the value of K .

The same tables and previous simulations allow us to obtain the corresponding
results of the other two pairs of estimators (see the rest of Table 4). In the case of
Scott’s pi coefficient, it is also observed that κS � κ̂ SU ≥ κ̂ S , except in four cases in
which κS > κ̂ SU ≥ κ̂ S , so that κ̂SU is also generally unbiased; additionally κ̂ SU � κ̂ S

only for n � 100. The conclusions are a little different in the case of Krippendorf’s
alpha coefficient; in general it still occurs that κK � κ̂KU ≥ κ̂K , except in five cases
in which κK < κ̂KU or κK > κ̂KU , in such a way that κ̂KU may also underestimate
κK ; now κ̂KU � κ̂K on some occasions when n ≥ 50. As can be seen, the three pairs
of previous coefficients are either unbiased or they underestimate the value of the
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populational parameter. In the case of Gwet’s AC1 coefficient, the opposite happens.
In generalκG � κ̂GU ≤ κ̂G , except in four cases inwhichκG < κ̂GU orκG > κ̂GU , so that
both estimators are either unbiased or they overestimate the value of the populational
parameter. Now the equality κ̂GU � κ̂G generally happens when K > 2 and n ≥ 50.

The general conclusion is that the estimators κ̂XU are generally unbiased and, when
they are biased, their bias is lower than that of the estimators κ̂X . When there is bias, it
is positive in the case of the Gwet coefficient, and is negative in the other three cases.

Let us now consider the case of variance. The classic estimator κ̂C has an unknown
variance VE

(
κ̂C

)
which can be estimated in a quite precise way through the sample

variance V̂E
(
κ̂C

)
of the values κ̂Ch of the 10,000 simulations. Moreover, each simula-

tion provides an estimator V̂h
(
κ̂C

)
of VE

(
κ̂C

)
obtained through the formula of Fleiss

et al. (1969); the average value V̂
(
κ̂C

)
of these 10,000 estimators, compared to V̂E(

κ̂C
)
, allows us to check the bias of this estimator of the variance. The same reasoning

is used in the case of the estimator κ̂CU , although now V̂h
(
κ̂CU

)
is obtained through

expression (5). The results are in Table 5. It can be seen that V̂E
(
κ̂CU

) ≈ V̂E
(
κ̂C

)
for n ≥ 20, being in general VE

(
κ̂CU

)
> ( <) VE

(
κ̂C

)
when κC � 0.4 (0.8). It is also

observed to that the classic variance V̂
(
κ̂C

)
usually underestimates (overestimates)

V̂E
(
κ̂C

)
when κC � 0.4 (0.8), the differences being small when n ≥ 50. However, the

new variance V̂
(
κ̂CU

)
almost always underestimates V̂E

(
κ̂CU

)
, the differences being

small when n ≥ 50, but somewhat higher than in the previous case. In general, V̂
(
κ̂C

)

is closer to V̂E
(
κ̂C

)
than V̂

(
κ̂CU

)
is to V̂E

(
κ̂CU

)
.

6 Assessment of the difference between each pair of estimators

The objective of this section is to assess the difference ΔXU � |κ̂XU − κ̂X |, when κ̂X
is any of the traditional estimators. In general, these differences are only appreciable
with small samples, so that it is of interest to determine from what value of n onwards
is it practically indifferent to calculate κ̂XU or κ̂X .

For κ̂CU , in which κ̂CU ≥ κ̂C , through expression (4), ΔCU � κ̂C (1 − κ̂C )/{(n −
1) + κ̂C}. Its maximum value in κ̂C ≥ 0 is reached in κ̂C � (n − 1)0.5/{n0.5 + (n −
1)0.5} and is {n0.5 + (n − 1)0.5}−2. Therefore, ΔCU < 0.01 (or 0.02) when n > 50 (or
17). The conclusion is also valid forΔHU andΔLU � |ρ̂LU − ρ̂L |, since κ̂HU and ρ̂LU

have the same form as κ̂CU .
For κ̂SU , in which κ̂SU ≥ κ̂S , ΔSU � (1 − κ̂2

S)/{(2n − 1) + κ̂S} through expression
(12). Its maximum value in κ̂S ≥ 0 is reached in κ̂S � 0 and is 1/(2n − 1). Therefore,
ΔSU < 0.01 (or 0.02) when n > 100 (or 33). The conclusion is also valid for ΔF2U ,
since κ̂F2U has the same form as κ̂FU . The case of κ̂KU for R � 2 − last expression
of Eq. (15) − provides a maximum for ΔKU of 1/2n and leads to the same conclusion
as above. The conclusion is also maintained for κ̂KU in R > 2 and κ̂K2U , since they
have the same form as κ̂KU for R � 2.

The case of κ̂FU , in which κ̂FU ≥ κ̂F , is somewhat more complex. Through expres-
sion (33), ΔFU � (1 − κ̂F ){R − (R − 1)(1 − κ̂F )}/{Rn − (R − 1)(1 − κ̂F )}. Its
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Table 5 Results of the 10,000 simulations performed for the variances of two estimators of the Cohen
kappa coefficient

K n κC Classic κ̂C estimator New κ̂CU estimator

V̂E
(
κ̂C

)
V̂
(
κ̂C

)
V̂E

(
κ̂CU

)
V̂
(
κ̂CU

)

2 10 0.38 0.0680 0.0711 0.0727 0.0633

0.80 0.0234 0.0482 0.0226 0.0325

20 0.41 0.0394 0.0367 0.0403 0.0357

0.80 0.0153 0.0209 0.0147 0.0167

50 0.39 0.0162 0.0158 0.0164 0.0157

0.80 0.0070 0.0072 0.0069 0.0065

100 0.41 0.0079 0.0078 0.0079 0.0078

0.79 0.0043 0.0044 0.0043 0.0042

3 10 0.41 0.0451 0.0383 0.0474 0.0344

0.83 0.0256 0.0347 0.0241 0.0221

20 0.42 0.0230 0.0214 0.0234 0.0202

0.77 0.0135 0.0144 0.0129 0.0113

50 0.40 0.0117 0.0113 0.0118 0.0111

0.79 0.0055 0.0054 0.0053 0.0049

100 0.38 0.0057 0.0057 0.0058 0.0056

0.68 0.0081 0.0078 0.0080 0.0075

5 10 0.44 0.0320 0.0273 0.0329 0.0226

0.85 0.0155 0.0208 0.0138 0.0112

20 0.38 0.0181 0.0164 0.0185 0.0155

0.81 0.0094 0.0103 0.0089 0.0077

50 0.40 0.0077 0.0074 0.0077 0.0072

0.80 0.0045 0.0042 0.0044 0.0038

100 0.39 0.0036 0.0035 0.0036 0.0035

0.80 0.0025 0.0024 0.0024 0.0023

(1) V̂E
(
κ̂C

)
and V̂E

(
κ̂CU

)
are the “exact” variances, or sample variances of the 10,000 values obtained of

κ̂C or κ̂CU , respectively. (2) V̂
(
κ̂C

)
and V̂

(
κ̂CU

)
are the averages of the 10,000 estimated variances V̂

(
κ̂C

)

or V̂
(
κ̂CU

)
, respectively.

maximum value in κ̂F ≥ 0 is reached in κ̂F � {(R − 1)(n − 1)0.5 − n0.5}/[(R −
1){n0.5 + (n − 1)0.5}] and is {R/(R − 1)} × {n0.5 + (n − 1)0.5}−2. Note that for R � 2
this value is double that which is obtained for κ̂CU . Therefore, if we require that ΔFU

< 0.01 (or 0.02), the value of n depends on the value of R. For example: n > 100 (or
33) for R � 2, n > 75 (or 25) for R � 3, n > 63 (or 21) for R � 5, and n > 56 (or 19)
for R � 10. Moreover, ΔFU is a decreasing function in R, taking its extreme values
κ̂F (1 − κ̂F )/{(n − 1) + κ̂F} in R � ∞, and (1 − κ̂2

F )/{(2n − 1) + κ̂F} in R � 2. As
those expressions have the same form as ΔCU and ΔSU respectively, then the precise
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minimum values of n for this case are an intermediate value from among the pairs
of values indicated for those two cases. This is compatible with the numerical results
above.

The case of κ̂GU , in which κ̂GU ≤ κ̂G , is much more complex since its values
ΔGU also depend on Îe because of expression (41). In the most simple situation -the
unweighted case-, it can be demonstrated that ΔGU ≤ {R/(R − 1)}/{m0.5 + (m −
1)0.5}−2, with m � (n − 1)(K − 1), an expression that depends on n, R and K ; the
level is also valid for the weighted case, although it is conservative. Therefore, if R �
2 and we require that ΔGU < 0.01 (or 0.02), the value of n depends on the value of K .
For example: n > 101 (or 34) for K � 2, n > 51 (or 17) for K � 3, and n > 26 (or 9) for
K � 5. The conclusion is also valid for ΔG2U , since κ̂G2U has the same form as κ̂GU .

The previous formulas provide values which are compatible with the results of
Tables 1, 2, 3 and 4. Excluding the Gwet estimators and adopting the criterion that we
want to guarantee that ΔXU < 0.02 (0.01), the overall conclusion is that we should use
the current estimators at least when n ≤ 17 (50) in the case of κ̂CU and κ̂HU , or when
n ≤ 33 (100) in the rest of the cases.

7 Conclusions

There are different types of kappa coefficients which measure the experimental degree
of agreement between R raters. In this article, we have focused on Cohen’s kappa
(Cohen 1960, 1968), Scott’s pi (Scott 1955), Gwet’s AC1/2 (Gwet 2008) and Krippen-
dorf’s alpha coefficients (Krippendorf 1970, 2004), whether weighted or not, for R �
2, and in its pairwise type extensions, Hubert’s kappa (Hubert 1977; Conger 1980),
Fleiss’s kappa (Fleiss 1971), Gwet’s AC1/2 and Krippendorf’s alpha coefficients, for
R > 2. In this last case (R > 2), the four measures of agreement use the pairwisemethod
to determine the observed index of agreements Io, but only the measure of Hubert’s
kappa also uses the pairwise method to determine the expected index of agreements
Ie. We have called the measures obtained in this last way as two-pairwise measures.
We have also defined the other three coefficients (Fleiss’s kappa, Gwet’s AC1/2 and
Krippendorf’s alpha) from the two-pairwise point of view, thus obtaining the three
Fleiss’s kappas two-pairwise, etc. That is why the number of agreement coefficients
that have been defined is eleven.

The article demonstrates that all of the traditional estimators of the eleven coeffi-
cients are based on biased estimators of Ie. The alternative is to use the eleven new
proposed coefficients, which are based on unbiased estimators of Ie. In all cases, the
traditional estimators are smaller than or equal to the new ones, except for the case of
Gwet, where it is the other way around. The simulations carried out for the case of R
� 2 show that the classic estimators κ̂X usually underestimate κX (or overestimate, in
the case of X �G), while the new estimators κ̂XU are usually approximately unbiased.
Additionally, it is verified that the new estimators κ̂XU may be unnecessary when the
sample size n is sufficiently large (e.g. n > 30). The article also provides the variances
of the new estimators as a function of the variances of the classic estimators, except
in the case of the Gwet estimators.
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One question of interest is the relation between the coefficients and estimators of
Hubert’s kappa (Hubert 1977; Conger 1980), the CCC (Lin 1989, 2000), and the ICC
(Shrout and Fleiss 1979; Carrasco and Jover 2003), when in the first case quadratic
weights are used. In the article it has been justified that: (1) κH � ρL � ρI2, with
respect to the coefficients; (2) κ̂H � ρ̂L , with respect to classical estimators based on
biased estimators of the components of the coefficients; and (3) κ̂HU � ρ̂LU � ρ̂I2,
with respect to classical (ρ̂LU and ρ̂I2) or new (κ̂HU ) estimators based on unbiased
estimators of all components of the coefficients. These statements are true for R ≥ 2,
so that for R � 2 it is obtained that: κC � ρL � ρI2, κ̂C � ρ̂L , and κ̂CU � ρ̂LU � ρ̂I2.

Finally, the entire article has been developed for the general case in which the
measures are definedbasedon anywij weights, thus avoiding a repetitionof expressions
and demonstrations. Nevertheless the non-weighted case (wij � δij) is very common.
To make the text more reader friendly “Appendix 4” includes the eleven non-weighted
coefficients mentioned in this article.
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Appendices

Appendix 1: Average values of some functions of parameters of themultinomial
distribution and simplification of some expressions

In a multinomial distribution M{n; pi}, it occurs that E( p̂i ) � pi, V( p̂i ) � E( p̂2i ) −
E2( p̂i ) � pi(1 − pi)/n and Cov( p̂i , p̂ j ) � E( p̂i p̂ j ) − E( p̂i ) × E( p̂ j ) � − pipj/n (if i
�� j). Therefore

E
(
p̂i p̂ j

) � (n − 1)pi p j + δi j pi
n

. (45)

In the case of Sect. 2, applying the previous point to the distribution M{n;
pij} it is deduced that E( p̂i · p̂· j ) � E

[(∑
h p̂ih

)(∑
t p̂t j

)] � ∑
h
∑

t E
(
p̂ih p̂t j

) �∑
h
∑

t

{
(n − 1)pih pt j + δtiδh j pi j

}/
n, where the last equality is due to expression

(45), and h, t � 1, 2, …, K . Operating it is obtained that E( p̂i · p̂· j ) � {(n − 1)pi·p·j
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+ pij}/n, as in expression (2). In the same way, E( p̂i · p̂ j ·) � ∑
h
∑

t E
(
p̂ih p̂ j t

) �∑
h
∑

t

{
(n − 1)pih p jt + δi jδht pih

}/
n � {(n − 1)pi·pj· + δijpi·}/n so that,

E
(
p̂i · p̂ j ·

) � (n − 1)pi · p j · + δi j pi ·
n

and p̂i · p j · � n p̂i · p̂ j · − δi j p̂i ·
n − 1

. (46)

In a similar way, for p̂·i p̂· j . As π̂i π̂ j � (
p̂i · p̂ j · + p̂·i p̂· j + p̂i · p̂· j + p̂·i p̂ j ·

)/
4

because of the expression (9) then, having applied the previous equalities, expres-
sion (10) is obtained. Finally, regarding the end of Sect. 2.5, through expression (18)
it is deduced that ÎeU − Îe is proportional to n Îe − W (1 − ∑

i p̂i i )/{2(K − 1)} −
(n − 1) Îe � Îe − W (1 − ∑

i p̂i i )/{2(K − 1)} which, through expression (17), is also
proportional to 1 +

∑
i p̂i i − 2

∑
i π̂

2
i � ∑

i

{
π̂i + p̂i i − 2π̂2

i

}
. Taking into account

the value of π̂i expression (9) and operating, it is deduced that each term i of the
previous expression is also proportional to Si(1 − Si) + p̂i i

(
1− p̂i i

)
+ 2 p̂i i (1 + Si) ≥

0, where Si � p̂i · + p̂·i − p̂i i ≥ 0. The conclusion is always that ÎeU − Îe ≥ 0.
In the case of Sect. 3, expression (46) adopts the form,

E
(
p̂ir p̂ jr

) � (n − 1)pir p jr + δi j pir
n

and p̂ir p jr � n p̂ir p̂ jr − δi j p̂ir
n − 1

.

Let the value Io � �r�r’��r�i�jwijpir,jr’/{R(R − 1)} � �i�jwij�r�r’��rpir,jr’
defined in Sect. 3.1, the one we are trying to estimate. For a given subject s, the
possible pairs of replies (i, j), with i �� j, are RisRjs, and the possible pairs of replies
(i, i) are Ris(Ris − 1), since the two raters must be different. Adding in s and dividing
by n we obtain the estimations �r�r’��r p̂ir , jr ′ and �r�r’��r p̂ir , ir ′ of �r�r’��rpir,jr’
and �r�r’��rpir,ir’ respectively. Therefore, the estimation Îo of the value Io of the
second expression of the beginning of this paragraph will verify that nR(R − 1) Îo �
�i�j ��iwij�sRisRjs +�iwii�sRis(Ris −1)��i�jwij�sRisRjs −nR, since�i�swiiRis

� nR as wii � 1. This leads to the second expression of Eq. (24).
The value of Ie of Sect. 3.2 is given by Ie � �r�r’��rIe(r, r’) �

�r�r’��r�i�jwijpirpjr’ ��i�jwij�r�r’��rpirpjr’ ��i�jwij(pi+pj+ −�rpirpjr) since
�r�r’��rpirpjr’ � �r�r’pirpjr’ − �rpirpjr � �rpir�r’pjr’ − �rpirpjr � pi+pj+ −
�rpirpjr . This leads to the second expression (25).

Regarding what is highlighted in the first paragraph of Sect. 3.3, R2E
(
π̂i π̂ j

) �
E
{∑

r
∑

r ′ p̂ir p̂ jr ′
} � E

{∑
r
∑

r ′ ��r p̂ir p̂ jr ′ +
∑

r p̂ir p̂ jr

}
. Through expressions

(46) and (2) which are placed in the format of Sect. 3, nR2E
(
π̂i π̂ j

) � (n −
1)
∑

r
∑

r ′ ��r pir p jr ′ + (n − 1)
∑

r pir p jr +
∑

r
∑

r ′ ��r pir , jr ′ + δi j
∑

r pir where

the sum of the two terms is (n − 1)
∑

r
∑

r ′ pir p jr ′ � (n − 1)pi+pj+ � (n − 1)R2π iπ j.
Therefore, π̂i π̂ j is not an unbiased estimator of π iπ j since,

E
(
π̂i π̂ j

) � 1

n

⎡
⎣(n − 1)πiπ j +

1

R2

⎧
⎨
⎩
∑
r

∑
r ′ ��r

pir , jr ′ + δi j
∑
r

pir

⎫
⎬
⎭

⎤
⎦. (47)
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As E
(
Îe
)

� ∑
i
∑

j wi j E
(
π̂i π̂ j

) � n−1[(n − 1)Ie + R−2{�i�jwij�r�r ��r’pir,jr’

+ �i�jwijδij�rpir}] � n−1[(n − 1)Ie + R−2{R(R − 1)Io + R}], from here we deduce
the first expression of (33).

Regarding what is highlighted in the second paragraph of Sect. 3.3, through
expression (8) 4Ie(r, r’) � �i�jwij(pir + pir’)(pjr + pjr’) � �i�jwij(pirpjr
+ pir’pjr’ + pirpjr’ + pir’pjr) and, through expression (23), 4R(R − 1)Ie �
�i�jwij[�r�r’��rpirpjr + �r�r’��rpir’pjr’ + �r�r’��rpirpjr’ + �r�r’��rpir’pjr].
As �r�r’��rpirpjr + �r�r’��rpir’pjr’ � 2(R − 1)�rpirpjr and �r�r’��rpirpjr’ +
�r�r’��rpir’pjr � 2pi+pj+ − 2�rpirpjr , then expression (35) is deduced.

Regarding the first paragraph of Sect. 3.5, expression (47) for i � j is,

E
(
π̂2
i

)
� 1

n

⎡
⎣(n − 1)π2

i +
1

R2

⎧⎨
⎩
∑
r

∑
r ′ ��r

pir , ir ′ +
∑
r

pir

⎫⎬
⎭

⎤
⎦. (48)

Therefore, the unbiased estimator of π2
i is π̂2

i � (n − 1)−1[n π̂2
i −{∑

r
∑

r ′ ��r p̂ir , ir ′ +
∑

r p̂ir
}/

R2] and that of
∑

i π
2
i will be

∑
i π̂

2
i � (n − 1)−1[n

∑
i π̂

2
i −

{∑
i
∑

r
∑

r ′ ��r p̂ir , ir ′ +
∑

i
∑

r p̂ir
}/

R2]. In this last expression,
∑

i π̂
2
i

� R−2{1− K(K − 1) Îe/W} through expression (39),
∑

i
∑

r p̂ir � R since
∑

i p̂ir �
1, and

∑
i
∑

r
∑

r ′ ��r p̂ir , ir ′ � R(R − 1) ÎoN , where ÎoN is obtained from the second
expression of Eq. (22) applied to the non-weighted case ofωij � δij. Substituting all of

these values in W (1 − ∑
i π̂

2
i )/{K(K − 1)} we obtain the value of ÎeU of expression

(40). Regarding the statement that ÎeU − Îe ≥ 0 onemust take into account that ÎeU − Îe
is proportional to Îe − A � Îe − W (R − 1)(1 − ÎoN )/{RK(K − 1)}; substituting in
this expression the estimators Îe and ÎoN with their values from the last expressions
of Eq. (39) and Eq. (40) respectively, it is obtained that ÎeU − Îe is proportional to∑

i
∑

s R
2
is − ∑

i R
2
i+

/
n � �i�s(Ris − Ri )2 ≥ 0, where Ri � �sRis/n.

Regarding what is highlighted in the second paragraph of Sect. 3.5, through expres-
sion (16) {K(K − 1)/W}Ie(r, r’) � 1 − �i(pir + pir’)2/4 � 1 − �i(p2ir + p2ir ′ +
2pirpir’)/4. But through expression (23), {K(K − 1)/W}Ie � 1 − �i[2(R − 1)�r

p2ir + 2pi+ − 2�r p2ir ]/{4R(R − 1)}; this leads to the expression (42). Finally, to

demonstrate that in the two-pairwise case it also occurs that ÎeU − Îe ≥ 0, one must
take into that through expression (44) ÎeU − Îe is proportional to Îe − XN � Îe −
W (1 − ÎoN )/{2 K(K − 1)}. Substituting in this expression the estimators Îe and ÎoN
through its values of the last expressions of expressions (43) and (40) respectively, it
is obtained that ÎeU − Îe is proportional to nR(R − 2) + �i�s R2

is − �i n2i+/n − (R −
2)�i�r n2ir /2 � �i�s(Ris − Ri )2 + (R − 2)�i�rnir(n − nir)/n ≥ 0.

As stated previously, all of the above is valid if there is only one multinomial
sample. Let us suppose that R � 2, that the rater in the rows is a standard one and
that the frequencies Oij are obtained from K multinomial distributions {Oi·; p1, p2,

…, pK}, with �pi � 1. Now Îe � ∑
i
∑

j wi j Oi · p̂ j

/
n � ∑

i
∑

j wi j Oi ·O· j
/
n
2
is

an unbiased estimator of Ie � �i�jwijOi·pj/n, since E( p̂ j ) � pj.
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Appendix 2: Variances of the new estimators of kappa

From hereon it is assumed that new estimators of kappa are approximately unbiased,
since they are based on unbiased estimators of Io and Ie. In the case of Sect. 2, from
expression (4) it is deduced that κ̂C � (n− 1)κ̂CU /(n− κ̂CU ). Therefore d κ̂C /d κ̂CU �
n(n− 1)/(n− κ̂CU )2, whose value in E(κ̂CU )≈ κC is n(n− 1)/(n− κC)2 and, through
the delta method, V(κ̂C ) � n2(n − 1)2 V(κ̂CU )/(n − κC)4. This leads to expression
(5). In a similar way, from expression (12) it is deduced that κ̂S � {(2n − 1) κ̂SU −
1}/(2n − 1− κ̂SU ). Therefore, d κ̂S /d κ̂SU � 4n(n − 1)/(2n − 1− κ̂SU )2, whose value
in E(κ̂SU ) ≈ κS is 4n(n − 1)/(2n − 1 − κS)2 and V(κ̂S) � 16n2(n − 1)2 V(κ̂SU )/(2n
− 1 − κS)4. This leads to expression (13). In the case of Sect. 3.3, from the second
expression of Eq (33) it is deduced that κ̂F � {(nR − R + 1)κ̂FU − 1}/{(nR − 1) − (R
− 1)κ̂FU )}. Therefore d κ̂F /d κ̂FU � R2n(n − 1)/{(Rn − 1) − (R − 1)κ̂FU}2, whose
value in E(κ̂FU ) ≈ κF is R2n(n − 1)/{(nR − 1) − (R − 1)κF}2 and V(κ̂F ) � R4n2(n
− 1)2 V(κ̂FU )/{(nR − 1) − (R − 1)κF}4. This leads to expression (34). In a similar
way with V(κ̂KU ) and V(κ̂F2U ).

Appendix 3: Justification of the equality �̂LU � �̂I2 �̂L � �̂I2S and its simplified
formula

Using the notation of the end of Sect. 3.2, the expression ρ̂LU of (28) is equivalent to
this one, where x ·r � x·r /n,

ρ̂LU � 2n
∑

r
∑

r ′ ��r srr ′

2(R − 1)(n − 1)
∑

r s
2
r + n

∑
r
∑

r ′ (x ·r − x ·r ′)2 + 2
∑

r
∑

r ′ ��r srr ′
. (49)

As srr´ � �s(xsr − x ·r )(xsr´ − x ·r ′ )/(n− 1)� {�sxsrxsr´ − x·rx·r´ /n}/(n− 1), s2r �
�s(xsr − x ·r )2/(n − 1)� (�s x2sr − x2·r /n)/(n − 1), and (x ·r − x ·r ′)2 � (x·r − x·r´ )2/n2,
then.

∑
r

∑
r ′ ��r

srr ′ �
(
n
∑

s
x2s· +

∑
r
x2·r − n

∑
s

∑
r
x2sr − x2··

)/
{n(n − 1)},

∑
r
s2r �

(
n
∑

s

∑
r
x2sr −

∑
r
x2·r

)/
{n(n − 1)}, and

∑
r

∑
r ′ (x ·r − x ·r ′)2 � 2

(
R
∑

r
x2·r − x2··

)/
n2.
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Substituting the expression (49) it is obtained the last expression of Eq. (29). Sim-
ilarly the expression (27) of ρ̂L leads to the last expression of Eq. (30).

On the other hand, the estimator ρ̂I2 of ρI2 − which is based on the unbiased
estimators of its components − is the ICC(2, 1) of Shrout and Fleiss (1979)

ρ̂I2 � n × (MSS − MSE)

n × MSS + R × MSR + (nR − n − R) × MSE
, (50)

where MSS � SSS/(n − 1), MSR � SSR/(R − 1), and MSE � SSE/{(n − 1)(R − 1)}
(or SSS, SSE, and SSD) denote the mean squares (or sum of squares) for subjects,
raters, and error (residual) in the analysis of variance, respectively. In addition, SSE
� SST − SSS − SSR, with SST the sum of squares total. As,

SSS � R
∑
s

(xs· − x ··)2 � 1

R

{∑
s

x2s· − x2··
n

}
,

SSR � n
∑
r

(x ·r − x ··)2 � 1

n

{∑
r

x2·r − x2··
R

}
, and

SST �
∑
s

∑
r

(xsr − x ··)2 �
∑
s

∑
r

x2sr − x2··
nR

then, substituting in the expression (50) it is obtained again the expression (29). There-
fore ρ̂LU � ρ̂I2.

Appendix 4: Classic non-weighted kappa coefficients

We will now provide the values necessary to define any non-weighted coefficient
κ � (Io − Ie)/(1 − Ie), and calculate the value of its classic estimator κ̂ �(
Îo − Îe

)/(
1 − Îe

)
. The new estimator κ̂U is obtained with the same formulas from

the text of the article.
When R � 2 all of the kappa coefficients are based on Io � �pii and Îo � ∑

i p̂i i� ∑
i Oii

/
n. The actual and estimated values of Ie in each coefficient are:

(a) κC and κ̂C (Cohen’s kappa): Ie � �ipi·p·i and Îe � ∑
i p̂i · p̂·i � ∑

i Oi ·O·i
/
n2.

(b) κS and κ̂S (Scott’s pi): Ie � ∑
i π

2
i where π i � (pi· + p·i)/2 and Îe � ∑

i π̂
2
i

where π̂i � (
p̂i · + p̂·i

)/
2 � (Oi · + O·i )

/
2n.

(c) κ̂K (Krippendorf’s alpha) which estimates κS: Îe � ∑
i π̂

2
i , with π̂i as in (b), but

Îo is special: Îo � {
(2n − 1)

∑
i p̂i i + 1

}/
2n � {

(2n − 1)
∑

i Oii + n
}/

2n2.

(d) κG and κ̂G (Gwet’s AC1): Ie � �iπ i(1 − π i)/(K − 1) and Îe �∑
i π̂i

(
1 − π̂i

)/
(K − 1), with π̂i as in case (b). Note that Îe �{

1 − ∑
i π̂

2
i

}/
(K − 1), where

∑
i π̂

2
i is the value of Îe in (b). In this case, the

formula of κ̂GU does have a particular expression:
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κ̂GU � (n − 1)κ̂G + YN

(n − 1) + YN
where YN � 1 − κ̂G

2(K − 1)
− Îe

1 − Îe

When R ≥ 2 all of the kappa non-weighted coefficients are based on Io �
�r�r’��r�ipir,ir’/{R(R − 1)} and Îo � {

∑
i
∑

s R
2
is − nR}/{nR(R − 1)}. The actual

and estimated values of Ie are:

(A) κH and κ̂H (Hubert’s kappa): Ie � ∑
i

{
p2i+ − ∑

r p
2
ir

}
/{R(R − 1)} and Îe �∑

i

{
n2i+ − ∑

r n
2
ir

}
/ {n2R(R − 1)}.

(B) κF and κ̂F (Fleiss’s kappa): Ie � ∑
i p

2
i+/R

2 and Îe � ∑
i R

2
i+/(nR)

2.
(C) κF2 and κ̂F2 (Fleiss’s kappa two-pairwise): Ie � [(R − 2)

∑
i
∑

r p
2
ir +∑

i p
2
i+]/[2R(R − 1)] and Îe � [(R − 2)

∑
i
∑

r n
2
ir +

∑
i n

2
i+]/[2n

2R(R − 1)].

(D) κ̂K (Krippendorf’s alpha) which estimates κF : Îe � ∑
i R

2
i+

/
(nR)2, but Îo is

special: Îo � {(2n − 1)T + 1}/2n where T � {
∑

i
∑

s R
2
is − nR}/{nR(R − 1)}.

(E) κ̂K2 (Krippendorf’s alpha two-pairwise) which estimates κF2: Îo is the same as
in paragraph (D) and Îe � {

(R − 2)
∑

i
∑

r n
2
ir +

∑
i n

2
i+

}/{
2n2R(R − 1)

}
.

(F) κG and κ̂G (Gwet’s AC1): Ie � (
1 − ∑

i p
2
i+

/
R2

)
/(K − 1) and Îe � {

1 −∑
i R

2
i+

/
(nR)2

}
/(K − 1). It can be observed that κ̂G ≥ κ̂F , since Îe(Gwet) −

Îe(Fleiss) is proportional to K−1 − ∑
i π̂

2
i ≤ 0; the first statement because of

expressions (39) and (32) respectively; the second one because
∑

i π̂
2
i reaches

a minimum value of 1/K when π̂i � 1/K . In this case, the formula of κ̂GU does
have a particular expression:

κ̂GU � (n − 1)κ̂G + BN

(n − 1) + BN
where BN � (R − 1)

(
1 − κ̂G

)

R(K − 1)
− Îe

1 − Îe
.

(G) κG2 and κ̂G2 (Gwet’s AC1 two-pairwise):

Ie � 1

K − 1

[
1 − 1

2R(R − 1)

{
(R − 2)

∑
i

∑
r

p2ir +
∑
i

p2i+

}]
, and

Îe � 1

K − 1

[
1 − 1

2n2R(R − 1)

{
(R − 2)

∑
i

∑
r

n2ir +
∑
i

n2i+

}]
.

In this case, the formula of κ̂G2U does have a particular expression:

κ̂G2U � (n − 1)κ̂G2 + CN

(n − 1) + CN
where CN � 1 − κ̂G2

2(K − 1)
− Îe

1 − Îe
.
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