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Abstract—This paper studies and improves the stability of
a Finite Difference Time Domain (FDTD) subgridding method
based on the orthogonalized integral-based methodology. First,
we identify the electric and magnetic field components of the
FDTD lattices used at the interface between different mesh
regions playing a critical role in its stability. Then, we employ
them to find a closed criterion for the Courant-Friedrichs-
Lewy Number (CFLN). Next, we analyze the stability by the
classical spectral method and validate it with numerical heuristic
simulations, proving the methodology used in the analytical
approach. This information is used to devise a Locally Enlarged
Cell Technique (LECT) to modify locally the scheme used to
update the field components identified as most critical for stability
so that an increased time step can be used. Finally, we analyze
the effect of these modifications on the accuracy of the method
for typical transmission and scattering problems.

Index Terms—Finite-difference time-domain (FDTD), locally
enlarged cell technique (LECT), numerical stability, spectral
analysis, subgridding

I. INTRODUCTION

Finite-Difference Time-Domain method [1], [2] is a widely
used numerical scheme that provides an explicit expression to
solve Maxwell’s equations. It consists of a marching-on-in-
time explicit scheme whose maximum time step for stability
∆tmax is bounded by the minimum space step ∆min through the
well-known Courant-Friedrich-Lewy (CFL) criterion (quanti-
fied by the CFL number CLFN).

When FDTD is used for multiscale problems combining
small geometrical features with larger ones, a gradual mesh
technique can naturally be used [3], [4], smoothly adapting
the space mesh between coarser and finer areas. However, the
overall computer performance of this approach is degraded
since the time step needs to be unnecessarily reduced in the
overall space to meet the CFL criterion enforced by the finest
space step.

Different subcell methods have been developed over the
years for specific phenomena, overcoming that limitation by
providing local equations for wires, slots, panels, etc., not
degrading the overall FDTD scheme, and without requiring
an explicit mesh refinement [5]–[8].
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As an alternative, subgridding methods [9] provide a more
general approach, just resorting to fine meshing at specific
locations and keeping coarser meshes elsewhere. Subgridding
methods combine cells of different sizes to suitably wrap the
different parts of a problem with the appropriate mesh size for
accuracy.

Typically, subgridding algorithms locally divide some Yee
cells (material and field discontinuities) into finer ones where
needed. Usually, an integer ratio (named refinement ratio)
along every cartesian direction is used, leading to a set of
regions of refined cells. In most subgridding algorithms, this
division may be applied recursively, leading to more than
two regions, here named subgridding levels. Cells within a
subgridding level are treated as the usual Yee cells, and
therefore the FDTD algorithm may be applied without further
consideration. However, the Yee scheme cannot be applied
at the boundaries between different subgridding levels for
containing non-conforming degrees of freedom. Specific ap-
proaches exist to devise the connection algorithms [10]–[19]
between subgridding levels. Furthermore, in these methods, it
is desirable to maintain the CFLN at different subgrid levels
for efficiency and reduction of the numerical dispersion. For
this purpose, local time stepping (LTS) is required to advance
each level with different time steps.

Due to this complexity, subgridding schemes may require
implicit expressions, interpolations, and extrapolations (even
without field reciprocity). These are often the cause of late-
time instabilities [14], [20], [21], making stability analysis an
essential topic in subgridding methods.

In previous a work [18], [19], we focus on the orthogonal-
ized integral-based subgridding (OI-SG) algorithm based on
the original work presented in [11], [12] and demonstrated
its robustness with application to a canonical multiscale test
case. All heuristic analyses of the OI-SG method have proved
so far to be robustly stable. This method can be seen as a finite
integration technique (FIT) [22], [23] applied to a specifically
shaped main-dual grid in a subgridding boundary. Interest-
ingly, the resulting algorithm provides an explicit expression
that ensures field reciprocity. In [18], an LTS methodology
was devised to maintain the overall stability region-by-region,
showing heuristically that only an overall CFLN � 0.65 was
required to yield stable results.

However, rigorously analyzing the stability of local schemes
connecting different methods is challenging, and in some
cases, stability is only supported by heuristic studies. Many

salva
Texto escrito a máquina
Accepted in IEEE Transactions on Antennas and Propagation, vol. 72, no. 1, pp. 791-799, Jan. 2024, doi: 10.1109/TAP.2023.3327776



2

works have been published in recent years on the subject [24]–
[30]. However, not all methods are trivially appliable to the OI-
SG, mainly due to the complex nature of the level boundaries
and the presence of LTS. In this work, we provide an analysis
of the stability of the OI-SG method by identifying the local
components having more impact on the CFLN reductions and
propose a methodology to increase the overall CFLN limit
further. We show that, even if the condition found by our
approach appears to be more restrictive than the classical
spectral one, corroborated by heuristic simulations, it can be
used to improve the CFL. We profit from this fact in the second
part of this work with this purpose.

Our methodology starts by identifying the boundary fields
whose updating scheme has more impact on the method
stability. Next, we use this information to propose a novel
method, with no extra computational cost, inspired by the
Locally Enlarged Cell Technique (LECT), initially devised
for the conformal FDTD method [31], to locally modify the
parameters used to update components, thus pushing away
the upper CFLN limit. Finally, the impact of the LECT
modifications is also assessed in accuracy with representative
examples of transmission and scattering problems.

Though our analytical approach is conducted with OI-SG,
the methodology can generally serve where connecting time-
space schemes are needed to hybridize different methods.

This work is structured as follows. First, in section II, we
describe the basics of the OI-SG algorithm that are necessary
for the reader to understand the stability analysis. Second,
in section III, we explain two approaches used to study
the stability of the subgridding algorithm, supported by a
heuristic analysis, and we expose the achieved results. Third,
in section IV, we describe how LECT can be applied based
on the previous section and show the stability improvement.
Fourth, we show the effects of LECT in actual simulations in
section V. Finally, we draw some conclusions in section VI.

II. SUBGRIDDING DESCRIPTION

In this section, we revisit the basics of the OI-SG algorithm
of [18]. For this, let us consider a simple FDTD lattice of
an electric (main) grid and a magnetic (dual) one. Let us
henceforth refer to the main grid cells simply as Yee cells.

Also, for simplicity, we assume that any Yee cell relevant to
the explanation is embedded into a cubic lattice. That is, the
space steps are the same in each Cartesian axis ∆x � ∆y �
∆z � ∆. Now, to perform the subgridding process in a given
Yee cell, we subdivide it by using a refinement ratio of rx,
ry , and rz in each Cartesian axis, respectively, leading to a
number of cells Ncells � rx ry rz . The OI-SG algorithm could
be applied to any arbitrary positive integer value for rx, ry ,
and rz . However, this work will take a constant refinement
where rx � ry � rz � r � 2 (Fig. 1).

If we apply the cell subdivision to a given set of Yee
cells, the overall simulation domain splits into two regions:
the one formed by the coarse cells and the one formed by the
fine ones. These regions are referred to as the level domains.
This division may be applied recursively to the cells already
subgridded, therefore obtaining more than two level domains.

Each level domain is associated with a subgrid level nsg,
where the one associated with the finest cells is nsg � 0, and
each coarser subgrid level increases by one until we reach the
coarsest level Nsg. The surface that lies between two levels is
named the level boundary. This recursive refinement process
leads to specific space-steps ∆nsg � 2nsg∆0 and time-steps
∆tnsg for any given level nsg. Note that ∆tnsg may be constant
for every level or depend proportionally on ∆nsg , in which case
we use the Local Time Stepping (LTS) strategy described in
[18].

In order to complete the explanation of the spatial sub-
gridding process, we must note two more facts. First, in
each level boundary between two levels nsg and nsg � 1, for
orthogonalization purposes [18], we shift the central vertex
of every coarse cell face towards the subgridded region by
a certain distance δnsg , as shown in Fig. 1d. The parameter
δnsg will always be defined to be proportional to ∆nsg , and
therefore the ratio δr � δnsg{∆nsg is a constant in the entire
simulation. Second, the dual grid can be trivially placed inside
any subgridded region as in any usual FDTD lattice. However,
that is not the case in the level boundaries, where the behavior
of the dual grid is not trivial. We solve this issue by connecting
all the dangling dual grid nodes in the fine grid to the closest
node in the coarse grid.

Fig. 1. Representation of Yee cells without subgridding (a), with subgridding
(b), and their respective 2D projections (c,d). The magnetic grid is represented
in red, whereas the other edges belong to the electric grid. In the subgridded
figures (b,d), blue edges represent refined cells, and gray represents the non-
refined ones.

The update equations can be easily obtained from this point
by applying the FIT [22], [23]. Let us consider, for example,
Ampere’s Law without sources:

d

dt

»
S

E⃗ � dS⃗ � 1

ε

¾
BS

H⃗ � d⃗l. (1)

We may approximate the surface and line integrals for a
particular discrete electric component E⃗i embedded in its
corresponding surface SE,i as follows:»

SE,i

E⃗ � dS⃗ � Ei

»
SE,i

Êi � dS⃗ � S̃E,i Ei,¾
BSE,i

H⃗ � d⃗l �
¸
j

Hj PStEiu

sgnE,i,j Hj lH,j ,
(2)
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where Ei � |E⃗i|, Êi � E⃗i{Ei, S tEiu is the set of the
magnetic field components that surround Ei, lH,j is the
length of the grid edge corresponding to the magnetic field
component Hj , and sgnE,i,j � �1 is positive if H⃗j is directed
according to the field circulation used on BSE,i and negative
otherwise. Also, we have defined the equivalent surface

S̃E,i :�
»
SE,i

Êi � dS⃗. (3)

Note that the surface SE,i is not always planar, so the surface
integral cannot be trivially written. However, for our subgrid-
ding scheme, (3) can always be assessed by breaking SE,i into
one or more planar surfaces, therefore contributing with their
surfaces multiplied by the cosine of the angle between their
normal vector and Êi. An example of this work’s overall finite
integration scheme is shown in Fig. 2.

Fig. 2. An example of the finite integration scheme applied to the OI-SG
field components. In this case, S tE0u � tH0, H1, H2u and S tH0u �
tE0, E1, E2, E3u.

Finally, by substituting in (1) and applying finite differences
in the time derivative, we obtain a general update equation for
any field component Ei:

Ei|n�1 � Ei|n � ∆t

ε S̃E,i

¸
j

Hj PStEiu

sgnE,i,j lH,j Hj |n�1{2
, (4)

This process can be analogously applied to Faraday’s Law in
order to obtain the updated equation to the magnetic field,

Hi|n�1{2 � Hi|n�1{2 � ∆t

µ S̃H,i

¸
j

Ej PStHiu

sgnH,i,j lE,j Ej |n , (5)

We note that the usual FDTD update equations are a
particular case of (4) and (5) where S̃E,i � S̃H,i � ∆2,
lE,i � lH,i � ∆ and the number of elements in S tEiu and
S tHiu is always 4, which is not necessarily true in the OI-SG
scheme.

Now, for a given level boundary between the levels nsg and
nsg � 1, we define the equivalent surface ratio and the edge
length ratio, respectively, as

S̃r,U,i :� S̃U,i{∆2
nsg

,

lr,U,i :� lU,i{∆nsg ,
(6)

where U can be either E or H . This scheme classifies all the
possible field components that the usual FDTD scheme cannot
trivially update by their equivalent surfaces and edge lengths.
This classification is shown in Fig. 3 and Tab. I.

TABLE I
FIELD TYPE CLASSIFICATION FOR BOUNDARY-LEVELS. IN EACH

EXPRESSION, ∆ REFERS TO THE CELL LENGTH OF THE FINER LEVEL IN
THE BOUNDARY CONSIDERED. FIELD TYPES CORRESPOND TO FIG. 3.

Electric
Type S̃r,E lr,E

1
3� δr

4
a
1� δr

2

a
1� δr

2

2 9{4 1

3 1 1� δr

4 3 1

5 2 1

6 3{2 1

Magnetic
Type S̃r,H lr,H

1 3� δr?
11

?
11

2

2 1� δr

2
1

3 1� δr 1

4 N/A 2

Fig. 3. Subgridding level boundary field types. Each field component
type is classified, and their integration surfaces are represented. Field types
correspond to Tab. I.

III. STABILITY ANALYSIS

Our goal in this section is to provide a study of the stability
of this subgridding method based on how the paremeter δr
affects the maximum stable ∆tnsg . In a usual FDTD cubic
method simulation, the CFL criterion would allow us to write

∆t � CFLN
∆?
3 c0

; 0   CFLN ¤ 1, (7)

As the introduction states, we are applying LTS and therefore
∆tnsg9∆nsg . We can combine this with (7) in order to establish
a global CFLN parameter for the whole simulation, where

∆tnsg � CFLN
∆nsg?
3 c0

. (8)

Given this equation, the strategies described below to study the
stability are designed to obtain the maximum stable CFLN as a
function of δr. First, we have used an analytical method based
on the partially filled cells criterion used in [32], [33], and,
secondly, a classical spectral analysis of the evolution matrix.
Finally, a heuristic method serves to corroborate the results of
the latter.
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A. Analytical expression

This methodology was justified in [18]. However, a different
but equivalent approach is going to be presented here. This ex-
planation is based, with slight changes, on the work presented
in [32] that established a stability criterion on the partially
filled cells in the conformal subcell method.

The expression in (7) may be written as

∆t ¤ ∆
?
εµ?
3

. (9)

We may now rewrite the update equation (4) as

Ei|n�1 � Ei|n �
¸
j

∆t�
ε
S̃E,i

lH,j ∆

�
∆

Hj |n�1{2 �

� Ei|n �
¸
j

∆t

ε̃i,j ∆
Hj |n�1{2

,

(10)

where Hj are the fields Ei needs in order to update itself, and
we have defined

ε̃i,j :� ε
S̃E,i

lH,j ∆
� ε

S̃r,E,i

lr,H,j
. (11)

We note that ε̃ acts as an equivalent electric permeability for
the pair of field components pEi, Hjq. Analogously, we may
obtain the equivalent magnetic permittivity µ̃ from (5) and
write it as

µ̃i,j :� µ
S̃H,j

lE,i ∆
� µ

S̃r,H,j

lr,E,i
. (12)

Now, we insert these values in (9) and obtain the following
expression:

∆t ¤
d

S̃r,E,i

lr,E,i

S̃r,H,j

lr,H,j

∆?
3 c

. (13)

We note that this expression must be fulfilled by every field
pair pEi, Hjq that are neighbors, i.e., they use each other in
their update equation. This, in combination with (7) yields to
the final expression:

CFLN ¤ min
pEi,Hjq neighbors

d
S̃r,E,i

lr,E,i

S̃r,H,j

lr,H,j
. (14)

Particularly, if we take all the possible neighboring field
pairs pEi, Hjq present in this subgridding scheme (Fig. 3 and
Tab. I), we get the following explicit expression:

CFLNmaxpδrq �

$''''''''''&
''''''''''%

Field types: E-1, H-1:
3� δrb

22
�
1� δr

2
� if δr ¤ 5

13

Field types: E-1, H-3:d
p3� δrq p1� δrq

4
�
1� δr

2
� if δr ¡ 5

13

(15)

This function is drawn in Fig. 4. Finally, it should be noted
that this criterion (15) is not a rigorous stability condition and
is only a guideline for what the stable CFLN could be.

Fig. 4. Maximum stable CFLN value as a function of δr found by the spectral
method, heuristically corroborated. The analytical criterion is shown in blue.

B. Spectral analysis

A classical method to analyze the stability of a given
local time-invariant (LTI) algorithm is the spectral analysis of
the numerical linear operator approaching the continuous one
(assuming this to be passive). This idea has been used in many
different previous works ( [25], [34], to name a few) since
the spectral radius is deeply related to exponential instabilities
[25]. Generally speaking, an LTI algorithm may be written as
follows:

f |n�1 � Af |n � S|n,
f |0 � f0,

(16)

where f |n is the state at the instant t � n∆t, A is a constant
linear operator that does not depend on the state, S|n are the
sources at the instant t � n∆t, and f0 is the initial condition
state.

Fig. 5. Scheme of the time-stepping. Arrow represents a coarse time step,
which may be considered a linear operator applied recursively over time.

The OI-SG algorithm with LTS can be written as a sequence
of linear operators applied periodically, each of them being
the update of a given subgrid level’s electric or magnetic
components. The composition of one period of these operators
can be seen as one full update of a time-step ∆tNsg (illustrated
in Fig. 5), and constitutes a linear operator A that fulfills (16):
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�
�������������

E|nNsg

H|n�1{2
Nsg

E|n�1{2
Nsg�1

H|n�3{4
Nsg�1

...

�
������������

� A

�
�������������

E|n�1
Nsg

H|n�1{2
Nsg

E|n�1{2
Nsg�1

H|n�1{4
Nsg�1

...

�
������������

, (17)

where F |nnsg
represents all the discrete field components of

the electromagnetic field F of subgrid level nsg at the time
instant t � n∆tNsg . This implies that A is a square matrix
whose number of rows is equal to the total amount of field
components stored in memory. In order to apply the spectral
analysis explained in this section, we must consider this
scheme starting from an initial time instant in which the
sources are turned off (therefore we only consider finite-time
sources). This also removes any other contribution to the
update scheme apart from the OI-SG FDTD. This scheme is
formally identical to (16) with S|n � 0@n.

Now, for a diagonalizable operator A acting on a space of
dimension d, let us consider its set of eigenvalues tλiudi�1 and
their respective normalized eigenvectors têiudi�1, which form
a base. If we write the initial state expressed in terms of this
base, we obtain

f |0 �
ḑ

i�1

fi êi, (18)

where fi is the projection of f |0 on êi for the given base.
This allows us to express the state f |n at any given instant

f |n �
ḑ

i�1

fi λ
n
i êi, (19)

and it is straightforward to demonstrate that its squared norm
can be written as

∥f |n∥2 �
ḑ

i�1

|λi|2n |fi|2�

� 2
ḑ

i�1

ḑ

k�i�1

|λi|n |λk|n ℜ
�
f�i fke

jnpθk�θiq pê�i � êkq
�
,

(20)

where j is the imaginary unit, � is the complex conjugate, ℜ
represents the real part, and we have expressed the eigenvalues
in polar coordinates λi � |λi| ejθi .

We may note that it can be bounded if we look at equation
(20). Particularly,

ℜ
�
f�i fke

jnpθk�θiq pê�i � êkq
�
¤ |f�i fk pê�i � êkq| , (21)

and, since d is finite, we can also define

B � max
i,j

t|f�i fk pê�i � êkq|u , (22)

which does not depend on the time. This, in combination with
(20) gives us

∥f |n∥2 ¤
ḑ

i�1

|λi|2n |fi|2 � 2B
ḑ

i�1

ḑ

k�i�1

|λi|n |λk|n . (23)

Now, since fi is independent of the time and bounded by
definition, it is straightforward to see that the norm diverges
in the limit nÑ �8 if and only if any of the eigenvalues has
a norm greater than 1. Therefore, we obtain that a sufficient
and necessary condition [35] to ensure non-divergence is

ρtAu � |λmax| ¤ 1, (24)

where λmax is the eigenvalue of A with the greatest norm,
which is the well-known spectral radius of the matrix ρtAu.

Fig. 6. Two examples of the simulation cases used for both the heuristic and
spectral method. The left 2 � 2 set of images correspond to one simulation
case and the right ones correspond to the other simulation case. For each one
we show a diagonal, front, lateral and top view. We show only the finest level
domain. Each coarser level wraps the current by a layer of at least one cell.

The spectral analysis has been implemented as follows. We
have designed a set of simulation cases guaranteed to contain
all the field types shown in Fig. 3 and Tab. I (some examples
are shown in Fig. 6). All cases are designed with a maximum
subgrid level of Nsg � 2, meaning a total of 3 levels. For
each case, we have varied δr in the interval r0, 1s with a step
of 0.01; and for each value of δr, we have run simulations
varying CFLN. We obtained the evolution matrix A for each
resulting simulation and calculated the magnitude of its largest
eigenvalue |λmax| with a numerical tolerance of 10�7. Then,
by using the condition derived in (24), we have obtained the
largest stable CFLN.

The spectral results have also been corroborated heuristi-
cally by conducting simulations with 107 iterations of the
coarsest level, meaning 4�107 iterations of the finest one. These
simulations have been performed with the same conditions as
in the spectral analysis.

The results provided by the analytical formula and the
spectral criterion (heuristically corroborated) are shown in
Fig. 4.

IV. LOCALLY ENLARGED CELL TECHNIQUE

The conclusions drawn from our analytical formula have
inspired us to propose a computationally zero-cost technique
to improve the CFLN condition. This section analyzes it and
studies its impact on the method’s accuracy.

For this, let us first introduce the basics of the LECT method
and how it may be applied to improve the OI-SG. First, let us
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TABLE II
LECT CONFIGURATIONS USED. WE SHOW THE VALUE OF ξ OF EACH

FIELD TYPE ACCORDING TO TAB. I AND FIG. 3.

Field
type

ξ

(No LECT)
(CFLN=0.67)

ξ

(LECT-1)
(CFLN=0.8)

ξ

(LECT-2)
(CFLN=0.9)

E-1 1.0 1.7 3.0
E-2 1.0 1.0 3.0
E-3 1.0 1.0 3.0
E-4 1.0 1.0 3.0
E-5 1.0 1.0 3.0
E-6 1.0 1.0 3.0

H-1 1.0 1.5 3.0
H-2 1.0 1.5 3.0
H-3 1.0 1.5 3.0

consider the general update equation of the FDTD method as
written in (4) (this process can be analogously done with (5)),
but substituting ∆t with the CFL number,

Ei|n�1 � Ei|n�

� CFLN
S̃E,i

∆?
3

c
µ

ε

¸
j

Hj PStEiu

sgnE,i,j lH,j Hj |n�1{2
, (25)

As shown in section III, for each value of δr, the stability
depends on CFLN: the simulation is stable within a range
of CFLN topped by a maximum value. In other words, if a
simulation is unstable, we may stabilize it by lowering CFLN.
If we take a look at (25), for a given field update, lowering
the value of CFLN is equivalent to increasing its equivalent
surface S̃E,i or lowering the surrounding edges lH,j . This fact
is a known feature of the FDTD method: larger surfaces and
smaller edges are related to stability [32], [33]. We already
provided an approach in (14) that implies this feature.

In the case of the OI-SG, it is interesting to note that
we have already classified all the possible non-trivial fields
in Tab. I by their equivalent surfaces and integration lines.
Also, the analytical method described in section III-A provides
information about which field pairs most likely enforce the
instabilities. From this point, we may see a clear course of
action that could allow us to increase the CFLN value as
predicted by the model (14): artificially increase the equivalent
surfaces of the most critical fields. Particularly, we define

S̃E,i,new �ξE,i S̃E,i,old, (26)

where S̃E,i,old is the equivalent surface of the field type i as
described in Tab. I, S̃E,i,new is the actual equivalent surface
applied in the FDTD algorithm and ξE,i ¥ 1 is defined as
the surface-LECT parameter of the field type i. Defining a
LECT parameter for the integration lines is also possible.
However, we have only considered surface parameters in this
work for simplicity. For all the field types described in Tab. I,
we tried different LECT parameters focusing on those field
components with smaller surfaces. Finally, we obtained two
different configurations to test (see Tab. II): first, one that
allows us to achieve CFLN � 0.8 (LECT-1); and second,
a more aggressive one that allows us to reach CFLN � 0.9
(LECT-2). We compare the stability results with the non-LECT

case in Fig. 7. The figure was obtained using the spectral
analysis method from section III.

The described LECT-based methodology is based on in-
creasing surfaces or decreasing lines, therefore by analyzing
(10) it is immediate to verify that this method is equivalent to
locally modifying the media values of ε and µ. Nonetheless,
only a few fields (non-trivially updated ones) are affected,
and their modification can be very slight. Also, this artificial
material does not introduce numerical losses; therefore, only
large LECT factors affect the precision. In addition, the
LECT method does not involve modifying the OI-SG advance
equations; therefore, it is zero-cost in memory and CPU usage.
The impact on accuracy is illustrated in the next section.

Fig. 7. Maximum stable CFLN value as a function of δr by the spectral
analysis method for different LECT configurations. We show the original one
(without LECT), one that reaches CFLN � 0.8 and another that reaches
CFLN � 0.9.

V. NUMERICAL RESULTS

In this section, we intend to show the numerical accuracy
and the computational performance of the LECT configura-
tions obtained in section IV. For this purpose, we set three
different simulations.

The first test case evaluates a conductive spherical shell’s
shielding effectiveness (SE) (ratio of the EM power in the
absence of the enclosure and that when it is present). The
shell is 20mm thick and has an average radius of 1m with an
electric conductivity of 5S/m. The sphere is illuminated with
a plane wave tilted 45� with the x axis. The computational
volume is truncated by convolutional PMLs with 10 layers
[2]. The results of these simulations are shown in Fig. 8.

The second simulation evaluates the backscattering radar
cross section (RCS) of a perfect electric conductor (PEC)
sphere of 3m radius. The sphere is illuminated with a plane
wave with the same properties as in the SE simulation case.
The numerical results of the RCS are shown in Fig. 9.

For all simulations, the finest subgridding region covers all
the material parts of the space, leaving a shell of one cell
between the beginning of free space and the finest subgridding
boundary. For cases with more than two levels, each coarser
level covers the previous one with a shell of one cell as well.
The distance between the coarsest subgridding boundary and
the plane wave case is 5 cells; the distance between the plane
wave case and the far-field case is of another 5 cells; and the
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Fig. 9. Radar Cross Section for different LECT configurations and subgrid
levels.

distance between the far-field case and the beginning of the
PML cells is of another 5 cells (see Fig. 10).

5 cells5 cells 5 cells

Plane WaveFar-FieldPML 

Sperical shell

Material cells

Level 0

Level 1

Level 2

Fig. 10. Scheme of the spatial domain in the simulations performed for
section V.

We also show the CPU cost and gain of the different
configurations in Tab. III for the RCS simulation. In the
same table, we may see that the CPU gain for the same
simulation after applying LECT-1 is approximately 19.4% and

an extra 12% after applying LECT-2. The table also shows
the root mean square error (RMSe) for the proposed test
cases, evaluated in two ranges k � Radius P r0.2, 1.0s and
k � Radius P r1.0, 6.0s.

We observe from Fig. 8 that LECT provides, in general,
good agreement with OI-SG for the SE problem. However,
for RCS results, we can appreciate from Fig. 9 that both
LECT configurations perform less accurately than the standard
OI-SG. In this case, LECT-1 outperforms LECT-2 results, as
expected, since the parameters ξ used in this configuration are
more aggressive (see Tab. II).

TABLE III
LECT EFFICIENCY FOR THE RCS SIMULATIONS SHOWN IN FIG. 9.

Method Nsg CFLN
∆min
[m]

∆max
[m]

CPU
Cost

CPU
Gain

RMSe
in

[0.2,1.0]

RMSe
in

[1.0,6.0]

No
LECT

1 0.67 3/56 3/28 1.056�
1016

1.000 0.168 0.202

LECT-1 1 0.80 3/56 3/28 8.844�
1015

1.194 0.212 0.537

LECT-1 2 0.80 3/56 3/14 5.510�
1015

1.917 0.237 1.271

LECT-2 1 0.90 3/56 3/28 7.861�
1015

1.343 0.502 2.610

The third simulation involves a frequency-selective surface
(FSS) previously simulated using a different subgridding al-
gorithm in [36] by Xu et al. The scheme and dimensions
of this simulation case are illustrated in Fig. 11. This FSS
comprises an indefinitely planar PEC surface with slots of
dimensions 0.02m � 0.1m, and these slots are periodically
repeated within a unit cell of size 0.12m � 0.15m. Only a
single unit cell is simulated to replicate an indefinite FSS,
and the computational domain is truncated with periodic and
absorbing boundary conditions. The boundary conditions are
of the PML type [2] with 10 layers. The FSS is illuminated by
a Gaussian plane wave under normal incidence, with propaga-
tion in ŷ and polarization in ẑ, with the following waveform:
Ezptq � expp�pt� t0q2{τ2q, where τ � 0.23 ns and t0 � 4 τ .
In order to study the behavior of the proposed subgridding
scheme and the LECT methodology, we have evaluated the
transmission coefficient shown in Fig. 12. Results found with
the subgridding method proposed in this work are compared
to those obtained in [36], taking as a reference the results
simulated with the standard FDTD technique with a very fine
grid of ∆0 � 2.5mm of cell size, as well as with CST Studio
Suite. It shall be noted that the refinement ratio used in [36]
is 1:3 instead of 1:2. We match the cell length of level 1 in
our simulations to the coarse grid in [36] (∆1 � 5mm), which
allows us to mimic the simulation dimensions completely and,
furthermore, also to use a maximum subgridding level of
Nsg � 2.

We observe that, similarly to the sphere RCS case, the
LECT-1 configuration with Nsg � 1 has only a minor effect on
shifting the maximum transmission frequency compared to the
finest-only simulation. However, it’s important to highlight that
the more aggressive LECT-2 configuration significantly shifts
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Fig. 12. Results of the simulations of the Frequency Selective Surface from
[36]. All simulations have a finest level with ∆0 � 2.5mm except for the
simulation from [36], which has a refinement ratio of 1:3 and ∆0 � 5{3mm.

the maximum transmission frequency, making it unsuitable for
this simulation case.

VI. CONCLUSIONS

Throughout this paper, we have used the results obtained
by three different methods to study and show the necessary
conditions to achieve stability of the OI-SG algorithm. Using
the knowledge provided by said methods, we have located the
field components that critically affect the stability. Therefore
we have applied a LECT-based methodology to increase the
maximum stable CFLN value from 0.67 to 0.9 with no
computational cost, both memory and CPU. In addition, LECT
is a non-dissipative method since the LECT corrections are
equivalent to introducing lossless artificial materials. Hence for

applications like SE, which evaluates an attenuation parameter
through lossy materials, LECT-2 results are accurate with CPU
gains of roughly 20% (CFLN � 0.9). However, RCS results,
which evaluate a reflective parameter, are more sensitive
to these artificial materials, and LECT-2 degrades accuracy
compared to LECT-1. Generally, a trade-off must be searched
between stability and accuracy on a case-by-case basis.

We must also note that the LECT-based methodology pre-
sented in this work has yet to be fully exploited. It allows us to
manipulate the lengths of the integration lines, whose effects
could have a different impact on the numerical results and the
stability. For this reason, this is an interesting topic that can
lead to future work.
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