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Juan José Escobar1[0000−0002−4258−0264], Francisco Rodŕıguez2, Rukiye Savran
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Abstract. The growing energy consumption caused by IT is forcing ap-
plication developers to consider energy efficiency as one of the fundamen-
tal design parameters. This parameter acquires great relevance in HPC
systems when running artificial neural networks and Machine Learning
applications. Thus, this article shows an example of how to estimate and
consider energy consumption in a real case of EEG classification. An ef-
ficient and distributed implementation of the KNN algorithm that uses
mRMR as a feature selection technique to reduce the dimensionality of
the dataset is proposed. The performance of three different workload dis-
tributions is analyzed to identify which one is more suitable according
to the experimental conditions. The proposed approach outperforms the
classification results obtained by previous works. It achieves an accuracy
rate of 88.8% and a speedup of 74.53 when running on a multi-node
heterogeneous cluster, consuming only 13.38% of the energy of the se-
quential version.

Keywords: Parallel and distributed programming · Heterogeneous clus-
ters · Energy-aware computing · EEG classification · KNN · mRMR.

1 Introduction

Greenhouse gas emissions caused by energy consumption associated with the
proliferation of equipment, applications, and computer programs is growing wor-
ryingly. There are estimates that determine that ICT could contribute up to
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23% of global greenhouse gas emissions in 2030 [8]. To reduce consumption, it
is necessary to address the problem simultaneously from different approaches.
One of them is to analyze the energy consumption of programs and try to run
them in the most energy-efficient configuration. The other one, to exploit the
qualities of distributed and heterogeneous parallel platforms. Currently, when
designing applications, it is not enough to consider only the precision of the
results and execution time, but energy efficiency must also be considered as a
fundamental parameter. Among the most complex applications in terms of ex-
ecution time and energy consumption are those related to Machine Learning.
These High-Performance Computing (HPC) applications often have to process
large amounts of data (Big Data) and are characterized by high algorithmic
complexity. Therefore, this work shows the results of an investigation on the
energy efficiency of a bioengineering application, based on the KNN (K-Nearest
Neighbors) algorithm, capable of exploiting the qualities of a distributed and
heterogeneous parallel platform, which also takes into account performance in
terms of accuracy of results and execution time.

After this introduction, the rest of the article is structured as follows: Sec-
tion 2 refers to different works in the literature related to the topic addressed.
Section 3 details the proposed KNN implementation for EEG classification.
Then, Section 4 analyzes the experimental results and discusses the importance
of energy awareness in HPC systems. Finally, Section 5 provides the conclusions.

2 Background

The use of artificial neural networks and Machine Learning techniques in bioin-
formatics has experienced exponential growth in recent years. Among other
causes is the considerable growth in the size of biological datasets, as in the
case of Electroencephalography. Bioinformatics, among other topics, deals with
EEG signals, which represent the electrical activity of different parts of the brain.
EEG signals are used to aid in the diagnosis of disorders such as schizophrenia
[1], epilepsy [4], dyslexia [19], depression [17], autism [11], or sleep problems [18].
They are also used to classify motor functions of the nervous system, such as
movement of limbs or eyes [16], and for the classification of human emotions
[14]. However, the main problem of working with EEG signals is their high di-
mensionality, which makes their correct classification difficult since most of them
do not contain relevant information. Therefore, it is important to apply feature
selection techniques to obtain the most relevant ones. One of the fundamental
objectives of the artificial neural networks and Machine Learning is to recognize
patterns in these signals for their subsequent classification. Indeed, the EEG
classification problem is usually addressed through various Machine Learning
methods, such as regression or clustering algorithms.

In this work, a KNN algorithm for instance-based supervised classification
has been considered due to its good performance in this type of applications. The
KNN algorithm generally tries to classify the instances (patterns) by assigning
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them to the predominant class among their K nearest neighbors. The steps
required to classify each new instance are:

1. Calculate the distance between the instance to classify and the rest of train-
ing samples. In this work, the Euclidean distance has been used.

2. Sort the distances in increasing order.
3. Identify the predominant class among the nearest K distances (neighbors).
4. Assign the new instance to the predominant class.

3 The Proposed KNN for EEG Classification

EEG classification has been approached using the KNN algorithm together with
the minimum Redundancy Maximum Relevance (mRMR) technique [12], which
sorts the NF features of the dataset from least to most relevant. This approach
helps to deal with the dimensionality problem [15] and to reduce computation
time by avoiding the evaluation of all 2NF possible subsets of features. Instead,

Algorithm 1: Pseudocode of the approach used by the workers to eval-
uate all possible values of K for a feature subset.

1 Function evaluateFeatureSubset(Tr, Te, Idx)

Input : Training dataset, Tr
Input : Test dataset, Te
Input : Index of the last column of the feature subset to evaluate, Idx
Output: Accuracy of the best value of K, acc

2 NI ← getNumberInstances(Te)

// Vector with the correct predictions for each value of K
3 CP ← {0}

// Set as many OpenMP threads as logical CPU cores

4 #pragma omp parallel for
5 for i← 1 to NI test rows do

// Distance between instance te[i] and all training instances

6 D ← calculateDistances(Te[i], T r, Idx)
7 for k ← 1 to NI do
8 PC ← predominantClass(k,D)
9 if prediction PC is correct then

10 CP [k]++

11 end

12 end

13 end
14 CP ← sort(CP , “Descending”)

15 acc← CP [1]
NI

16 return acc

17 End
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the proposed algorithm only evaluates NF of them, where in each one, the next
feature from the list provided by mRMR is added. However, for each subset, all
possible values of theK parameter are also evaluated to get the best classification
accuracy. The mRMR implementation is based on the one proposed in [5] and
takes the F -test Correlation Quotient (FCQ) criteria to select the next feature.

KNN algorithm has been parallelized by distributing feature subsets among
worker nodes with MPI library and distributing the test instances to classify
among CPU threads with OpenMP. The latter can be seen in the #pragma omp

parallel for directive of Algorithm 1 (Line 4). The evaluation of all values
of K for a test instance has been optimized by calculating its distance from
all training instances (Line 6). In this way, the array D is reused in the loop of
Line 7 to obtain the predominant class according to the value ofK (Line 8). If the
prediction is correct, the value of the k-th position of the prediction vector, CP , is
incremented by one. Once all instances have been classified, the prediction vector
is sorted and the first position is used to calculate the classification accuracy of
the best K (Lines 14 and 15).

3.1 A Distributed Master-worker Scheme for Node-level Parallelism

The proposed implementation, whose pseudocode can be found in Algorithm 2,
follows a master-worker scheme where the master tells each worker which feature
subset must use to evaluate a KNN. The execution ends when there is no more
work to process and the function returns the best accuracy found (Line 36). The
operation is as follows: the master waits in Line 8 for some worker to request its
first job or to return the result of one of them, which is also implicitly associated
with the assignment of a new job. The message type is identified by the MPI tags
described in Table 1. When the master receives a result, it checks if the accuracy
of that job (feature subset) is better than the current one. If so, update its value
(Lines 9 to 11) and send a new chunk with the JOB DATA tag (Line 14). Before
sending work to a worker, the master checks for unprocessed chunks. If there is
no availability, the worker will receive the STOP tag and stop its execution since
there is no more work to do (Line 16).

Regarding the workers (Lines 20 to 35), they apply the mRMR algorithm
on the training dataset to obtain the ranked list of features. A worker requests
jobs by sending a message with the FIRST JOB tag (Line 23). For each chunk of

Table 1. MPI tags used during communications between master and workers.

MPI tag Description Sender Receiver

FIRST JOB Request for the first job Worker Master
JOB DATA There is work to do Master Worker
RESULT Return the result of the job Worker Master
STOP No more work to be done Master Worker
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Algorithm 2: Pseudocode of the master-worker approach.

1 Function Main(Tr, Te, CS , NWk)

Input : Training and test datasets, Tr and Te
Input : Maximum number of features to send to workers (chunk size), CS

Input : Number of workers nodes, NWk

Output: Accuracy of the best feature subset, bestAcc

2 bestAcc← −1
3 if Master then
4 NF ← getNumberFeatures(Tr)
5 indexList← {1, . . . , NF }
6 stops← 0
7 while stops ̸= NWk do
8 MPI::Recv(acc, tag)
9 if tag is RESULT and acc > bestAcc then

10 bestAcc← acc

11 end

// Next chunk to send, e.g. indices 10,11,12 when CS = 3
12 chunk ← getNextFeatureChunk(indexList, CS)
13 if size(chunk) > 0 then
14 MPI::Send(chunk, JOB DATA)

15 else
16 MPI::Send(NULL, STOP)
17 stops← stops+ 1

18 end

19 end

20 else

// mRMR. Reordering of datasets for coalesced memory access

21 rankedFeatures← mRMR(Tr)
22 Tr, Te← sortDatasets(Tr, Te, rankedFeatures)

// Start asking the master for workloads

23 MPI::Send(NULL, FIRST JOB)
24 MPI::Recv(chunk, tag)
25 while tag is JOB DATA do
26 for i← 1 to size(chunk) do
27 acc← evaluateFeatureSubset(Tr, Te, chunk[i])
28 if acc > bestAcc then
29 bestAcc← acc

30 end

31 end
32 MPI::Send(bestAcc, RESULT)
33 MPI::Recv(chunk, tag)

34 end

35 end
36 return bestAcc

37 End
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Fig. 1. The two different static workload distributions used by the master node.

features received (Lines 26 to 31), the worker obtains the accuracy of the cor-
responding feature subset by calling in Line 27 to the evaluateFeatureSubset
function of Algorithm 1. If the accuracy of the processed feature subset is greater
than the existing one, it will be update. Once all the possible subsets of the re-
ceived chunk have been processed, the worker returns the best accuracy obtained
to the master by sending a message with the RESULT tag, and waits for the as-
signment of a new job (Lines 32 and 33). This process is repeated until the STOP
tag is received, indicating that the worker can end its execution.

3.2 Ways of Distributing the Workload

As previously seen in Section 3.1, feature chunks are sent to workers via the
message-passing interface provided by the MPI library. This allows the applica-
tion to distribute the workload among the different nodes of the cluster. However,
in the algorithm proposed here, the workload of each feature subset is asymmet-
ric since the number of features in each one is variable. For example, suppose
a dataset with ten features, two worker nodes, and a chunk size of 2. In this
scenario, the first chunk that the master will send contains the indices 1 and
2, corresponding to the subsets {1} and {1, 2}. The second worker will receive
indices 3 and 4 to compute the subsets {1, 2, 3} and {1, 2, 3, 4}. In other words,
a higher index implies computing more features within the KNN and, conse-
quently, a longer execution time. To deal with workload imbalance, by default,
the procedure distributes chunks dynamically according to the specified chunk
size. Although this has the disadvantage of increasing communications, it is es-
sential in heterogeneous systems to avoid performance drops. If the user wants,
the master can also give each worker a chunk of features at the start of the
algorithm by dividing the number of total chunks by the number of workers.
This can be done in two ways: contiguous or striding features (see Figure 1).
The strided assignment could reduce the workload imbalance [6] present in the
contiguous blocks alternative since each node would compute similar subsets.

4 Experimental Results and Discussion

All experiments are repeated ten times to obtain more reliable measurements
of the application’s behavior. The application has been executed in an HPC
cluster composed of eight heterogeneous NUMA nodes whose CPU devices are
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Table 2. Characteristics of the cluster used in the experiments.

Node

CPU RAM

Model
Total

cores/threads
TDP
(W)

Frequency
(MHz)

Frequency
(MHz)

Size
(GB)

Master
2x Intel Xeon
E5-2620 v2

12/24 160 1,600

1
1x Intel Xeon
E5-2620 v4

8/16 85 2,100

2,133

32

2
2x Intel Xeon
E5-2620 v4

16/32 170

3 to 7
2x Intel Xeon
Silver 4214

24/48 170 2,200 2,933 64

detailed in Table 2. The cluster runs the Rocky Linux distribution (v8.5) and
schedules the jobs using the SLURM task manager (v20.11.7) [10]. The C++
source codes have been compiled with the GNU compiler (GCC v8.5.0), the
OpenMPI library (v4.0.5), and optimization flags -O2 -funroll-loops. The
energy measurements of each node have been obtained from a custom wattmeter,
called Vampire, capable of capturing in real-time information of instantaneous
power (W) and accumulated energy consumed (W · h) for each computing node.

The EEG dataset belongs to the BCI laboratory of the University of Essex
and corresponds to a human subject coded as #104 [3]. The dataset includes 178
signals for training and another 178 for testing, each with 3,600 features. As the
signals can belong to three different motor imagery movements (left hand, right
hand, and feet), the KNN algorithm deals with a 3-class classification problem.

4.1 Classification Analysis

The proposed algorithm achieves a Kappa index of 0.83 using the first 62 features
of mRMR and K = 18. This solution widely outperforms a run without mRMR
(0.34), and other approaches in the literature that use the same dataset: [2]
(0.63), [9] (0.70), and [13] (0.76). The result has been validated by replicating its
value when executing the KNN with the Python and Matlab languages and the
same input parameters. Figure 2(a) shows the corresponding confusion matrix,
which reveals an overall accuracy rate of 88.8%. The evolution of the accuracy
rate and the Kappa index depending on the number of selected features can be
observed in Figure 2(b). The general trend is that both metrics increase as new
features are added until reaching the peak (62), and then progressively fall. It
seems that the algorithm’s convergence is penalized with the selection of many
features, which are also irrelevant. It is also observed that the values of accuracy
and Kappa distance themselves for extreme values of the graph.
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Fig. 2. Classification results of the proposed approach when using mRMR and K = 18.
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Fig. 3. Performance of the proposed approach in a single-node configuration when
varying the number of OpenMP threads.

4.2 Energy-time Performance

Figure 3 shows the application’s performance after running on Node 3. The goal
is to depict the speedup scalability of the first parallelism level, which occurs
within each computing node when the number of logical CPU cores is increased.
From Figure 3(a), it can be seen that the maximum speedup of 12.67 is obtained
using the 48 threads available in the node. Its behavior is approximately linear,
up to four threads, and logarithmic for higher values. The main reason is that the
motherboard supports quad-channel memory. Increasing the number of threads
above four causes competition for memory accesses since not all of them can
do so simultaneously. It is also due, although to a lesser extent, because the
workload for each thread decreases and the cost of managing threads becomes
important. This means that the speed gain could increase with larger datasets
that allow threads to compute for longer periods. It has also been found that
distributing the instances to be classified among the threads statically provides
the best performance (Line 4 of Algorithm 1). This is expected, as indicated
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Fig. 4. Performance of the dynamic workload distribution when using all nodes.

in [7], because the computational workload is the same for each thread, so a
dynamic distribution has been discarded. Regarding energy consumption, also
for the case of using 48 threads, it provides the lowest total energy consumption.
This may seem contradictory since the use of more resources is associated with
a higher instantaneous power (see Figure 3(b)). However, energy consumption
also depends linearly on execution time, and since speedup increases at a greater
rate than energy, total energy consumption is less.

The performance of the hybrid MPI-OpenMP approach that corresponds to
the second level of parallelism is shown in Figures 4 and 5. On the one hand,
Figure 4 exposes the behavior of the application when all nodes are used, and the
workload distribution is dynamic. Figure 4(a) reveals that a very large chunk size
leads to worse execution time and energy consumption mainly due to workload
imbalance. The instantaneous power of each node for a chunk size of 4 is plotted
in Figure 4(b). Despite the fact that the optimal size ranges from 1 to 64, the
value 4 has been set as definitive since it works well with few nodes and should
do so with more than 7. What is observed in the figure is that most nodes end
up simultaneously, which is expected in dynamic workload distributions.

On the other hand, Figure 5 compares the different workload distributions.
The number of computation nodes indicated in Figure 5(a) does not correspond
to the order shown in Table 2. Instead, the nodes in the graph correspond to
homogeneous and heterogeneous ones in that order. That is, first Nodes 3 to
7, and later Nodes 1 and 2. In this way, the scalability of the program can be
analyzed according to the type of node added. As expected, for all distributions,
the observed speedup grows linearly as more nodes are used, but up to 5 and in
different magnitudes. From this point on, only dynamic distribution continues
to scale its performance, although to a lesser extent since heterogeneous nodes
begin to be used. In fact, it can be seen that the increase in speedup is in line
with the added heterogeneous node: adding Node 2 boosts speed up more than
adding Node 1 (the slowest one), until reaching a maximum speedup of 5.88.
With respect to a sequential execution (1 thread), the application achieves a
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Fig. 5. Comparison of performance between the different workload distributions.

speedup of 74.53, consuming only 13.38% of energy. The use of heterogeneous
nodes also negatively affects static and dynamic distributions but in different
ways. In the case of strided, speedup plummets for 6 nodes and improves slightly
after adding the last one. Not so for the static distribution, which worsens its
performance for each node added. The instantaneous power in Figure 5(c) reveals
that workload imbalance is responsible. Here, the nodes finish computing in a
staggered manner, with a long interval between the first (t = 30) and the last
(t = 125). In the strided case (Figure 5(b)), only the homogeneous nodes finish
at the same time, but before the heterogeneous nodes, causing a bottleneck.
Based on the results, it can be affirmed that the dynamic distribution provides
the best results in speedup, energy consumption, and scalability since the speed
gain is very close to the number of nodes used to compute.

5 Conclusions

This work has proposed to investigate the energy efficiency of a bioengineering
application capable of exploiting the qualities of distributed and heterogeneous
parallel platforms. The use of mRMR for the selection of features has allowed



Energy-aware KNN for EEG Classification in Heterogeneous Platforms 11

for the improvement of the performance of existing approaches in the litera-
ture that use the same dataset. Another contribution of this article has been to
consider energy efficiency as a fundamental parameter, unlike other works that
focus only on the accuracy of the results and on the execution time. In addition,
different workload distributions for the proposed procedure have been analyzed.
The results have verified that a dynamic distribution is the most appropriate
option to distribute asymmetric jobs in heterogeneous systems. They have also
shown the importance of knowing the architecture when writing parallel code
to take advantage of all available resources, reaching speedups of up to 74.53
consuming only 13.38% energy of sequential execution. Even so, the next step
is to improve this result using accelerators such as GPUs and increasing data
parallelism through vectorization techniques. Another way to reduce energy con-
sumption could be through the use of an energy policy that stops or resumes
the execution of the program according to the cost per Megawatt. Consequently,
this policy would allow data centers to save energy or money, depending on the
user’s preferences, but in the latter it would be at the cost of lengthening the
execution time and energy consumed.
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