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Abstract—We present a general-purpose subgridding inspired
on a simplified Orthogonalized Integral-based method, leading to
a simple and efficient algorithm with strong stability. It is based
on a 2:1 transition ratio between coarse and finer zones and a
natural local time stepping strategy to connect the domains. We
provide a closed form for the stability condition and prove it
heuristically, to show that roughly a 65% time-step reduction is
enough to achieve stability. Results for coupling through lossy
thin shells, compared to classical sub-cell impedance boundary
methods, serve to prove the high accuracy of this method.

Index Terms—Finite-difference time domain (FDTD), Subgrid-
ding, Electromagnetic compatibility (EMC), Shielding effective-
ness (SE),

I. INTRODUCTION

In the world of computational electromagnetic (CEM) algo-
rithms, the finite-difference time-domain (FDTD) method [1]
is known for being a simple yet powerful solution to solve
Maxwell’s equations in time domain. However, the explicit
causal propagator requires to find the solution in a spatial
mesh resolving both free-space and homogeneous regions of
materials, as well as involved geometrical boundaries between
them (curvatures, slots, etc.). This fact makes this method
to require huge computational resources, since fine details
dominate the global time and space steps that must be used for
the whole simulation. A common approach is to employ some
subcell algorithms taking into account the local physics: for
instance, for lossy thin slabs a proper assumption is to assume
waves propagating perpendicularly across the boundary [2]–
[4], or for curved geometries a locally integral formulation,
so-called conformal, can deal with smooth curvatures of metal
and dielectric materials [5]–[7]. However, a more general
solution is found by combining regions with different cell sizes
and devising some algorithms to connect the solution between
them. This gives rise to a family of techniques known as
subgridding methods, and several approaches exist in literature
[8]–[13].

Subgridding methods can be seen as a way to subdivide
cells (coarse cells) into smaller subcells (fine cells), each one

The 1st 2nd, 4th and 5th authors are with the Dept. of Electromagnetism,
University of Granada, Fuentenueva s/n, 18071 Granada. The 3th author
are with the Dept. of Engineering of System and Electronic, University of
Cadiz, Avenida de la Universidad, 10, E-11519, Puerto Real (Cádiz), Spain.
Corresponding author e-mail: mcabello@ugr.es

This research was funded by: the Spanish Ministry of Science and Inno-
vation (MICINN) under project eSAFE-UAV PID2019-106120RB-C32, and
by the 2014-2020 ERDF Operational Programme and by the Department of
Economy, Knowledge, Business and University of the Regional Government
of Andalusia. Project reference: FEDER-UCA18-105867.

preserving the shape and orientation of the original, but having
a smaller size. In most formulations, this division is applied
recursively. The refinement ratio between the coarse and the
fine cell sizes is usually an integer number to create the so-
called conforming meshes. Each cell behaves like an usual Yee
cell for every other neighbor one that shares the same size,
implying that the complexity lies exclusively in the boundary
between different levels. This becomes even more complex
when each level has a different time-step according to its
space-step, thus also requiring a local time stepping (LTS)
strategy.

Despite being a promising field that could be potentially
combined with any other subcell algorithms, subgridding
methods typically present problems such as instabilities, spuri-
ous reflections and accuracy issues [14], [15]. Many different
approaches have been made in order to solve these problems,
such as extense overlapping boundaries for better interpola-
tions, digital filters [14], [16]. However, to our best knowledge,
a broadly accepted optimum solution has not been yet found.

In this paper, we present a detailed explanation and in-depth
study of the Orthogonalized Integral-based Subgridding (OI-
SG) approach presented in [10], [11]. The authors claimed the
algorithm to be stable and accurate, relying in the fact that it
removed the need for interpolations of non-existing field com-
ponents in the integral formulation of Maxwell’s equations,
thus allowing the algorithm to meet a null-divergence property.
Based on this, in this paper, we here carry out a further
study of the algorithm itself, by varying what we call the
orthogonalization parameter, proposing a stable LTS approach,
and studying its overall stability and accuracy. To our best
knowledge not so exhaustive description and analysis has been
conducted elsewhere and it serves to prove the feasibility of
this method.

The rest of the paper is organized as follows. In section II,
we explain the fundamentals of the method, and how we can
obtain simple equations in order to solve field components
values in the subgridding interface using an integral formu-
lation of Maxwell equations. In section III we explain the
details related to the LTS methodology. Section IV obtains
theoretical and simulation conditions for the stability of the
method. In section V, we discuss the validity of the presented
method using canonical EMC application of SE. Finally, we
draw conclusions in section VI.

II. METHOD DESCRIPTION

The subgridding method analyzed in this work is based on
that of [10], and also relies in the division of every FDTD
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cell using a 1:2 refinement ratio, which is applied recursively,
leading to different subgrid levels, each one containing cells
with half the length of that of the next larger level (see Fig. 1);
in 3D a cell at one level results thus divided into 8 ones at the
level above. We will denote with nsg � 0 the finest level, and
each coarser level increases nsg by one until the coarsest level
Nsg. For simplicity, we will also assume an isotropic cubic
lattice ∆xnsg � ∆ynsg � ∆znsg � ∆nsg for any given level.
The space-step at a given level fulfills,

∆nsg � 2nsg∆0. (1)
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Fig. 1: Cross section of a subgridded region with a refinement
ratio of 1:2. Each color represents cell at the same subgrid
level.

δ

Fig. 2: Stages followed to construct the 3D subgridded mesh
at the boundary. Black lines represent main (electric) grid and
red lines represent dual (magnetic) grid.

We will refer to the set of all cells belonging to the
same subgrid level as domain-level, and as boundary-level
to the boundary surface lying between neighbor domain-
levels. Continuing with the procedure of [10], we introduce
a deformation of cells at the boundary-level, by moving the
central vertex of the face of each coarse cell by a certain
offset distance δnsg inside the fine region (see Fig. 2). For
simplicity, this offset is taken to be proportional to the finer
cell size ∆nsg for each transition, thus keeping constant the
ratio δr � δnsg{∆nsg throughout all the transitions.

Locally, all cells inside of a domain-level are considered
as part of a usual FDTD grid, meaning that the updating
algorithm is the usual unmodified Yee one. However, the usual
Yee algorithm cannot be used to update some of the fields in
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Fig. 3: Projection of a given field ~U on a direction per-
pendicular to a surface, where dŜ is a unit vector along a
Cartesian direction, ~Ui is a known component, and ~Ui,K is
an unknown component perpendicular to ~Ui contained in the
surface defined by ~Ui and dŜ. The green line is the known
projection on the surface normal, and the red line is the
unknown one.

the boundary-levels, and different approaches can be used in
order to solve this issue [9], [12], [13], [17]. We will next
describe the one chosen in this work which is based on [10].
For this, let us refer to the electric grid as the main grid,
and to the magnetic grid as dual grid, where each one is
defined by the edges along each component of the discrete EM
field. Fig. 2 depicts how these grids behave at the boundary,
and Fig. 3 shows the detail of one of the subgridded cells.
We notice that the upper face of the cell is, in general, non
planar. In that figure we have chosen two triangles forming
a dihedral to account for this effect: one of them formed by
the two Cartesian edges, and the other one formed by the
non-Cartesian ones, though any other choice, even a smooth
curved surface, could also be assumed. Hence, the integration
surface, as well as the edges, do not necessarily have a pure
Cartesian direction.

Let us consider an arbitrary known field component ~Ui that
lies along some edge of either the main or the dual grid, and
decompose it into ~Ui,tot � ~Ui� ~Ui,K (see, for example, Fig. 3).
In the same way, let us consider a surface S whose contour
are the edges at the dual field ~W . Maxwell’s curl equation in
integral form for this field is:

d

dt

»
S

~U � d~S � 1

tε, µu

�
�� ¾

BS

~W � d~l �
»
S

~J � d~S
�
, (2)

where ~U is ~E ( ~H), ~W is ~H ( ~E) and sign � is positive (neg-
ative) if we are considering Ampere’s Law (Faraday’s Law).
Since the field components ~W always lie along the edges of
its own grid, the linear integral can be easily discretized as¾

BS

~W � d~l �
¸
j

Wij lij , (3)

where Wij are the discrete field components around ~Ui, and
lij are the lengths of their corresponding grid edges. Note that
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this sum might be over an arbitrary number of components,
not necessarily four.

The surface integral, on the other hand, needs more analysis.
If we approximate ~U � ~Ui,tot to be constant over the surface,
we may decompose it as follows»

S

~U � d~S �
»
S

~Ui � d~S �
»
S

~Ui,K � d~S

� Ui

»
S

Ûi � d~S � Ui,K

»
S

Ûi,K � d~S �
� Seq,i Ui � Seq,i,K Ui,K,

(4)

where we have defined Seq,i and Seq,i,K as the equivalent
surfaces for each field component. These have the following
expressions:

Seq,i �
¸
j

Sj cos θij ,

Seq,i,K �
¸
j

Sj sin θij ,
(5)

where we assumed that the surface can be split in a number of
planar surfaces Sj (for example, the two triangles of Fig. 3),
and θij are the angles between the component ~Ui and the
surface normal vectors. It should be noted that Stokes’ theorem
grants us that any surface in Eq. 5 will lead to the same result,
as long as its contour is formed by the surrounding edges.

Since Ui,K is unknown, in order to avoid interpolations,
we will make a reasonable assumption: the contribution to
the surface integral of the perpendicular component will be
neglected, so that: Seq,iUi " Seq,i,KUi,K and consequently we
assume, »

S

~U � d~S � Seq,iUi. (6)

In order to reduce the effect of this assumption, it will
be desirable to minimize sin θij , which is the goal of the
orthogonalization method introduced in [10], [11]. This allows
us to modify some grid vertices by a parameter δ (see Fig. 2)
and therefore, for some integration surfaces, enforce the angles
θij � 0, and thus sin θij � 0 as well (see Fig. 2 and Fig. 3),
which justifies Eq. 6.

The explicit updating algorithm is found by replacing by
centered finite-difference the time derivative in Eq. 2 with
a given time-step ∆tnsg to yield in general for any field
component Ui:

Ui|n�1 � C0,i Ui|n

� C1,i

Seq,i

¸
j

li,j Wi,j |n�1{2

� C2,i Ji|n�1{2

(7)

where C0,i, C1,i and C2,i are constants depending on media
and the time-step. Note, that this step may be the same or
desirable differ for each level nsg to take profit of the stability
condition in a piecewise manner, with the constraints due to
the boundary equations, as will be discussed in Sec. III.

Equation (7) gives us an easy way to classify every non-
trivial discrete field component near the boundary-levels based
on their equivalent surfaces and their edge length. For a cubic

lattice, we can identify 6 types for the E-field, and 4 types for
the H-field components. This classification is shown in Tab. I
and Fig. 4.

TABLE I: Field types classification for boundary-levels. In
every expression, ∆ refers to the cell length of the fine level
in the considered .

Electric

Type Seq{∆2 l{∆

1
3� δr

4
a

1� δ2r

a
1� δ2r

2 9{4 1

3 1 1� δr

4 3 1

5 2 1

6 3{2 1

Magnetic

Type Seq{∆2 l{∆

1 3� δr?
11

?
11

2

2 1� δr

2
1

3 1� δr 1

4

N/A At
the finest
level this
parame-

ter makes
no sense

2

Fig. 4: Subgridding boundary-level field types. Each field type
is classified and their integration surfaces are represented. The
number of each field type correspond to Tab. I.

III. LOCAL TIME STEPPING

The time-step for each subgrid level ∆tnsg is a topic that
needs a thorough analysis. Let us consider a given mesh with
maximum grid level Nsg. First, let us assume that we use the
same time steps for all subgriding level, ∆tnsg � ∆t. Here, in
order to apply the Courant–Friedrichs–Lewy stability (CFLN)
condition [18] [19], we need to define the CFLN number. As
we have different subgrid levels, it will depend on each level
as follows:

CFLNnsg �
?

3 c0 ∆tnsg

∆nsg

. (8)
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Now, by using the fact that the time-step is constant and Eq. 1
we obtain that

CFLNNsg � 2�Nsg CFLN0. (9)

The stability condition requires that CFLNnsg ¤ 1@nsg, which
forces

CFLNNsg ¤ 2�Nsg . (10)

Though no special algorithm is then required to connect
regions with different grid sizes, this minimum time step
is a severe constraint since it oversamples the coarser level
unnecessarily, drastically decreasing the computational effi-
ciency. Additionally, increased CFLN implies increased phase
dispersion errors in the coarse zones, which is a numerical
phenomenon inherent to FDTD method. The reason for that,
is that the numerical propagation velocity is not linear [18],
[20], and it is different for each spectral component of the
signal, and, in general, different from the actual speed of light.
Only in one dimension, there is a magic CFLN not leading to
dispersion errors.

Hence, let us consider the use of different time-steps for
each level and describe the connection between the time-
stepping procedures at the boundaries. Particularly, in order
to obtain the same CFLN number at every level, the choice of
the time-step must comply with

∆tnsg � 2nsg∆t0 (11)

In this case, it is possible to use a CFLN value closer to 1 in the
whole domain. The stability criterion however leads to a CFLN
smaller than 1, as is further discussed in Sec. IV. The fact that
every level has a different time-step means that it is necessary
to coordinate the update of each grid in the boundary-levels.
For this purpose, let us consider an arbitrary boundary-level
and focus on the discrete field components that, when updated,
use another one that belongs to a different subgrid level. If we
look at Fig. 4, we may see that the affected fields in the fine
level are only electric (types 2, 4, 5, 6) and that the affected
ones in the coarse level are only magnetic (type 4). This means
that it is only necessary to find a scheme that explains how to
use fine electric components to update coarse magnetic ones
and vice versa. The LTS scheme we have implemented is
illustrated in Fig. 5 and it works as follows:

 For each electric or magnetic coarse component, we
consider simultaneous electric fine ones existing as well.

 Each coarse magnetic field component is updated with
the immediate previous fine electric component, which is
correctly time-placed.

 If a fine electric component is simultaneous with a coarse
electric one, it will use the immediate previous coarse
magnetic component, which is not correctly time-placed.

 If a fine electric component is simultaneous to a coarse
magnetic one, it will use its simultaneous coarse magnetic
component.

We must note that, for the local time stepping used by the
subgridding method, it is necessary to extend the temporal
location for several components. That is, each electric com-
ponent located in a subgridding boundary, alternates the use

of a delayed and an over-advanced magnetic components in
their update. This cannot be solved in a flawless manner, and
it becomes an intrinsic characteristic of this method.
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Fig. 5: Temporal update scheme for the subgridding local time
stepping implementation. For every field update (electric and
magnetic) in a certain domain-level, we recursively update
the electric and then the magnetic field components in the
next finer level. Blue dashed arrows show intralevel field
components usage (usual FDTD); green arrows show usage of
electric fine components to update magnetic coarse ones; red
arrows show usage of magnetic coarse components to update
electric fine ones.

IV. STABILITY ANALYSIS

As expected, the stability is degraded away from the usual
one due to the algorithm used at the subgridding boundaries
(see Fig. 4). In this section, we study the maximum CFLN
value that we may use for each possible value of δ{∆. For
this purpose we provide two different approaches. First, a sort
of theoretical one based on the integration surfaces and lines
of the algorithm [7], [21]; second, an heuristic study using
real simulations. We must note that, using the results obtained
in this section, we have simulated lots of different cases for
over 107 iterations and the algorithm has proved stable in all
of them.

A. Analytical condition
In this section, a sufficient condition is derived of the

interaction of neighbour electric and magnetic fields. First,
let us write the general update equation for the FDTD method
without external sources.

Ui|n�1 � G0,i Ui|n �G1,i

¸
j

sgni,j li,j Wi,j |n�1{2 (12)
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where sgni,j � �1 depends on the relative orientation of
the fields. We note that this general equation applies for both
the usual FDTD method and the subgridding algorithm in a
boundary-level (eq. Eq. 7), where

G0,i � C0,i,

G1,i � C1,i

Seq,i
. (13)

Let us consider the update equation of a given electric
component Ei in vacuum using
SGG: xxx???

, but focusing only on one of its magnetic neighbor com-
ponents Hj . In this case we have

Ei|n�1 � Ei|n � sgni,j G1,i lj Hj |n�1{2 � r...s. (14)

Now, if we consider the previous update equation of the
component Hj |n�1{2 and substitute it in Eq. 14, we obtain

Ei|n�1 � p1 � Acci,jq Ei|n � r...s. (15)

where

Acci,j � G1,iG1,j li lj (16)

is the coupled update constants of the given neighbor field
components. We note that the product sgni,jsgnj,i � �1.

Here, we may particularize for the trivial case in free-space
with a cubic lattice,

Acci,j � p∆tq2
ε0µ0∆2

� CFLN2

3
, (17)

and also for the subgridding algorithm in a boundary-level,

Acci,j � p∆tq2 lilj
ε0µ0Seq,iSeq,j

� CFLN2

3

�
Seq,i

li∆

Seq,j

lj∆



. (18)

For the first case, the Courant criterion stablishes the con-
dition CFLN   1, which leads us to

Acci,j   1{3. (19)

As the update equation for the subgridding boundary-level
is analogous to the FDTD method, we consider it a suitable
approach to transfer the condition obtained in Eq. 19. Now,
we must note that this condition applies to all the possible
combination of neighbor field components, which leads us to

CFLN ¤ min
pi,jqneighbours

d
Seq,i

li∆

Seq,j

lj∆
. (20)

Note that the deformation parameter δ has a strong effect in the
stability condition, as the equivalent surfaces and integration
lines depend on it. We must also point out that the LTS
described in Fig. 5 is the only one up to our experience to
provide stable results with this criterion, and no instabilities
have been appreciated in a large number of complex test-cases
simulated for long time in low-frequency slowly converging
situations. Any other time LTS scheme to connect fine and
coarse meshes, has proven to our best knowledge, to lead to
unstable schemes. Further analytical studies are ongoing and
they are the subject of a future paper.

B. Heuristic approach

In this section, we aim to obtain an approximation for the
stability of the method by running many simulations using
different values of δr and CFLN. We have varied δr in
the interval r0, 1s, and for each value we have found the
highest CFLN for which the simulation has been stable after
t � 107∆tcoarse. In every simulation, the coarse subgrid level
used is Nsg � 2.

For these simulations, we have used a case without materials
and with a random distribution of fine cells, making sure that
all the field types defined in Tab. I appear. An example of a
minimal case containing all field types may be seen in Fig. 6.

The results obtained by both approaches are shown in Fig. 7.
It can be seen that the maximum value of CFLN in both cases
is obtained around δr � 1{3, with CFLNmax � 0.67.

Fig. 6: Scheme of a minimal simulation containing all field
types from Tab. I.
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Fig. 7: Maximum stable CFLN value as a function of δr.

V. NUMERICAL RESULTS

The accuracy and efficiency of the subgridding algorithm
described above has been assessed by using a challenging
resonant test-case based on spherical conductive shell with
20 mm of thickness and 1 m of medium radius, and an elec-
tric conductivity of 5 S/m. The sphere is illuminated with a
plane-wave tilted 45� with respect to the x axis. The plane-
wave is excited with a Gaussian pulse with �3 dB decay in
amplitude at 1 GHz (fptq � e�pt�t0q

2{w2

, t0 � 0.696 ns,
w � 0.187 ns.). The computational volume is truncated by
convolutional PMLs.



6

Fig. 8: 2D cross-section of the spherical shell test case. In
blue the cells affected by the conductive shell, the rest of the
cells in white. The dotted purple lines represent the warped
transition between two adjacent grid levels.
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Fig. 9: E-field at the center of the sphere. The shielding effec-
tiveness SE (inverse of the transfer function) has been used as
the figure-of-merit defined as SE � 20 log p|Eincident|{|Ecenter|q.

In Fig. 9, we show the result obtained with the proposed
subgridding technique. The finest grid region is generated so
that the spherical shell lays wholly inside the finest level.
The size of the coarsest grid size remains fixed at 40 mm.
We compare results obtained with different finest resolutions
t20, 10, 5, 2.5umm corresponding to a number of subgrid
levels of t1, 2, 3, 4u respectively in Fig. 8. The LTS technique
proposed in sec.III, yields a global CFLNnsg of 0.67 corre-
sponding to δr � 1{3 fig. 7.

The spherical shell has been modeled as a volume in
the finest grid region. The constitutive parameters for the
conductivity associated to a cell that are partially inside of the
spherical shell volume, is evaluated by using effective average
parameters method based on [22],

σeff pi, j, kq � σshell
Vpartial pi, j, kq
Vcell pi, j, kq

where σeff is the conductivity of a partially filled cell. Vcell is
the volume of a cell; for instance for a cubic cell in the finest
grid Vcell � p∆finestq3, and Vpartial is just the partial volume

of a cell inside of the spherical shell. The rest of the space
and grid levels not traversed by the spherical shell is simply
free-space.

In Fig. 9, we have also included, for reference, results
found with the SGBC method of [2], [23], which is a specific
sub-cell model to deal with conductive thin panels, both for
staircased meshes, and for conformal meshes [24]. Both have
been simulated with a 40 mm of cell size and 5 mm of 1D-cell
size in the thin-panel. For the staircase mesh, we used a CFLN
of 0.9, and for the conformal one [5] we use a CFLN of 0.7,
corresponding with a relaxed factor of 0.33 [7]. The results
with the aforementioned methods are compared to closed-form
analytical data found from [25].

The effect of tree different degree of deformation δr �
t0, 0.33, 0.5u has been tested using the same spherical test
with ∆0 � 10 mm and Nsg � 2, the time step used have been
chosen in accordance with Fig. 7. The results are shown in
Fig. 10 and no changes in accuracy have been appreciated.
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Fig. 10: SE for different degree of deformation.

In view of the results, the proposed subgridding method
show a high accuracy, in comparison with the thin-panel
method [3], [23]. As shown in [26], methods for thin panels
exhibit a typical offset error of about, 6 dB for staircased
meshes (reducing up to 1-2 dB for conformal). This error
appears because thin panel techniques assume plane-wave
propagation inside the thin panel, along the direction normal
to its surface, which is a reasonable hypothesis only for highly
conductive media [2]. The error is still higher for structured
mesh due to inherent ambiguity of the surface normal on
staircased edges, when curved surfaces are approximated by a
structured mesh.

Table II shows the computational resources of the simula-
tion. Note that the test-case proposed in this article is a case
where the SGBC methods are already computationally very
efficient. In this sense, subgridding methods are not compet-
itive in accuracy with respect to subcell specific techniques
such as SGBC. However, SGBC assumes a TEM propagation
condition inside the pannel [2], which does not hold for
low conductivities. Obviously, the generality of subgridding
methods do not require to make this assumption, and naturally
present a high-precision.
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TABLE II: Efficiency results

Method CFLN ∆min
[mm]

∆max
[mm]

CPU
Gain

Memory
Gain

FDTD Nsg=1 0.67 20 40 2.8 1.6

FDTD Nsg=2 0.67 10 40 5.1 3.1

FDTD Nsg=3 0.67 5 40 7.9 5.2

FDTD Nsg=4 0.67 2.5 40 11.5 8.4

VI. CONCLUSIONS

In this paper, we have presented a complete description of
the orthogonalization effects on the stability and accuracy of
the subgridding method proposed in [10], [11]. This ortogonal-
ization consists in a deformation of the cells at the transition
between neighbors subgrid levels in order to get a reciprocal
algorithm and avoid interpolations. This deformation implies
a new distribution of electric and magnetic fields at the
deformation region, which would no longer be associated with
a usual FDTD grid, and, in turn, a more complex updating
equation than the Yee’s method is yielded. In the first part of
the paper, we have explained the subgridding method showing
all details about its updating equations. Also we introduce
the a local time stepping technique to increase the stability
limit, and, consequently, the method efficiency. In the second
part of the paper, we have developed a method to obtain
the optimal orthogonalization parameter for the best CFLN.
Ultimately, the method has been validated by using a shielding
problem. In view of the results, this subgridding method is a
computationally very efficient, high accurate, and flexible way
to address general multi-scale problems in FDTD.
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