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Abstract
Interpretable deep learning models are increasingly important in domains where transparent decision-making is required. In
this field, the interaction of the user with the model can contribute to the interpretability of the model. In this research work, we
present an innovative approach that combines soft decision trees, neural symbolic learning, and concept learning to create an
image classificationmodel that enhances interpretability and user interaction, control, and intervention. The key novelty of our
method relies on the fusion of an interpretable architecture with neural symbolic learning, allowing the incorporation of expert
knowledge and user interaction. Furthermore, our solution facilitates the inspection of the model through queries in the form
of first-order logic predicates. Our main contribution is a human-in-the-loop model as a result of the fusion of neural symbolic
learning and an interpretable architecture. We validate the effectiveness of our approach through comprehensive experimental
results, demonstrating competitive performance on challenging datasets when compared to state-of-the-art solutions.

Keywords Soft decision trees · Concepts · XAI · Neural symbolic · Image classification · Human-in-the-loop

1 Introduction

Interpretable machine learning models are increasingly
important in domains where transparent decision-making
is required. Miller [26] introduced several considerations
for implementing new interpretable AI models. The author
emphasized that explanations are a form of knowledge trans-
fer resulting from interaction. Many studies have focused on
interpreting models based on black boxes or defining inter-
pretable models. However, we believe that defining inter-
pretable solutions enabling user interaction with the model
is an understudied area. This study addresses that research
gap by exploring the fusion of soft decision trees, neural
symbolic learning, and concept learning. The objective is to
develop an interpretable classification model enabling user
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intervention and incorporating expert knowledge. Our fusion
proposal is based on the following arguments:

– Concept learning facilitates human intervention and
interpretation [18]. Furthermore, it enables the use of
neural symbolic learning and the definition of first-order
logic predicates based on human-understandable con-
cepts.

– Neural symbolic learning enables the definition of rules
to articulate, intervene, and explore themodel’s decision-
making process.

– If the user is not able to understand the decision-making
process, the interaction with the model is not possible.
The use of soft decision trees enables the user to under-
stand the decision-making process. Additionally, the use
of soft routing enables the integration with fuzzy logic.
This allows users to define first-order logic rules for inter-
vening in the routing process.

Ourmain contribution is a novel solution in the field of image
classification, designed to inherently provide interpretabil-
ity due to its transparent architecture. By integrating neural
symbolic learning via Logic Tensor Networks, our model
enables users to incorporate expert knowledge through the
definition of first-order logic rules and predicates. Moreover,
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the proposed fusion of concept learning and neural symbolic
learning enables the user to inspect the model by making
queries based on different classes or combinations of con-
cepts. A key contribution of our approach is the ability to
impose constraints on the soft decision tree’s routing pro-
cess. These constraints, specified as first-order logic rules
and predicates based on concept or class combinations, pro-
vide users with greater control over the decision-making
process. Additionally, our proposed approach enables users
to inspect the decision routes taken by the model through
queries. All these features together introduce transparency
and interpretability by providing insights into the model’s
decision-making process.

We evaluate our proposed approach on challenging datasets
and compare its performance to state-of-the-art solutions,
demonstrating competitive results. Furthermore, we discuss
future research directions, including the potential of com-
bining neural symbolic learning and soft decision trees in
reinforcement learning domains.

The article is organized as follows: first, we provide an
overview of related work in Section 2. Next, the proposed
approach is presented in Section 3. Then, in Section 4 we
describe the experiments and discuss the results. Finally,
Section 5presents future researchdirections and conclusions.

2 Related work

While the initial machine learning algorithms were trans-
parent to the user and easily interpretable, in recent years,
opaque decision systems like deep neural networks (DNNs)
have become the “de facto” solution for many machine
learning problems in different critical context fields such as
medicine, defense or system safety [1, 6, 37]. However, solu-
tions based on DNNs are considered ’black-box’ machine
learningmodels whose behavior can be hard to explain. Con-
sequently, there has been a growing interest in explainable
artificial intelligence (XAI). Post-hoc explanations, which
involve interpreting methods after training the models are
widely adopted approaches for explaining DNNs [1]. Some
well-known post-hoc explanation techniques as Local Inter-
pretableModel-Agnostic Explanations (LIME) [31] or Class
ActivationMapping (CAM) [39] identify the specific regions
of input features that the networks focus on when making
predictions.

On the flip side, achieving transparent deep learning mod-
els is a primary objective of XAI and an actively researched
area. Traditional machine learning models and algorithms
like decision trees or k-NN offer interpretability and trans-
parency but are outperformed by opaquemodels such as deep
neural networks. Consequently, recent research has been
dedicated to resolving this well-known trade-off between
performance and explainability [10, 27, 32], aiming to define

models that are inherently transparent and do not require
post-hoc explanation techniques.

In this search for more explainable model architectures,
some authors have aimed to fusion the transparency of
decision trees and the power of deep learning methods. Deci-
sion trees are considered transparent models as following
the decision paths enables humans to understand the ratio-
nale behind a prediction or classification [29]. However,
as previously mentioned, decision trees do not generalize
as well as neural networks. Kontschieder et al. [19] intro-
duced Deep Neural Decision Forests, aiming to combine
representation learning from deep learning with the divide-
and-conquer principle of decision trees. They introduced a
stochastic anddifferentiable decision tree called “neural deci-
sion tree”. The proposed solution is an ensemble of these
neural decision trees known as a decision forest. Wan et al.
[36] presented their approach Neural-Backed Decision Trees
(NBDT). They proposed a hierarchy-learning-based model
where every node of a decision tree is formed by a neu-
ral network that makes low-level decisions. This approach
induces hierarchies that can be used to explain the model’s
decision-making process. Frosst and Hinton [12] proposed
distilling a neural network into a Soft-Decision-Tree (SDT).
They described a method that utilizes a pre-trained neural
network to train a soft decision tree using stochastic gra-
dient descent and the predictions of the neural network as
targets. Their model makes hierarchical decisions based on
the learned filters and selects a particular static probability
distribution over classes as the output.

Another interesting approach that has gained attention in
the search for transparent models is concept-based explain-
ability. Researchers exploring this approach aim to develop
interpretable models by designing them to rely on concepts
as the basis for their decision-making. Concepts, in this con-
text, refer to high-level and semantically meaningful units
of information such as color, texture or shape. The resonat-
ing process of the models can be interpreted by generating
explanations that are based on those concepts [24].

One of the most known research articles in this field was
published by [18], who presented concept bottleneck models
(CBMs). They proposed to use a CNN as a concept extractor
that maps raw inputs (x) to concepts (c). After that, a sec-
ond model maps these concepts (c) to targets (y) performing
the final classification. Other authors have proposed to train
object detectors or segmentation models as concept extrac-
tors to localize object parts that are used as concepts. The
final model solution combines those models with a classifier
that bases its decision on the detected object parts [3, 6].

While many of these studies have concentrated on inter-
preting models with black-box characteristics or creating
interpretable models, we consider that the exploration of
interpretable solutions enabling user interaction remains a
relatively underexplored research area. Miller [26] outlined
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several factors to consider during the implementation of
novel interpretable AI models. The authors emphasized the
nature of explanations as a form of knowledge transfer
resulting from interactions. In this context, [18] proposed
a concept-learning model that allows concept intervention.
Mispredicted concepts can be corrected using expert knowl-
edge, enabling users to refine and improve the model’s
predictions [18, 38].

With the aim of merging transparent architectures with
concept learning, we investigated the fusion of concept bot-
tleneck models and soft decision trees in our previous article
[28]. However, although this fusion enabled the generation
of explanations by analyzing the decision paths based on
human-understandable concepts, the human interaction or
intervention and the use of expert or background knowledge
were limited.

Conventional neural networks and deep learning methods
do not take domain or background knowledge into account
[35]. In recent years, the use of symbolic approaches to avoid
these limitations has been subject of study [2, 34, 35]. The
inclusion of symbolic knowledge in the form of first-order
logic constraints into the loss function during deep networks
training is a promising approach, that has been shown to
enhance the fairness of the machine learning system while
also preserving its performance [34]. In this field, an interest-
ing framework was presented by [2]. Their proposal Logic
Tensor Networks (LTN) allows defining variables, and pred-
icates, where the variables are grounded by tensors, and
predicates canbegroundedbyanyneural network.Thepower
of this approach relies on the definition of relations among
the predicates that can be established as logical rules. Those
rules can be used to define metrics or loss functions. The
application of this framework to different tasks such as logic
reasoning [2], object detection [22], zero shot learning [25]
or image segmentation [9] has been demonstrated.

In this article, we investigate the fusion of neural symbolic
learning and concept learning with the aim of developing
an interpretable deep learning model. Our proposed model
combines a soft decision tree and a concept-based model to

define an interpretable model that performs image classifica-
tion basing its decision on human-understandable concepts.
The final decision-making process is conducted by a soft
decision tree that can be visualized and explored by the user.
The use of neural symbolic learning enables human interven-
tion, as an expert can explore the decision tree and improve
it by using his knowledge to redefine the decision tree. This
results in a learning cycle where the user can control and
intervene in the training process. This learning cycle can be
observed in the diagram presented in Fig. 1.

3 Methodology

In this section we present our proposed solution that corre-
sponds to the learning cycle presented in Fig. 1. We propose
the fusion of three approaches that have been shown to
improve the transparency of deep learning models: neural
symbolic learning, Soft Decision Trees and Concept Bottle-
necks. Our study involves employing Logic TensorNetworks
to train a CNN as a concept extractor, mapping images to
concepts. A Soft Decision Tree serves as a predictor for final
classification, utilizing the extracted concepts. Figure 2 illus-
trates the architecture diagram of our proposed model. The
utilization of neural symbolic learning during the training
phase allows for the inclusion of domain knowledge and
provides a tool for interpreting results during testing and
inference time.

3.1 Concept bottlenecks

In the field of concept learning, the image classification prob-
lem is usually formalized as follows [18]: Let us consider an
input vector, denoted as x ∈ R

d , a target output, denoted as
y ∈ Y, and a concept vector, denoted as c ∈ [0, 1]k . The train-
ing dataset consists of samples of the form [(xn, yn, cn); n =
1...N ].

We propose amodel based on the concept bottlenecks pre-
sented in [18]. The proposed model takes the form t(g(x)),

Fig. 1 Learning cycle. The use
of neural symbolic learning
enables human intervention. An
expert can control the training
process and intervene the model
by revising the knowledge
through the definition or
re-definition of knowledge rules
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Fig. 2 Architecture diagram of the proposed solution. The concept extractor g (implemented by a Resnet-50) takes an image as input and outputs
the concept vector. The binary soft decision tree t gets the concept vector as input and outputs the final prediction

where g : R
d → [0, 1]k maps the image from the input

space to the concept space. A classification subnetwork
t : [0, 1]k → Y maps c = g(x) from the concept space to
the target space. In our case, this classification subnetwork
is implemented by a soft decision tree. This model can be
trained by combining two loss functions: A classical classifi-
cation loss function LY : Y×Y → R

+, which measures the
discrepancy between themodel’s output y′ = t(g(xi)) and the
target output yi for a given training sample (xi, ci , yi ). A con-
cept loss function Lc : [0, 1]k ×[0, 1]k → R

+ that measures
the discrepancy between the output of the concept extrac-
tor g(xi ) and the true concept vector ci . This loss function
captures the dissimilarity between the predicted and actual
concept vectors. By optimizing these two loss functions, the
proposed model learns to associate the input features with
the relevant concepts and make predictions based on the
learned concept-target relationships. The authors proposed
three ways of training the concept bottlenecks:

– Independent bottleneck: the two models t and g are
trained independently. That is, g is trained on the train-
ing set [(xn, yn, cn); n = 1...N ] minimizing

∑N
n=1

Lc(g(xn); cn) while t is trained on the corresponding
concepts subset by minimizing

∑N
n=1 LY (t(cn); yn)

– Sequential bottleneck: t is trained on the output of g.
That is, t minimizes

∑N
n=1 LY (t(g(xn)); yn). The con-

cept extractor g is trained as before.
– Joint bottleneck: g and t are trained jointly by minimiz-
ing the combined loss function

∑N
n=1 LY (t(g(xn)); yn)+

δ
∑N

n=1 Lc(g(xn); cn) . The hyperparameter δ > 0 con-
trols the trade-off between the two losses.

3.2 Soft decision trees

Traditional decision trees employ deterministic routing,
where each sample is directed to exactly one path at each
node. However, this deterministic routing introduces discon-
tinuities in the loss function, making classical decision trees
unsuitable for gradient descent-based optimization algo-
rithms [15]. Consequently, classical decision trees cannot
be trained using such algorithms. To overcome this limita-
tion, we propose a model based on the binary soft decision
tree presented in [12]. Unlike classical decision trees, soft
decision trees employ probabilistic routing (or soft routing)
instead of deterministic routing. This soft routing technique
ensures that the loss function remains continuous, enabling
the use of gradient descent-based optimization methods [12,
15]. Like classical trees, soft decision trees are formed
by nodes and leaves. Given an input feature x, the prob-
ability of taking the right branch at node i is calculated
as:

pi (x) = θ(xwi + bi ) (1)

where θ represents the logistic sigmoid function, and wi and
bi are the learned parameters. The probability of routing to
the left branch is 1 − pi (x). Each leaf node l generates a
probability distribution over the output classes. This is done
by applying the softmax function on the learned parameters
φl associated with the corresponding node l:

Ql = softmax(φl) (2)
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To train the tree, the following loss function is defined:

LT (x) = − log(
∑

l∈L
Pl(x)

∑

k∈Y
yk log Q

l
k) (3)

where Y represents the set of possible labels, k is the index of
the label, and yk denotes the target probability of x belonging
to class k (either 0 or 1). Pl(x) corresponds to the probability
of arriving at leaf node l given the input x, that is

Pl(x) =
∏

N

pi (x)1[l↙i](1 − pi (x))1[i↘l] (4)

Here, the indicator function 1 evaluates to 1 if the condition
holds, and 0 otherwise. The notation [l ↙ i] (and [i ↘ l])
indicates that leaf l belongs to the left (or right) subtree of
node i . The output of the model is the distribution associated
with the leaf having the maximum path probability. Addi-
tionally, a penalty term is incorporated to ensure balanced
utilization of both the left and right subtrees, as mentioned
in [12].

3.3 Logic tensor networks

Logic Tensor Networks is a neural-symbolic framework that
enables the use of first-order fuzzy logic in combination with
deep learning neural networks. By defining variables, con-
stants, predicates and rules in a so-called knowledge base, the
learning problem can be seen as an optimization problem,
consisting on maximizing the satisfiability of the formulas
defined in the knowledge base. As an example, consider a
basic binary classification problem where we have samples
x ∈ X that can belong to class A or to B. Furthermore, we
know that for any sample, if a given feature fi is greater than
0, that sample belongs to class B. We can then define the
knowledge base as follows

K = {∀xa P(xa),∀xb¬P(xb),∀x : fi > 0 �⇒ ¬P(x)}

where the notation xa represents samples belonging to class A
and P is a predicate that outputs the probability of belonging
to class A. To benefit from deep learning techniques, the
predicate P can be grounded with a neural network with
weights φ. To train a neural network in this environment, a
loss function can be defined in the following way:

LSym = 1 − SatK (x, φ) (5)

where Sat is the satisfiability of the formulas defined in the
knowledge base K , for a model with trainable weights φ.
In our proposed solution the predicates involved in the rules
defined by the user in the knowledge base are grounded on
the model described before (see Fig. 2). This way we are able
to train the model using the knowledge rules.

The rules and axioms defined can also be used to inspect
the model and to interpret its decisions and behaviour [2, 9]
on inference time. In this research work, we explore both
approaches.

3.4 Proposed training approach

In this section, we describe the proposed training approach.
This solution we describe allows us to train the model pro-
posed above (shown in Fig. 2) according to the learning cycle
introduced in Fig. 1. For this purpose, we combine the loss
functions presented before in the Sections 3.1, 3.2 and 3.3.
The equation for the proposed approach is presented in (6):

N∑

n=1

(αLY (t(g(xn)); yn) + βLSym(xn, φ) + δLc(g(xn); cn))

(6)

where the hyperparameters α, β, δ > 0 control the trade-off
between the losses. In Fig. 3 a diagram of the training process
is presented. The proposed model is fed with the images and
outputs the concept and class predictions as inference results.
The loss calculator gets those outputs and the rules defined
in the knowledge base as inputs and calculates the training
loss according to (6). The user can observe and control the
model. Based on this observation, he can add knowledge in
the form of first-order logic rules to the knowledge base or
modify the already existing knowledge. This training pro-
cess implements the learning cycle previously discussed in
Fig. 1. Furthermore, we explore the combination of neural
symbolic learning with each of the three possible concept-
bottleneck models described in Section 3.1. The proposed
solution explained above follows the Joint approach. For the
independent and sequential approaches the training of the
concept extractor would remain the same as explained in
Section 3.1. The classifier training would be done by mini-
mizing the (7):

N∑

n=1

(αLY (t(cn); yn) + βLSym(xn, φ)) (7)

Please note that for the sequential approaches cn = g(xn)
while for the independent approaches, cn would be the cor-
responding concept label, according to the original ideas
presented in Section 3.1.

4 Experimental setup, evaluation and results

This section provides an overview of the two datasets utilized
for evaluating the proposed method. Subsequently, we out-
line the implementation details and describe the experiments
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Fig. 3 Diagram of the proposed training process. The user can redefine the knowledge base by adding or modifying rules. These rules are used
to compute the symbolic loss LSym as explained in Section 3.3. The final loss function is calculated aggregating all losses LY , Lc and LSym as
explained in (6)

conducted, along with the evaluation metrics employed.
Lastly, we present and analyze the results obtained.

4.1 Datasets

We evaluated the proposed methods on two datasets: the
Semantic PASCAL-Part dataset [8] and the MonuMAI
dataset [21].

The MonuMAI dataset [21] consists of over 1500 images
of monuments belonging to four architectural styles: Gothic,
Hispanic-Muslim, Renaissance and Baroque. The dataset
has been expertly annotated, with human experts providing
labels for monument style classification and key architec-
tural element detection. Additionally, labels for fifteen key
architectural element types (i.e. flat arch, pointed arch, port-
hole...) were also generated. The classification and analysis
of those key elements can be used to explain the decision of
a classifier as done in [3, 21].

The PASCAL VOC 2010 dataset [11] is a well-known
image dataset comprising 20 object classes. Supplementary
part-based annotations were provided in the PASCAL-Part
dataset [5]. We evaluate the proposed approach on a curated
version of the PASCAL-Part dataset presented in [6]. The
authors aggrouped some similar categories in order to reduce
the number of object part categories.Additionally, the images
were selected so that only one main object class per image is
present (classical image classification problem). The result
is an image dataset containing over 1400 images belonging
to 20 categories (i.e Person, TV, Train, etc.). Furthermore,
the images are part-annotated on more than 40 different ele-
ments (i.e Leg, Body, Wheel,...). This dataset has already

been explored on concept-based or part-based research arti-
cles [3, 6].

4.2 Implementation details

The proposed method was implemented on Pytorch, and
the code is available for download.1 The LTN-pytorch
framework was used for the neural-symbolic setup. As the
backbone for the concept extractor we use a Resnet-50 [16].
The soft decision tree is based on themodel described in [12].
The code is based on the implementation provided in [7] and
adapted to be integrated with the LTN framework. The depth
parameter is set to 4 after a preliminary analysis. We used
the Adam optimization algorithm [17] for all networks. The
training scripts for the concept bottlenecks are based on the
scripts provided by the authors of the original article [18].

4.3 Predicates and rules

We defined three different types of rules and their associated
predicates:

– Basic class rules and predicates: one rule per class, they
are of the form

∀xgothic Pgothic(xgothic)

. In this case, the rule specifies that for all samples
of the class “gothic” (xgothic) the predicate “is gothic”

1 https://github.com/DavidMrd/LogicConceptSoftTrees
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(Pgothic) should be true. We implemented the predicate
as described in [2] for multi-class single-label problems.
One of the advantages of this implementation is that the
use of a softmax function ensures that no rules of the
form

∀xgothic¬Pbaroque(xgothic)

are needed.
– Knowledge rules and predicates: They are of the form

∀x : xpointed_arch ⇒ Pgothic(x). In this case, the rule
specifies that all samples containing the concept “pointed
arch” should be classified with the class label “gothic”.
These rules formed the knowledge bases presented in
Figs. 4 and 5. This knowledge is extracted from the
descriptions provided by the authors of the datasets [8,
21] and also from our own previous inspections of the
datasets. In order to propagate gradients only over the
corresponding subsets (in the example the subset of sam-
ples which verify the condition of “containing a pointed
arch”) we used guarded quantifiers [2] for the implemen-
tation. The predicates can be implemented the same way
as above, with the only difference of using the concept
labels instead of the class labels.

– Path rules and predicates: We can define two types of
rules depending on the type of labels that they are based
on:

– based on class labels: ∀xgothic Ppath1(xgothic). In this
example, the rule specifies that all samples belonging
to the class “gothic” should follow the path path1

– based on concept labels: ∀x : xpointed_arch ⇒
Ppath2(xgothic). In this example, the rule specifies
that all samples containing a “pointed arch” should
follow the decision path path2.

In these rules, pathi is a vector of size nbrach the number
of branches. The predicates Ppathi output the probability
of going through the selected branches. Every path can

Fig. 4 Knowledge base for theMonuMAIdataset. This knowledge base
contains all knowledge rules for the MonuMAI dataset. See Section 4.3

be a hole path from the top to one leaf or just a partial
path (i.e. probability of visiting one specific node). To use
these rules we had to adapt the soft decision tree so that
we can get the probability of following a specific path
as output. These rules allow the user to specify decision
paths based on the classes (based on class labels) or based
on the presence or absence of certain elements (based on
concept labels).

4.4 Experiments and results

In this section, we introduce the experiments carried out to
validate the proposedmethods (see Section 3) on the datasets
presented in Section 4.1. We kept the splits in training and
test sets that were proposed in [3, 6].

4.5 Preliminary experiments

In this section we present some preliminary experiments that
we carried out during the construction of the final solution.
They have the character of an ablation study, as we tested the
addition of some components to the final model.

4.5.1 Soft decision tree

In order to justify the use of a soft decision tree in the pro-
posed solution, we performed the following experiment. We
compared a soft-decision-tree-based concept bottleneckwith
a concept bottleneck based on a neural network classifier.
The first model corresponds to the model of the proposed
solution (without including the neural symbolic learning).
For the second model, we used a multilayer perceptron (3-
layers) as a classification subnet. We kept the Resnet-50 as
concept extractor for all models. To make a fair comparison,
we used the same extracted concepts for the independent
and the sequential approaches (where the classifier is trained
offline). We present the results in Table 1. That is the reason
why the C-Acc for those two approaches is the same for all
models. The Joint-Tree model gets the best results, achieving
almost 2 points accuracymore than the second-best model on
the main task. The independent and the sequential tree mod-
els perform slightly better than the corresponding baseline
models.

4.5.2 Class rules andmulti-class cross-entropy

In this subsection, we analyze the use of class rules and
the optimization of their satisfiability to train the model
compared to the classical approach based on a multi-class
cross-entropy loss function. The use of class rules would
allow us to go for a “pure” satisfiability optimization solution
(pure LTN-Solution), while the use of a multi-class cross-
entropy (CCE) approach would mean a fusion of training
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Fig. 5 Knowledge base for the
PASCAL dataset. This
knowledge base contains all
knowledge rules for the
PASCAL dataset. See
Section 4.3

approaches (satisfiability for the knowledge rules and clas-
sical approach for the classes). The results are presented in
Table 2. Please note that these results correspond to models
where no knowledge in form of attribute rules is present.

For the Independent and Sequential models the results
are pretty similar. However, we found that the training of the
sequentialmodel based on a pure symbolic learning approach
was difficult and even if we trained the model during much
more epoches than the Joint-N model, the model did have
many travels to converge and the finally Y-Acc got was much
lower than the one got by the model using multi-class cross-
entropy. After these results, we decided to use the classical
approach based on multi-class cross-entropy, as the pure
LTN approach does not bring any advantages and it needs
more epochs to converge. Please note that these models do
not incorporate attribute logics. The results for the proposed
models are presented in the next section.

4.6 Results

In this section, we report and analyze the results obtained for
the proposed approach on the two datasets.

In Table 3 we present the results obtained for the differ-
ent methods on the proposed datasets. We evaluate how each
proposed approach performs for two different tasks: concept

Table 1 Results of the proposed previous experiments comparing the
use of soft-decision-tree basedmodels tomultilayer-perceptron baseline
models on the MonuMAI dataset for the already presented metrics

MonuMAI
Ind-Tree Seq-Tree Joint-Tree

Y-Acc 92.74 92.85 97.69

C-Acc 97.62 97.62 97.64

Ind-Baseline Seq-Baseline Joint-Baseline

Y-Acc 92.34 92.41 95.93

C-Acc 97.62 97.62 92.79

Best results for each evaluation measurement are in bold

extraction and final classification. Using the annotation pre-
sented in Section 3, given a trained concept extractor g and a
trained tree t , we evaluate the classification task by comput-
ing the accuracy (Y-ACC) of the proposed bottleneck t ◦ g,
that is

Y − Acc = Acc(y, y′) (8)

where y is the target, this is the given annotation label for
the sample x and y′ = t(g(x)) is the final prediction of the
proposed model. To evaluate how the concept extractor g
performs, we compute the concept accuracy C − Acc, that is

C − Acc = Acc(c, c′) (9)

where c is the vector representing the annotated concepts for
a given sample x and c′ = g(x) is the prediction of g for the
sample x. Furthermore for the neural symbolic approaches
we compute themean satisfiability Sat for the corresponding
rules defined in the knowledge base K , given the model with
trainable weights φ.

Sat = SatK (x, φ) (10)

We repeated every experiment three times and present the
mean results in Table 3. As baseline methods, we use the
approaches presented in [28]. Note that the baseline meth-
ods have the same architecture as the proposed solutions, as
described in Sections 3.4 and 4. The difference relays on the
integration with neural symbolic learning via Logic Tensor
Network and the incorporation of first-order logic into the
training. We use the letter “N” to notate the proposed mod-
els that were trained using neural symbolic learning. “Ind,”
“Seq” and “Joint” represent the three different concept bottle-
necks: Independent, Sequential, and Joint (see Section 3.1).

It can be observed that the Independent model and the
Sequential model performed very similarly on both datasets.
Please note that the C-Acc for those two approaches is the
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Table 2 Results of the proposed
experiments to analyze the use
of class rules (LTN models)
compared to a classical
approach (CCE models) on the
MonuMAI dataset for the
already presented metrics

MonuMAI
Ind-LTN Ind-CCE Seq-LTN Seq-CCE Joint-LTN Joint-CCE

Y-Acc 92.1 92.74 92.21 92.85 78.22 97.69

C-Acc 97.62 97.62 97.62 97.62 96.92 97.64

Best results for each evaluation measurement are in bold

same since the same concept extractor g is used for both
models, and only t is different. Please refer to Section 3 for
more details.

The neural symbolic approaches achieve competitive per-
formance compared to the baselines, despite the imposed
constraints. This enhances the explainability of the mod-
els without creating a significant trade-off in their accuracy.
The neural symbolic approaches offer the user the possibil-
ity of understanding the model decision process through the
defined rules. In the table, we present the mean satisfiability
for the rules, but for the userwould it be also possible to know
the satisfiability of each rule. This is translated into a good
trade-off between explainability and performance. For exam-
ple, the satisfiability per rule for the Seq-N on the PASCAL
dataset is [88.91, 88.18, 80.24, 98.70, 99.64, 95.69, 90.04,
76.99, 89.28, 97.12, 85.56, 98.50, 90.61, 92.47, 95.19, 82.48,
81.85], where the rules are in the same order as presented in
Table 5. In this way, we can see that the rule with the lowest
satisfiability is rule number 8. This is not surprising as it is
the only rule that involves more than 5 attributes. Inspecting
the rule for the labels, we see that the satisfiability of the rule
in the training set is of 99.99. Sowe can be sure that the rule is
well-defined, so we should work on improving the behaviour
of the model for these attributes and for the corresponding
class, maybe giving it more importance (i.e. using balance
weights during training).

In the case of the Joint approaches, which performed best
for the baseline, we would like to note that we encoun-
tered particularly challenging training those models, as it
required optimizing three loss functions simultaneously: the
concept loss, the classification loss, and the symbolic loss.

(see Section 3). For the MonuMAI dataset, in order to attain
comparable accuracy to the baseline, the results for rule
satisfiability decline compared to other approaches. By opti-
mizing the parameters in the corresponding loss equation
(see Section 3.1) the Joint model could be forced to pay
more attention to the concepts, to the final prediction, or
to the knowledge base. For the Pascal dataset, the results
are really promising, although the concept accuracy is a bit
lower than for other models. For the PASCAL dataset, our
the Joint-N approach outperforms the corresponding base-
line. We can see that not only the final Y-Acc is higher, but
also that the performance of the concept extractor is higher
than in the baseline. The model benefits from the knowledge
base and the joint training approach, getting also the highest
satisfiability, 91.55 (2 points higher than for the sequential
approach).

4.7 Use case: user intervention

In this section, we present two use cases for the two studied
datasets, in which the user modifies the behavior of the deci-
sion tree using logical rules. We first present a use case for
the Pascal dataset, where our goal is to group the classes into
three categories (animal, transportation, and indoor object)
and force the tree to distinguish between these three cate-
gories at the initial nodes. To achieve this, we define the
logical variables Animal, IndoorObj, and Transport, which
represent the classes belonging to these categories.We define
these variables based on attributes. For example, we define
the Animal variable based on the presence of the following
attributes: Torso, Tail, Neck, Eye, Leg, Beak, AnimalWing,

Table 3 Results of the proposed
experiments on both datasets for
the already presented metrics

MonuMAI
Baseline-Ind Ind-N Baseline-Seq Seq-N Baseline-Joint Joint-N

Y-Acc 92.74 91.00 92.85 92.03 97.69 95.71

C-Acc 97.62 97.62 97.62 97.62 97.64 95.35

Sat − 92.29 − 94.01 − 90.67

PASCAL

Baseline-Ind Ind-N Baseline-Seq Seq-N Baseline-Joint Joint-N

Y-Acc 82.56 81.20 82.8 81.00 85.57 89.25

C-Acc 97.21 97.21 97.21 97.21 94.64 96.84

Sat − 83.15 − 89.42 − 91.65

Best results for each evaluation measurement are in bold.
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Head, and Ear. Based on these variables, we can define the
following predicates:

– ∀xAnimal → Ppath(xAnimal, lpath_LTree)
– ∀xTransport → Ppath(xTransport, lpath_RTree)
– ∀xIndoorObj → Ppath(xIndoorObj, lpath_RTree)
– ¬xAnimal → ¬Ppath(xAnimal, lpath_RTree)
– ¬xTransport → ¬Ppath(xTransport, lpath_LTree)
– ¬xIndoorObj → ¬Ppath(xIndoorObj, lpath_LTree)

Observe that these predicates are defined as explained in
Section 4.3 (see Path rules and predicates). In this way, we
indicate the decision paths that should be taken based on
these categories, so that the tree first groups the classes into
categories before making the final class decision. The con-
stant “lpath_LTree” is defined as visiting the first branch (or left
branch) of the tree (same for “lpath_RTree”). For theMonuMAI
dataset, we explore the option of defining rules based on the
classes instead of basing the rules on the attributes as before.
The rules are defined in the form:

– ∀xHispanic → Ppath(xHispanic, lpath_Hispanic)

We add one rule per class. For the class Renaissance, we
define the corresponding path as the one ending on the last
leaf node (number 8 starting from the left). For classHispanic
we define the path as going throw the left subtree and for the
Renaissance class as going through the right subtree. For
Baroque, we only add the constraint of not taking the path
defined for Baroque.

We add these rules the corresponding knowledge base
(keeping the rules used in the first experiments) and train
the sequential models from scratch. We choose the sequen-
tial approach for this experiment because its results serve as
a reference not only for itself but also as a minimum bench-
mark for the jointmodel. Take into account that the sequential
model can be seen as taking δ → ∞ in the equation that
defines the loss function for the joint model (see Section 3.1)
[18]. We compute a separate satisfiability “Sat Path” for the
new rules. We present the results in Table 4.

We can observe that these rules assist the user in defining
the model’s reasoning mechanism, with a low impact on the
model’s accuracy. In fact, in the case of MonuMAI, we can
even observe that the intervenedmodel achieves better results
than the Sequential-N model. This should not come as a sur-
prise since if the user is familiar with the task and can define
rules that improve the model’s decision process and help it
in its task, it would enhance its performance. Furthermore,
allowing the user to modify the model’s reasoning process
also opens the door to performing subtasks, as in the previous
cases where we are implicitly conducting classification into
meta-classes.

Table 4 Results of the proposed experiments on both datasets for the
already presented metrics

MonuMAI
Baseline Sequential-N Sequential-N-Intervented

Y-Acc 92.85 92.03 92.77

Sat − 94.01 93.24

Sat Path − 49.35 79.12

PASCAL

Baseline Sequential-N Sequential-N-Intervented

Y-Acc 82.80 81.00 80.61

Sat − 89.42 87.22

Sat Path − 41.75 81.92

Best results for each evaluation measurement are in bold

4.8 Compare to the state-of-the-art

In this section,we compare ourmodels and results tofive state
of the art approaches thatwere introduced above in Section 2.
Three of the models are transparent models (Greybox [3],
EXPLANet [6]) and [28] and the other twomodels are opaque
models (DeiT-B [3, 33] and MonuNet [21]). MonuNet is an
ad-hoc solution for monument-style classification, which is
why results are not available for the PASCAL dataset. The
results are presented in Table 5. Note that [28] is the method
that we used as baseline in the sections above.

On the PASCAL dataset, our approach achieves higher
accuracy than the explainable state-of-the-art models [3,
28, 33]. On the MonuMAI dataset, we achieve competitive
results despite of the constraints added to the model.

Our proposal is explainable not only due to its architecture
(as it is a soft decision tree that can be visualized as shown
in [28]) as most of the other transparent approaches but also
because it defines a knowledge base that allows the user to
comprehend the model’s behavior through rules, enabling
them to even modify the decision-making process. Among
the relatedworks presented, the only proposal that alsomakes
use of a knowledge base is [3], although they do not impose
restrictions on the model during training; instead, they use
the knowledge base as a training set, similar to how it is done
in the independent model. However, this approach does not
allow them to employ first-order logic or define additional
rules based on other factors, such as nodes to visit. The
inability to define first-order logic-based rules around this
knowledge base is a limitation that our proposal overcomes.
We also present the results for the Sequential intervented
model, demonstrating that this proposed solution where the
user is able to modify the decision process using first-order
logic-based rules also achieves competitive results. Note that
it is the only approach where the user has this option. This
demonstrates that the proposed neural symbolic approach
allows the users to define constraints not only based on the

123



Concept logic trees: enabling user interaction for transparent image...

Table 5 Results compared to
the state of the art

Model MonuMAI (Y-Acc) PASCAL (Y-Acc)

Ours (Joint-N) 95.71 89.25

Ours (Sequantial-N-Int) 92.77 80.61

Sequential [28] 92.85 82.8

Joint [28] 97.69 85.57

Greybox [3] 94.04 88.30

EXPLANet [6] 90.40 82.4

DeiT-B [3, 33] 96.48 90.85

MonuNet [21] 83.11 −
Best results for each evaluation measurement are in bold. MonuNet was designed and proposed specifically
for monument style classification

dataset itself but also on the architecture of the model, to use
first-order-logic to understand the model reasoning process
and to intervene in it.

Additionally, we achieved state-of-the-art competitive
results despite our model’s lower complexity compared to
most of the other transparent approaches as we did not
make use of object detection or semantic segmentation. A
classifier relying on an object detector like EXPLANet [6]
necessitates complex architectures such as Faster R-CNN
[14] or RetinaNet [23], further escalating the training com-
plexity. Similarly, employing a segmentation model like
DeepLab-V3+ [4] as done in Greybox [3] demands signifi-
cant resources; in fact, note that a model based on DeepLab-
V3 requires over 101 layers when employing ResNet-101
[16] as a backbone, whereas our model utilizes fewer than 60
layers. Furthermore, training an object detector or a segmen-
tationmodel requires complex annotations, such as bounding
boxes or semanticmask annotations,whichmust be drawn by
experts.

4.9 Themodel as explainable AI model

With the aim of analysing and discussing the use of our
proposed approach as XAImodel, we refer to [26] who intro-
duced some key considerations that should be made when
implementing new explainable AI techniques and models.
Below we resume the considerations and discuss how our
proposed approach fulfils them.

– Contrastive explanations: explanations aremore effective
when presented in a contrastive manner. This involves
explaining not only why decision X was made, but also
why was decision X preferred over decision Y. The visu-
alization of the making-decision process allows the user
to understand not only which concepts contributed in a
positive way to the decision, but also which other con-
cepts contributed in a negative way. Moreover, through
exploration of the decision tree, users can analyse what
alterationswould be required for the decision tree tomake

a different decision. That is why we affirm that the pro-
posed model satisfies this first requirement.

– Probabilities: grounding explanations in causal relation-
ships is more effective than relying on probabilities. The
use of probabilities alone to justify the choice of decision
X lacks effectiveness unless complemented with causal
connections. The combinations of first-order logic rules
and concepts are powerful causal links that are intuitive
for the user and helpful to understand the decision made.
Furthermore, these decisions can be visualized by the
user as decision paths.

– “Explanations are social”: the author remarks on the char-
acter of explanations as a transfer of knowledge as the
result of an interaction. This interaction with the user
is the result of the learning cycle proposed and imple-
mented in this research work. The user is able to define
background knowledge and constraints before the train-
ing starts. During the training phase the user is able to
analyse and control the model. Based on that analysis
and control, the learning process can be intervened by
redefining the knowledge in form of new rules and con-
straints. The user can even modify the routing process,
this is, the making-decision process as we have shown in
Section 4.7. Additionally, our model is compatible with
the user concept intervention as shown in [18].

5 Conclusion

In this research work, we explored the fusion of soft deci-
sion trees, neural symbolic learning, and concept learning,
resulting in an interpretable classification model that bases
its decisions on human-understandable concepts and enables
user intervention and the incorporation of expert knowledge.

One of the key advantages of our approach is the abil-
ity to define constraints to the routing process of the soft
decision tree. These constraints are specified in the form of
first-order logic rules and predicates that are based on the
combinations of concepts or classes. This empowers users to

123



D.M. Rodríguez et al.

have greater control over the decision-making process (i.e.
which nodes/leaves to visit for specific classes or in response
to the presence of certain concepts). By incorporating this
level of control, themodel becomes highly adaptable and cus-
tomizable tomeet specific requirements and preferences. The
definition of rules and predicates enables not only the user
intervention in training time but also the posterior inspection
of the model’s reasoning.

All of this results in an interpretable concept-based
architecture capable of incorporating expert knowledge and
enabling user control and intervention. We test our pro-
posed approach in two challenging datasets and compare it to
state-of-the-art solutions, achieving competitive results and
surpassing the state-of-the-art results for transparent models
on the PASCAL dataset.

In future work, we will continue exploring the poten-
tial of combining neural symbolic learning and soft decision
trees. Our approach could enhance the model’s interpretabil-
ity, transparency, and adaptability. This makes it a powerful
tool for decision-making in the domain of image classifica-
tion and others such as in the field of reinforcement learning,
where the use of soft decision trees has beenwidely explored.
Additionally, we believe that combining our work with other
techniques such as pruning techniques could improve the
transparency of our model and optimize it. Our proposed
solution, as any other supervised concept learning model,
requires concept annotations. Some authors have explored
solutions such as the automatic extraction of concepts [13,
20, 30]. We believe that the combination of some of these
methods with our proposed solution is an interesting future
task.

Finally,webelieve that further researchmust be conducted
in order to improve the model-human interaction in the field
of deep learningwith the aimof increasing trust inAImodels.
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